HTGR Technology Course for the Nuclear Regulatory Commission

May 24 – 27, 2010

Module 10a
Vessel System

Lew Lommers
AREVA
Outline

• Vessel System functions and requirements
• Key design options
• Vessel System design concepts
• Vessel System design issues
• Experience
Key Vessel System Functions

- **Support components of the reactor system**
 - Reactor core
 - Reactor internals
 - Refueling interface

- **Maintain the relative position of the core and the control rods**

- **Maintain coolable (reactor) geometry**

- **Part of residual heat removal path during conduction cooldown (thermal radiation, conduction, and convection)**

- **Support the primary heat transport equipment**
 - SG tube bundle and/or IHX modules
 - Primary coolant circulators
 - Associated piping

- **Maintain primary pressure boundary integrity**
 - Containment primary coolant
 - Retain radionuclides
 - Limit air ingress

- **Provide/enclose primary heat transport path from reactor to SG/IHX and shutdown cooling system**

- **Provide vessel overpressure protection**
Key Vessel System Design Requirements

- The Vessel System (VS) shall be design, fabricated, and operated in accordance with ASME B&PV Code Section III.
- In normal operation, creep effects on the reactor vessel shall be negligible.
- No significant leakage shall result from AOOs.
- All major parts of the VS shall be designed for an operating lifetime of 60 years.
- The VS shall be designed for design basis duty cycle events.
- For AOOs and DBEs, the vessel system shall not prevent restarting of the plant.
- Vessel supports shall support lateral and vertical loads, accounting for thermal expansion, circulator vibration, and seismic events.
- The reactor/SG/IHX vessels shall have a drain mechanism in case of water buildup in the vessel.
- During normal operation, the reactor vessel operating temperature shall be maintained through a thermal balance between the core heat flux, core inlet helium flow, and the reactor cavity cooling system.
- The pressure relief system shall be designed to eliminate overpressure in the primary system.
- Provisions shall be made for ISI and material surveillance.
Outline

• Vessel System functions and requirements
• Key design options
• Vessel System design concepts
• Vessel System design issues
• Experience
Key Design Options

- Single vessel
- Multiple interconnected vessels
- Multiple vessels connected with pipes
- Reactor vessel uninsulated (for residual heat removal)
- Heat exchanger vessels insulated (to minimize parasitic heat loss)
Outline

- Vessel System functions and requirements
- Key design options
- Vessel System design concepts
- Vessel System design issues
- Experience
MHTGR Vessel Concept

Reactant Vessel

Cross Vessel

Steam Generator Vessel
AREVA Large Steam Cycle Vessel Concept

- Reactor Vessel
- Cross Vessels
- Steam Generator Vessels
PBMR-DPP Vessel Concept

- Brayton power cycle
- Distributed components in individual vessels
- Double-walled connectors
- High-temperature outer pressure boundary cooled with buffer helium
• Vessel System functions and requirements
• Key design options
• Vessel System design concepts
• Vessel System design issues
• Experience
Vessel Design Issues

- **Key design issues include:**
 - Temperature
 - Helium coolant
 - Size
 - Irradiation spectrum

- **These issues are main drivers for the choice of vessel material**

- **In most cases, the reactor vessel will drive the material choices for the Vessel System**
• Two temperatures drive reactor vessel design
 • Normal operation wall temperature
 – Vessel temperature during normal operation is primarily driven by the choice of plant core inlet temperature
 – Interior coolant flow design keeps hotter gasses away from the vessels
 • Accident wall temperature
 – Reactor vessel wall is a key part of the passive heat removal path during accidents
 – Several factors control accident wall temperature
 • Reactor geometry (core, reflectors, core barrel)
 • Residual heat
 • Reactor inlet and outlet temperatures
 • Other vessels also affected by normal operation
 – Other vessels typically insulated
Vessel Thermal Design Options

- RPV and other vessels treated separately
 - RPV exposed to cavity
 - Other vessels insulated
- For reactor inlet temperature less than about 350°C
 - LWR material a good option
- For higher temperatures
 - Use higher temperature material
 - Provide internal thermal protection
 - Move inlet flow path in RPV
 - Balance internal and external insulation in other vessels
 - Vessel temperature conditioning system(s)
Vessel Design Issues – Helium Coolant

- Helium coolant presents different material performance considerations than water
 - Oxidation
 - Carburization
 - Decarburization
- In general these considerations are minor at 350°C
- Corrosion issues of LWR systems are minimized (e.g., boric acid)
- More detailed evaluation will be required taking into account different vessel system functions and requirements, etc.
Vessel Design Issues – Vessel Size

- Per unit power output, HTGR vessels are much larger than LWR vessels
- Increased size may impact:
 - Fabricability
 - Transportation to the plant site
 - Availability of key components
- Potential required solutions may include:
 - Partial fabrication of vessels on site
 - Use of welded plate construction
Vessel Design Issues – Irradiation Spectrum

- Due to moderator differences, HTGR neutron spectrum is “harder” than typical LWR spectrum
 - Higher average neutron energy
- Has impacts on vessel embrittlement (NDTT) and expected lifetime
- Likely more than balanced by lower overall neutron dose
- Extrapolation of LWR vessel experience complicated by combined effect of
 - Spectrum (e.g., harder)
 - Irradiation temperature (e.g., lower or higher)
 - Fluence (e.g., lower)
- Need for confirmation testing must be evaluated
Vessel Material Options

- **SA 508 Grade 3**
 - Standard LWR material
 - Acceptable for service to $T_{in} \approx 350^\circ C$ (long-term limit $371^\circ C$)
 - Cooling or insulation needed for higher temperatures

- **2.25Cr-1Mo Annealed**
 - Acceptable for service to $T_{in} \approx 420^\circ C$
 - Lower stress allowables limit practicality

- **Modified 9Cr-1Mo**
 - Preferred option for very high temperature service

- **Last two options require development and adoption of appropriate Code Cases as well as resolution of fabricability issues for large structures**
Outline

- Vessel System functions and requirements
- Key design options
- Vessel System design concepts
- Vessel System design issues
- Experience
Relevant Vessel Experience

• **LWR database**
 – Lower inlet temperatures now being considered bring the reactor vessel wall temperatures into the same range as LWRs
 – Use of LWR-type vessel material will benefit from this experience

• **HTGR steel vessels**
 – Dragon
 – Peach Bottom 1
 – AVR
 – HTTR
 – HTR-10
Summary

- HTGR Vessel System based largely on proven technology
- Vessel temperature main driver for material choice
- LWR vessel material (SA508/533) requires least development effort
 - Prime VS candidate for current designs
- Some confirmatory testing of vessel system materials may be needed for HTGR operating conditions