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Outline

• Fuel operating experience in HTGRs

• Fuel irradiation and post-irradiation examination 
(PIE)(PIE)

• Safety criteria and performance limits

• Fuel performance modeling

• Fuel cycle issues
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Reactor Operation Experience for Fuel Has 
Been Good

• Four experimental and three power reactors 
i  t d ti lusing coated particles

– UK, US, Germany, Japan, China

C i l l  d ti  d t  • Commercial-scale production and reactor 
operation (and supporting R&D) have lead to 
– Understanding of fabrication Understanding of fabrication 
– Understanding of irradiation behavior and limits
– Fuel quality and performance improvements

….coated particles w/~50,000 kg HM fabricated
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Coated Particle Fuel Has Been Used Internationally
In Seven Gas-Cooled Reactors 

* Power density in volume where there are coated particles (compact and fueled region of pebble)
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Dragon, Winfrith, Dorset, UK

Operated 1965 to 1976 developing many new fuel 
designs – Tested BISO and TRISO with many fuel 
forms including Pu fuels – important early fuel 
developments were almost all made at Dragon

Fuel element – cylinders with outer 
sleeve, annular compacts, inner graphite 
filler, some elements internal purge 
sweeps fission products to monitoring 
and trapping system
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developments were almost all made at Dragon and trapping system



Peach Bottom I (40 MWe), Delta, Pennsylvania

Fuel element – cylinders 
• Used BISO (U/Th)C2 fuel particles no
longer proposed for use in HTGRs 

• First core experienced failures
• Corrected in the second core

with outer sleeve, annular 
compacts, inner graphite 
filler, internal purged 
sweeps fission products to 
trapping system
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Corrected in the second core trapping system



AVR (Arbeitsgemeinshaft Versuchsreactor), 
Hanau, Germany
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THTR (Thorium High Temperature Reactor),  
Hamm-Uentrop, Germany
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HTR-10, Beijing, China
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Fort St. Vrain, Platteville, Colorado
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Fuel performed well 



HTTR (High Temperature Engineering Test 
Reactor), Oarai,  Japan
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Improved Equipment and Fabrication Procedures Provided 
Substantial as-Manufactured Quality Improvement

But some fuel has not performed well under irradiation
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In-Pile 85mKr Release Measurements in FSV Indicate Good 
Coated Particle Fuel Performance

**

▼
HTTR

10-8 ▼
THTR■ AVR
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Outline

• Fuel operating experience in HTGRsp g p

• Fuel irradiation and post-irradiation examination 
(PIE) (PIE) 

• Safety criteria and performance limits

• Fuel performance modeling

• Fuel cycle issues
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CP Irradiation & PIE Procedures and Equipment are 
Well-Developed Tools for Understanding CP Fuel
• Fuel irradiations

– Test units – compacts, pebbles, particles
Test reactors and test equipment– Test reactors and test equipment

– Irradiations are conducted to
• Determine fission product barrier failure mechanisms, rates, limitations, 

and marginsand margins
• Design information on irradiated fuel materials
• Demonstrate performance of evolving fuel developments
• Validate fuel performance and fission product transport methods

– Irradiation test measurements
• Temperatures, neutron spectra and fluence, fission gas release

• Post-irradiation examinations (PIE)
– PIE facilities and equipment extract quantitative data
– Results contribute to understanding and quantification of 

fuel performance
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Irradiation Facilities at INL – ORNL & Worldwide

Advanced 
Test Reactor

Russia: IVV-2M 
Pebbles

SM-3/RBT-6 Test Reactor 
INL

High Flux Isotope 
Reactor - ORNL

Compacts

Reactor - ORNL

High Flux Reactor  
Petten NetherlandsPetten, Netherlands

Many other reactors have 
been used for Coated 
Particle Irradiations
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Particle Irradiations



Irradiation Facilities Measure Irradiation Conditions and 
Coating Integrity via in-Reactor Fission Gas Release
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Six (6)-Capsule Test Train Design for AGR-1
Individual Cell Features

AGR-1 test train assembly  
GraphiteThermocouples

y
6-individual instrumented capsulesFlux Wire

Stack 1

ATR Core 
Center

Stack 3

Stack 2

Hf Shroud

SST Sh d

Stac 3

Twelve 0 5” diam 1” long compacts/cell

Fuel Compact
Gas Lines

SST Shroud
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Twelve, 0.5  diam, 1  long compacts/cell



Capsule Irradiations Envelope Far Exceeded
NGNP Operating Envelopes

All Coated Particle 
Irradiations
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AGR-1 Irradiation Conditions Closely Match 
Expected Prismatic NGNP Service Conditions

And satisfied 
f
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Outstanding Coated-Particle Fuel Performance 
Observed in Most Recent US Irradiation 
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Summary – Fuel Irradiations

• TRISO - extensive irradiation testing
Exceeding NGNP operating envelope– Exceeding NGNP operating envelope

– German (pebble) and recent US (compact) 
irradiations demonstrate required performance

• Additional testing needed
bli h bili  i i l fid– Establish repeatability – statistical confidence

– Fuel fabricated on production-scale equipment
– Obtain additional design data  limitations  margins– Obtain additional design data, limitations, margins
– Validate fuel and fission product design methods
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Techniques for Coated Particle PIE are Well 
Developed

Coated particle post-irradiation 
examinations performed at well-

ORNL equipped hot cells, TRIGA 
reactor, accident testing facilities 
at:

ORNL

INL

• Oak Ridge National Lab
• Idaho National Lab
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Specialized Methods Have Been Developed for 
Coated Particle Fuel Examination

• Examine irradiated compacts and pebbles
– Dimensions, visual, metallographic, 

thermal/mechanical propertiesthermal/mechanical properties
– Fission gas release (R/B) - reactivation
– Solid fission product release Solid fission product release 
– Accident behavior

• Examine irradiated individual particles
Compact & pebble deconsolidation– Compact & pebble deconsolidation

– Individual microsphere gamma analyses (IMGA)
– Exposed or uncoated heavy metalp y
– Metallography
– Scanning electron microscope/microprobe
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Metallography Reveals Condition of Particles 
w/SEM –Microprobe –Distribution of Elements (variety of irradiations)

Polarized
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Individual Particles Can be Gamma-Counted
and Isolated for Examination

• IMGA gamma 
counts a large 
number of 

Data
CollectionDetectornumber of 

individual 
particles and 
tallies results

and Control

tallies results
• Automated 

handling & 
countingcounting

• Pick out 
problem 
particles for particles for 
detailed 
examination
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Accident Testing of Irradiated Fuel

• Furnace configuration

Test Compacts, Spheres, Particles 
(ORNL, INL, Worldwide)

27
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FG Data Indicates Coating Failure Initiated above  1600 oC
Satisfying the Accident Criterion is Achieved by Reactor Design

Fuel temperature stays
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e 
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Fuel temperature stays 
below the damage limits 
during complete loss-of-
coolant incident
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PIE Reveals Details of Coating Response to Accident 
Conditions – Determine Mechanisms & Rates

SiC Coating

Kernel-
buffer 
interface

Kernel

Ceramographic sections through UO TRISO particles

29

Ceramographic sections through UO22 TRISO particles



Summary – Post Irradiation Examination
• Irradiation testing of CP fuels can realistically 

simulate reactor conditions

• Irradiation facilities can measure and control 
irradiation conditions and collect in-pile data

• Specialized PIE tools have been developed for 
coated particle fuel to obtain quantitative 
performance and design dataperformance and design data

• Accident conditions can be simulated and data 
on fission product barriers and fission product on fission product barriers and fission product 
release collected
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Outline

• Fuel operating experience in HTGRsp g p

• Fuel irradiation and post-irradiation examination 
(PIE)(PIE)

• Safety criteria and performance limits

• Fuel performance modeling

• Fuel cycle issues
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Fuel Safety Approach
• Fuel safety criteria are related to the fuel fission product 

barriers – coatings
• Based on meeting plant top level dose limits with margin• Based on meeting plant top-level dose limits with margin
• Coating failure allowance allocated to as-manufactured and 

in-service performance
T ti  t bli h d i  i t h  f  • Testing established service environment where performance 
requirements are achieved

• Coating integrity during operation is protected by Operational 
Technical Specifications 
– Parameters are monitored and limited to meet safety criteria and 

stay within performance limits

– Coating integrity monitored by primary coolant radioactivity

• Coating failure limitation during accidents is achieved by 
reactor design passive  conductive heat loss

32

reactor design – passive, conductive heat loss



Estimated Maximum Service Conditions for 
Pebble & Prismatic NGNP Fuel (not Limits)

Parameter
Maximum 

Value*
(PBMR-CG)

Maximum 
Value*

(Prismatic NGNP)

Maximum fuel temperature–normal operation, 
°C

1048 1400

Maximum time averaged fuel temperature  °C 1048 1250Maximum time averaged fuel temperature, C 1048 1250
Fuel temperature (accident conditions), °C 1483 1600
Fuel burnup, % FIMA 8.75 17**
Fast neutron fluence, 1025 n/m2 (E > 0.18 MeV) 4 5

*Anticipated max. temperatures are not design limits.  These temperatures may be exceeded for a 
limited time (days or weeks) without resulting in fuel failure and can be exceeded by a small 
fraction of the fuel for longer periods without resulting in excessive fission product release.

*These do not represent “cliffs” where if exceeded failure will result
**Estimated FIMA for 14% enriched reference fuel particle under development by NGNP/AGR Fuel 

Program
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Comprehensive Fuel Qualification Program 
Being Conducted by NGNP/AGR Fuel Program

• Process development 
T t l  f b i ti• Test sample fabrication

• Irradiation testing & PIE
• Accident testing
• Validate fuel performance models
• Fuel product and process specifications
• Technology for commercial fuel fabrication
• Reduce market risk
• Qualify fuel for NGNP
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NGNP/AGR Fuel Program Overview

Lab Tests IIntegral Loop  
Validation* * i t TBD
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Validation *requirement TBD



Outline

• Fuel operating experience in HTGRsp g p

• Fuel irradiation and post-irradiation examination 
(PIE)(PIE)

• Safety criteria and performance limits

• Fuel performance modeling

• Fuel cycle issues
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Role of Fuel Performance Modeling

• Guide current and future particle designs
• Assist in irradiation and safety experiment 

planning
• Predict observed fuel failures
• Predict fission product transport through particles 

and matrix
• Interpolate fuel performance for core design 

assessmentsassessments
……INL leading US model development - PARFUME
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Coating Failure Mechanisms to be Modeled

– Coating Stresses
• Internal gas pressure
• Irradiation induced dimensional changesIrradiation induced dimensional changes
• Interactions between coatings

– Fuel kernel thermo-chemistry
• Oxygen management• Oxygen management
• Fission product compounds and phases

– Carbon Transport in temperature gradient
K l i ti• Kernel migration

– Chemical reactions with coating
• CO/CO2, palladium, lanthanides, impurities 

h  fi i  dother fission products
• SiC decomposition at high temperature

– Inter-relationships between failure mechanisms
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Coating Stress Modeling Requires Large 
Quantities of Detailed Data

• Linear Viscoelastic Constitutive Equation for Coatings

E, KμProperties

σ
 

 

εe
 εc

 εi  +  εT 
 Strains

Failure by Brittle Material Statistical 
Model Weibull

Coating properties depend 
strongly on: 
• Fabrication process that

Model - Weibull

affects coating structure
• Exposure to fast neutrons
• Temperature
• Imposed stress

……the coating properties constitute the 
largest uncertainty in predictions of coated 
particle performance
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Imposed stress particle performance



TRISO Coatings Are Complex Structures with 
Complex Interactions Between Coating Layers

• Pyrocarbons shrink 
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INL PARFUME INL PARFUME –– Integrating FirstIntegrating First--Principle Treatment of Principle Treatment of 
Failure Mechanisms for General ApplicationsFailure Mechanisms for General Applications

Past Failure 
Mechanisms 

Observed 

Reactor Service Conditions:
Neutron Flux

Power Density
Fast Ne tron Fl ence/Damage

Fuel 
Attributes

Boundary 
Conditions 

and
in PIE Fast Neutron Fluence/Damage

Temperature

Di i lit f il d t b id d k t i l ti

and 
Geometry

Structural
BehaviorThermal Fission

Product
Failure

Evaluation

Pieces of
the Model 

Dimensionality, failure modes to be considered, key material properties

Behavior
ModuleResponse Product

Release
Evaluation

(Weibull)

C i i
Physio-chemical

Properties
Thermo-

mechanical 
Properties

Fission 
Product

Transport
Properties

Corrosion
attack

rates of SiC

Constitutive 
Relations
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Accident Modeling

• Initial empirical separate effects treatments used 
in the pastin the past
– Pressure vessel, chemical attack, amoeba
– Thermal decomposition depending on accident 

temperature and state of irradiation
• 1-D performance codes being upgraded and 

integrated for applications during accidentsintegrated for applications during accidents

• Covered in Module 15 

……

42



Summary – Fuel Performance Modeling

• 1-D fuel particle performance codes are being 
developed in many countriesp y
– Codes have different levels of capability
– Goal to integrate failure mechanisms
– Most still under development moving toward a 

common goal of universal applicability

• Uncertainties in performance predictions arise 
mainly from properties of irradiated coatings

• Multi-dimensional codes are used to predict non-
spherical effects
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Outline

• Fuel operating experience in HTGRsp g p

• Fuel irradiation and post-irradiation examination 
(PIE)(PIE)

• Safety criteria and performance limits

• Fuel performance modeling

• Fuel cycle issues
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Fuel Cycle Issues

• Sustainability
– Resource utilization
– Enrichment

Th i– Thorium
• Proliferation

R i  f t d ti l– Reprocessing of coated particles
• Fuel cycle economics

Ulti t  di l f t d ti l  f l• Ultimate disposal of coated particle fuel
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Once-Through LEU Fuel Cycle being Considered for 
NGNP - Good Proliferation Resistance  

NGNP
10% enr. UO2
15% enr UCO

Many other cycles possible  
Selection depending on economics 

and waste management policy 

Ultimate
Disposal

46
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Fuel Cycle Parameters

Parameter Units PBMR-CG
(LEU)

GT-MHR
(LEU) PWR

HM loading MT/GW(th) 11.2 7.5 36

Ore utilization U3O8/GW(e)-Yr 183 182 212

Conversion Ratio new fissile/used 
fissile 0.46 0.4 0.5

Discharged Pu kg/GW(e)-Yr 147 96 338

Heat load -
discharge@ 10 years kw(th)/GW(e)-Yr 25 24 26
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Summary

• Coated particle fuel has been 
f t d i  i l titi  d manufactured in commercial quantities and 

successfully used in power reactors

• Substantial experience with fuel irradiation, 
examination, and testing      strong 
d t b   f l fdatabase on fuel performance

• Performance modeling is continuously 
improving – additional data and validation 
needed
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Suggested Reading

• Fuel Operating Experience  in HTGRs
– A. Baxter, et al., “FSV Experience in Support of the GT-MHR 

Reactor Physical, Fuel Performance , and Graphite,” IAEA  Reactor Physical, Fuel Performance , and Graphite,  IAEA  
Technical  Committee Meeting on ‘Proceedings of the 
Development Status of Modular High Temperature Reactors 
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• Fuel Irradiation and PIE
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– “Fuel performance and fission product behaviour in gas 
cooled reactors,” IAEA-TECDOC-978 (1997)cooled reactors,  IAEA TECDOC 978 (1997)
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Suggested Reading

• Fuel Performance Modeling
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