Nuclear Graphite Components

Advanced Reactor Technologies Idaho National Laboratory

Richard Wright, Emeritus Laboratory Fellow

Will Windes, ART Graphite R&D Technical Lead

NRC HTGR Training July 16-17, 2019

Graphite Outline

- Functions and Requirements
 - § Normal and off-normal component functions
 - § Key safety requirements of core components
- Graphite Manufacture
 - § Unique material properties of graphite
 - Ideal unirradiated material properties it's not metal
- Environmental effects on nuclear graphite
 - Effects of oxidation
 - It doesn't burn!
 - Effects of irradiation of graphite
 - No Wigner (stored) energy if operated above 300°C
 - Physical, thermal, and mechanical properties
 - Turnaround and creep significance explained
- ASME Code for Graphite Core Components
 - New ASME code: probabilistic (ceramics) vs. deterministic (metals)
 - § How environmental effects are accounted for in design requirements
- Operating considerations (prismatic vs. pebble vs. molten salt)
 - § Differences between different graphite core designs

Critical Safety Requirements

- Maintain core geometry and structural integrity
 - Maintain fuel configuration during all operations (normal and off-normal)
 - Maintain undisturbed access for the insertion of reactivity control material
 - Maintain proper core coolant configuration
 - No blockage of coolant pathway
 - No gaps between graphite components
- Protection of fuel
 - Sompacts within the prismatic fuel elements
 - Pebbles within the core center
- Passively remove core heat during off-normal events
 - Rapidly absorb large thermal transients
 - Primarily by radial conduction from the fuel to the core barrel
 - During off-normal events when forced cooling is not available
- How does it do this?
 - Graphite does NOT melt or burn
 - Graphite **DOES** have high thermal conductivity and thermal stability
 - § Relatively strong in compression, weak in tension.

NGNP

Graphite Manufacture

- All graphite grades are proprietary. Only limited/general fabrication data is known
- Unique manufacturing processes for graphite must be understood to appreciate graphite behavior
 - Graphite is a porous material (15-20%) By design!
 - Second provides thermal and irradiation stability
- Graphite is manufactured from calcined coke and a pitch binder.
 - Multiple pitch impregnations to increase density
- Green forming technique influences the final microstructure
 - Sesire isotropic (or near isotropic) material response
- Properties and performance of graphite are significantly influenced by both raw materials and processing
 - Solution Steps
 Solution
 Solut

Graphite Material Properties of Interest

startup

Property	Nominal Range	Performance Attributes
Density	1.7 - 1.9 g/cm³	Neutron efficiency, Structural integrity, Thermal efficiency
Thermal Conductivity (at Room Temperature)	> 90 W/m/K	Heat transport
Purity (Total Ash Content)	< 300 ppm	Reduced component activity levels during replacement and/or dispos Reduced graphite oxidation under normal and accident conditions.
Tensile Strength	> 15 MPa	Structural integrity
Compressive Strength	> 45 MPa	Structural integrity
Flexural Strength	> 20 MPa	Structural integrity
CTE (20°C to 500°C)	3.5 to 5.5 x 10 ⁻⁶ K ⁻¹	High value is indication of isotropy = dimensional stability under irradiation Lower value potentially beneficial in terms of thermal stress
CTE Isotropy Ratio	< 1.10	Irradiation dimensional stability Structural integrity
Dynamic Elastic Modulus	8 – 15 GPa	Structural integrity Irradiation creep
Dimensional Changes with Irradiation	Minimal shrinkage Minimal differences in with-grain and against-grain directions	Structural integrity (lower internal stresses)
rom ASTM D7219 : Standard Specification for Isotropic and ear-isotropic Nuclear Graphites		 CTE (Coefficient of Thermal Expansion) Indicates isotropy and needed for gas gap analysis
 Density Higher = Stronger Lower = Better irradiation performance Conductivity Nearly a 70% drop almost immediately after reactor 		 Purity § Requires additional heat treatment
		 Dimensional changes Affects structural integrity If internal stress succeeds inherent strength of

§ If internal stress exceeds inherent strength of graphite = cracks

5

Graphite "Burning" and dust "Explosions"

- Graphite can not burn just physically can not sustain self oxidation

 - Fuel (carbon) is restricted to only the edges. Oxygen is restricted by the crystallography.
 - § Self-sustained oxidation (better definition than simple burning) can not be sustained.

Graphite dust can not explode

- § It does rapidly react but it self-suppresses. Similar mechanisms for "burning"
- Initial flare up of surface layer on dust particles but then nothing.
 - No chain reaction

Graphite "Burning" and dust "Explosions"

Corn (Maize) Dust

Graphite Oxidation and "Burning"

Graphite can and does oxidize – high temperatures

- Needs continuous oxygen and temperatures above 200°C – 300°C
 - Temperatures > 400°C needed for more rapid acute oxidation (accidents)
 - Temperatures < 400°C can still oxidize but at very slow rates (chronic oxidation)
- Oxidation still restricted to edges of crystallites with porosity dictating oxygen transport into component

- Oxidation rates of different grades can be compared using ASTM D7542 standard, "Air Oxidation of Manufactured Carbon and Graphite in Kinetic Regime"
 - Grain size dependent
 - Solution of small grain grade >> than large grain size

Irradiation Effects on Graphite Properties

- Irradiation induced changes **must** be considered in design
- Significant changes occur during normal operation in:
 - § Component dimensions
 - Components actually shrink ...
 - Until **Turnaround** when they begin to expand until failure
 - § Density
 - Components become more dense ...
 - After Turnaround dose they decrease in density
 - Strength and modulus
 - Graphite gets stronger with irradiation ...
 - Until Turnaround dose is achieved. It then decreases
 - § Thermal conductivity
 - Decreases almost immediately to ~30% of unirradiated values
 - S Coefficient of thermal expansion
 - Initially increases but then reduces after **Turnaround** until saturation
- Significant changes do not typically occur in the following properties:
 - Solution rate, neutron moderation, specific heat capacity, emissivity
- No Wigner energy release if components irradiated above 300°C.

Irradiation-Induced Dimensional Changes

- Under neutron irradiation graphite components shrink (densify) stop at Turnaround – then begin to expand (crack formation)
 - S Change is dose dependent: Higher doses = larger change
 - § Rate of change is highly temperature dependent
 - § Rate and amount of change is grade specific
- Results in tremendous internal stresses formed within graphite
 - Scrack formation and component failure usually after Turnaround
 - § Isotropic response is desired to assist in prediction of stresses and dimensional changes

Irradiation-Induced Strength/Modulus Changes

- Changes in strength and modulus somewhat parallel dimensional changes
- Strength/modulus initially increase
 - Maximum value is reached at approximately the Turnaround dose

- After Turnaround pores start to form in microstructure
 - S As porosity forms, strength and modulus fall at increasing rate
- As with dimensional changes, strong dependence on irradiation temperature

Irradiation-Induced Thermal Conductivity Changes

- Initial steep drop in conductivity followed by a saturation level
 - § Point defects interrupt thermal diffusivity/conductance
 - Efficiency of recombination rate of point defects is dependent upon irradiation temperature = saturation
 - § Further degradation of conductivity due to larger microstructure defects
 - Pore generation after turnaround
- At high operating temperatures irradiated and non-irradiated thermal diffusivity differences are small

Irradiation-Induced CTE Changes

- Overall, graphite CTE is low compared to other structural materials, e.g., metals
 - Implies excellent shock resistance
- Along with dimensional changes, must be accounted for in the design
- Initial increase with dose as manufacturing-related microcracks are closed
 - Limited dependence on Turnaround
- Subsequent reduction of CTE at increased dose rate

Irradiation Creep – Life Limiting Mechanism

Dose, dpa

 Reduces internal stresses resulting from dimensional changes

- Creep strain rate generally increases with temperature
- The net effect is positive in that stresses associated with dimensional changes and differential thermal expansion under irradiation are reduced
- As the total fluence (dose) is increased, this effect becomes increasingly important in attaining acceptable design lifetimes.

ASME Code for Graphite Core Components

- ASME Code for Graphite Core approved by ASME BNCS in early-2010
 - Section III Subgroup on Graphite Core Components
 - First published in 2012 under Section III, Division 5 (High-Temperature Reactors)
- Key features:
 - Applies to fuel, reflector and shielding blocks, plus interconnecting dowels and keys;
 - Excludes fuel compacts and pebbles
 - Rules apply to both individual components and assemblies
 - Applies probabilistic design methods
 - Design must account for statistical variations in graphite properties within billets and for different production runs
 - Design must account for irradiation effects on graphite properties
 - Allowance of cracks in graphite components, provided that safety functions are retained

ASME Code for Graphite Core Components

Three methods are provided for assessing structural integrity

- 1. Deterministic
 - Simplified conservative method based on ultimate strength derived from Weibull statistics
- 2. Full Analysis Method
 - Detailed structural analysis taking into account loads, temperatures and irradiation history
 - Weibull statistics used to predict probability of failure
 - Maximum allowable probability of failure defined for three Structural Reliability Classes (SRCs), which relate to safety function
- 3. Qualification by Testing
 - Full-scale testing to demonstrate that failure probabilities meet criteria of full-analysis method

All methods must consider changes from irradiation and oxidation

Structural Reliability Class	Maximum Probability of Failure
SRC-1	1.00E-04
SRC-2	1.00E-02
SRC-3	1.00E-01

ASME Code for Graphite Core Components

- New grades (third generation) are consistent and ready for codification
 - Lack of quantitative data on graphite behavior at higher temperature and dose applications
 - Test data is needed to define how precursor material changes, fabrication, and microstructure changes will affect performance
- Probablistic verses deterministic design approach
 - Seterministic is too limiting for a brittle material
 - A distribution of possible strengths in a material is needed for quasi-brittle materials (i.e., flaw size for graphite)
- Some amount of failure (i.e., a crack) is certain graphite is porous
 - The core needs to be designed to accept some amount of failure
 - Probability of failure based upon overlap of applied stresses and graphite strength
 - Irradiation and oxidation effects must be addressed

Operational Considerations – Operational Life

When do you replace the graphite?

Operational Lifetime Considerations

Pebble Bed

- Highest component lifetime dose
 - What is expected lifetime dose?
 - Turnaround dose? After Turnaround?
- Continuous operation
 - Inspection of components is problematic
 - <u>Component replacement is difficult</u>
- Components in high-fluence regions should be designed for replacement
 - Will require shutdown and de-fueling of pebbles from core
- Large grain grades are possible
 - Bigher Turnaround dose than fine grain
 - <u>Lower oxidation</u> rates than fine grain
- Irradiated test data validating models will be required
 - Currently only limited irradiation data for newer nuclear grades
 - Design life to be appropriately adjusted as data become available.

Prismatic

- Lower component lifetime dose
 - Still need expected lifetime dose
- Periodic shutdown
 - Much easier to inspect components
 - Components in high-fluence regions can be replaced **or** shuffled
- Finer grain grades required
 - Webbing between fuel/coolant channels requires smaller grain size
 - Slightly lower Turnaround dose
 - S Higher oxidation rate
- Still requires irradiated test data to validate operational models
 - S Currently only limited irradiation data for newer nuclear grades
 - Design life to be appropriately adjusted as data become available

• Dust?

Conclusions

- All graphite nuclear grades are proprietary
 - Graphite is porous by design
 - **§** Compressive applications only ($\sigma_c \gg \sigma_t$)
- Irradiation behavior is required for design
 - Simensional change and creep is life limiting mechanism
 - Strength/internal stress is dose dependent
- Degradation/Oxidation of graphite
 - Graphite does not burn (but it does oxidize at high temperatures)
 - S Oxidation limited to 10% mass loss. Then replace the component
- In-service Inspection
 - Easy for Prismatic designs. More difficult for Pebble designs
 - Visual and physical inspection of accessible areas during refueling or maintenance
 - In-situ Measurements (primarily interest to pebble reactors)
- ASME Code
 - § Probabilistic design calculations
 - Some amount of failure (i.e., a crack) is nearly certain over time
- Operational considerations Pebble and prismatic
 - What is the lifetime dose of component?
 - Is this after Turnaround dose?
 - S Can core be inspected? How are components to be replaced if required?
 - Society of graphite (small versus larger grain grade)

Suggested Reading

Manufacturing

- SASTM D7219, Standard Specification for Isotropic and Near-isotropic Nuclear Graphites.
- S Kelly, B. T., 1981, Physics of Graphite, Applied Sciences Publishers LTD, London U.K. and New Jersey USA, 1981.
- § R.E. Nightingale, 1962, Nuclear Graphite, Academic Press, ISBN: 978-1-4832-2854-9.

Oxidation

- International Atomic Energy Agency, 1992, INSAG 7, "The Chernobyl Accident: Updating of INSAG 1, International Nuclear Safety Advisory Group, IAEA, Safety Series No. 75 INSAG 7, (ISBN: 9201046928), 1992.
- Scristian I. Contescu, Robert W Mee, Yoonjo (Jo Jo) Lee, Jose D Arregui-Mena, Nidia C Gallego, Timothy D Burchell, Joshua J Kane, William E Windes, "Beyond the Classical Kinetic Model for Chronic Graphite Oxidation by Moisture in High Temperature Gas-Cooled Reactors", Carbon, 127 (2018) 158-169.
- Joshua J. Kane, Cristian I. Contescu, Rebecca E. Smith, Gerhard Strydom, and William E. Windes, "Understanding the Reaction of Nuclear Graphite with Molecular Oxygen: Kinetics, Transport, and Structural Evolution", Journal of Nuclear Materials, Volume 493, September 2017, Pages 343–367.
- Windes, W., G. Strydom, R. Smith, and J. Kane, 2014, "Role of Nuclear Grade Graphite in Controlling Oxidation in Modular HTGRs," INL/EXT-14-31720, Rev. 0, November 2014.
- Laine, N. R., Vastola, F. J., and Walker Jr., P.L., 1963, "The importance of active surface area in the carbon oxygen reaction," J Phys Chem, Vol. 67, pp. 2030–2034.
- Walker Jr., P. L., Rusinko, F., and Austin, L. G., 1958, "Gas Reactions of Carbon," Advances in Catalysis, Vol. 11, pp. 133–221.
- Bradbury, D., Wickham, A., Graphite Decommissioning: Options for graphite treatment, recycling, or disposal, including a discussion of safety related issues, EPRI Technical Report 1013091, March 2006.
- Walker Jr., P. L., 1990, "Carbon: An old but new material revisited," Carbon, Vol. 28, pp. 261–279.
- Walker Jr., P. L., Taylor, T. L., and Ranish, J. M., 1991, "An update on the graphite-oxygen reaction," Carbon, Vol. 29, pp. 411–421.

Suggested Reading (cont.)

Dust

- Bradbury, D., Wickham, A., Graphite Decommissioning: Options for graphite treatment, recycling, or disposal, including a discussion of safety related issues, EPRI Technical Report 1013091, March 2006.
- P. W. Humrickhouse, HTGR Dust Safety Issues and Needs for Research and Development, INL/EXT-11-21097, June 2011.
- A. Bentaib & J. Vendel, ITER Project: Dust Mobilization and Explosion, Introductory Meeting on the Planned PSI Research Project on HTR Graphite Dust Issues, PSI, Villigen, 26-27 November 2009.

Irradiation Effects

- J. H. W. Simmons, Radiation Damage in Graphite: International Series of Monographs in Nuclear Energy, Elsevier publications, 2013, ISBN: 1483186490
- S Kelly, B. T., 1981, Physics of Graphite, Applied Sciences Publishers LTD, London U.K. and New Jersey, USA, 1981.
- § R.E. Nightingale, 1962, Nuclear Graphite, Academic Press, ISBN: 978-1-4832-2854-9.
- Idaho National Laboratory, NGNP High Temperature Materials White Paper, INL/EXT-09-17187 R1, August 2012.
- N. C. Gallego and T. D. Burchell, A Review of Stored Energy Release of Irradiated Graphite, ORNL/TM-2011/378, September 2011.

ASME Code and Licensing

- Source Section 2017 ASME Boiler and Pressure Vessel Code: An International Code, SECTION III: Rules for Construction of Nuclear Facility Components, Division 5: High Temperature Reactors, ASME BPVC.III.5-2017.
- G. Longoni, R.O. Gates, B.K. Mcdowell, High Temperature Gas Reactors: Assessment of Applicable Codes and Standards, PNNL-20869 Rev. 1, October 2015.
- Mitch Plummer and Andrea Mack, Graphite Characterization: Baseline Variability Analysis Report, INL/EXT 18 45315, June 2018.
- 5 Timothy D Burchell, Rob Bratton, Barry Marsden, Makuteswara Srinivasan, Scott Penfield, Mark Mitchell, Will Windes, Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 5: Graphite PIRTs, NUREG/CR-6944, Vol. 5, 2007, Washington, DC USA.
- AB Hull, S. Malik, M. Srinivasan, and R. Tregoning, Survey of NRC's Materials Research Associated with Advanced Reactors, Proceedings from Corrosion 2012 Research Topical Symposium on Corrosion Degradation of Materials in Nuclear Power Reactors – Lessons Learned and Future Challenges, Salt Lake City, Utah, March 11-15, 2012.

Suggested Reading (cont.)

ASME Code and Licensing

- Soel N. Nemetha and Robert L. Bratton, Overview of statistical models of fracture for nonirradiated nuclear-graphite component, Nuclear Engineering and Design, 2010, Vol 240, pp. 1-29.
- S.F. Duffy and A. Parikh, Quality Control Using Inferential Statistics in Weibull-Based Reliability Analysis, ASTM International Technical Papers: Graphite Testing for Nuclear Applications, STP 1578, pp. 105-122.
- M. Srinivasan, The Use of Small Graphite Specimen Test Data for Large Core Components for HTGR, ASTM International Technical Papers: Graphite Testing for Nuclear Applications, STP 1578, pp. 30-64.
- Siang Fang, Haitao Wang, and Suyuan Yu, The Stress and Reliability Analysis of HTR's Graphite Component, Science and Technology of Nuclear Installations, Volume 2014, <u>http://dx.doi.org/10.1155/2014/964848</u>.
- D. Kanse, I. A. Khan, V. Bhasin, and R. K. Singh, Interpretation of ASME Code Rules for Assessment of Graphite Components, SMiRT-23 Division II Paper ID 346, Manchester, United Kingdom - August 10-14, 2015.

Source-dependence on graphite properties

- There is no generic "nuclear grade" graphite that can be made by all vendors
 - Solution All nuclear graphite grades are proprietary. How they are made is secret to the individual vendor
 - Completely different than metals. There is no fabrication information available for any grade.
 - Graphite users must select the grades that match their specific requirements
 - And no, vendors wont give up their recipes. There is no customer base asking for it
- As discussed in fabrication slide the unique graphite manufacturing processes dictate the graphite behavior – both unirradiated and irradiated
 - Main fabrication parameters are:
 - coke source: petroleum or coal-based coke source
 - grain size: coke particles (grains) range in size from 1800 μ m to 15 μ m
 - fabrication method: iso-static molded, vibration molded, or extruded fabrication
 - Grain-binder ratio: the amount of carbonaceous binder added to the grain particles
 - § Modifying these parameters can dramatically alter the unirradiated material properties and irradiation performance

Parameter	Unirradiated Behavior	Irradiated Behavior
Increased Density	Increased strength and modulus Higher fracture strength	A general decrease in Turnaround doseShorter component lifetime
Isostatic fabrication	Higher isotropy (than extruded) Higher cost material	Better, more predictable, irradiation performance.
Smaller grain size	More uniform, finer microstructure Especially when isostatic molded Higher oxidation rate than larger grained	Super-fine grades <u>may</u> have lower Turnaround dose

Minimal effects to graphite from irradiation

- No significant changes occur in:
 - § Neutron moderation Carbon atoms not removed
 - Specific heat capacity Crystal structure remains intact
 - Solution rate Minimal changes if any due to densification during irradiation.
 - S Molten salt interaction Graphite behavior (unirr. and irr.) similar to gas-cooled
 - Physical damage possible from salt intrusion into pores in graphite components
 - § Emissivity:
 - Unaffected by irradiation but oxidation may leave impurity oxides on outer surface.

- Minimal Wigner energy release if components irradiated above 300°C.
 - Solution Annealing of point defects in graphite is rapid above 250°C
 - § Minimal accumulation of stored energy
- Need high dose & low T_i
 - Low dose/low T_i components have reduced risk

Graphite Component Failure

AGR Core components

What do we mean by structural integrity

360°

HAD PH SHE HAD RAD HALS HAD RAD AHLS

- U.K.'s AGR bricks *Now past Turnaround dose*
 - Example of graphite component failure.
- § Both axial as well as radial cracking in components
- Lifetime is completely dependent upon graphite core now
 - Solution Secondary Systems
 Solution Not fuel design/performance, metallic internals, or secondary systems

1001674

INTERNAL LINE RAL AL HARL PEL CHILD

HROL HROL BAS AS HRO.

26

Graphite Component Failure

AGR Core components

From: J. Reed, Summary of Recent Inspection Data at UK Advanced Gas Cooled Reactors with Implications for Assessment of Graphite Component Integrity, INGSM-17, 4–8 September 2016, IAEA, Vienna, Austria

INTERNATION DAL ALHER POL CHER

• CAUTION!

- § U.K. AGR uses CO₂ for coolant
- § Radiolytic oxidation exacerbates all strength changes
- Inert gas cooled designs will be more robust
 - Somponent strength, internal stresses, and POF will be much different than CO₂ cooled AGRs

1001675

HRB: HDD: CALLER HRB.

360°

HR01 R41 4HL4 HP01 R41 4HL15 HP01 R41 4HL151

Component inspection (NDE techniques)

- Visual inspection, Eddy current, Ultrasonic, and X-ray inspection is possible
 - Thick graphite components are difficult to inspect
 - Flaw size resolution (i.e., cracks) are difficult to resolve in thick components
 - § Visual, Eddy current, and small sample trepanning are current methods used
 - U.K.'s AGR inspection program
 - No good technique exists. Destructive analysis (trepanning) yields most information

Detection of flaws (drilled holes) from X-ray method

- ASTM D8093 Standard Guide for Nondestructive Evaluation of Nuclear Grade Graphite
 - Guideline on how to use various Non-Destructive Examination (NDE) techniques to graphite core components.

ASME code methodology for graphite - 1

- Two key points to keep in mind:
 - 1. All nuclear graphite is proprietary Specific fabrication recipes are unknown
 - The properties for each grade are highly dependent on the recipe and **are optimized** (altered) to suit each users requirements
 - 2. Graphite is brittle (quasi-brittle)
 - Metals are ductile giving them the ability to fail in a predictable manner
 - Graphite fails much like ceramic probability of failure (POF) due to flaw size distributions
 - Weibull analysis historically used to predict the probability of failure and characteristic strength of brittle and flaw dependent materials
- Consequently, there are no "standard" specifications such as metals have
 - SASTM D7219 specifies impurity levels only. Other properties are *desired* ranges
 - § It's like specifying "Stainless steel" for a component (not 304, 316, or 316L)
 - The selected grade is then fabricated to the specific requirements of component
 - However, not much variation over all the grades. Not like metals
 - $K_{lc} \sim 0.5 1.5 \text{ Pa} \cdot \sqrt{m}$, $\sigma_t = 15\text{-}30 \text{ MPa}$, $4.5 5.5 \times 10^{-6}$, etc.
- Thus, graphite code is a "process" vs just picking a preapproved material
 - S The reactor applicant must demonstrate the graphite grade selected will <u>consistently</u> meet the component requirements
 - Requires property testing and analysis of the material properties before is durability as a nuclear component is analyzed
 - Achieved through the "Material Data Sheets" required in Code
 - Weibull parameters from strength tests used to predict the probability of failure of graphite
 - Data used in both "simple" (deterministic) and "full" (probabilistic) determination

ASME code methodology for graphite -2

- Fundamental material properties change with irradiation/oxidation
 - Solution Code must assess changes to design of component due to these changes
 - Irradiation: changes to density, strength, dimension, CTE, thermal conductivity
 - Oxidation: changes in density, strength, CTE, and thermal conductivity
 - Sode must also address these changes to in service and inspection
 - NDE and ISI are still outstanding issues that need to be addressed for graphite
- Material testing and analysis must be performed to determine changes
 - Property changes and irradiation creep to maximum expected dose levels
 - Solution strength assessment to maximum expected oxidation levels
 - Expected degradation during off-normal events with high temperatures and oxygen ingress

- Behavior and performance prediction models based upon irradiation and oxidation experimental results
 - Froperty degradation due to oxidation, irradiation, and dimensional stress buildup.
 - Fracture behavior and structural integrity = Primary

Summary of Simplified Graphite Assessment

Simple Assessment: 2 parameter Weibull (Deterministic Analysis)

Summary of Full Graphite Assessment

Full Assessment: 3 parameter Weibull (Probabilistic Analysis)

ASME Code modifications (Roadmap)

- Corrosion rate variability within a nuclear grade
 - Solution test specimens should require testing specimen be selected at different locations within a billet, over multiple billets, and over multiple batches
 - This will provide the oxidation rate variability across the entire specific grade
 - Surrently the oxidation mass loss for a component is limited to 10 wt%
 - After 10 wt% the component is recommended to be replaced
 - Code needs to provide guidance on how the oxidation mass loss is applied
 - Averaged over entire core? Only in central core region? Or only for select components?
- High temperature mechanical testing isn't really necessary for graphite
 - § As noted mechanical strength and modulus increase with increasing temperature
 - Soom temperature results are conservative for graphite
 - § No elevated temperature testing standards exist to support this current requirement
 - (i.e., no ASTM standards)
 - § How is elevated temperature testing of irradiated material to be conducted?
 - Testing temperatures at (or above) T_{irr} will anneal out irradiation effects
- Mechanical testing of irradiated material is unnecessary up to Turnaround
 - S As noted mechanical strength and modulus increase with increasing dose until Turnaround dose has been reached
 - § Room Temperature/unirradiated mechanical testing is conservative until Turnaround dose has been achieved
 - If components will be used to dose levels above Turnaround (i.e., high dose levels) extensive testing will be required