HTGR Technology Course for the Nuclear Regulatory Commission

May 24 – 27, 2010

Module 5d
Prismatic HTGR Refueling Design

Russell Vollman General Atomics

Outline

- Prismatic refueling system functions and requirements
- Refueling system design description
- Fort St. Vrain experience
- Used fuel management plan

Prismatic Refueling System Key Functions

- Remove and replace fuel in reactor
- Provide interim used fuel storage
- Receive, inspect, and store new fuel
- Provide for long term storage and disposal
- Provide control and inventory accountability
- Replace selected reflector elements
- Perform in-core inspection and maintenance

Prismatic Refueling System Key Requirements

- Minimize refueling time consistent with fuel cycle time allocation for planned outage
- Provide for storage of used fuel and discharged reflectors from 10 years of plant operations plus one core volume including reflectors
- Provide space to expand storage facility to accommodate used fuel and reflectors discharged over the plant life
- Provide for expanding used fuel storage facility without impacting power production
- Provide interface with US DOE used fuel disposition system

OUTLINE

Prismatic refueling system functions and requirements

- Refueling system design description
- Fort St. Vrain experience
- Used fuel management plan

Refueling System Arrangement for 4-Module HTGR Plant

Refueling System Equipment - MHTGR

- Main refueling equipment items are:
 - Fuel Handling Equipment Positioner
 - Fuel Handling Machine
 - Fuel Handling Equipment Support
 Structure
 - Fuel Transfer Cask
- Fuel handling machine grapples fuel elements from core for placement in fuel transfer cask
- Fuel transfer cask transfers the fuel elements to/from fuel storage pool

Fuel Handling Machine – MHTGR

Fuel Transfer Cask - MHTGR

In-Vessel Refueling Operations - MHTGR

Arrangement of Refueling Equipment and Penetrations - MHTGR

Local Storage Facility - MHTGR

Refueling System Overall Process

Location	Action
1	New-fuel received at Shipping Bay
2	Shipping Casks placed in Storage Racks
3	New-fuel Unsealed & inspected
4	Positioner moves new-fuel to storage pool
5	Transporter moves Auxiliary Service Cask to reactor module & removes Control Rod Drive
6	Transporter moves CR Drive to Neutron Control Storage Well
5	Positioner moves Fuel Handling machine & Fuel Transfer Cask to Reactor Module and removes 1/6 Sector of used-fuel
4	Positioner moves used-fuel to Storage Pool and places new-fuel & some used-fuel in Fuel Transfer Cask
5	Positioner moves Fuel to Reactor Module • New- & Used-fuel Placed in Reactor • Moves FHM & FTC to neutral position
6	Transporter moves Aux Service Cask to Neutron Control Storage Wells & retrieves Control Rod Drive
5	Transporter moves Aux Service Cask to Reactor Module

OUTLINE

- Prismatic refueling system functions and requirements
- Refueling system design description

- Fort St. Vrain experience
- Used fuel management plan

Fort St. Vrain Fuel Handling Machine

Fort St. Vrain Grapple Head

Lessons Learned and Key Features Proven at Fort St. Vrain

- Reliable grappling of graphite fuel blocks
- Remote pickup and deposit for offset core alignment
- Fuel block handling speeds and acceleration and deceleration
- Use of dry-film and wet lubricant applications
- Shielding protection
- Control of primary coolant atmosphere

OUTLINE

- Prismatic refueling system functions and requirements
- Refueling system design description
- Fort St. Vrain experience

Used fuel management plan

Used-Fuel Management Plan

- Cool used fuel in local used fuel storage facility until fuel is ready for storage in dry storage casks
- Place used fuel in storage canisters in reactor service building
- Load storage canisters into concrete storage cask
- Move storage cask to on-site storage facility
- Store until final disposition is available
- Load storage canister into shipping cask
- Ship used fuel storage canisters to final disposition facility

On-Site Used Fuel Storage Facility - MHTGR

*ISFSI = Independent Safe Fuel Storage Installation

Summary

- Refueling accomplished remotely using automatic, computer controlled operations
- Major equipment and facilities employed include:
 - Fresh fuel receipt and storage facility
 - Fuel handling machine
 - Fuel transfer cask
 - Fuel handling equipment positioner
 - Local, water-cooled used-fuel storage facility
 - Used-fuel packaging facility
 - On-site dry, used-fuel storage casks for long-term storage
- Basic refueling process and key equipment items proven at Fort St. Vrain
- Long-term storage of used-fuel accomplished using dry storage casks

Suggested Reading

- "Preliminary Safety Information Document for the Standard MHTGR", HTGR-86-024, Section 9.1.1.
- "Conceptual Design Summary Report Modular HTGR Plant", DOE-HTGR-87-092, Section 3.7

