HTGR Technology Course for the Nuclear Regulatory Commission

May 24 – 27, 2010

Module 10e
Intermediate Heat Exchanger

Lew Lommers
AREVA

- Introduction
- IHX functions and requirements
- IHX configurations
- IHX design considerations
- Applicable IHX experience

Introduction

- Future HTGR concepts have been envisioned to meet a variety of long-term energy needs
- Direct high temperature process heat applications will require an IHX (> 500°C)
- Several IHX concepts have been developed for HTGR plant designs with core outlet temperature up to 950°C
- The present reference HTGR steam cycle designs do not require an IHX
- IHX technology is available for next generation HTGRs

- IHX functions and requirements
- IHX configurations
- IHX design considerations
- Applicable IHX experience

Typical IHX Functions and Requirements

- Transfer heat from primary coolant to secondary heat transport fluid
- Maintain separation of primary and secondary coolant streams
- Support primary coolant pressure boundary
- Control radionuclide releases
 - Circulating activity
 - Role in tritium control
- Specific requirements depend on application
 - Operating temperature
 - Heat transfer effectiveness

- Introduction
- IHX functions and requirements

- IHX configurations
- IHX design considerations
- Applicable IHX experience

Three Basic Types of HTGR IHXs

Tubular heat exchangers

- More established technology
- Low heat transfer density
- Large size
- Thick pressure boundary sections

Compact heat exchangers

- More advanced technology
- High heat transfer density
- Small size
- Thin pressure boundary sections

Hybrid (or 2-stage) heat exchangers

- Separate sections
- Different configurations
- Different materials
- Different lifetimes

Tubular IHX Technology

- Based on conventional shell and tube construction
- Large physical size
- Thick walls
 - Robust
 - Greater corrosion resistance
- Greater initial cost
 - Heat exchanger
 - Vessels
 - Buildings
- Longer component lifetime
- Fabrication-conventional
- Maintenance
 - Tube inspection
 - Tube leaks can be identified and plugged

Compact IHX Technology

Multiple compact HX concepts

- Plate fin HX
- Printed circuit/plate machined HX
- Plate stamped HX
- Small physical size
- Thin walls
 - Corrosion can be a concern
- Multiple modules (~1-5 MW each)
- Lower initial cost
- Potentially shorter component lifetime
- Fabrication
 - Diffusion bonding
 - Braising
 - Peripheral welding
- Maintenance
 - Inspection of modules
 - Replacement of defective modules

Integration of Compact IHX Modules in the Pressure Vessel

- Multiple IHX modules required for necessary capacity
- Primary and secondary ducting must connect to each module
- Flow must be balanced for all modules

- Introduction
- IHX functions and requirements
- IHX configurations

- IHX design considerations
- Applicable IHX experience

Key IHX Design Considerations

- Performance
- Size
 - HX size
 - Headers
 - Vessel size
 - Building
- Pressure balance (primary-to-secondary)
- Fabrication
- Corrosion
- Integrity
- Lifetime

IHX Performance Considerations

Heat exchanger effectiveness

- Minimize approach temperature between primary and secondary
- Maximize process heat delivery temperature for application performance
- Minimize required reactor outlet temperature for given process temperature

Effectiveness considerations

- Cutting approach temperature by 2 requires doubling heat transfer area
- Compact IHX might achieve 90-95%
- Tubular IHX might achieve 80-90%

Pressure drop

- Primary
- Secondary

Transient performance

- Impact on system performance
- Response of IHX

IHX Material Candidates

High temperature alloys

- Inconel 617
- Alloy 230
- Hastelloy X/XR
- Alloy 800H (lower temperature)

Advanced metallics

- Oxide dispersion strengthened (ODS) alloys

Ceramics

- Carbon-carbon composites
- Silicon carbide

IHX Near Limit of Metallic Capabilities

- Introduction
- IHX functions and requirements
- IHX configurations
- IHX design considerations

Applicable IHX experience

Overall IHX Experience

Laboratory experience

- Materials and corrosion
- Environmental testing
- HX mockups

Large scale IHX experience

- Gas turbine recuperators (compact)
- HTGR engineering test modules (tubular)

Reactor operating experience

- HTTR (tubular)

Compact IHX Experience

- Several design studies
 - Thermal performance
 - Stress analysis
 - Fabrication
 - Header concepts
- Gas turbine recuperators
 - Lower temperature
 - Higher differential pressure
- Corrosion testing for HTGR IHX conditions
- Scale mockup testing

AREVA

Tubular IHX Experience

- Basic configuration similar to helical coil steam generator
- PNP program (Germany)
 - Technology demonstrated for 950°C (KVK test loop)
 - Helical and U-tube
 - 10MWt (engineering prototype)
- HTTR (Japan)
 - Operated up to 950°C
 - Helical tubular IHX
 - 10MWt

He-He intermediate heat exchanger before installation

Summary

- IHX required to transfer heat to high temperature direct heat process applications
- Tubular IHX technology demonstrated at engineering scale to 950°C
- Compact IHX technology offers size and performance advantages
 - Significant design challenges remain to be addressed for very high temperatures (>850°C)
- Design challenges very dependent on service temperature

