HTGR Technology Course for the Nuclear Regulatory Commission

May 24 – 27, 2010

Module 10a Vessel System

Lew Lommers AREVA

Outline

- Key design options
- Vessel System design concepts
- Vessel System design issues
- Experience

Key Vessel System Functions

- Support components of the reactor system
 - Reactor core
 - Reactor internals
 - Refueling interface
- Maintain the relative position of the core and the control rods
- Maintain coolable (reactor) geometry
- Part of residual heat removal path during conduction cooldown (thermal radiation, conduction, and convection)
- Support the primary heat transport equipment
 - SG tube bundle and/or IHX modules
 - Primary coolant circulators
 - Associated piping

Maintain primary pressure boundary integrity

- Containment primary coolant
- Retain radionuclides
- Limit air ingress
- Provide/enclose primary heat transport path from reactor to SG/IHX and shutdown cooling system
- Provide vessel overpressure protection

AREVA

Key Vessel System Design Requirements

- The Vessel System (VS) shall be design, fabricated, and operated in accordance with ASME B&PV Code Section III
- In normal operation, creep effects on the reactor vessel shall be negligible
- No significant leakage shall result from AOOs
- All major parts of the VS shall be designed for an operating lifetime of 60 years
- The VS shall be designed for design basis duty cycle events
- For AOOs and DBEs, the vessel system shall not prevent restarting of the plant
- Vessel supports shall support lateral and vertical loads, accounting for thermal expansion, circulator vibration, and seismic events
- The reactor/SG/IHX vessels shall have a drain mechanism in case of water buildup in the vessel
- During normal operation, the reactor vessel operating temperature shall be maintained through a thermal balance between the core heat flux, core inlet helium flow, and the reactor cavity cooling system
- The pressure relief system shall be designed to eliminate overpressure in the primary system
- Provisions shall be made for ISI and material surveillance

- Vessel System functions and requirements
- Key design options
- Vessel System design concepts
- Vessel System design issues
- Experience

Key Design Options

- Single vessel
- Multiple interconnected vessels
- Multiple vessels connected with pipes
- Reactor vessel uninsulated (for residual heat removal)
- Heat exchanger vessels insulated (to minimize parasitic heat loss)

- Vessel System functions and requirements
- Key design options
- Vessel System design concepts
- Vessel System design issues
- Experience

MHTGR Vessel Concept

PBMR-CG Vessel Concept

AREVA Large Steam Cycle Vessel Concept

PBMR-DPP Vessel Concept

- Brayton power cycle
- Distributed components in individual vessels
- Double-walled connectors
- High-temperature outer pressure boundary cooled with buffer helium

- Vessel System functions and requirements
- Key design options
- Vessel System design concepts
- Vessel System design issues
- Experience

Vessel Design Issues

• Key design issues include:

- Temperature
- Helium coolant
- Size
- Irradiation spectrum
- These issues are main drivers for the choice of vessel material
- In most cases, the reactor vessel will drive the material choices for the Vessel System

Vessel Design Issues - Temperature

- Two temperatures drive reactor vessel design
- Normal operation wall temperature
 - Vessel temperature during normal operation is primarily driven by the choice of plant core inlet temperature
 - Interior coolant flow design keeps hotter gasses away from the vessels

Accident wall temperature

- Reactor vessel wall is a key part of the passive heat removal path during accidents
- Several factors control accident wall temperature
 - Reactor geometry (core, reflectors, core barrel)
 - Residual heat
 - Reactor inlet and outlet temperatures

• Other vessels also affected by normal operation

- Other vessels typically insulated

Vessel Thermal Design Options

• RPV and other vessels treated separately

- RPV exposed to cavity
- Other vessels insulated

For reactor inlet temperature less than about 350°C

– LWR material a good option

• For higher temperatures

- Use higher temperature material
- Provide internal thermal protection
 - Move inlet flow path in RPV
 - Balance internal and external insulation in other vessels

ΑRFVA

- Vessel temperature conditioning system(s)

Vessel Design Issues – Helium Coolant

- Helium coolant presents different material performance considerations than water
 - Oxidation
 - Carburization
 - Decarburization
- In general these considerations are minor at 350°C
- Corrosion issues of LWR systems are minimized (e.g., boric acid)
- More detailed evaluation will be required taking into account different vessel system functions and requirements, etc.

Vessel Design Issues – Vessel Size

 Per unit power output, HTGR vessels are much larger than LWR vessels

• Increased size may impact:

- Fabricability
- Transportation to the plant site
- Availability of key components
- Potential required solutions may include:
 - Partial fabrication of vessels on site
 - Use of welded plate construction

Vessel Design Issues – Irradiation Spectrum

- Due to moderator differences, HTGR neutron spectrum is "harder" than typical LWR spectrum
 - Higher average neutron energy
- Has impacts on vessel embrittlement (NDTT) and expected lifetime
- Likely more than balanced by lower overall neutron dose
- Extrapolation of LWR vessel experience complicated by combined effect of
 - Spectrum (e.g., harder)
 - Irradiation temperature (e.g., lower or higher)
 - Fluence (e.g., lower)
- Need for confirmation testing must be evaluated

Vessel Material Options

- SA 508 Grade 3
 - Standard LWR material
 - Acceptable for service to T_{in} ≈ 350°C (long-term limit 371°C)
 - Cooling or insulation needed for higher temperatures
- 2.25Cr-1Mo Annealed
 - Acceptable for service to $T_{in} \approx 420^{\circ}C$
 - Lower stress allowables limit practicality
- Modified 9Cr-1Mo
 - Preferred option for very high temperature service
- Last two options require development and adoption of appropriate Code Cases as well as resolution of fabricability issues for large structures

- Vessel System functions and requirements
- Key design options
- Vessel System design concepts
- Vessel System design issues
- Experience

Relevant Vessel Experience

• LWR database

- Lower inlet temperatures now being considered bring the reactor vessel wall temperatures into the same range as LWRs
- Use of LWR-type vessel material will benefit from this experience

HTGR steel vessels

- Dragon
- Peach Bottom 1
- AVR
- HTTR
- HTR-10

Summary

- HTGR Vessel System based largely on proven technology
- Vessel temperature main driver for material choice
- LWR vessel material (SA508/533) requires least development effort
 - Prime VS candidate for current designs
- Some confirmatory testing of vessel system materials may be needed for HTGR operating conditions

