The Advanced Gas Reactor Fuel Development and Qualification Program Overview

Paul Demkowicz AGR Program Technical Director

Advanced Gas Reactor TRISO Fuels Program Review July 18-19, 2017 Idaho Falls, ID

Tristructural isotropic (TRISO) Fuel

- TRISO fuel is at the heart of the safety case for modular high temperature gas-cooled reactors
- Key component of the "functional containment" licensing strategy
 - Radionuclides are retained within multiple barriers, with emphasis on retention at their source in the fuel

Robust performance during irradiation and during hightemperature reactor transients

Low fission product release

AGR Program

Objectives and motivation

- Provide data for fuel qualification in support of reactor licensing
- Establish a domestic commercial vendor for TRISO fuel

no National Laboratory

Approach

- Focus is on developing and testing UCO TRISO fuel
 - Develop fuel fabrication and QC measurement methods, first at lab scale and then at industrial scale
 - Perform irradiation testing over a range of conditions (burnup, temperature, fast neutron fluence)
 - Perform post-irradiation examination and safety testing to demonstrate and understand performance during irradiation and during accident conditions
 - Develop fuel performance models to better predict fuel behavior
 - Perform fission product transport experiments to improve understanding and refine models of fission product transport

Advanced Gas Reactor Fuel Development and Qualification Program Elements

Targeted Fuel Performance Envelope

 Program goal is to qualify fuel to a performance envelope that is more aggressive than previous German and Japanese qualification efforts

AGR Program Timeline

AGR Fuel Irradiation Performance

German fuel has historically demonstrated ~1,000 times better performance than U.S. fuel.

Plot of Kr-85m release-to-birth ratio for various fuel types

Today, in-reactor AGR TRISO fuel performance is as good as German fuel at twice the burnup

AGR-1 and AGR-2 Irradiation Performance

- Low coating failure fractions (AGR-1 TRISO failure fractions are below existing reactor design specs)
- Low release of key fission products (Kr, Cs, Sr)
- Modest release of Eu; high release of Ag (influenced by irradiation temperature)
- Buffer fractures are common but do not appear to be detrimental to outer coating integrity
- UCO effective at controlling CO production which limits gas pressure and kernel migration
- Significant leaps in understanding causes of coating failures and fission product transport in coatings

AGR-1 capsule-average fission product release

AGR-1 4-1-3 (19.3% avg burnup)

Studying failed particles greatly improves ability to characterize and understand fuel performance

X-ray tomography to nondestructively locate defects/fractures

Advanced microscopy to study microstructure in detail

9

AGR-1 and AGR-2 Safety Test Performance

- Excellent UCO performance up to 1800°C
- Low Cs release (dependent on intact SiC)
- Low Kr release
- Modest Sr and Eu release (influenced by irradiation temperature)
- **High Ag release** (dominated by in-pile release from particles)
- Low coating failure fractions (UCO)
- Accelerated SiC attack by Pd at higher temperatures
- UO₂ demonstrates much higher incidence of SiC failure due to CO attack

Idaho National Laboratory

AGR-3/4 Irradiation

- AGR-3/4 irradiation completed April 2014
- Good performance of DTF particles, however:
 - Some difficulty identifying individual DTF failures during irradiation
 - Apparently not all DTF failed

AGR-3/4 Post-irradiation Examination

- Extensive PIE is in progress
 - Focus is understanding fission product transport in fuel kernels, fuel matrix, and reactor core graphite
- Analyze fission product distribution in rings
- Analyze fission products in compact matrix
- Determine fission product release from fuel at high temperatures in inert and oxidizing atmospheres

AGR-5/6/7 Irradiation

- Final fuel qualification irradiation; critical link in verifying fuel made at the commercial vendor meets performance requirements
 - Kernels, coated particles, and fuel compacts all made on pilot-scale fuel fabrication line at the commercial vendor
- AGR-5/6: Fuel qualification test
 - Irradiate sufficient number of particles to obtain fuel failure statistics
 - ~530,000 particles in four capsules
 - Temperature and burnup ranges attempt to represent HTGR core-wide distributions (~600 to 1400°C; ~7 to 18% FIMA)
- AGR-7: Fuel performance margin test
 - Explore the threshold for fuel performance
 - ~55,000 particles in a single capsule
 - Upper range of burnup values (~18% FIMA)
 - Time-average peak temperatures up to 1500°C

AGR-5/6/7 Irradiation Status

- AGR-5/6/7 fuel compacts have been fabricated and delivered to INL; QC measurements in progress
 - Some issues with specifications (OPyC thickness in TRISO, exposed kernel fractions in 40% PF compacts)
 - Highlights challenges with fabrication scale-up and maintaining operational rhythm at vendor
- Irradiation test train is mostly fabricated
- Irradiation is scheduled to start in the ATR Northeast Flux Trap in Nov-Dec 2017.

Idaho National Laboratory

Conclusions

- AGR program is approximately 2/3 complete
- Key successes to date
 - Excellent overall UCO performance
 - Significant leaps in understanding fuel performance
- Major tasks to completion
 - Complete AGR-2 PIE and safety testing
 - Complete AGR-3/4 PIE
 - Complete AGR-5/6/7 irradiation, PIE, and safety testing
 - Perform key safety tests in oxidizing atmospheres
 - Support NRC interactions on licensing
 - Code comparisons to data
 - Program closeout and reporting
- Several companies are depending on AGR program completion to establish domestic vendor and qualify fuel and decrease market entry risk

