HTGR Technology Course for the Nuclear Regulatory Commission

May 24 – 27, 2010

Module 13
Fission Product Behavior in HTGRs

David Hanson
General Atomics

Outline

- Introduction, background, and radionuclide fundamentals
- Radionuclide (RN) transport in HTGRs
 - Fuel kernels
 - Particle coatings
 - Fuel matrix/graphite
 - Primary coolant circuit
 - Reactor building
- Design methods for predicting RN transport
- Comparison of code predictions with data
 - In-pile test data
 - Reactor surveillance data

Introduction and Background

- HTGR designs employ multiple radionuclide (RN) release barriers to meet RN control requirements
- RN transport in HTGRs has been extensively investigated
- Design methods available to predict performance of the RN release barriers during normal operation and accidents
 - Codes have been used extensively for reactor design & analysis, including operating HTGRs
- Many comparisons of code predictions with data
 - Reactor surveillance, in-pile tests, etc.
 - Codes not completely verified and validated
- NGNP/AGR Fuel Program will complete validation of codes
 - Single-effects data for component model upgrades
 - Independent integral data for code validation

Radionuclide Containment Function

- HTGR designs employ multiple RN release barriers to meet RN control requirements
 - Fuel kernels
 - Particle coatings (most important barrier)
 - Fuel-element matrix/fuel-element graphite (prismatic)
 - Primary coolant pressure boundary
 - Reactor building (RB)
- These multiple RN barriers provide Defense-in-Depth
- Performance criteria for each RN release barrier derived using a top-down allocation process (Module 3)

HTGR RN Sources and Pathways

HTGR Radionuclide Inventories

- Radionuclide inventories in reactor core calculated using standard burnup/depletion codes; for example:
 - ORIGEN for core RN inventories
 - GARGOYLE (GA)/VSOP99 (PBMR) for decay heat calculations
- Allowable RN inventories in primary circuit derived from RN control requirements using top-down functional analysis
 - Two-tier set of "RN design criteria" defined to explicitly include safety factors in plant design (next slide)
 - RN inventories specified for:
 - Circulating activity in primary coolant
 - Plateout activity in primary circuit
 - He purification system
 - Plant mass balance calculated with RADC (GA)/DAMD (PBMR)

Design Margins (Safety Factors) Are Explicitly Included in RN Design Criteria (Prismatic Example)

Radionuclide Release Fundamentals

$$(f.r.)_{core} = \frac{C(f.r.)_c + F(f.r.)_F + [1 - C - F](f.r.)_D}{AF_{graphite}}$$

 $(f.r.)_{core}$ = fractional release from core

C = heavy-metal contamination fraction

 $(f.r.)_{C}$ = fractional release from contamination

F = failure fraction:

(f.r.)_F = fractional release from failed particles

 $(f.r.)_D$ = fractional diffusive release from intact particles

AF_{graphite} = matrix/graphite attenuation factor

Dominant Radionuclides in HTGRs

Nuclide	Half Life	Primary Impact
I-131	8 day	Offsite dose, O&M dose
Ag-110m	250 day	O&M dose
Cs-137	30 yr	O&M dose, offsite dose
Cs-134	2.1 yr	O&M dose, offsite dose
Sr-90	28 yr	Offsite dose
Kr & Xe		Normal operation gaseous effluent
H-3	12.3 yr	Normal operation liquid effluent; product contamination

Significance of Tritium for HTGRs

- Tritium (H-3) will be produced in NGNP by nuclear reactions
 - Ternary Fission (Yield = $\sim 1 \times 10^{-4}$)
 - Neutron activation of impurities (He-3 in coolant; Li in graphite)
 - Neutron capture in boron control materials
- Some H-3 will accumulate in primary helium
 - Controlled by He Purification System
 - Significant sorption on core graphite
- Fraction of circulating H-3 in He will permeate through IHX &
 SG with potential to contaminate process gases and steam
- H-3 will contribute to public & occupational exposures
 - Environmental releases from plant (liquid discharge)
 - Contaminated products (e.g., hydrogen, bitumen, etc.)

H-3 Permeation through Metals Suppressed by Oxide Surface Films

- H-3 Permeation Measurements at ORNL
 - ✓ Incoloy 800 steam generator tubing
 - ✓ Trace H-3 in He on outside of tube
 - √ Steam on inside
- H-3 permeation behavior
 - ✓ Rapid decrease during first 36 hr
 - √ Subsequent slow decrease
 - √ Square-root time dependence
 - √ Growing oxide layer on steam side
 - √ H-3 permeation through oxide layer rate limiting
- Implications for steam-cycle HTGRs
 - \checkmark He and H₂O chemistry important
 - ✓ Oxide layers inhibit H-3 permeation
 - √ Thermal cycling reduces effectiveness of oxide layer (cracking)

H-3 Behavior in Prismatic HTGRs Off-Site H-3 Releases < Regulatory Limits

Dragon HTR

- First determination of H-3 behavior in an HTGR
- Li₂SO₄ (neutron poison) in secondary H₂O unique source
- H₂O injection increased circulating H-3

Peach Bottom 1

- ~60% H-3 release from BISO fuel; retained in graphite
- H-3 produced in control materials retained in place
- Small H-3 permeation into secondary coolant (~1.1 Ci)

Fort St. Vrain (FSV)

- Ti getters in HPS did not meet requirements (deactivated by N_2 , etc.)
- Core graphite major sink for H-3: >10x more effective than HPS
- Frequent H₂O Ingresses released H-3 from core graphite

HTTR

- H-3 plant mass balance at 938°C core outlet temperature
- Extensive data on H-3 permeation through IHX (Hasteloy XR)

FSV Tritium Concentration in Primary Helium

H-3 Behavior in Pebble-Bed HTGRs Off-Site H-3 Releases < Regulatory Limits

AVR

- High lithium content in "carbon brick" side reflector (~4 ppm)
 - Dominant source of H-3 production
 - <50 ppb typical for HTGRs
- H₂ (protium) injection tests
 - Displaced H-3 sorbed on core graphite
 - Decreased H-3 permeation to secondary H₂O
- Adjusted feed-water chemistry promoted growth of oxide layer on SG tubes reducing H-3 permeation and release
- Large SG leak resulted in large H-3 release from core graphite

THTR

Little published information

HTR-10

No published information

Outline

 Introduction, background, and radionuclide fundamentals

- Radionuclide (RN) transport in HTGRs
 - Fuel kernels
 - Particle coatings
 - Fuel matrix/graphite
 - Primary coolant circuit
 - Reactor building
- Design methods for predicting RN transport
- Comparison of code predictions with data
 - In-pile test data
 - Reactor surveillance data

HTGR RN Transport Knowledge Base

- Extensive international data base on HTGR fission product transport available to support HTGR design & licensing
 - Summarized in IAEA TECDOC-978, 1997
- Primary data sources
 - Previous HTGR R&D programs in USA, FRG, Japan, France, etc.
 - Reactor surveillance programs (seven HTGRs constructed)
 - On-going R&D programs, especially fuel AGR program
- Existing data base has limitations; hence, uncertainties in models and material properties are often large
 - Some data are for non-reference materials
 - QA pedigree uncertain
- Additional testing needed to complete validation of design methods for predicting fission product source terms

Radionuclide Release Barriers Fuel Kernels

Potential release mechanisms

- Fission recoil
- Diffusion
- Hydrolysis (reaction with H₂O)

Controlling parameters

- Fuel temperatures
- Time
- H₂O concentration
- Burnup

Barrier performance

- Fractional gas release function of time/temperature history
- Increased gas release in case of hydrolysis
- Partial diffusive release of volatile fission metals (Ag, Cs > Sr)
- Other radionuclides, including actinides, completely retained

Fission Gas Release Fundamentals Chemical Element and Half-Life Dependence

- 1. Release Rate-to-Birth Rate Ratio (R/B) $\alpha \sqrt{t_{1/2}}$
- 2. $R/B_{Kr} \approx 3x R/B_{Xe}$
- 3. $R/B_{Br, Se} = R/B_{Kr}$ $R/B_{I.Te} = R/B_{Xe}$
- 4. Behavior predicted by Booth Eqn

$$\left(\frac{R}{B} \right)_{ji} = 3 \sqrt{\left(\frac{\xi_j}{\lambda_i} \right)}$$

5. Deviations observed, especially at lower temperatures and high neutron fluxes (e.g., in HFIR)

Fission Gas Release from Failed Particles Effect of H₂O on Kr-85m R/B

Stage 1. rapid release of stored gas & increased steady-state R/B upon hydrolysis

Stage 2. increased steady-state R/B

Stage 3. decline to nearly initial R/B upon removal of H₂O

Pattern repeats with multiple H₂O injections

Effect of H₂O on Kr-85m R/B from failed UCO particles at 755°C in HRB-17 Test (Original UCO kernel had been converted to UO₂ by previous H₂O injection)

Dependence of Fission Gas Release on H₂O Partial Pressure

- Previous plot showed R/B vs. time after H₂O injection
 - ✓ Instantaneous release rate/birth rate
 - √ R/B spiked because of stored gas release upon hydrolysis
- Cumulative release divided by cumulative birth (FR) shown here
- FR dependence on H₂O partial pressures
 - √ Linear increase at low partial pressures
 - √ Independent at high partial pressures
- Typical behavior for gas-solid reactions
 - √ e.g., "Langmuir-Hinshelwood" kinetics
- Significant for large H₂O ingress accidents
 - √ FR reaches plateau at ~20% becoming independent of H₂O partial pressure

Fission Product Release from LEU UO₂ Kernels under Core Conduction Cooldown Conditions

Heating Time (hr)

- Postirradiation heating of FGR LEU UO₂ bare kernels from FRJ2-P28/C6
- Test articles reactivated prior to heating to generate short-lived radionuclides (e.g., I-131)
- FP release behavior as temperature ramped from 1000 to 1600°C:
 - ✓ Xe-133, I-131 ("J-131") and Ag-110m rapidly released
 - ✓ Cs-137 delayed but reaches 100%
 - √ Sr-90 substantially retained for long times
- Kernel release rates expected to increase at higher burnups (low-burnup ThO₂ data)

Radionuclide Release Barriers Particle Coatings

Potential release mechanisms

- Diffusion through intact coatings
- In-service coating failure
- SiC corrosion by fission products
- SiC thermal decomposition

Controlling parameters

- Fuel temperatures
- Time
- Fast neutron fluence (Increased FP diffusivities)
- Barrier performance (Module 8)
 - Only Ag (and H-3) released by diffusion from intact particles
 - No pressure-induced failure of standard particles
 - SiC thermochemical failure function of time/temperature
 - Gases retained by OPyC with defective/failed SiC

Fission Product Release from LEU UO₂ TRISO Particles under Core Conduction Cooldown Conditions

- Postirradiation heating of German LEU UO₂ TRISO particles in spheres at 1600 & 1800°C
- No complete coating failure (1 particle failure would yield Kr-85 fractional release = ~10⁻⁴
- FP release at 1600°C
 - ✓ Rapid Ag-110m release
 - √ Kr-85, Cs-137, and Sr-90 completely retained
- FP release at 1800°C
 - √ Kr-85, Cs-137, and Sr-90 release increasing
 - ✓ Evidence of SiC degradation (expected)
- FP transport in SiC in such tests is ambiguous
 - ✓ Degradation of SiC @ T > ~1600°C
 - ✓ FP retention, especially Sr-90, in matrix
- Longer duration tests with intact particles needed to derive effective SiC diffusivities

FP Transport in Coatings Has Been Characterized

- HRB-22 UO₂ LEU fuel (Japanese fuel)
 heated at ORNL
- 25 irradiated fuel particles recovered from fuel compact
- Isothermal heating at 1700°C
- Low fractional release of Kr-85 indicates no complete coating failure (1 failed particle = 4% release)
- Some SiC degradation may have occurred at 1700°C
- Derived fission metal diffusivities in SiC coating conservative if SiC degraded

Metal Diffusivities in SiC Coatings

Cs-in-SiC Diffusion Coefficients

Ag-in-SiC Diffusion Coefficients

8.0

1000

NABIELEK (in-reactor data)

Radionuclide Release Barriers Core Matrix/Graphite

Potential release mechanisms

- Diffusion/vaporization
- Matrix/graphite oxidation

Controlling parameters

- Temperature
- Time
- Fast neutron fluence
- H₂O Concentration

Barrier performance

- Cs and Sr partially released at hotter locations
- Released Cs and Sr partially resorb on cooler graphite
- Sorbed metals assumed to be released by oxidation

Cesium Transport in Nuclear Graphite Has Been Characterized

Cs Diffusion in Nuclear Graphites

Cs Sorption on H-451 Graphite

Radionuclide Release Barriers Primary Circuit

Potential release mechanisms

- Primary coolant leaks
- Liftoff (mechanical reentrainment)
- Primary coolant pressure relief
- Steam-Induced vaporization
- Washoff (removal by liquid H₂O)

Controlling parameters

- Temperatures in primary circuit
- Size/location of coolant leaks
- Particulate matter in primary circuit
- Steam/Liquid H₂O ingress and egress

Barrier performance

- Condensable RNs plate out during normal operation
- Circulating Kr, Xe and H-3 limited by HPS
- Plateout largely retained during rapid blowdowns
- RN holdup due to thermal contraction of gas in vessel

lodine Sorption on Low-Alloy Steel at 400 °C

Radionuclide Release Barriers Reactor Building

Potential release mechanisms

- Venting through louvers
- Building leakage

Controlling parameters

- Leak path(s) and rates
- Contaminated steam/liquid H₂O
- Contaminated particulate matter
- Temperatures along leak path(s)

Barrier performance

- Noble gases decay during holdup
- Condensable fission products, including I, deposit
- Contaminated steam condenses
- Contaminated dust settles out and deposits

Data Base for FP Transport in Water-Reactor Containments Generally not Applicable to Modular HTGRs

PHEBUS FPT-1: FP Transport in PWR Containment

- Extensive international data base, including large integral tests; e.g.,
 - **✓ DEMONA**
 - **✓ MARVIKEN**
 - **✓ LACE**
 - **✓ PHEBUS**
- Generally not applicable to HTGRs
 - ✓ Wrong composition ("corium")
 - ✓ Reactive aerosols
 - ✓ Large mass concentrations
 - ✓ Different RB environment
- Some limited data may apply; e.g.,
 - √ I partitioning in steam/liquid H₂O
- HTGR-specific data needed
 - √ Physical/chemical forms
 - ✓ Mass concentrations
 - ✓ Environment

German ALEX Test Program to Characterize Cs Aerosols in Large HTGRs during Core Heatup Accidents

German ALEX Test Program

Support HTR-500 (1390 MW_t pebble-bed HTGR) licensing

Simulate and characterize Cs aerosol formation during core heatup accidents ($T_{max} > 1800$ °C)

Cs-saturated He ($P_{Cs} = 5 \times 10^{-3}$ atm) introduced into N_2 filled vessel at 1 atm pressure

Resulting aerosol, mainly CsOH, remained in sub-micron size range

Limited applicability to MHTGR with $P_{Cs} < \sim 1 \times 10^{-7}$ atm

CsOH Particle Size Distribution

Particulate Matter ("Dust") in Primary Circuit May Alter FP Transport Behavior

Potential sources of dust in HTGRs

- Foreign material from initial construction or refueling
- Abrasion/attrition of spherical fuel elements (pebble bed)
- Erosion or corrosion of fuel or reflector blocks (prismatic)
- Foreign material from interfacing systems (e.g., HPS)
- Spallation of friable metallic surface films
- Carbon deposition from CO decomposition

Potential impact on fission product (FP) transport

- Altered FP plateout distributions in primary circuit
- Enhanced FP release from primary circuit into reactor building
- Altered FP transport behavior in reactor building

Impact of Dust in Operating HTGRs

- Peach Bottom: carbon deposit from oil ingress; no impact
- FSV: rust from H₂O ingresses; no impact
- HTTR: dust from abrasion of graphite piston rings in purified
 He compressors; core insignificant source of dust
- AVR: graphite dust from pebbles; impact on plant D&D
- THTR: pebble debris from control rod insertion directly into pebble bed; broken pebbles impacted plant availability
- HTR-10: no published dust data

AVR Dust Best Characterized

Dust Particle Size Distribution

AVR dust sampled and characterized

Transient Circulator Tests

- Coolant and surface concentrations
- Composition (graphitic, amorphous carbon)
- Particle size distribution of circulating dust
- Specific radionuclide loadings on dust
- Transient circulator tests to determine dust reentrainment potential

Outline

- Introduction, background, and radionuclide fundamentals
- Radionuclide (RN) transport in HTGRs
 - Fuel kernels
 - Particle coatings
 - Fuel matrix/graphite
 - Primary coolant circuit
 - Reactor building

- Design methods for predicting RN transport
- Comparison of code predictions with data
 - In-pile test data
 - Reactor surveillance data

Design Methods for Predicting Fission Product Transport in HTGRs

- Design methods for predicting FP transport in HTGRs derived from experimental data
 - Typically, design codes model multiple RN release barriers
 - Core analysis codes typically model fuel performance as well
 - Typically, core codes are design specific (i.e., prismatic or pebble)
 - Phenomenological component models derived from data
 - Material property data (e.g., diffusivities, etc.) required as input
- Many comparisons of code predictions with experimental data
 - Reactor surveillance, in-pile tests, etc. (some examples follow)
 - Codes not completely verified and validated
- NGNP/AGR Fuel Program will complete validation of codes
 - Single-effects data for component model upgrades
 - Independent integral data for code validation

Current GA Fuel/Fission Product Codes for Normal Operation

Code	Application				
SURVEY	Full-core, burnup, fast fluence, temperature, and fuel failure distributions; fission gas release				
TRAFIC	Full-core fission metal release				
PADLOC	Plateout distributions in primary circuit				
RADC	Overall plant mass balance for radionuclides (Advanced RANDI code available)				
TRITGO	Overall plant mass balance code for tritium (new H-3 mass balance code may be written)				

Current GA Fuel/Fission Product Codes for Accident Conditions

Code	Application				
SORS	Transient, full-core, fuel failure and fission product release (gases and metals)				
OXIDE	Transient, full-core, graphite corrosion and fuel hydrolysis for large H ₂ O ingress				
POLO	Transient FP release from primary circuit into reactor building; FP transport in RB (SANDIA developing HTGR version of MELCOR)				
MACCS	Fission product transport in environment and radiological doses (SANDIA developing HTGR version of MELCOR)				

Current PBMR Fuel/Fission Product Codes for Normal Operation

Code	Application		
VSOP99	Neutronics, fuel and graphite temperatures		
NOBLEG	Fission gas release		
FIPREX/GETTER	Fission metal release		
DAMD	Plateout and dust distributions in primary circuit; overall plant mass balance for radionuclides		

Current PBMR Fuel/Fission Product Codes for Accident Conditions

Code	Application				
TINTE	Transient graphite corrosion for air or water ingress; full-core fuel failure and fission product release (gases and metals)				
GETTER	Fuel failure and fission metal release				
ASTEC	RN transport in reactor building				
PC-COSYMA	Off-site radiological doses				

Outline

- Introduction, background, and radionuclide fundamentals
- Radionuclide (RN) transport in HTGRs
 - Fuel kernels
 - Particle coatings
 - Fuel matrix/graphite
 - Primary coolant circuit
 - Reactor building

- Design methods for predicting RN transport
- Comparison of code predictions with data
 - In-pile test data
 - Reactor surveillance data

Comparison of FSV Predicted and Measured Kr-85m Release

Comparison of FSV Predicted and Measured Fission Metal Release

Measured and Calculated Noble Gas Release from THTR at 40% Power

Measured and Predicted Fission Gas Release from Peach Bottom Core 2

Peach Bottom core had fuel element purge system

R/B from fuel into fuel purge system; release into primary He ~5000x lower Maximum circulating activity ≤ 1 Ci << 4225 Ci Design Activity

Measured and Predicted Cs Plateout Distributions in Peach Bottom HTGR

▲ ORNLY SCANS (EXTERNAL)
■ IRTYSCANS (EXTERNAL)
■ SUNTAC TREPANNED SAMPLE
- IRTY SCANS (INTERNAL)

Primary Circuit

Steam Generator

Measured and Predicted Cs Plateout Profiles in In-Pile Loop Test SAPHIR P11

- German-funded tests in CEA in-pile PEGASE loop
- Primarily a plateout test program
- Spherical fuel elements
- HEU (Th,U)O₂ BISO fuel (reference THTR fuel)
- Sorption control at high temperatures
 - ✓ Material effects
- Mass transfer control at lower temperatures
 - √ Flow effects
- KFA plateout predictions with PATRAS code
- Limited publication of test data

Comparison of DAMD Code Predictions with VAMPYR Plateout Data

The PBMR code DAMD (<u>D</u>ust and <u>A</u>ctivity <u>M</u>igration and <u>D</u>istribution) predicts RN and dust transport

Comparison between VAMPYR I V09 test and DAMD for 131I Plate-out

Comparison between VAMPYR II test 1 and DAMD for 110mAg Plate-out

Both VAMPYR I (probe) and VAMPYR I I (loop) utilized AVR primary coolant as RN source

Measured and Predicted Ag-110m Plateout in COMEDIE BD-1 Heat Exchanger

Ag sorptivity of Alloy 800 over predicted (0 – 70 cm); mass transfer coefficient well predicted (>70 cm)

Measured and Predicted Liftoff in COMEDIE BD-1 Loop Test

Nuclide		Cumulative Liftoff Fraction (%)				
		SR = 0.7	SR = 1.7	SR = 2.8	SR = 5.6	
I-131	Meas.	0.077	0.10	0.11	0.13	
	Pred.	0.15	0.16	0.53	2.1	
Cs-137	Meas.	0.014	0.021	0.030	0.11	
	Pred.	0.19	0.29	0.48	1.1	
Cs-134	Meas.	0.015	0.020	0.028	0.096	
	Pred.	0.19	0.29	0.48	1.1	
Ag-110m	Meas.	0.015	0.019	0.043	0.23	
	Pred.	0.010	0.32	0.90	2.8	
Sr-90	Meas.	0.16	0.36	0.56	0.74	
	Pred.	0.54	0.56	1.2	4.2	

Shear Ratio (SR) = wall shear stress during blowdown/wall shear stress during normal operation SR <1.1 during DBDA in steam-cycle MHTGR; test data @ SR = 1.7 most relevant

5% liftoff assumed when deriving fuel performance requirements for prismatic cores

RN Transport Technology Development

- Existing RN transport knowledge base and design methods are sufficient for conceptual and preliminary designs
- Additional data needed to complete code validation
 - Single-effects data for component model upgrades
 - Independent integral data for code validation
- NGNP/AGR Fuel Plan defines requisite tests for prismatic HTGRs
 - Key single-effects tests
 - In-pile irradiation tests with known failure fraction
 - Postirradiation heating tests (isothermal)
 - Laboratory sorption measurements for matrix, graphite and metals
 - Out-of-pile loop tests
 - Key integral validation tests
 - In-pile irradiation tests with known failure fraction
 - Postirradiation heating tests (thermal transients)
 - In-pile loop tests
- Technology program for pebble-bed HTGRs being developed

Summary

- HTGRs employ multiple RN release barriers to meet RN control requirements and to provide Defense-in-Depth
- RN transport in HTGRs has been extensively investigated
- Design methods are available to predict RN transport from fuel kernel to site boundary
- Codes are not completely validated
- Focused technology development needed to complete code validation
- Current methods sufficient for conceptual & preliminary designs

Suggested Reading

"Fuel Performance and Fission Product Behavior in Gas Cooled Reactors," TECDOC-978, International Atomic Energy Agency, 1997

"A Review of Radionuclide Release from HTGR Cores during Normal Operation," EPRI Report 1009382, EPRI, 2004

"Plate-Out Phenomena in Direct-Cycle High Temperature Gas Reactors," EPRI Report 1003387, EPRI, 2002

"Development and Validation of Fission Product Release Models and Software at PBMR," <u>Proceedings HTR2004: 2nd International Topical Meeting on High Temperature Reactor Technology, Beijing, China, September 22-24, 2004, Paper *C18</u>

"In-pile Loop Tests to Validate Fission Product Transport Codes," <u>Proceedings HTR2006:</u> 3rd International Topical Meeting on High Temperature Reactor Technology, October 1-4, 2006, Johannesburg, South Africa

"PBMR Radionuclide Source Term Analysis Validation Based On AVR Operating Experience," <u>Proceedings HTR2008: 4th International Topical Meeting on High Temperature Reactor Technology, September 28 - October 1, 2008, Washington, D.C.</u>

"Technical Program Plan for the NGNP/AGR Fuel Development and Qualification Program" INL/EXT-05-00465, Rev. 2, Idaho National Laboratory, 2008

