NGNP-CTF MTECH-TDRM Revision 0

December 2008

NGNP and Hydrogen Production Conceptual Design Study

NGNP Technology Development Road Mapping Report

Function	Printed Name and Signature		Date
Author	Name: Company:	Werner Koekemoer M-Tech Industrial (Pty.) Ltd.	December 8, 2008
Reviewer	Name: Company:	Jan van Ravenswaay M-Tech Industrial (Pty.) Ltd.	December 8, 2008
Approval	Name: Company:	Edward Brabazon Shaw Group	December 8, 2008

APPROVALS

Westinghouse Electric Company LLC Nuclear Power Plants Post Office Box 355 Pittsburgh, PA 15230-0355

©2008 Westinghouse Electric Company LLC All Rights Reserved

TABLE OF CONTENTS

Section Number	Revision	Section Title
NGNP-CTF MTECH-TDRM-000	0	NGNP Technology Development Road Mapping Report – Executive Summary
NGNP-CTF MTECH-TDRM-001	-	NGNP Technology Development Road Mapping Report - NGNP System and operational Description
NGNP-CTF MTECH-TDRM-002	-	NGNP Technology Development Road Mapping Report - Technology Development Road Mapping Process
NGNP-CTF MTECH-TDRM-003	-	NGNP Technology Development Road Mapping Report – PHTS Circulator
NGNP-CTF MTECH-TDRM-004	-	NGNP Technology Development Road Mapping Report – Intermediate Heat Exchanger A
NGNP-CTF MTECH-TDRM-005	-	NGNP Technology Development Road Mapping Report – Intermediate Heat Exchanger B
NGNP-CTF MTECH-TDRM-006	-	NGNP Technology Development Road Mapping Report – HTS Piping
NGNP-CTF MTECH-TDRM-007	-	NGNP Technology Development Road Mapping Report – SHTS Flow Mixing Chamber
NGNP-CTF MTECH-TDRM-008	0	NGNP Technology Development Road Mapping Report - Hydrogen Production system
NGNP-CTF MTFCH-TDRM-009	-	NGNP Technology Development Road Mapping Report - Power Conversion System
	-	Steam Generator
NGNP-CTF MTECH-TDRM-010	-	NGNP Technology Development Road Mapping Report - Software Code Verification and Validation
NGNP-CTF MTECH-TDRM-011	۲-	NGNP Technology Development Road Mapping Report – Fuel Elements
NGNP-CTF MTECH-TDRM-012	F	NGNP Technology Development Road Mapping Report - Core Structure Ceramics
NGNP-CTF MTECH-TDRM-013	-	NGNP Technology Development Road Mapping Report - Reserve Shutdown System
NGNP-CTF MTECH-TDRM-014	0	NGNP Technology Development Road Mapping Report - Reactivity Control System
NGNP-CTF MTECH-TDRM-015	-	NGNP Technology Development Road Mapping Report - Core Conditioning System
NGNP-CTF MTECH-TDRM-016	-	NGNP Technology Development Road Mapping Report - Reactor Cavity Cooling System
NGNP-CTF MTECH-TDRM-017	0	NGNP Technology Development Road Mapping Report - Integrated Test Schedule and Cost Estimate
NGNP-CTF MTECH-TDRM-00A	0	NGNP Technology Development Road Mapping Report - SSC List with current Technology Readiness Levels and 750 °C Comments

12/9/2008

December 2008

NGNP and Hydrogen Production Conceptual Design Study

NGNP Technology Development Road Mapping Report

Section 0: Executive Summary Report

APPROVALS

Function	Printed Name and Signature			Date
Author	Name: Company:	Lucas Pitso M-Tech Industrial		December 2, 2008
Reviewer	Name: Company:	Dan Allen Technology Insights	Samiel D. allen	December 2, 2008
Reviewer	Name: Company:	Scott Penfield Technology Insights	Jean R. Parfield)	December 2, 2008
Reviewer	Name: Company:	Roger Young Pebble Bed Modular Reac	tor (Pty) Ltd	December 2, 2008
Approval	Name: Company:	Jan van Ravenswaay M-Tech Industrial	auca	December 2, 2008

Westinghouse Electric Company LLC Nuclear Power Plants Post Office Box 355 Pittsburgh, PA 15230-0355

©2008 Westinghouse Electric Company LLC All Rights Reserved

LIST OF CONTRIBUTORS

Name and Company	Date
Adele Engelbrecht (Pebble Bed Modular Reactor (Pty) Ltd)	December 2008
Allen Spring (Westinghouse Electric Company LLC)	December 2008
Alwyn Strauss (Pebble Bed Modular Reactor (Pty) Ltd)	December 2008
Andre van der Walt (M-Tech Industrial (Pty) Ltd)	December 2008
Andrew Rossouw (Westinghouse South Africa (Pty) Ltd)	December 2008
Bennie Nel (M-Tech Industrial (Pty) Ltd)	December 2008
Dan Allen (Technology Insights)	December 2008
Dan Mears (Technology Insights)	December 2008
Dawie Viljoen (M-Tech Industrial (Pty) Ltd)	December 2008
Ed Brabazon (Shaw Inc.)	December 2008
Fred Silady (Technology Insights)	December 2008
George Hayner (Technology Insights)	December 2008
Gert Janse van Rensburg (Pebble Bed Modular Reactor (Pty) Ltd)	December 2008
Guido Baccaglini (Technology Insights)	December 2008
Herman van Antwerpen (M-Tech Industrial (Pty) Ltd)	December 2008
Ivan Drodskie (Pebble Bed Modular Reactor (Pty) Ltd)	December 2008
Jaco Lindeboom (Pebble Bed Modular Reactor (Pty) Ltd)	December 2008
Jacques Holtzhausen (M-Tech Industrial (Pty) Ltd)	December 2008
Jan van Ravenswaay (M-Tech Industrial (Pty) Ltd)	December 2008
Jim Nash (Brayton Energy LLC)	December 2008
Johan Markgraaff (M-Tech Industrial (Pty) Ltd)	December 2008
Louisa Venter (M-Tech Industrial (Pty) Ltd)	December 2008
Lucas Pitso (M-Tech Industrial (Pty) Ltd)	December 2008
Mark Mitchell (Pebble Bed Modular Reactor (Pty) Ltd)	December 2008
Michael Correia (Pebble Bed Modular Reactor (Pty) Ltd)	December 2008
Peter Wells (Shaw Inc.)	December 2008
Phil Rittenhouse (Technology Insights)	December 2008
Pieter Coetzer (Pebble Bed Modular Reactor (Pty) Ltd)	December 2008
Pieter Venter (Pebble Bed Modular Reactor (Pty) Ltd)	December 2008
Renee Greyvenstein (Pebble Bed Modular Reactor (Pty) Ltd)	December 2008
Riaan du Bruyn (M-Tech Industrial (Pty) Ltd)	December 2008
Rick Gauthier (Shaw Inc.)	December 2008
Roger Young (Pebble Bed Modular Reactor (Pty) Ltd)	December 2008
Ruttie Nel (Pebble Bed Modular Reactor (Pty) Ltd)	December 2008
Scott Penfield (Technology Insights)	December 2008
Sten Caspersson (Westinghouse Electric Company LLC)	December 2008
Steven Pieterse (Pebble Bed Modular Reactor (Pty) Ltd)	December 2008
Wallo Grant (Pebble Bed Modular Reactor (Pty) Ltd)	December 2008
Werner Koekemoer (M-Tech Industrial (Pty) Ltd)	December 2008
Werner van Antwerpen (M-Tech Industrial (Pty) Ltd)	December 2008

NGNP-CTF MTECH-TDRM-000_Rev0-final.doc

12/02//2008

BACKGROUND INTELLECTUAL PROPERTY CONTENT

Section	Title	Description
N/A		

REVISION HISTORY

RECORD OF CHANGES

Revision No.	Revision Made by	Description	Date
А	Lucas Pitso	Comments Review	November 21, 2008
В	Lucas Pitso	Formal Review	December 2, 2008
0	Lucas Pitso	Document for release to WEC	December 3, 2008

DOCUMENT TRACEABILITY

Created to Support the Following Document(s)	Document Number	Revision
NGNP and Hydrogen Production Pre-conceptual Design Report	NGNP-01-RPT-001	0

TABLE OF CONTENTS

Se	ction		Title	Page
LI	ST O	F TABL	ES	5
LI	ST O	F FIGU	RES	5
A	CRON	IYMS		6
0	FYF		ε ειμμαρό αρχαρία	10
U	LAL			10
	0.1	NGNP	BACKGROUND	10
	0.2	NGNP	DEMONSTRATION PLANT DESCRIPTION	11
	0.3	THE BA	ASIS FOR THE NGNP TECHNOLOGY DEVELOPMENT ROAD MAPPING	15
		0.3.1	The Technology Development Road Mapping Process	15
		0.3.2	Technology Development Roadmap	16
		0.3.3	TRL Rating Sheet	17
		0.3.4	Technology Maturation Plans	19
	0.4	SUMMA	RY OF THE SSC'S	20
		0.4.1	PHTS Circulator	20
		0.4.2	IHX A	22
		0.4.3	IHX B	22
		0.4.4	HTS Piping	23
		0.4.5	SHTS Flow Mixing Chamber	24
		0.4.6	Hydrogen Production System	25
		0.4.7	Power Conversion System Steam Generator	26
		0.4.8	Software Codes Verification & Validation	27
		0.4.9	Fuel Elements	27
		0.4.10	Core Structures Ceramics	28
		0.4.11	Reserve Shutdown System	29
		0.4.12	Reactivity Control System	29
		0.4.13	Core Conditioning System	30
		0.4.14	Reactor Cavity Cooling System	31
	0.5	INTEGR	RATED SCHEDULE AND COST ESTIMATE	31
	0.6	INPUT 7	го CTF	33
AI	PPEN	DIX A:	NOMENCLATURE	35
AI	PPEN	DIX B:	LIST OF DDNs	37
AF	PPEN	DIX B:	REFERENCES	45

LIST OF TABLES

Table 0-1: The Technology Rating Level definitions	. 18
Table 0-2: List of the Critical SSCs	. 20
Table 0-3: Input of various SSC's to the CTF	. 34
Table B.0-1 List of DDNs for Critical SSCs	. 38

LIST OF FIGURES

Figure 0-1: PBMR NGNP Demonstration Plant Process Flow Diagram – H ₂ Production (950°C)	. 12
Figure 0-2: Nominal Process Conditions for a NGNP Demonstration Plant (H ₂ , 950°C)	. 13
Figure 0-3: Process Conditions for a NGNP Steam Plant (750 °C)	. 13
Figure 0-4: NGNP Plant Modes and States of Operation	. 14
Figure 0-5: The TDRM process and Related Outputs	. 16
Figure 0-6: Technology Development Roadmap Template	. 17
Figure 0-7: CTF Integrated Schedule	. 32
Figure 0-8: CTF Cost Estimate	. 33

Т

ACRONYMS

Acronym	Definition
AI	Inner Annulus (active cooling piping)
ALWR	Advanced Light Water Reactors
AMS	Activity Measurement System
AO	Outer Annulus (active cooling piping)
AOO	Anticipated Operational Occurrence
AS	Automation System
ASME	American Society of Mechanical Engineers
AVR	Arbeitsgemeinschaft Versuchs-Reaktor
BOP	Balance of Plant
BUMS	Burn-up Measurement System
СВ	Core Barrel
CCS	Core Conditioning System
CEA	Commissariat à l'Énergie Atomique
CFD	Computational Fluid Dynamics
CHE	Compact Heat Exchanger
CIP	Core Inlet Pipe
CO2	Carbon Dioxide
COC	Core Outlet Connection
COP	Core Outlet Pipe
COTS	Commercial Off The Shelf
CRADA	Co-operative Research and Development Agreement
CRD	Control Rod Drive
CSC	Core Structure Ceramics
CTF	Component Test Facility
CTF	Component Test Facility
CUD	Core Unloading Devices
DAU	Data Acquisition Unit
DBA	Design Base Accident
DBE	Design Base Event
DDN	Design Data Need
DFC	Depressurized Forced Cooling
DLOFC	De-pressurized Loss of Forced Cooling
DOE	Department of Energy
DPP	Demonstration Power Plant
DRL	Design Readiness Level
DWS	Demineralized Water System
ELE	Electrolyzer System
EM	Evaluation Model
EMB	Electromagnetic Bearing
EOFY	End of Fiscal Year
EPCC	Equipment Protection Cooling Circuit
EPCT	Equipment Protection Cooling Tower
F&OR	Functional and Operational Requirements
FHS	Fuel Handling System

Acronym	Definition
FHSS	Fuel Handling and Storage System
FIMA	Fissions per Initial Metal Atoms
FMECA	Failure Modes, Effects and Criticality Analysis
FS	Fuel Spheres
FTA	Fault Tree Analysis
FUS	Feed and Utility System
GIF	Generation IV International Forum
H2	Hydrogen
H2SO4	Sulfuric Acid
HC	Helium Circulator
He	Helium
HETP	Height Equivalent of the theoretical Plate
HGD	Hot Gas Duct
HI	Hydro-Iodic
HLW	High Level Waste
HPB	Helium Pressure Boundary
HPC	High Pressure Compressor
HPS	Helium Purification System
HPS	Hydrogen Production System
HPT	High Pressure Turbine
HPU	Hydrogen Production Unit
HRS	Heat Removal System
HTF	Helium Test Facility
HTGR	High Temperature Gas-Cooled Reactor
HTR	High Temperature Reactor
HTS	Heat Transport System
HTSE	High Temperature Steam Electrolysis
HTTR	High Temperature Test Reactor
HVAC	Heating Ventilation and Air Conditioning
HX	Heat Exchanger
HyS	Hybrid Sulfur
I&C	Instrumentation and Control
12	lodine
ID	Inner Diameter
IHX	Intermediate Heat Exchanger
ILS	Integrated Laboratory Scale
I-NERI	International Nuclear Energy Research Initiative
INL	Idaho National Laboratory
IPT	Intermediate Pressure Turbine
ISR	Inner Side Reflector
K-T	Kepner-Tregoe
KTA	German nuclear technical committee
LEU	Low Enriched Uranium
LOFC	Loss of Forced Cooling
LPT	Low Pressure Turbine
MES	Membrane-electrode assembly
MTR	Material Test Reactor

Acronym	Definition
NAA	Neutron Activation Analysis
NCS	Nuclear Control System
NGNP	Next Generation Nuclear Plant
NHI	Nuclear Hydrogen Initiative
NHS	Nuclear Heat Supply
NHSS	Nuclear Heat Supply System
NNR	National Nuclear Regulator
NRG	Nuclear Research and consultancy Group
NRV	Non-Return Valve
02	Oxygen
OD	Outer Diameter
PBMR	Pebble Bed Modular Reactor
PCC	Power Conversion System
PCDR	Pre-Conceptual Design Report
PCHE	Printed Circuit Heat Exchanger
PCHX	Process Coupling Heat Exchanger
PCS	Power Conversion System
PFHE	Plate Fin Heat Exchanger
PHTS	Primary Heat Transport System
PIE	Post-irradiation Examination
PLOFC	Pressurized Loss of Forced Cooling
PPM	Parts per million
PPU	Product Purification Unit
PPWC	Primary Pressurized Water Cooler
QA	Quality Assurance
RAMI	Reliability, Availability, Maintainability and Inspectability
RC	Reactor Cavity
RCCS	Reactor Cavity Cooling System
RCS	Reactivity Control System
RCSS	Reactivity Control and Shutdown System
RDM	Rod Drive Mechanism
RIM	Reliability and Integrity Management
RIT	Reactor Inlet Temperature
RM	Road Map
ROT	Reactor Outlet Temperature
RPS	Reactor Protection System
RPT	Report
RPV	Reactor Pressure Vessel
RS	Reactor System
RSS	Reserve Shutdown System
RUS	Reactor Unit System
SAD	Acid Decomposition System
SAR	Safety Analysis Report
SAS	Small Absorber Spheres
SG	Steam Generator
SHTS	Secondary Heat Transport System
S-I	Sulfur Iodine

Acronym	Definition
SiC	Silicon Carbide
SNL	Sandia National Laboratory
SO2	Sulfur Dioxide
SOE	Sulfuric Oxide Electrolyzers
SOEC	Sulfuric Oxide Electrolyzers Cells
SR	Side Reflector
SSC	System Structure Component
SSCs	Systems, Structures and Components
SSE	Safe Shutdown Earthquake
SUD	Software Under Development
TBC	To Be Confirmed
TBD	To Be Determined
TDL	Technology Development Loop (As incorporated in Concept 1)
TDRM	Technology Development Road Map
TER	Test Execution Report
THTR	Thorium High Temperature Reactor
TRISO	Triple Coated Isotropic
TRL	Technology Readiness Level
TRM	Technology Road Map
UCO	Uranium Oxycarbide
UO2	Uranium Dioxide
USA.	United States of America
V&V	Verification and Validation
V&Ved	Verified and Validated
VHTR	Very High Temperature Reactors
VLE	Vapor-Liquid Equilibrium
WBS	Work Breakdown Structure
WEC	Westinghouse Electric Company

0 EXECUTIVE SUMMARY REPORT

0.1 NGNP Background

Several countries across the world are involved in the development of advanced nuclear systems that are envisioned to follow the Advanced Light Water Reactor (ALWR) systems that are now leading the resurgence of nuclear power. These advanced non-ALWR systems have been coined "Generation IV" (Gen IV) concepts. An international forum of these countries and a framework for cooperation have been established – the Generation IV International Forum (GIF).

The GIF model envisions that individual countries will take the lead for developing and demonstrating Gen IV nuclear systems in which they have particular interest, and that other countries will provide support through implementing agreements. The first of such implementing agreements has been recently signed. Early in the process, the US took the lead for developing the High Temperature Gas-Cooled Reactor (HTGR) – also referred to as the Very High Temperature Reactor (VHTR) within the GIF forum.

The HTGR technology offers enhanced safety features based on inherent material properties and passive design features, plus improved reliability, proliferation resistance, security and waste management capabilities. Furthermore, the HTGR is evaluated to be competitive for a broad range of applications, including small-to-medium high efficiency power generation that is well suited for dry cooling, cogeneration and water desalination, plus unique high temperature process heat applications such as bulk hydrogen production. High pressure steam, well beyond the temperatures available with water reactor systems, can also be provided to displace natural gas for enhanced oil recovery and tar sands production - all without greenhouse gas emissions.

Within the US, the Department of Energy (DOE) has focused the development of the HTGR technology through the Next Generation Nuclear Plant (NGNP) Project which is the dominant part of the US Gen IV Program. From the start, the NGNP Project was centered at the Idaho National Laboratory (INL). Initially, the goals were set for 1000°C core outlet temperatures to drive Brayton cycle gas turbines and/or water splitting processes for the production of hydrogen.

The NGNP Project was subjected to a critical review by a group of experts known as the Independent Technology Review Group (ITRG) over the period November 2003 through April 2004. The objective was to provide a critical review of the proposed NGNP Project and to identify areas of R&D that needed attention. In the report, the ITRG observations and recommendations focused on overall design features and important technology uncertainties. A key recommendation was to reduce the core outlet temperature to the range of 900°C to 950°C.

High temperature process heat from the HTGR has been an attractive concept from inception. To date, the leading application and the focus of the work herein has been for hydrogen production from various water splitting based technologies, which require core outlet temperatures in the range of 900°C to 950°C. However, there are broad process steam and other process heat applications, e.g. steam methane reforming, that are accessible with lower core outlet temperatures that will be the subject of follow-on work.

0.2 NGNP Demonstration Plant Description

The PBMR NGNP Demonstration Plant described herein, as initially conceived and developed per the NGNP and Hydrogen Production Pre-conceptual Design Report (PCDR) [0-1] consists of various Systems, Structures and Components (SSCs) integrated into a functional plant capable of producing process heat for hydrogen production as well as electricity (used notably for the hydrogen plant, but also for export). The PBMR NGNP Demonstration Plant, consists of a 500 MWt pebble bed reactor with primary and secondary helium loops coupling to a 50 MWt process coupling heat exchanger for the demonstration of hydrogen production and a 470 MWt steam generator for a Rankine cycle power generation plant.

The process flow diagram of the NGNP Demonstration Plant for Hydrogen Production is given in Figure 0-1.

Figure 0-1: PBMR NGNP Demonstration Plant Process Flow Diagram – H_2 Production (950°C)

The NGNP Preconceptual Design and conceptual design studies to date have focused on a 950°C reactor outlet temperature for hydrogen production. Figure 0-2 shows the Steady State Conditions for that application.

The NGNP may also be used for process heat applications. Figure 0-3 presents one option for a steam production plant, and this option will be used as the 750°C reference for the purposes of this study. In this option, the Process Coupling Heat Exchanger (PCHX) is removed from the Secondary Heat Transport System (SHTS) and a single Intermediated Heat Exchanger (IHX) is retained. The steam could be used for electricity production, process steam or cogeneration. This configuration represents the minimum departure from the PBMR NGNP Preconceptual Design and would provide enveloping development requirements for 750°C applications. It is potentially representative of applications, such as oil sands, in which extreme water quality requirements or other considerations (e.g., tritium migration) would dictate the use of an IHX. In other applications, it may be possible to eliminate the IHX and relocate the SG to the Primary Heat Transport System (PHTS). The actual configuration of a 750°C application remains subject to trade studies that would be done when functions and requirements are identified.

Figure 0-2: Nominal Process Conditions for a NGNP Demonstration Plant (H₂, 950°C)

Figure 0-3: Process Conditions for a NGNP Steam Plant (750 °C)

The modes and states of the NGNP demonstration plant as currently anticipated are indicated in Figure 0-4. These states are subject to change as the design and the operational requirements of the plant are further analyzed. Note that the 750°C steam production plant will probably not have states 7 & 8.

Figure 0-4: NGNP Plant Modes and States of Operation

0.3 The Basis for the NGNP Technology Development Road Mapping

In order to minimize the safety and economic risk of the NGNP Demonstration Plant, the intent is that all the SSC's should have demonstrated the ability of the applied technologies to function according to specification within their intended operational environment, prior to nuclear start-up of the NGNP Demonstration Plant. This would then leave the ability of these technologies to perform according to specification when integrated into their final NGNP Demonstration Plant configuration as the remaining risk to be addressed.

The NGNP TDRM Process is detailed in NGNP-CTF MTECH-TDRM-002, Technology Development Road Mapping Process, Section 02 [0-4] of this report.

0.3.1 The Technology Development Road Mapping Process

Obviously the advancement of the readiness of technology for application within the NGNP needs to be addressed at the level of the SSCs within which the technology is being applied. There are SSCs which use technology that is either commercially unavailable or lacks proven industry experience for the specific application, thus further technology development needs to be done for these SSCs to achieve acceptable Technology Readiness Levels (TRLs) prior to installation in the NGNP. These SSCs are referred to as critical SSCs.

Design Data Needs (DDNs) are identified shortcomings in information regarding materials, technologies and manufacturing processes that follow from design and trade studies in specific technologies. Thus, given the current design maturity of the NGNP Demonstration Plant, it is recognized that not all the DDNs have been identified at this stage and it is highlighted that the technology development needs will be supplemented as the integrated design progresses.

For the NGNP, levels of readiness of needed technologies have been assessed. However, these levels vary significantly for the various SSCs. The overall technology readiness assessment process is referred to as Technology Development Roadmapping (TDRM) and is illustrated in Figure 0-5. The TDRM process is used to assess, map, plan and visualize the needed technology development activities to advance the technology readiness of a particular SSC to a state that will reduce commercial risk and support plant operation. The TDRM process determines what is needed *firstly* to verify performance and safety of the SSC and *secondly* to minimize the risk associated with operating the SSC. The latter is achieved through a series of scale test programs, up to and including tests at full-scale NGNP plant temperatures, pressures and flow rates. These test programs are documented in Test Specifications which specify the needed maturation tasks to advance the relevant technologies. The results from the maturations tasks serve as input to the various SSC's design, manufacturing and operation. Only critical SSC's to be utilized in the 950°C NGNP demonstration plant were considered for the road mapping process herein

NGNP-CTF MTECH-TDRM-000_Rev0-final.doc

12/03/2008

Figure 0-5: The TDRM process and Related Outputs

Critical SSCs are defined as Systems, Structures and Components that utilize technologies that are not commercially available or do not have proven industry experience in the intended application.

The following deliverables are relevant in the TDRM process for these SSCs:

- Technology Readiness Level Rating Sheets, which supply the current readiness of a particular SSC to serve as input into the NGNP.
- Technology Development Roadmaps, which set out the high level vision for maturing certain technologies up to a point where the technology can be utilized in the NGNP.
- Technology Maturation Plans and Test Specifications, which specify the more detailed plans/actions required to mature technologies for utilization in the NGNP.

0.3.2 Technology Development Roadmap

In Figure 0-6:, a template for a Technology Development Roadmap is shown. The roadmap is typically populated with items relating to down selection of technologies (shown on the left side of the roadmap), TRL of the technology (yellow blocks) and technology maturation tasks needed for advancement (shown on the right side of the roadmap).

Figure 0-6: Technology Development Roadmap Template

On the left side of the roadmap, all candidate technologies that are in contention to be utilized in the SSC for the NGNP are shown. The decision discriminators shown just to the right of the technology candidates on the roadmap are used to guide a down selection of the available technologies. Typical decision discriminators may entail *inter alia service experience of technologies, available data* and *maturity of respective technologies*. Upon the screening of the candidate technologies against the decision discriminators, a down selection can be made.

On the right side of the roadmap, the current TRL rating together with the Maturation Tasks necessary to achieve progressively higher levels of validated TRLs up to a TRL 8 are shown. At each validated TRL level, a mission statement gives an indication against which environmental parameters the qualification has been conducted. All the maturation tasks shown in the roadmap are also linked to a schedule in the form of the timeline. References that serve as input into the roadmap at this stage involve Design Data Needs, Pre-conceptual Design Documents and Special Studies.

0.3.3 TRL Rating Sheet

Technology Readiness Levels are ratings between 1 and 10 are assigned by Subject Matter Experts to a certain SSC or where applicable to a facility or technology, which gives an indication of the maturity of the SSC involved. Various definitions are assigned to the existing TRL ratings and are shown in Table 0-1:.

Rating Level	Technology Readiness Level Definition	TRL Abbreviated Definition
1	Basic principles observed and reported in white papers,	Basic principles
	industry literature, lab reports, etc. Scientific research	observed
	without well defined application.	
2	Technology concept and application formulated. Issues	Application formulated
	related to performance identified. Issues related to	
	technology concept have been identified. Paper studies	
	indicate potentially viable system operation.	
3	Proof-of concept: Analytical and experimental critical	Proof of Concept
	function and/or characteristic proven in laboratory.	
	I echnology or component tested at laboratory scale to	
	Technology or component is tested at bench scale to	Banch scale testing
4	demonstrate technical feasibility and functionality. For	Dench scale testing
	analytical modeling, use generally recognized benchmarked	
	computational methods and traceable material properties	
5	Component demonstrated at experimental scale in	Component Verified at
0	relevant environment. Components have been defined.	Experimental Scale
	acceptable technologies identified and technology issues	
	quantified for the relevant environment. Demonstration	
	methods include analyses, verification, tests, and inspection.	
6	Components have been integrated into a subsystem and	Subsystem Verified at
	demonstrated at a pilot scale in a relevant environment.	Pilot scale
7	Subsystem integrated into a system for integrated	System demonstration
	engineering scale demonstration in a relevant environment.	at Engineering Scale
8	Integrated prototype of the system is demonstrated in its	Integrated Prototype
	operational environment with the appropriate number and	Tested and Qualified
	duration of tests and at the required levels of test rigor and	
	quality assurance. Analyses, if used support extension of	
	demonstration to all design conditions. Analysis methods	
	verified and validated. Technology issues resolved pending	
	qualification (for nuclear application, if required).	
0	Demonstrated readiness for not startup	
9	demonstrated in operational environment	Fiant Operational.
10	Commercial-scale demonstration is achieved	Commercial Scale
10	Technological risks minimized by multiple units built and	Multiple Units
	running through several years of service cycles.	

Table 0-1: The	Technology	Rating Le	evel definitions
----------------	------------	------------------	------------------

The purpose for developing the TRL's is to:

- Provide a semi-quantitative measure of the readiness of the technology of critical SSC's for commercialization.
- Provide a qualitative measure of the readiness of the design of critical systems. The term "qualitative" is used because the TRL ratings are partially subjective, and not based on a numerical score. The fact that the levels are numbered is only a method to categorize the levels, and they could have been assigned letters instead of numbers.
- Provide the ability to compare the design and technology readiness of any SSC relative to another SSC to assist in programmatic decisions.
- Provide input to the path forward for the Technology Development Roadmap.
- Provide design "hold points" that reflect and coordinate technology development with the design process that trigger a dramatic increase in project risk if not adhered to or mitigated.
- Establish a rational framework and criteria in which to communicate the current state and advancement of the design and technology development among the NGNP project team and stakeholders.

The TRL rating goes hand in hand with the Design Readiness Level (DRL) rating as the design of the plant and the SSCs also need to be matured. A rating system similar to the TRL system exists for DRL. DRL ratings were however not included in this study but will be in future updates as the design of the NGNP also matures.

0.3.4 Technology Maturation Plans

In the TDRM process, the associated details for each action/test required to advance an SSC to progressively higher TRL levels are captured in Technology Maturation Plans (TMPs) and subsequent Test Specifications.(TSs) These TMPs incorporate details ranging from material qualification specifics to prototypical SSC testing details. The TMP content can reflect the following details:

- Test Objectives
- Test Conditions
 - Test Configuration / Setup
 - Test Duration
 - Test Location / Facility
- Measured Parameters
- Data Requirements
- Test Evaluation Criteria
- Test Deliverables
- Cost, Schedule & Risk

0.4 Summary of the SSC's

In order to minimize the safety and economic risk of the NGNP Demonstration Plant, the intent is that all the NGNP SSC's should have demonstrated the ability of the applied technologies to function according to specification within their intended operational environment, prior to nuclear start-up of the NGNP Demonstration Plant. This would then leave the ability of these technologies to perform according to specification when integrated into their final NGNP Demonstration Plant configuration as the remaining risk to be addressed.

The various critical SSC's are listed in Table 0-2 with their associated TRL ratings. A brief summary of the respective critical SSC's TRL status follow hereafter. The maturation plans for the various technologies are also briefly outlined. The maturation plans may change as the design of the NGNP plant progresses and as new DDN's are identified. The detailed TRL ratings of all SSC's, including the critical SSC's, are outlined in Appendix A of this document.

Section Number	SSC	SSC TRL
NGNP-CTF MTECH-TDRM-003	PHTS Circulator	6
NGNP-CTF MTECH-TDRM-004	Intermediate Heat Exchanger A	2 (Metallic/Ceramic)
NGNP-CTF MTECH-TDRM-005	Intermediate Heat Exchanger B	3
NGNP-CTF MTECH-TDRM-006	HTS Piping	4
NGNP-CTF MTECH-TDRM-007	SHTS Flow Mixing Chamber	6
NGNP-CTF MTECH-TDRM-008	Hydrogen Production System	Refer to Appendix A
NGNP-CTF MTECH-TDRM-009	Power Conversion System Steam Generator	6
NGNP-CTF MTECH-TDRM-010	Software Codes Verification and Validation	N/A
NGNP-CTF MTECH-TDRM-011	Fuel Elements	6
NGNP-CTF MTECH-TDRM-012	Core Structure Ceramics	6(Graphite)/4(Ceramics)
NGNP-CTF MTECH-TDRM-013	Reserve Shutdown System	6
NGNP-CTF MTECH-TDRM-014	Reactivity Control System	6
NGNP-CTF MTECH-TDRM-015	Core Conditioning System	6
NGNP-CTF MTECH-TDRM-016	Reactor Cavity Cooling System	6

Table 0-2: List of the C	ritical SSCs
--------------------------	--------------

0.4.1 PHTS Circulator

The PHTS circulator is a critical component of the NGNP with its main function being to circulate the primary coolant helium within the PHTS. Discriminators have been identified to assist in the selection of an optimum design for the PHTS circulator. These discriminators address the required technology development, the availability of a manufacturing base, the circulator operation and maintenance, the safety and investment implications and the lifecycle costs.

Several arrangements and design options are available for the PHTS helium circulator that satisfy the pre-conceptual functions and design requirements, as detailed in NGNP-CTF MTECH-TDRM-003 PHTS Circulator, Section 03 [0-5] of this report. Several design selections remain to be made. Trade studies are recommended to select the design option that is best suited for the NGNP plant (at component, system and component/system level). The only key design selection provided is the use of an electric drive for the circulator.

Based on engineering judgement, two design options are proposed to which sound TRL ratings are assigned. The first design option is a submerged circulator with magnetic bearings while the second design option is a circulator in which the electric drive is located outside the pressure boundary, oil lubricated bearings are utilized for support and rotating seals are incorporated as part of the pressure boundary.

All the circulator sub-components have a TRL of 8 (except for the EMB's and primary pressure boundary rotating seals if included in the design), while the integrated assembly of these components as a subsystem has a TRL of 6 because it has not been demonstrated in a loop similar to the PHTS within a relevant environment. Following the selection of a reference circulator design, the circulator components that require technology development will be validated with supporting single effect tests. After that, the circulator subsystem will be validated with a partial scale or full-scale integrated test, subsequently qualifying the subsystem at a TRL of 7. Advancement to a validated TRL 8 will comprise the final integrated tests of the PHTS circulator prototype to take place in the first NGNP nuclear power plant.

Based on current pressure loss estimates, the PHTS pressure losses are expected to be larger than the SHTS pressure losses. Since the PHTS pressure losses are larger than the SHTS pressure losses and as the PHTS operates at a higher temperature, the PHTS circulator is expected to envelope the SHTS circulator and, hence, only the PHTS circulator is discussed. It is assumed that the PHTS circulator testing can be applied to the SHTS circulator also and, hence, does not warrant a separate discussion.

The PHTS check valve functionally forms an integral part of the circulator and therefore will be tested as part of the circulator. It is recognized that design development will be required to qualify the valve. At this stage no technology development is envisioned to the point where advance testing is required. However, as the design evolves unique tests might be identified which will be included at the appropriate time.

0.4.2 IHX A

The IHX is a critical high-temperature component of the NGNP and its main function is to transfer thermal energy from the Primary Heat Transport System (PHTS) to the Secondary Heat Transport System (SHTS). Previous studies related to the NGNP Heat Transport System (HTS) have shown the advisability of splitting the IHX into two units, IHX A operating at up to 950° C and IHX B operating at up to -760° C – particularly when metallic materials are employed in the high-temperature heat transfer section. Uncertainties related to achieving full service life at 950° C using metallic materials argue for parallel development of metallic and ceramic heat exchangers.

Decision Discriminators were established and exercised in decisions taken relative to heat exchanger designs and materials. Cost/performance, state-of-the-art, robustness, environmental compatibility, Reliability and Integrity Management (RIM), IHX integration, and design/ licensing basis were considered in the down select of potential designs. A wide range of heat exchanger designs were evaluated and the result was the selection of a compact printed circuit or plate-fin heat exchanger (PCHE or PFHE) design for a metallic heat exchanger. A down select has not been made for a ceramic IHX design and awaits the completion of future Trade Studies.

Decision discriminators applied to the selection of a metallic material for IHX A were the availability of a materials database (e.g., maturity of data and service experience), materials lifetime (e.g., creep lifetime and corrosion behavior), and fabrication related factors. The choice based on the above was Ni-base Alloy 617. As for the ceramic heat exchanger design, selection of specific ceramic materials awaits completion of future trade studies.

Evaluations of the status of technology for high temperature metallic and ceramic heat exchangers were made and resulted in the determination of TRL 2 for IHX A. The underlying bases for these selections are described in the TRL rating sheets in NGNP-CTF MTECH-TDRM-004 [0-6] provided for both metallic and ceramic heat exchanger versions.

The IHX A is detailed in NGNP-CTF MTECH-TDRM-004, Intermediate Heat Exchanger A, Section 04 [0-6] of this report.

0.4.3 IHX B

Just as for IHX A, Decision Discriminators were established and exercised in decisions taken relative to heat exchanger designs and materials for IHX B. Cost/performance, state-of-the-art, robustness, environmental compatibility, RIM, IHX integration, and design/licensing basis were considered in the down select of designs. A wide range of heat exchanger designs were evaluated and the result was the selection of a compact design (PCHE or PFHE) heat exchanger design using metallic materials. Decision discriminators applied to the selection of a material for IHX B were materials database (e.g., maturity of data and service experience), materials lifetime (e.g., creep lifetime and corrosion behavior), and fabrication related factors. The choice based on the above was Fe/Ni-base Alloy 800H.

The status of technology for metallic heat exchangers was evaluated, and resulted in the determination of a level of TRL 3 for IHX B. The underlying bases for this selection are described in the TRL rating sheet for IHX B.

TDRMs are provided to summarize down select tasks, TRL status, and maturations tasks necessary to increase the maturity of the technology of IHX B to a level of TRL 8. These tasks include consideration of materials properties and performance, material and design codes, model development for thermal and mechanical performance, and testing of IHX modules progressing from unit cells to full-size IHX units. Details of the tasks necessary for technology advancement between TRL levels are presented as a series of Technology Maturation Plans that include information on objectives, test conditions, measured parameters, data requirements, test evaluation criteria, test deliverables, and cost/schedule/risk. It is noted that the technology roadmap and maturation plans will need to be adjusted as new DDNs evolve as part of the conceptual and detail designs.

IHX B is detailed in NGNP-CTF MTECH-TDRM-005, Intermediate Heat Exchanger B, Section 05 [0-7] of this report.

0.4.4 HTS Piping

The HTS involves pipes of varying temperature capabilities in both the PHTS and SHTS. High-temperature piping is utilized within the PHTS to direct helium flow from the reactor to IHX A and from IHX A to IHX B. Lower temperature portions of the PHTS piping circuit transport the helium flow from the exit of IHX B to the circulator and thereafter from the circulator to the reactor. High-temperature piping is utilized within the SHTS to direct helium flow from the high-temperature exit of IHX A to the mixing chamber and the PCHX and from the mixing chamber to the SG. Also, high-temperature portions of the SHTS piping circuit transport the helium from IHX B to IHX A and from the PCHX to the mixing chamber.

Low-temperature sections of the SHTS piping direct helium from the SG to the circulator and from the circulator to IHX B. Very preliminary design selections for the various piping sections were made on the basis of pre-conceptual design studies (these selections remain to be revisited during conceptual design):

- The high-temperature portion of the PHTS piping is to combine both active cooling and insulation.
- The low-temperature section of the PHTS piping and all SHTS piping is to be passively cooled (insulation only).

An evaluation of the status of technology for the HTS piping was made and resulted in the determination of a level of TRL 4. Maturation tasks address the effects of Helium environment and possible rapid depressurization transients on the integrity and thermal conductivity of insulation materials. There are further tasks to quantify environmental and operational effects on prototypic piping section performance.

The HTS Piping is detailed in NGNP-CTF MTECH-TDRM-006, HTS Piping, Section 06 [0-8] of this report.

0.4.5 SHTS Flow Mixing Chamber

The secondary heat transport system (SHTS) flow mixing chamber's main function is to minimize the thermal effects associated with the mixing of two helium streams that are joined together at significantly different temperatures. At 100% nominal steady-state operation, the higher temperature stream enters the chamber at 900 °C, while the other lower temperature stream enters at 659 °C. At this stage of the design, only a very high level concept of the SHTS flow mixing chamber is available.

Discriminators have been identified to assist in the selection of an optimum design for the SHTS flow mixing chamber. These discriminators address the required technology development, the availability of a manufacturing base, the SHTS flow mixing chamber operation and maintenance, the safety and investment implications and the lifecycle costs.

Several arrangements and design options are available for the SHTS flow mixing chamber that satisfy the pre-conceptual functions and design requirements. The simplest SHTS flow mixing chamber design option comprises of a single chamber (plenum) with two inlets (for hotter helium and for cooler helium) and one outlet. Additionally, mixing and acoustic or/and flow induced vibration damping devices can be added within the SHTS flow mixing chambers' plenum to enhance the mixing process, reduce size of the chamber and prevent fatigue damages. Alternative designs of the SHTS flow mixing chamber could replace single inlets with multiple inlets to reduce the pressure drop and the streams inlet velocities.

A number of design selections remains to be made. Trade studies that will use computational modeling and analysis, previous experience, similar designs and engineering judgment will determine the advantages and disadvantages of each option with the help of the decision discriminators. The only key design selection provided is the use of suitable high temperature materials for the walls of the SHTS flow mixing chamber.

All the SHTS flow mixing chamber components are at TRL 8, while the integrated assembly of these components as a subsystem is at TRL 6 because it has not been demonstrated in a loop similar to the SHTS within a relevant environment. Following the selection of a reference SHTS flow mixing chamber design, the components that require technology development will be validated with supporting single effect tests. After that, the SHTS flow mixing chamber subsystem will be validated with a partial scale or full-scale integrated test, subsequently qualifying the subsystem at TRL 7. Advancement to a validated TRL 8 will comprise the final integrated tests of the SHTS flow mixing chamber to take place in the first NGNP nuclear power plant.

The SHTS Flow Mixing Chamber is detailed in NGNP-CTF MTECH-TDRM-007, SHTS Flow Mixing Chamber, Section 07 [0-9] of this report.

0.4.6 Hydrogen Production System

The hydrogen production development is organized into four separate process technology areas, which are:

- 1. Sulfuric Acid Decomposition (common to both Sulfur-Iodine and Hybrid Sulfur hydrogen production systems).
- 2. Sulfur Dioxide Electrolysis (principal step in Hybrid Sulfur thermo- electrochemical water splitting).
- 3. Bunsen Reaction and HI Decomposition (steps in Sulfur-Iodine thermo-chemical water splitting).
- 4. High Temperature Steam Electrolysis.

The technology areas of the Hydrogen Production System (HPS) were further divided into subsystems. TRL ranks were assigned to these subsystems. Section 8, NGNP-CTF MTECH-TDRM-008 [0-10] of this report documents the subsystem ranking and outlines technology maturation steps.

Specific hydrogen outputs, heat or power inputs, scale factors and scale-up steps are quantified and were used as input to the road mapping report. These are all estimates based on the TDRM's developed here and on the present plans of the technology developers in the US DOE Nuclear Hydrogen Initiative (NHI) who have been consulted. Far more progress in development and work on specific designs of commercial scale components is required before these numbers can be confirmed. Several of the anticipated tests may be avoided by alternative designs and other tests may be suggested as designs progress. Test scale-up steps selected thus far have been somewhat arbitrary. Final scale for each test will depend upon the specific purpose for that test and the needs of the designer of the commercial-scale equipment. Therefore, these estimates should be used only for general planning purposes and not as bases for design or for detailed planning.

For each process concept, the Hydrogen Production Facility is made up of the Hydrogen Production System (HPS) and the Hydrogen Production Buildings and Structures. For discussion of technology development, the buildings and structures are assumed to be entirely commercially available or having proven industry experience. Therefore, the following technology assessment relates only to the Hydrogen Production System.

Testing of any major components of the thermo-chemical or hybrid cycles will require importing, handling and disposing of at least a ton or more of hazardous chemicals such as sulfuric acid, sulfur dioxide, iodine and hydroiodic acid. Provisions for the safe and environmentally responsible handling and disposal of these materials are a prerequisite for the testing of these components in the CTF. Testing of components for any of the technologies will require handling of high temperature and high pressure oxygen and hydrogen either as pure streams or mixed with other gases. Provisions for safe handling and disposal of these materials are necessary. Handling of hydrogen requires specially designed electrical equipment and controls. If hydrogen production technology testing is to be done at the CTF, these requirements must be met.

It may be more convenient to carry out large-scale testing of water splitting technology at a facility that is specially designed for handling the process streams described above, rather than design the CTF to envelope those requirements.

The Hydrogen Production System is detailed in NGNP-CTF MTECH-TDRM-008, Hydrogen Production System, Section 08 [0-10] of this report.

0.4.7 Power Conversion System Steam Generator

The Steam Generator (SG) is a major component of the Power Conversion System (PCS) and interfaces with the Secondary Heat Transport System (SHTS). Location of the SG in the SHTS is a significant departure from prior High-Temperature Gas-Cooled Reactor (HTGR) applications in which the SG was located in the Primary Heat Transport System (PHTS).

In the context of the NGNP PCS, the Steam Generator is a developmental component that is based on proven technologies. These technologies must be re-established, adapted and extrapolated for the NGNP. Based on prior applications such as Fort St. Vrain and the Thorium High-Temperature Reactor (THTR), the SG has been rated at a technology readiness level of TRL 6.

Advancement from TRL 6 to TRL 7 will involve performing as down selection trade study to determine the preferred conceptual arrangement of the SG. The requirements and the design details of the SG will need to be defined. The design will then have to undergo development tests as well as prototype testing at the CTF. Further maturation of technology to TRL 8 will require completion of the SG design and delivery of a prototype to the NGNP site. The SG will then undergo through integrated tests as part of the PCS.

The Power Conversion System Steam Generator is detailed in NGNP-CTF MTECH-TDRM-009, Power Conversion System Steam Generator, Section 09 [0-11] of this report.

0.4.8 Software Codes Verification & Validation

The PBMR DPP software codes are expected to envelope the NGNP Software Code Validation requirements for the NHSS, recognizing that the PBMR DPP commissioning itself forms an integral part of the V&V program. However, only once the NGNP plant level conceptual design analyses have been done will it be possible to confirm this statement and quantify specific further testing needs (i.e. beyond the DPP V&V which is up to 900°C reactor outlet operating at 400 MWt). It is noted that all NGNP evaluation models, once established, will remain subject to verification and validation (V&V).

The NGNP core design for the reference case (950°C reactor outlet operating at 500 MWt) with its higher gas outlet temperature and power density relative to the PBMR DPP may increase the risk that the best estimate analysis plus uncertainties are too close to the safety margins. In certain cases, this may imply more advanced methods, software and models to be required. It is noted that the lower temperature NGNP option reduces the need for software V&V.

It is noted that the software V&V employed for the Rankine Power Conversion System (PCS) and Hydrogen Production System (HPS) remain to be considered, as it has not been covered by the PBMR DPP V&V process.

In order to analyze various aspects of the integrated NGNP Plant, the software currently used for the PBMR DPP design is proposed to be further enhanced and extended to include an integrated core neutronic/thermal hydraulic analysis tool coupled to the Power Conversion and Hydrogen Production Systems models for simulating normal and off-design conditions. This tool will allow for steady-state and transient analyses of the integrated NGNP plant and will enable operational and control studies. Such a tool remains to be developed, verified and validated.

The Software Code Verification and Validation is detailed in NGNP-CTF MTECH-TDRM-010, Software Code Verification and Validation, Section 10 [0-12] of this report.

0.4.9 Fuel Elements

The PBMR Demonstration Power Plant (DPP) is rated at 400 MWt and has a reactor outlet temperature of 900°C. The DPP fuel qualification consists of irradiating fuel spheres up to a temperature of 1250°C and to a burn-up value of approximately 111,900 MWD/tU¹. The fast neutron dose for these irradiation tests is specified at 2.7×10^{21} cm⁻². Post-irradiation heat-up tests will be performed at 1600°C and 1800°C to determine delayed radionuclide releases, thereby simulating Loss of Forced Cooling (LOFC) events. The maximum design fuel temperature for the DPP during normal operation is 1130°C and for the depressurized LOFC (DLOFC) is 1593°C. Irradiation tests for the PBMR DPP fuel qualification program will be performed at INM in Russia and HFR Petten in the Netherlands and will be used to achieve an equivalent fuel TRL of 8 for the PBMR DPP.

¹ All of the fuel and reactor qualification envelope values are still subject to change as the analysis is refined with actual design & manufacturing feedback regarding the fuel and reactor.

Initial analyses of the NGNP NHSS predicted a peak fuel temperature of 1168°C during normal operation and 1750°C during a DLOFC event. Based on the results, the NGNP and Hydrogen Production Pre-conceptual Design Report [0-1] states that the fuel should have a capability to achieve a maximum temperature of at least 1300°C and a burn-up value of 109,000 MWD/tU. The fast neutron dose is specified at 2.7 x 10^{21} cm⁻². The recent Reactor Parametric NGNP Conceptual Design Study refined the maximum fuel temperature to 1235°C during normal operation and the peak maximum temperature to 1703°C during a DLOFC event.

The anticipated operational profile of the fuel in the NGNP is outside the PBMR DPP fuel envelope with regards to temperature while the fast neutron flux and burnup are the same and within the DPP envelope. Note that if the NGNP program focuses on lower temperature applications (<800°C ROT), it is expected that the PBMR DPP qualification envelope would suffice.

The Fuel Elements are detailed in NGNP-CTF MTECH-TDRM-011, Fuel Elements, Section 11 [0-13] of this report.

0.4.10 Core Structures Ceramics

The NGNP is envisaged to utilize core internals similar to those of the PBMR DPP. These core internals consists of the core barrel assembly and the Core Structures Ceramics (CSC) of which the latter is identified as a critical SSC. The CSC can further be broken down into the graphite, composites, ceramic and metallic components. The graphite components are mostly made up of the reflector blocks, while the composites are comprised of the Lateral Restraint Straps and Tie Rod assemblies. The CSC also includes ceramic components utilized as insulation material at the bottom of the reactor and a number of metallic parts, notably in the metallic links of the Lateral Restraint Straps.

A study was conducted to determine the TRL ratings of the different proposed technologies. During this study, the CSC were subdivided into two sections, namely the graphite components and the ceramics, composites etc. The graphite components were given a TRL 6 rating while the other components were rated at TRL 4. Advancement of the CSC to a TRL 7 is achieved by a complete PBMR qualification process, which ends with operational testing in the PBMR DPP.

The additional activities needed to advance this system to the required TRL 8 are mainly due to the fact that the NGNP operates at a lower inlet temperature as well as a higher outlet temperature. These activities have been captured in Design Data Needs (DDN) from the NGNP Pre-Concept Design Report and related Special Studies

The Core Structure Ceramics are detailed in NGNP-CTF MTECH-TDRM-012, Core Structure Ceramics, Section 12 [0-14] of this report.

0.4.11 Reserve Shutdown System

The RSS forms part of the Reactivity Control and Shutdown System and is a totally diverse reactor shutdown system. The RSS is used to keep the reactor sub-critical and below an average core temperature not exceeding 100°C during shutdown. The NGNP WEC-team envisages utilizing a RSS similar to that of the PBMR DPP.

The RSS development for the PBMR DPP is currently in its basic design phase, with a number of development tests being performed, resulting in a TRL rating of 6. A number of development and qualification tests will be performed in the Helium Test Facility (HTF) in South Africa before the RSS will be commissioned in the PBMR DPP. Upon the completion of these tests, the DPP RSS will have a TRL status of 7. Subsequent completion of PBMR DPP tests will advance the DPP RSS TRL status to an 8. If the NGNP Requirements are enveloped by the PBMR DPP, these development and qualification tests will be sufficient to advance the NGNP RSS to a TRL of 8.

If the NGNP requirements are not enveloped by the DPP, then the RSS will be re-qualified in the HTF to progress the NGNP RSS to TRL 7, in which case it will obtain TRL 8 status in the NGNP itself. The need for potential further qualification can, however, only be defined once more analyses have been performed to determine what the exact requirements would be for application in the NGNP.

The Reserve Shutdown System is detailed in NGNP-CTF MTECH-TDRM-013, Reserve Shutdown System, Section 13 [0-15] of this report.

0.4.12 Reactivity Control System

The RCS forms part of the Reactivity Control and Shutdown System, and serves the purpose of controlling the reactivity in the core, and shutting the reactor down quickly. The NGNP WEC-team envisages utilizing a RCS similar to that of the PBMR DPP. Operating experience exists with reactivity control systems similar to that of the RCS in other gas cooled reactors. The RCS development for the PBMR Demonstration Power Plant is nearing basic design completion, with a number of development tests being performed, resulting in a TRL rating of 6.

A number of development and qualification tests will be performed in the Helium Test Facility (HTF) in South Africa before the RCS can be commissioned in the PBMR DPP. Upon the completion of these tests, the RCS will have a TRL status of 7. It has been identified however, that the environment in which the RCS must operate in the NGNP may be at a higher temperature than that of the PBMR DPP. For this reason, it is possible that alternative materials may need to be investigated for certain components of the RCS. More analyses need to be done on these alternative materials, such as carbon composite materials, to determine their current TRL status.

In section 14, NGNP-CTF MTECH-TDRM-014 [0-16], a TDRM outlines the process to be followed for the RCS to obtain a TRL status of 8. Experience obtained in the development of the RCS for the PBMR DPP can be fed back into the development of the RCS that may need to be done for application in the NGNP. Any additional qualification tests for temperature effects that may need to be performed for the NGNP RCS can be conducted at the HTF, depending on the details of the test requirements. Testing required in a radiation environment will have to be performed outside the HTF. The NGNP RCS is expected to be operated at slightly different conditions than the PBMR DPP and, hence, detailed system level analyses are required to confirm the DDN's and operating envelope.

The Reactivity Control System is detailed in NGNP-CTF MTECH-TDRM-014, Reactivity Control System, Section 14 [0-16] of this report.

0.4.13 Core Conditioning System

It is envisaged that the Core Conditioning System (CCS) to be used in the NGNP will be of a similar design to that of the PBMR DPP. The CCS consists of a dual redundant system, each having a gas circulating blower, a high temperature water-cooled heat exchanger, isolation and blower control valves, hot gas ducts, pressure boundary piping and control instrumentation.

A study was conducted in which the TRL ratings of the different proposed technologies were determined. During this study the CCS components were given a TRL 6 rating. The TRL maturation process has been divided into two main activities, namely a maturation from the current TRL rating up to TRL 7 and then from TRL 7 to TRL 8. To reach a TRL 7, various tests will be done on the individual components of the CCS. The tests will qualify the technology to be used in the final designs of the CCS components. The final components will be integrated as a subsystem into the DPP and will be tested as an integrated unit. When the CCS subsystem tests are complete, it will have progressed to a TRL 8.

The NGNP CCS is expected to operate at slightly different conditions than the DPP CCS. Hence detailed system level analyses are required to confirm the DDN's and the operating envelope.

The Core Conditioning System is detailed in NGNP-CTF MTECH-TDRM-015, Core Conditioning System, Section 15 [0-17] of this report.

0.4.14 Reactor Cavity Cooling System

The Reactor Cavity Cooling System (RCCS) system is envisaged by the WEC NGNP Team to be utilized in a similar operational environment to that of the PBMR DPP. The RCCS is required to maintain the reactor citadel concrete structure within allowable temperatures through heat removal and shielding of the concrete from direct thermal radiation during normal and abnormal conditions. The DPP RCCS design is expected to be employed 'as is' for the PBMR NGNP, with possibly only minor changes to water reservoir requirements.

The PBMR DPP RCCS is currently rated at TRL 6. Progression from TRL 6 to TRL 7 will be achieved through analysis, while progression to TRL 8 will be through the commissioning and operation of the PBMR DPP. The current DPP RCCS strategy is to utilize two independent internationally recognized software codes RELAP5TM and SPECTRATM to evaluate the passive operation of the RCCS. To date, both software codes have indicated that the RCCS will adequately satisfy its requirements. However, the benefits of testing to reduce risk are acknowledged and, therefore, PBMR is investigating further means for validating RCCS software code models. The definition of these validation tests has not yet been fully developed – although it is favored to use representative part-scale testing.

Even though PBMR is investigating supplementary testing, additional testing by others will be welcomed by PBMR through a CRADA-type arrangement if;

- 1) the tests are representative of the PBMR RCCS design (with PBMR providing test specification inputs),
- 2) the tests can be conducted by the 2010 timeframe, and
- 3) if PBMR is involved with the test definitions and execution of such tests.

The Reactor Cavity Cooling System is detailed in NGNP-CTF MTECH-TDRM-016, Reactor Cavity Cooling System, Section 16 [0-18] of this report.

0.5 Integrated Schedule and Cost Estimate

The cost and schedule of the NGNP evolves continuously as the project progresses due to high uncertainties associated with technology advancements, evolving test plans and schedules, timely availability of resources, etc. There is an integrated Test Schedule which includes the NGNP schedule, the original SSC TDRM schedules and the CTF high level schedule (summarized version shown in Figure 0-7) [0-19]. The SSC TDRM schedules were modified to relieve pressure on the overall schedule, as it initially assumed that all work would start in October 2008 (FY 2009). In the modified schedule the less critical SSC's were moved to a later starting date, but still within the constraints of the CTF and NGNP start-up dates.

Figure 0-7: CTF Integrated Schedule

Cost estimates are provided for certain critical SSCs. Estimates have been provided only up to a TRL rating of 5. Estimates for higher TRL advancements can only be provided when additional design information (preliminary or final) of the NGNP and components are available. For some of the SSCs, more design information is required in order to develop reliable cost estimates. For some, trade studies (or various trade studies) need to be done to verify and determine the specific combinations of sub-components that will be used. There is enough time in the modified schedule to perform the trade studies before the advancement of the TRLs and before possible testing in the CTF will be performed. The summary costs needed for the original TDRMs as stated in [0-19] are shown in Figure 0-8.

SSC ^{[1], [2]}	FY2009	FY2010	FY2011	FY2012	FY2013	FY2014	FY 2015
Circulator ^[3]	\$450,000	\$0	\$0	\$0	\$0	\$0	\$0
IHX A (Metallic)	\$4,205,030	\$4,464,905	\$3,300,971	\$1,007,072	\$225,225	\$100,000	\$100,000
IHX A (Ceramic)	\$5,482,274	\$4,488,666	\$3,896,338	\$0	\$0	\$0	\$0
IHX B	\$3,107,690	\$2,851,809	\$1,689,406	\$0	\$0	\$100,000	\$100,000
Piping	\$1,481,867	\$283,333	\$0	\$0	\$0	\$0	\$0
Mixing Chamber [3]	\$0	\$0	\$1,124,000	\$1,124,000	\$0	\$0	\$0
Steam Generator	\$0	\$4,092,000	\$7,274,000	\$7,741,000	\$2,814,000	\$0	\$0
HPS ^[4]	\$3,500,000	\$5,300,000	\$12,670,000	\$15,610,000	\$15,610,000	\$23,110,000	\$30,670,000
Fuel	\$4,500,000	\$6,500,000	\$6,500,000	\$6,500,000	\$5,500,000	\$3,500,000	\$3,500,000
CSC	\$500,000	\$600,000	\$800,000	\$800,000	\$700,000	\$900,000	\$700,000
RSS	n/a						
RCS	n/a						
CCS	n/a						
RCCS	n/a						
TOTAL (\$)	\$23,226,861	\$28 580 714	\$37 254 714	\$32 782 072	\$24 849 225	\$27 710 000	\$35.070.000

[1] Estimates noted for some SSC's are those given in NGNP-16-RPT-001 (notably Mixing Chamber, Steam Generator, Fuel, CSC) due to limited design information

[2] Costing of RSS, RCS, CCS and RCCS make part of PBMR DPP and are not included

[3] For the Circulator, Mixing Chamber as well as the Steam Generator, concept design needs to be progressed further before sensible estimations can be made

[4] Sum total of HPS reflects totals of sulfuric acid decomposition technology development as well as sulfur dioxide electrolysis technology development [NGNP-. CTF MTECH-TDRM-008]. For the purposes of this estimation, estimations reflect costs needed to etablish Hybrid Sulphur hydrogen production system (even

. though the reference design still has to be selected).

SSC ^{[1], [2]}	FY 2016	FY 2017	FY 2018	FY 2019	FY 2020	FY 2021	Total
Circulator ^[3]	\$0	\$0	\$0	\$0	\$0	\$0	\$450,000
IHX A (Metallic)	\$0	\$0	\$0	\$0	\$0	\$0	\$13,403,203
IHX A (Ceramic)	\$0	\$705,925	\$705,925	\$705,925	\$380,325	\$400,000	\$16,765,378
IHX B	\$0	\$0	\$0	\$0	\$0	\$0	\$7,848,905
Piping	\$0	\$0	\$0	\$0	\$0	\$0	\$1,765,200
Mixing Chamber ^[3]	\$0	\$0	\$0	\$0	\$0	\$0	\$2,248,000
Steam Generator	\$0	\$0	\$0	\$0	\$0	\$0	\$21,921,000
HPS ^[4]	\$30,670,000	\$24,500,000	\$24,500,000	\$7,800,000	\$0	\$0	\$193,940,000
Fuel	\$3,500,000	\$4,500,000	\$0	\$0	\$0	\$0	\$44,500,000
CSC	\$0	\$0	\$0	\$0	\$0	\$0	\$5,000,000
RSS	n/a	n/a	n/a	n/a	n/a	n/a	n/a
RCS	n/a	n/a	n/a	n/a	n/a	n/a	n/a
CCS	n/a	n/a	n/a	n/a	n/a	n/a	n/a
RCCS	n/a	n/a	n/a	n/a	n/a	n/a	n/a
TOTAL (\$)	\$34,170,000	\$29,705,925	\$25,205,925	\$8,505,925	\$380,325	\$400,000	\$113,901,686

Summary costs: Original TDRMs

[1] Estimates noted for some SSC's are those given in NGNP-16-RPT-001 (notably Mixing Chamber, Steam Generator, Fuel, CSC) due to limited design information

Costing of RSS, RCS, CCS and RCCS make part of PBMR DPP and are not included [2] [3]

For the circulator, Mixing Chamber as well as the Steam Generator, concept design needs to be progressed further before sensible estimations can be made

Sum total of HPS reflects totals of sulfuric acid decomposition technology development as well as sulfur dioxide electrolysis technology development [NGNP-[4] CTF MTECH-TDRM-008]. For the purposes of this estimation, estimations reflect costs needed to etablish Hybrid Sulphur hydrogen production system (even

though the reference design still has to be selected).

Figure 0-8: CTF Cost Estimate

The Integrated Schedule and Cost is detailed in NGNP-CTF MTECH-TDRM-017, Integrated Schedule and Cost, Section 17 [0-19] of this report.

Input to CTF 0.6

It is expected that some of the maturation plans will be carried out at the CTF. However, some of the SSCs are either still in the early developmental stages or have progressed much further and other facilities in which the technologies can be advanced may have to be sourced around the world. Table 0-3 lists the SSC's which have expected inputs to the CTF.

NGNP-CTF MTECH-TDRM-000

NGNP Technology Development Road Mapping Report Section 0: Executive Summary Report Table 0-3: Input of various SSC's to the CTF

SSC	TRL 5 \rightarrow TRL 6	$\mathbf{TRL} \ 6 \rightarrow \mathbf{TRL} \ 7$	TRL 7 \rightarrow TRL 8	Input to CTF
Circulator		 Development of sub-components Supporting single effect tests Prototype testing 	 Circulator integrated tests 	Components and prototype to be tested at the CTF
IHX A & B	Testing of a Compact Heat Exchanger (CHE) module	 Shell side flow distribution and bypass leakage testing Multi-module heat transfer testing 	 Testing of full size IHX at the NGNP 	Metallic and ceramic modules to be tested at CTF
Piping	 Effects of He infiltration on thermal conductivity of insulation material The effects of fluid impurities on insulation properties 	 Prototype performance & environment testing (high & low temp piping, insulation material). 	 Full scale installation at the NGNP 	TRL $6 - \text{TRL 7}$ will be tested at the CTF. But other facilities will be required for TRL $5 -$ TRL 6
SHTS Flow Mixing Chamber		 Supporting single effect tests (Enhanced mixing devices testing, Vibration dumping device testing) Test mixing chamber 	 Perform mixing chamber integrated tests at the NGNP to validate flow coupling and mixer performance and verify its interaction with other subsystems 	Full scale mixing chamber will be tested at the CTF
Hydrogen Production System	See NGNP-CTF MTECH-TDRM-008 [0-10]	See NGNP-CTF MTECH-TDRM-008 [0-10]	See NGNP-CTF MTECH-TDRM-008 [0-10]	To be determined
Steam Generator		 Perform supporting tests as per DDN's Perform prototype tests, including instrumentation demonstration tests, tube in-service inspection methods demonstration tests, feed water orifice performance tests and seals performance demonstration tests 	 Perform SG integrated tests, including nuclear and non-nuclear pre-operational tests Tune the SG during initial operation 	Scale prototype testing at the CTF

NGNP-CTF MTECH-TDRM-000_Rev0-final.doc

12/03/2008
APPENDIX A: NOMENCLATURE

Bench Scale – A technology to be tested that will provide the data or demonstration intended but is not necessarily like the design of the final SSC. (~1:3600 scale)

Experimental Scale – A component to be tested that will provide the data or prove function intended but is not necessarily like the design of the final SSC. (~1:1000 scale)

Pilot Scale – A model or facsimile of the subsystem used as a basis or standard for proof of principle testing and/or operation. The model or facsimile may progress through several evolutions, but is not necessarily in form or fit a final version. (~1:100 scale)

Engineering Scale – A model or facsimile of the system used as a basis or standard for proof of principle testing and/or operation. The model or facsimile may progress through several evolutions, but is not necessarily in form or fit a final version. (~1:20 scale)

Prototype – Subsequent to Pilot/Engineering Scale model or facsimile of the SSC, a version that is intended to be the final version or is an evolutionary step toward the final version. (~1:4 scale)

Lab Environment – Refers to a controlled environment where effects can be quantified with appropriate accuracy.

Relevant Environment – Refers to an environment that does not necessarily have the same temperatures and pressures, but is close. Not necessarily the same fluids, but chemically similar insofar as thermo-fluid and corrosion/reaction.

Operational Environment – For SSCs normally operating when the plant is running, the operational environment consists of the normal operating fluids, and anticipated temperatures (static and transient) and pressures (static and transient). For SSCs not normally operating, the operational environments are the design basis operating fluids, temperatures and pressures.

APPENDIX B: LIST OF DDNs

Table B.0-1 List of DDNs for C	Critical SSCs
--------------------------------	---------------

DDN Number	Mission Need	
1. Nuclear Heat Supply System		
(NHSS)		
Fuel Irradiation		
NHSS-01-01	Fuel irradiation test for normal operational conditions	
NHSS-01-02	Fuel heating tests for accident conditions	
NHSS-01-03	Fuel Graphite irradiation tests	
Graphite		
	Extended Properties of Irradiated Graphite at Low	
NHSS-02-01	Temperatures	
	Extended Properties of Irradiated Graphite at High	
NHSS-02-02	Temperatures	
2. Heat Transport System (HTS)		
Intermediate Heat Exchanger -		
Metallic		
HTS-01-01	Establish Reference Specifications for Alloy 617	
HTS-01-02	Thermal/Physical and Mechanical Properties of Alloy 617	
	Welding and As-Welded Properties of Materials of Alloy	
HTS-01-03	617for Compact Heat Exchangers	
HTS-01-04	Aging Effects of Alloy 617	
HTS-01-05	Environmental Effects of Impure Helium on Alloy 617	
	Influence of Grain Size on Materials Properties on Alloy	
HTS-01-06	617	
	Methods for Thermal/Fluid Modeling of Plate-Type	
HTS-01-13	Compact Heat Exchangers	
	Methods for Stress/Strain Modeling of Plate-Type	
HTS-01-14	Compact Heat Exchangers	
	Criteria for Structural Adequacy of Plate-Type Compact	
HTS-01-15	Heat Exchangers at Very High Temperatures	
	Methods for Performance Modeling of Plate-Type	
H1S-01-16	Compact Heat Exchangers	
HTS-01-17	Metallic: IHX Performance Verification	
HTS-01-18	Data Supporting Materials Code Case	
H1S-01-19	Data Supporting Design Code Case	
	Influence of Section Thickness on Materials Properties of	
H1S-01-20		
H1S-01-21	Corrosion Allowances for Alloy 61/	
HTS-01-22	Establish Reference Specification for Alloy 800H	
	Supplemental High-Temperature Mechanical Properties	
H1S-01-23		
	Effects of Joining Techniques on the Properties of Alloy	
H1S-01-24	800H	

NGNP-CTF MTECH-TDRM-000_Rev0-final.doc

DDN Number	Mission Need	
HTS-01-25	Effects of Aging on the Properties of Alloy 800H	
	Effects of Exposure in Impure Helium on Alloy 800H	
HTS-01-26	Properties	
	Influence of Grain Size on Materials Properties of Alloy	
HTS-01-27	800H	
	Influence of Section Thickness on Materials Properties of	
HTS-01-28	Ally 800H	
HTS-01-29	Corrosion Allowances for Alloy 800H	
	Brazing and Diffusion Bonding Processes for Alloy 617	
HTS-01-30	and Alloy 800H	
	Readiness Assessment for Hastelloy XR as an IHX	
H1S-01-31	Material	
Intermediate Heat Exchanger -		
	Daview Evicting Technology	
H1S-02-01	Neview Existing Technology	
H15-02-02	Materials Property Database	
HTS-02-03	Coramic: IHV Performance Varification	
HTS 02 05	Manufacturing Tachnology	
HTS-02-05	Codes and Standards	
SHTS Helium Mixing Chamber		
HTS-03-01	Mixing Chamber Performance Test	
High Temperature Ducts and		
Insulation		
	Evaluation of High Temperature Ducts and Insulation	
HTS-04-01	Systems	
3. Hydrogen Production System		
(HPS)		
Sulfuric Acid Decomposition		
(SAD)		
	Confirm Thermodynamic Data for the Sulfuric Acid	
HPS-SAD-01	Decomposition Process	
	Develop a Commercial Sulfuric Acid Decomposition	
HPS-SAD-02	Catalyst	
HPS-SAD-03	Gather Decomposition Reaction Kinetics Data	
	Test Silicon Carbide and other Ceramic Material in	
HPS-SAD-04	Decomposition Service	
	Test Alloy 230 and Alloy 617 in a High Temperature	
HPS-SAD-05	Sulfuric Acid, Sulfur Dioxide, and Oxygen Atmosphere.	
	Develop a Method to Bond Alloy 230 or Alloy 617 or	
HPS-SAD-06	Similar Materials to Silicon Carbide and other Ceramics.	

DDN Number	Mission Need	
	Develop Materials to Seal the Joints between Ceramic	
	Decomposer Elements and the Metallic Tube Sheet or	
HPS-SAD-07	Vessel.	
HPS-SAD-08	Test a Pilot-Scale Decomposer.	
HPS-SAD-09	Provide Data Supporting a Design Code Case	
HPS-SAD-10	Develop Gasket Materials and Design	
HPS-SAD-11	Develop Seal Materials and Design	
HPS-SAD-12	Develop Welding Materials	
HPS-SAD-13	Develop Cladding and Coating Materials	
HPS-SAD-14	Develop Piping Materials and Design Methods	
	Measure the Height Equivalent to a Theoretical Plate	
HPS-SAD-15	(HETP) for the Concentrator (Vacuum Tower)	
	Measure the Height Equivalent to a Theoretical Plate	
HPS-SAD-16	(HETP) for the SO2 Absorber	
	Develop additional alternatives for the decomposition	
HPS-SAD-DT-02	reactor	
	Complete thermal and hydraulic analyses of the	
HPS-SAD-DT-03	alternatives using equilibrium data only	
	Complete a conceptual mechanical design of each of the	
HPS-SAD-DT-04	alternative concepts	
	Complete a thermal, hydraulic, and reaction analysis of	
	each alternative incorporating kinetic and heat transfer	
HPS-SAD-DT-05	data from bench scale testing	
	Complete a thermal, hydraulic, and reaction analysis of	
	each alternative incorporating kinetic and heat transfer	
HPS-SAD-DT-06	data from engineering or pilot scale testing	
	Develop a preliminary piping spec and materials	
HPS-SAD-DT-07	selections for equipment	
	Size conceptual equipment and track economics as	
HPS-SAD-DT-08	technology develops	
Feed Purification (FUS)		
	Identify Critical Impurities and Determine Critical	
HPS-FUS-01	Component Tolerance	
HPS-FUS-02	Develop Feed Water Purification Methods	
HPS-FUS-03	Develop Process Fluid Purification Methods	
	Design a feed water purification system including	
HPS-FUS-DT-09	equipment sizing and economics	
	Design a process fluid purification system including	
HPS-FUS-DT-10	equipment sizing and economics	
HPS-FUS-DT-01	Design a feed water purification system including	
	equipment sizing and economics	

DDN Number	Mission Need	
HPS-FUS-DT-02	Design a process fluid purification system including	
	equipment sizing and economics	
Electrolyzers (ELE)		
HPS-ELE-01	Develop a Cell Membrane	
HPS-ELE-02	Optimize Catalyst Loading in the Electrodes	
HPS-ELE-03	Develop a Cell Configuration and Materials	
HPS-ELE-04	Build and Test a Prototype Cell	
HPS-ELE-05	Build and Test a Pilot-scale Cell	
HPS-ELE-06	Build and Test a Stack of Cells in a Pilot Plant	
	Test Alloy 230 and Alloy 617 in High Temperature	
HPS-ELE-07	Helium and Air/Oxygen and Steam/Hydrogen Mixtures	
HPS-ELE-08	Test a Pilot-Scale PCHX	
HPS-ELE-09	Provide Data Supporting a Design Code Case	
HPS-ELE-10	Develop Gasket Materials and Design	
HPS-ELE-11	Develop Seal Materials and Design	
HPS-ELE-12	Develop Welding Materials	
HPS-ELE-13	Develop Piping Materials and Design Methods	
	Design a cell stack suitable for operation at high	
HPS-ELE-DT-03	temperature in a high pressure, oxygen-rich environment	
	Design an economical stack enclosure that minimizes heat	
HPS-ELE-DT-04	loss, sealing and stack handling and maximizes safety	
	Design a conceptual plant layout and piping arrangement	
HPS-ELE-DT-05	that accommodates expected thermal expansion	
HPS-ELE-DT-06	Design and rate conceptual PCHXs	
	Design an electrolysis system based on the electrolyzer	
HPS-ELE-DT-11	design and track economics	
Product Purification (PPU)		
HPS-PPU-01	Identify Product Impurities	
HPS-PPU-02	Test Product Purification Methods	
HPS-PPU-DT-27	Develop a pre-conceptual design for a product	
	purification system	
Instrument and Controls (PCN)		
HPS-PCN-01	Test Sensors in the Pilot Plant	
	Develop Valves for High-Temperature Acid and/or	
HPS-PCN-02	Helium Service	
HPS-PCN-03	Test Valves in the Pilot Plant	
	Develop and Test High Temperature Helium Control	
HPS-PCN-04	Valves	
	Identify appropriate valve materials and sensing devices	
HPS-PCN-DT-12	for the aggressive environments of the process technology	
Hybrid Sulfur		
HPS-HYS-DT-01	Analyze Data and Improve Process Simulation	

NGNP-CTF MTECH-TDRM-000_Rev0-final.doc

DDN Number	Mission Need	
	Develop P&IDs and operating outline including normal	
HPS-HYS-DT-13	and abnormal transients	
	Perform appropriate hazard and operability reviews at	
HPS-HYS-DT-14	designated stages in process development	
Bunsen Reaction (BUN)		
	Confirm Thermodynamic Data for the Bunsen Reaction	
HPS-BUN-01	Process including Phase Equilibria	
HPS-BUN-02	Gather Kinetic and Mass Transfer Data for the Bunsen	
	Reaction in the proposed reactor configuration	
HPS-BUN-03	Develop Gasket Materials and Design for Bunsen	
	Reaction Environment	
HPS-BUN-04	Develop Seal Materials and Design for Bunsen Reaction	
	Environment	
HPS-BUN-05	Develop Welding Materials for Bunsen Reaction	
	Environment	
HPS-BUN-06	Develop Cladding and Coating Materials for Bunsen	
	Reaction Environment	
HPS-BUN-07	Develop Piping Materials and Design Methods for	
	Bunsen Reaction Environment	
HPS-BUN-DT-15	Design Alternative Bunsen Reactors	
HPS-BUN-DT-16	Complete thermal and hydraulic analyses of the	
	alternatives using equilibrium data only	
HPS-BUN-DT-17	Complete a conceptual mechanical design of each of the	
	alternative concepts	
HPS-BUN-DT-18	Complete a thermal, hydraulic, and reaction analysis of	
	each alternative incorporating kinetic and heat transfer	
	data from bench scale testing	
HPS-BUN-DT-19	Complete a thermal, hydraulic, and reaction analysis of	
	each alternative incorporating kinetic and heat transfer	
	data from engineering or pilot scale testing	
HPS-BUN-DT-20	Develop a preliminary piping spec and materials	
	selections for BUN equipment	
Hydroiodic Acid Decomposition (HID)		
HPS-HID-01	Demonstrate Hydroiodic Acid Reactive Distillation	
	Decomposition in Principle	
HPS-HID-02	Confirm Thermodynamic Data for the Hydroiodic Acid	
	Decomposition Process including Phase Equilibria	
HPS-HID-03	Develop commercial HI Decomposition Catalyst	

DDN Number	Mission Need
HPS-HID-04	Gather Kinetic and Mass Transfer Data for the
	Hydroiodic Acid Decomposition in the proposed reactor
	configuration based on the commercial catalyst
HPS-HID-05	Develop Gasket Materials and Design for Hydroiodic
	Acid Decomposition Environment
HPS-HID -06	Develop Seal Materials and Design for Hydroiodic Acid
	Decomposition Environment
HPS-HID -07	Develop Welding Materials for Hydroiodic Acid
	Decomposition Environment
HPS-HID -08	Develop Cladding and Coating Materials for Hydroiodic
	Acid Decomposition Environment
HPS-HID-09	Develop Piping Materials and Design Methods for
	Hydroiodic Acid Decomposition Environment
HPS-HID-DT-21	Design Alternative HI Decomposition Reactors
HPS-HID-DT-22	Complete thermal and hydraulic analyses of the
	alternatives using equilibrium data only
HPS-HID-DT-23	Complete a conceptual mechanical design of each of the
	alternative concepts
HPS-HID-DT-24	Complete a thermal. hydraulic, and reaction analysis of
	each alternative incorporating kinetic and heat transfer
	data from bench scale testing
HPS-HID-DT-25	Complete a thermal, hydraulic, and reaction analysis of
	each alternative incorporating kinetic and heat transfer
	data from engineering or pilot scale testing
HPS-HID-DT-26	Develop a preliminary piping spec and materials
	selections for HID equipment
Sulfur lodine	
HPS-SI-DT-01	Analyze Data and Improve Process Simulation
HPS-SI-DT-08	Track equipment size and cost as development progresses
HPS-SI-DT-13	Develop P&IDs and operating outline including normal
	and abnormal transients
HPS-SI-DT-14	Perform appropriate hazard and operability reviews at
	designated stages in process development
4. Power Conversion System	
(PCS)	
Steam Generator	
	Secondary side Corrosion Characteristics 800H & 2-
SG-01-01	1/4Cr-1Mo and Weldments
SG-01-02	Helium Environment Effects on 2-1/4 Cr-1Mo
SG-01-03	Helium Environment Effects on 800H
SG-01-04	Acoustic Response of Helical Bundle
SG-01-05	Large Helical Coil Fabrication Methods

NGNP-CTF MTECH-TDRM-000_Rev0-final.doc

DDN Number	Mission Need
SG-01-06	Inlet Flow Distribution
SG-01-07	Insulation Verification Test
SG-01-08	Fretting & Sliding Wear Protection Tests
SG-01-09	Tube Wear Protection Device Testing
SG-01-10	Shroud Seal Test
SG-01-11	Lead-in/Lead-out/Transition/Expansion Loop Mock-ups
SG-01-12	Flow Induced Vibration Testing of Helical Bundle
SG-01-13	Orifice Qualification Test
SG-01-14	Instrumentation Attachment Test
SG-01-15	Bi-Metallic Weld Structural Integrity
SG-01-16	Helical Bundle and Transition Region Heat Transfer Test
SG-01-17	Tubing Inspection Methods and Equipment
SG-01-18	Review and re-assemble existing SG development data
DDN from Composite Study	
COMP-01-01	Characterize Race Track Strap and Tie Rod Materials
COMP-01-02	RCS Materials Characterization
COMP-01-03	Core Outlet Connection or Hot Gas Duct Liner
COMP-01-04	Insulation Materials

APPENDIX B: REFERENCES

- [0-1] NGNP-01-RPT-001 NGNP and Hydrogen Production Pre-conceptual Design Report
- [0-2] NGNP-CTF MTECH-TDRM-000 Executive Summary
- [0-3] NGNP-CTF MTECH-TDRM-001 NGNP Systems and operation description
- [0-4] NGNP-CTF MTECH-TDRM-002 Technology Road Mapping Process
- [0-5] NGNP-CTF MTECH-TDRM-003 PHTS Circulator
- [0-6] NGNP-CTF MTECH-TDRM-004 Intermediate Heat Exchanger A
- [0-7] NGNP-CTF MTECH-TDRM-005 Intermediate Heat Exchanger B
- [0-8] NGNP-CTF MTECH-TDRM-006 HTS Piping
- [0-9] NGNP-CTF MTECH-TDRM-007 SHTS Flow Mixing Chamber
- [0-10] NGNP-CTF MTECH-TDRM-008 Hydrogen Production System
- [0-11] NGNP-CTF MTECH-TDRM-009 Power Conversion System Steam Generator
- [0-12] NGNP-CTF MTECH-TDRM-010 Software Code Verification and Validation
- [0-13] NGNP-CTF MTECH-TDRM-011 Fuel Elements
- [0-14] NGNP-CTF MTECH-TDRM-012 Core Structure Ceramics
- [0-15] NGNP-CTF MTECH-TDRM-013 Reserve Shutdown System
- [0-16] NGNP-CTF MTECH-TDRM-014 Reactivity Control System
- [0-17] NGNP-CTF MTECH-TDRM-015 Core Conditioning System
- [0-18] NGNP-CTF MTECH-TDRM-016 Reactor Cavity Cooling System
- [0-19] NGNP-CTF MTECH-TDRM-017- Integrated Schedule and Cost (And Facility Info)
- [0-20] NGNP-CTF MTECH-TDRM-00A SSC list and current Technology Readiness Levels and 750 °C Comments

NGNP-CTF MTECH-TDRM-00A Revision 0 November 2008

NGNP and Hydrogen Production Conceptual Design Study

NGNP Technology Development Road Mapping Report

Appendix A: SSC List with current Technology Readiness Levels and 750°C Comments

Function	on Printed Name and Signature			Date
Author	Name: Company:	Louisa Venter M-Tech Industrial	Verger	November 19, 2008
Reviewer	Name: Company:	Roger Young Pebbie Bed Modular Reactor	" Tant	November 20, 2008
Reviewer	Name: Company:	Dan Allen Technology Insights	1 Daniel D. allen	November 20, 2008
Approval	Name: Company:	Jan van Ravenswaay M-Tech Industrial	howy	November 20, 2008

APPROVALS

Westinghouse Electric Company LLC Nuclear Power Plants Post Office Box 355 Pittsburgh, PA 15230-0355

©2008 Westinghouse Electric Company LLC All Rights Reserved

LIST OF CONTRIBUTORS

Name and Company	Date
Renée Greyvenstein (Pebble Bed Modular Reactor (Pty) Ltd)	October 30, 2008
Roger Young (Pebble Bed Modular Reactor (Pty) Ltd)	November 11, 2008
Jan van Ravenswaay (M-Tech Industrial)	November 17, 2008
Werner Koekemoer (M-Tech Industrial)	November 17, 2008
Louisa Venter (M-Tech Industrial)	November 17, 2008
Frikkie van der Merwe (M-Tech Industrial)	November 17, 2008
Dan Allen (Technology Insights)	November 17, 2008
Allan Spring (WEC)	November 4, 2008
Scott Penfield (Technology Insights)	November 17,2008
Phil Rittenhouse (Technology Insights)	November 17, 2008

BACKGROUND INTELLECTUAL PROPERTY CONTENT

Section	Title	Description
N/A		

REVISION HISTORY

RECORD OF CHANGES

Revision No.	Revision Made by	Description	Date
А	L Venter	First Draft for review	October 31, 2008
В	L Venter	Comments Updated	November 4, 2008
С	L Venter	Comments Updated	November 6, 2008
0	L Venter	First Release to WEC	November 17, 2008

DOCUMENT TRACEABILITY

Created to Support the Following Document(s)	Document Number	Revision
NGNP and Hydrogen Production Preconceptual Design Report	NGNP-01-RPT-001	0

ACRONYMS & ABBREVIATIONS

Acronym	Definition
AI	Inner Annulus (active cooling piping)
AMS	Activity Measurement System
AO	Outer Annulus (active cooling piping)
AOO	Anticipated Operational Occurrence
AS	Automation System
ASME	American Society of Mechanical Engineers
AVR	Arbeitsgemeinschaft Versuchs-Reaktor
BOP	Balance of Plant
BUMS	Burn-up Measurement System
СВ	Core Barrel
CCS	Core Conditioning System
CEA	Commissariat à l'Énergie Atomique
CFD	Computational Fluid Dynamics
CHE	Compact Heat Exchanger
CIP	Core Inlet Pipe
CO2	Carbon Dioxide
COC	Core Outlet Connection
COP	Core Outlet Pipe
COTS	Commercial Off The Shelf
CRADA	Co-operative Research and Development Agreement
CRD	Control Rod Drive
CSC	Core Structure Ceramics
CTF	Component Test Facility
CTF	Component Test Facility
CUD	Core Unloading Devices
DAU	Data Acquisition Unit
DBA	Design Base Accident
DBE	Design Base Event
DDN	Design Data Need
DFC	Depressurized Forced Cooling
DLOFC	De-pressurized Loss of Forced Cooling
DOE	Department of Energy
DPP	Demonstration Power Plant
DRL	Design Readiness Level
DWS	Demineralized Water System
ELE	Elecrolyser System
EM	Evaluation Model
EMB	Electomagnetic Bearing
EOFY	End of Fiscal Year
EPCC	Equipment Protection Cooling Circuit
EPCT	Equipment Protection Cooling Tower
F&OR	Functional and Operational Requirements

Acronym	Definition
FHS	Fuel Handling System
FHSS	Fuel Handling and Storage System
FIMA	Fissions per Initial Metal Atoms
FMECA	Failure Modes, Effects and Criticality Analysis
FS	Fuel Spheres
FTA	Fault Tree Analysis
FUS	Feed and Utility System
H2	Hydrogen
H2SO4	Sulfuric Acid
HC	Helium Circulator
Не	Helium
HETP	Height Equivalent of the theoretical Plate
HGD	Hot Gas Duct
Н	Hydro-Iodic
HLW	High Level Waste
HPB	Helium Pressure Boundary
HPC	High Pressure Compressor
HPS	Helium Purification System
HPS	Hydrogen Production System
HPT	High Pressure Turbine
HPU	Hydrogen Production Unit
HRS	Heat Removal System
HTF	Helium Test Facility
HTGR	High Temperature Gas-Cooled Reactor
HTR	High Temperature Reactor
HTS	Heat Transport System
HTSE	High Temperature Steam Electrolysis
HTTR	High Temperature Test Reactor
HVAC	Heating Ventilation and Air Conditioning
HX	Heat Exchanger
HyS	Hybrid Sulfur
1&C	Instrumentation and Control
12	lodine
ID	Inner Diameter
IHX	Intermediate Heat Exchanger
ILS	Integrated Laboratory Scale
I-NERI	International Nuclear Energy Research Initiative
INL	Idaho National Laboratory
INL	Idaho National Laboratory
IPT	Intermediate Pressure Turbine
ISR	Inner Side Reflector
K-T	Kepner-Tregoe
KTA	German nuclear technical committee
LEU	Low Enriched Uranium

Acronym	Definition
LOFC	Loss of Forced Cooling
LPT	Low Pressure Turbine
MES	Membrane-electrode assembly
MTR	Material Test Reactor
NAA	Neutron Activation Analysis
NCS	Nuclear Control System
NGNP	Next Generation Nuclear Plant
NHI	Nuclear Hydrogen Initiative
NHS	Nuclear Heat Supply
NHSS	Nuclear Heat Supply System
NNR	National Nuclear Regulator
NRG	Nuclear Research and consultancy Group
NRV	Non-Return Valve
O2	Oxygen
OD	Outer Diameter
PBMR	Pebble Bed Modular Reactor
PCC	Power Conversion System
PCDR	Pre-Conceptual Design Report
PCHE	Printed Circuit Heat Exchanger
PCHX	Process Coupling Heat Exchanger
PCS	Power Conversion System
PFHE	Plate Fin Heat Exchanger
PHTS	Primary Heat Transport System
PIE	Post-irradiation Examination
PLOFC	Pressurized Loss of Forced Cooling
POC	Power Conversion System
PPM	Parts per million
PPU	Product Purification Unit
PPWC	Primary Pressurized Water Cooler
QA	Quality Assurance
RAMI	Reliability, Availability, Maintainability and Inspectability
RC	Reactor Cavity
RCCS	Reactor Cavity Cooling System
RCS	Reactivity Control System
RCSS	Reactivity Control and Shutdown System
RDM	Rod Drive Mechanism
RIM	Reliability and Integrity Management
RIT	Reactor Inlet Temperature
RM	Road Map
ROT	Reactor Outlet Temperature
RPS	Reactor Protection System
RPT	Report
RPV	Reactor Pressure Vessel
RS	Reactor System

Acronym	Definition
RSS	Reserve Shutdown System
RUS	Reactor Unit System
SAD	Acid Decomposition System
SAR	Safety Analysis Report
SAS	Small Absorber Spheres
SG	Steam Generator
SHTS	Secondary Heat Transport System
S-I	Sulfur Iodine
SiC	Silicon Carbide
SNL	Sandia National Laboratory
SO2	Sulfur Dioxide
SOE	Sulfuric Oxide Electrolyzers
SOEC	Sulfuric Oxide Electrolyzers Cells
SR	Side Reflector
SSC	System Structure Component
SSCs	Systems, Structures and Components
SSE	Safe Shutdown Earthquake
SUD	Software Under Development
TBC	To Be Confirmed
TBD	To Be Determined
TDL	Technology Development Loop (As incorporated in Concept 1)
TDRM	Technology Development Road Map
TER	Test Execution Report
THTR	Thorium High Temperature Reactor
TRISO	Triple Coated Isotropic
TRL	Technology Readiness Level
TRM	Technology Road Map
UCO	Uranium Oxycarbide
UO2	Uranium Dioxide
USA.	United States of America
V&V	Verification and Validation
V&Ved	Verified and Validated
VLE	Vapor-Liquid Equilibrium
WBS	Work Breakdown Structure
WEC	Westinghouse Electric Company

A0
Ω.
Ë
÷
Ę
Ē
4
Ŋ

1			_									
	* [1] *			NHSS-01-01* NHSS-01-03* 01-02* NHSS-01-03*	NHSS-01-03*	NHSS-01-03*		NHSS-02-01 NHSS-02-02* COMP-01-01* COMP-01-04*				
(Revenue)	750°C Comments			No additional testing beyond PBMR DPP is required. (PBMR DPP to progress Fuel to TRL 8. No Unique NGNP test required)	Previous experience will now be sufficient for TRL 8	The PBMR DPP Tests will progress fuel to TRL8. No unique NGNP test required.	Comments/testing under 950°C column apply; bowers: testing insulation materials driven brancter setts and economic considentions	vs. high temperatures. For the CSC at 500 MW, the (HER CARPS-20), INHS-02-20, COMP- 01-01) of the four tests will remain relevant – on-oning that the insulation testing is not needed. If the power level were lowered, only the Irradiated Graphite testing at lower temperatures will remain relevant (test NHSS-02-01).	DPP testing & operation will take the RSS to TRL 8 - No additional testing required.	DPP testing & operation will take the RCS to TRL 8 - No additional testing required.	No Change	No Change
	TRL 08-Jul			Q	9	9	9	4	ę	Ŷ	٢	8
	TRL 07-Sep			Q	not incl.	not incl.	9	ব	not incl .	6	9	8
	Road Map			>				(Combined in one TDRM)	`	`		
	Non Critical										>	>
	Critical SSC			>	>	~	~	`	>	>		
	950°C Comments			The PBMR DPP Tests will progress fuel to TRL 7. Additional testing will progress SSC to TRL 8 prior to installation in NGNP.	Previous experience applicable but not sufficient	Previous experience applicable but not sufficient	PBMR DPP experience applicable, but additional testing required for low (NHSS-02-01) and high temperature irradiation (NHSS-02-02)	PBMR DPP experience applicable, but additional irradiation testing of strap and rod materials (COMP-01- 1) may be required if scoping thence estimates at 500MWt are significantly exceeded. Incremental testing of reference and/or alternate insulation materials (COMP-01- 04) will be required.	Res current HLF faculty with progress have PDMK DPP RSS to a TRL of 7. If the PBMR DPP envelopes the NGNP requirements, then the PBMR DPP demonstration will progress the NGNP RSS to TRL 8. If not, the NGNP RSS can be installed in adapted/revised HTF to envelope RONP requirements which will progress NGNP RSS to TRL 7 adorto installation in NGNP	The current HTF facility will progress the PBMR DPP RCS to a TRL of 7. If the PBMR DPP envelopes the NGNP requirements, then the PBMR DPP demonstration will progress the NGNP RCS to TRL 8. If not, the NGNP RCS can be installed in adapted/revised HTF to envelope NGNP requirements which will progress NGNP RCS to TRL 7 prior to installation in NGNP.	Commercially available See ASME Code Case N 499-2	Commercially available
	Structure Component	eat Supply System (NHSS)	tor Unit System	.1.1 Fuel Elements (Spheres)	1.1.1.1 Graphite Matrix	1.1.1.2 Fuel Particles	1.1.2 Core Internal Structure (Graphite)	.1.3 Core Internal Structure (Ceramics)	1.1.4 Reserve Shutdown System (RSS)	L.I.S. Reactivity Control System (RCS)	L.1.6 Reactor Pressure Vessel	1.1.7 Neutron Source System
	Area System	1. Nuclear He	1.1 Reac		J				T	T	T	

Area Syster	em Structure	Component	950°C Comments	Critical SSC	Non Critical	Road Map	TRL 07-Sep	TRL 08-Jul	750°C Comments	DDN #[1] *
	1.1.8 RU I	istrumentation	Commercially available		>		not incl.	∞	No Change	
	1.1.9 Reac	tor Unit Insulation	Part of Composite Study Design needs to be done first – Then DDNs de veloped. Left hand side Road Map		>		not incl.	×	No Change	
1.2 C	Core Condition	ing System (CCS)	HTF and associated testing will progress blower and valves to TRL 7 prior to installation in PBMR DPP. PBMR DPP testing and operation will progress CCS to TRL 8 prior to installation in NGNP.	>		`	9	ę	Comments/testing under 950°C column applies.	
	1.2.1 CCS	Blower	Commercially available	>			not incl .	8	No Change	
	1.2.2 CCS	Heat Exchanger			>		not incl .	ę	No Change	
		1.2.2.1 CCS HX Core	Applicable experience provided by HTTR PPWC		>		not incl.	∞	No Change	
		1.2.2.2 CCS Vessel, Including External Supports	Commercially available		>		not incl.	8	No Change	
		1.2.2.3 CCS HX Vessel Insulation	Previous experience applicable but not sufficient		>		not incl.	9	No Change	HTS-04-01
	1.2.3 CCS	Valves	Previous experience sufficient		>		not incl .	ę	No Change	
	1.2.4 CCS	Piping	Commercially available		>		not incl .	ę	No Change	
	1.2.5 Inter	nal Ducts, Supports and Insulation	Previous experience applicable but not sufficient	>			not incl .	6	No Change	HTS-04-01
1.3 R	teactor Cavity	Cooling System (RCCS)	Codes / Analyses to progress RCCS to TRL 7 with PBMR DPP progressing it to TRL-8.	>		~	6	9	Comments/testing under 950°C column applies.	
1.4 Fu	Juel Handling	and Storage System	Previous experience sufficient		>		6	ę	No Change	
	1.4.1 Core	Loading Subsystem	Previous experience sufficient		>		not incl .	8	No Change	
	1.4.2 Sphe	re Storage Subsystem	Previous experience sufficient		>		not incl .	8	No Change	
	1.4.3 Sphe	re Circulation Subsystem	Previous experience sufficient		>		not incl .	8	No Change	
	1.4.4 Sphe	re Replenishment Subsystem	Previous experience sufficient		`		not incl .	8	No Change	
	1.4.5 Fuel	Handling Control Subsystem	Previous experience sufficient		>		not incl .	8	No Change	

Area S	ystem S	Structure	Component	950°C Comments	Critical SSC	Non Critical	Road Map	TRL 07-Sep	TRL 08-Jul	750°C Comments	DDN #[1] *
	1.	1.4.6 Circu	lating Gas Subsystems	Previous experience sufficient		~		not incl .	8	No Change	
	1.	1.4.7 Spher	e Decommissioning Subsystem	Previous experience sufficient		~		not incl .	8	No Change	
	1.	1.4.8 Auxili	iary Gas Subsystem	Previous experience sufficient		~		not incl .	8	No Change	
	1,	1.4.9 High-	level Waste Handling Subsystem	Previous experience sufficient		^		not incl .	8	No Change	
	1.	1.4.10 Burr	n Up Measurement System	Previous experience sufficient		~		not incl .	6	No Change	
1.	5 Heliu	um Service	System			~		6	8	No Change	
	1.	1.5.1 PHTS	3 Inventory Control System	Previous experience sufficient		~		not incl .	8	No Change	
	1.	1.5.2 SHTS) Inventory Control System	Previous experience sufficient		>		not incl .	8	No Change	
	1.	1.5.3 PHTS	3 Helium Purification System	Previous experience sufficient		~		not incl .	8	No Change	
	1.	1.5.4 SHTS	Helium Purification System	Previous experience sufficient		`		not incl .	8	No Change	
l		1.5.5 Heliu	m Make-Up System	Commercially available		>		not incl .	8	No Change	
1	SSHN 9	S Control &	& Instrumentation System			>		not incl.	8	No Change	
	1	1.6.1 Opers	ational Control System	Previous experience sufficient		>		not incl .	8	No Change	
	÷	1.6.2 React	or Protection System	Previous experience sufficient		>		not incl .	8	No Change	
	1.	1.6.3 Equip	ment Protection System	Previous experience sufficient		~		not incl .	8	No Change	
l	1. S	1.6.4 Post-(System	event Monitoring and Recovery	Previous experience sufficient		>		not incl .	8	No Change	
1	7 Pressi	sure Bound	lary Support Systems			~		not incl.	not incl.	No Change	
	1.	1.7.1 De-fu	el Chute Cooling System	Previous experience sufficient		`		not incl.	not incl.	No Change	
	1.	1.7.2 Vesse	A Over-Pressure System	Previous experience sufficient		<		not incl.	not incl.	No Change	
	1.	1.7.3 Inerti	ial Dust Filter	Previous experience sufficient		>		not incl.	not incl.	No Change	
1	8 NHSS	S Cooling V	Water System	Previous experience sufficient		>			×	No Change	
	1. Sy	1.8.1 Auxili System	iary Component Cooling Water	Previous experience sufficient		~		not incl.	8	No Change	

Ar	ea System	Structure	Component	950°C Comments	Critical SSC	Non Critical	Road Map	TRL 07-Sep	14L URL	750°C Comments	* [1] # NOO
		1.8.2 Equi (incl. Back	pment Protection Cooling Circuit up Heat Sink)	Previous experience sufficient		`		not incl.	8	No Change	
	HN 6.1	SS Electric	al Distribution System	Commercially available		>		not incl.	8	No Change	
	1.10 Re	sactor Build	ling HVAC	Commercially available		>		not incl.	8	No Change	
	1.11 Pr	imary Looi	d Initial Cleanup System	Previous experience sufficient		>		not incl.	8	No Change	
Nu	clear Hea	ıt Supply]	Buildings and Structures								
	1.12 Nu	iclear Heat	Supply Buildings	Commercially available		>		not incl.	8	No Change	
5	Heat Tra	nsport Sy:	stem (HTS)								
	2.1 Prii	mary Heat	Fransport System (PHTS)		^			2	2	No Change	
		2.1.1 PHT	S Circulator	Previous experience applicable but not sufficient. The PHTS circulator(s) is classified as "Critical Component" because the previous applicable commercial experience (THTR) used supmerged circulators in parallel similar to the NGNP preconceptual design but at lower power (roughly hall) and with oil bearings. Part-scale testing as proposed is envisioned to progress the circulator to TRL 7 prior to installation in NGNP.	>		`	6	Ŷ	Although the 750°C application has lower temperatures at the circulator inlet/outlet than the 950°C application, the uncertainty as to the integration of the circulator components still exists.	
			2.1.1.1 Impeller and Shaft	Commercially available. The helium inlet temperature (approximately 340° C) is not a problem for the impeller and the shape of the blades for a helium environment has been optimized before.		>		not incl.	×	No Change	
			2.1.1.2 Electromagnetic Bearings (EMB) and Support	Previous experience sufficient. Siemens has recently built large electrical motors (~ 26MV) with EMBs for the gas pipeline compressors in the Netherlands. The dielectric strength of the helium should not be a problem at the relative low voltage required by the EMBs.		>		not incl.	œ	No Change	
			2.1.1.3 Seals (stationary and rotating)	Commercially available. Rotating seals between the impeller/primary coolant and the motor cavity have been successfully built before and static seals between the vessel and the circulator assembly have been used in the nuclear industry successfully.		>		not incl.	œ	No Change	
			2.1.1.4 Electric Motor, Cooling System and Support	Previous experience sufficient. Siemens has recently built large electrical motors (~ 26MW) with EMBs for the gas pipeline compressors in the Netherlands. The dielectric strength of the helium should not be a problem at the relative low voltage required by the EMBs.		>		not incl.	8	No Change	
			2.1.1.5 Instrumentation & Control (Motor and EMB)	Commercially available. Electric motors are routinely instrumented and controlled. The more sophisticated control system required by the EMBs is industrially available.		>		not incl.	9	No Change	
			2.1.1.6 PHTS Circulator Check Valve	Check valve is recommended in PHTS TDRM. Pressure balanced check valves at these temperatures are commercially available.	>		Included in Circulator TDRM	6	9	No Change	

A
õ
ş
þ
Ŧ
ö
۳
≥.
Ë
~
ž
ŝ

Report	
Mapping	
Road	
Development	
Technology	
NGNP	

			Cutton	Mare		TUT	Tan	1600 LIGAL LIGAL	лекирлият пока марлир перот	
tem Structure	Component	950°C Comments	SSC	Non Critical	Road Map	TRL 07-Sep	TKL 08-Jul	750°C Comments	DDN #[1] *	
2.1.2 Intermedia Metallic (950°C)	te Heat Exchanger (IHX A)	No previous operating experience for compact designs at 950C. Note that the HTTR in Japan has operating experience for tube design.	>		`	2	2	IHX A (Metallic) will not be required at 750° C		
	1 IHX Core	No previous operating experience at 950C	`			4	6		HTS.01.01* HTS.01.02* HTS.01.02* HTS.01.05* HTS.01.05* HTS.01.05* HTS.01.05* HTS.01.15* HTS.01.15* HTS.01.16* HTS.01.16* HTS.01.16* HTS.01.16* HTS.01.21* HTS.01.22* HTS.01.22* HTS.01.23* HTS.01.23* HTS.01.25*	
2.1.2 and I.	.2 IHX Internal Ducts, Supports Insulation	Previous experience applicable but not sufficient	>			2	e		HTS-04-01	_
2.1.2	3 IHX Vessel Subsystem	Previous experience applicable but not sufficient	>			9	£			_
J	2.1.2.3.1 IHX Vessel, Including, External Supports	Commercially available		`		not incl.	8			_
	2.1.2.3.2 IHX Vessel Insulation	Previous experience applicable but not sufficient	~			not incl.	3		HTS-04-01	
2.1.3 Intermedia Metallic (760°C)	tte Heat Exchanger (IHX B)	Previous experience applicable but not sufficient	>		``	not incl.	e	IHX B will be required for the 750°C application	HTS-01-22 HTS-01-24 HTS-01-24 HTS-01-25 HTS-01-25 HTS-01-28 HTS-01-28 HTS-01-28 HTS-01-30	
2.1.3	1.1 IHX Core	No previous experience with compact design 760°C	~			not incl.	4			
2.1.3 and I	1.2 IHX Internal Ducts, Supports insulation	Previous experience applicable but not sufficient	~			not incl.	4		HTS-04-01	_
2.1.3	.3 IHX Vessel Subsystem	Materials Commercially available, See ASME Section III NB	>			not incl.	L			-
J	2.1.3.3.1 IHX Vessel, Including, External Supports	Commercially available, See ASME Code Case N-499-2		`		not incl.	∞			-

Area System Sti	ructure	Component	950°C Comments	Critical	Non Critical	Road Map	TRL 07-Sen	TRL 08-11d	750°C Comments	DDN #[1] *
		2.1.3.3.2 IHX Vessel Insulation	Previous experience applicable but not sufficient		>		not incl.	70		HTS-04-01
2.1 Cei	.4 Intermediat ramic (950°C)	te Heat Exchanger (IHX A)	See ASME Code Case N-499-2	>		Combined with Metallic IHX A TDRM	5	2	IHX A (Ceramic) will not be required for the 750°C application	
	2.1.4.	1 IHX Core	No previous relevant experience at 950°C	>			ñ	£		HTS-02-01* HTS-02-02* HTS-02-03* HTS-02-04* HTS-02-06*
	2.1.4. and In	2 IHX Internal Ducts, Supports isulation	No previous experience with metal to ceramic transitions	>			0	6		HTS-04-01* HTS-02-05*
	2.1.4.	3 IHX Vessel Subsystem	Previous experience applicable but not sufficient	>			ę	3		
]	2.1.4.3.1 IHX Vessel, Including External Supports	Commercially available		>		not incl.	8		
		2.1.4.3.1 IHX Vessel Insulation	Previous experience applicable but not sufficient	>			not incl.	3		HTS-04-01*
2.1 IH: legs	.5 Piping (prin X and between s)	nary circuit from Reactor to IHX vessels -both hot and cold	Previous experience applicable but not sufficient	>		>	K)	4	No Piping required between IHX vessels	HTS-04-01
	2.1.5. incluc insula	 Pressure boundary piping, fing external supports and tion 	Commercially available Still need to be designed as part of CD		>		Ŋ	7	PBMR DPP testing and operation will take pressure boundary to TRL 8	
	2.1.5. and In	2 Piping Internal Ducts, Supports Isulation (Hot Gas Duct)	Previous experience applicable but not sufficient. Alternate insulation concept may mitigate loss of heat removal transient and offer improved economics	>			Q	4	DPP testing and operations take the Hot Gas Ducts internals to TRL 8, however, potential incentives for alternate insulation concept remain.	HTS-04-01
2.2 Second	lary Heat Tra	nsport System (SHTS)		>			7	4		
5.2	1 SHTS Circu	lator	The SHTS circulator(s) is classified as "Critical Component" because the previous applicable commercial experience (THTR) used submerged circulators in parallel similar to the NGNP preconceptual design but at lower power (roughly hall) and with oil bearings.	>		 (Included in PHTS Circulator TDRM) 	Ŷ	Q	Although the 750°C application has lower temperatures at the circulator inter/outlet than the 950°C application, the uncertainty as to the integration of the circulator components still exists.	
	2.2.1.	.1 Impeller and Shaft	Commercially available. The helium inlet temperature (approximately 275 °C) is not a problem for the impeller and the shape of the blades for a helium environment has been optimized before.		>		not incl.	×		
	2.2.1. (EMF	 Electromagnetic Bearings and Support 	Previous experience sufficient. Siemens has recently built large electrical motors (~ 26MW) with EMBs for the gas pipeline compressors in the Netherlands. The dielectric strength of the helium should not be a problem at the relative low voltage required by the EMBs.		>		not incl.	×		

Area Syste	m Structure	Component	950°C Comments	Critical SSC	Non Critical	Road Map	TRL 07-Sep	TRL 08-Jul	750°C Comments	DDN #[1] *	-
		2.2.1.3 Seals (stationary and rotating)	Commercially available. Rotating seals between the impeller/primary coolant and the motor cavity have been successfully built before and static seals between the vessel and the circulator assembly have been used in the nuclear industry successfully.		>		not incl.	ø			
		2.2.1.4 Electric Motor, Cooling System and Support	Previous experience sufficient. Siemens has recently built large electrical motors (~ 26MW) with EMBs for the gas pipeline compressors in the Netherlands. The dielectric strength of the helium should not be a problem at the relative low voltage required by the EMBs.		`		not incl.	8			
		2.2.1.5 Instrumentation & Control (Motor and EMB)	Commercially available. Electric motors are routinely instrumented and controlled. The more sophisticated control system required by the EMBs is industrially available.		>		not incl.	9			
	2.2.2 Pipin plus PCHX	g (secondary circuit, hot and cold legs, to SG)	Previous experience applicable but not sufficient	~			9	4	Lower Temperature will benefit the Piping Design		
		2.2.2.1 Piping Internal Ducts, Supports and Insulation (Hot Gas Duct)	Commercially available		~		9	7			
		2.2.2.2 Piping Internal Ducts, Supports and Insulation (Hot Gas Duct)	Previous experience applicable but not sufficient. Passive insulation identified as the reference for the NGNP not utilized in PBMR DPP	>			6	4		HTS-04-01	
	2.2.3 SHTS	i Flow Mixing Chamber	No previous experience The SHT5 flow mixing chamber is classified as "Critical Component" because of the high velocities and temperatures 000 °C and 660 °C) of the flows to be mixed and lack of a credible design.	>			2	6	Flow Mixing Chamber is not required for 750° C	HTS-03-01 HTS-04- 01	
		2.2.3.1 Mixing Chamber	Previous experience sufficient. Gasses at different temperatures are routinely mixed in industry.		>		not incl.	8			
		2.2.3.2 Vibrations Damping Devices	Previous experience applicable but not sufficient. How and acoustic induced vibrations can damage structures within the flow and along the inner walls. The vibrations are effected by the mixing chamber geometry and the velocities/densities of the mixing gasses.	>			not incl.	9			
		2.2.3.3 Chamber Inner Walls Insulation	Previous experience applicable but not sufficient. Because of the high temperatures and potential for flow and acoustic induced vibrations the design of the inner walls insulation requires same development.	>			not incl.	6		HTS-04-01	
3. Hydrog	en Product	ion System (HPS), Process Tech	hnology #1 - Sulfuric Acid Decomposition								
3.1 S	ulfuric Acid L	Decomposition					2	3		HPS-SAD-DT-08	
	3.1.1 Proce	ss flow scheme	Further development of the process flow scheme and confirmation of basic data needed; kinette, heat transfer, mass and momentum transfer data and analyses to be incorporated; flow scheme depends upon cycle selected (SI or HyS).						Basic flow scheme stays the same: flows in recycle loop increase dramatically	HPS-HYS-DT-01	
	3.1.2 Integr	ation and operation	Previous experience applicable but not sufficient						Integration and process transients may be less challenging due to lower peak operating temperature	HPS-HYS-DT-13	

Area	System	n Structure	Component	950°C Comments	Critical SSC	Non Critical	Road Map	TRL 07-Sep	TRL 08-Jul	750°C Comments	DDN #[1] *	
		3.1.3 Hazardı	s and operability	Previous experience applicable but not sufficient						Hazards may be somewhat mitigated by lower peak temperature	HPS-HYS-DT-14	
		id Decompose 3 + SO3 + H3	er (decomposition reactor) [H3SO4 O]	Basic data; catalyst; materials of construction; seals; hydraulic, kinetic, and thermal design and analysis needed	>				ĸ	Reactor gets larger as temperature decreases; materials selection is less challenging	HPS.SAD-01 HPS.SAD-04 HPS.SAD-05 HPS.SAD-06 HPS.SAD-07 HPS.SAD-09 HPS.SAD-09 HPS.SAD-09 HPS.SAD-07-04 HPS.SAD-07-05 HPS.SAD-07-05 HPS.SAD-07-06 HPS.SAD-07-06	
		3.3.1 Comme	ercial catalyst	Effective; 20,000hr life, minimum, Resistant to expected poisons	`				3	Lower temperature will have an effect on catalyst. Higher temperature favours kinetics and impacts life negatively	HPS-SAD-02	
		3.3.3 Kinetic	c data	Based on commercial catalyst						(This is not a SSC, but line item kept for tracking DDN applicability) Lower temperature slows reaction	HPS-SAD-03	
		3.3.3 Decom	poser tube	Design and analysis based on kinetic data	>				4	Lower temperature may allow a wider range of materials choices. It will also be a very significant factor in bayonet tube thermal design	HPS.SAD-DT-03 HPS-SAD-DT-05 HPS-SAD-DT-06	
		3.3.4 Seals		Transition between SiC tubes and metallic vessel; reliable seal or design that is tolerant of feed/effluent leakage, but not He/ acid leakage	>				4	Lower temperature may allow a wider range of materials choices.	HPS-SAD-10 HPS-SAD-10	
		3.3.5 Vessel		Materials of construction; arrangement of tubes;	>				4	Lower temperature may allow a wider range of materials choices.	HPS-SAD-12 HPS-SAD-13 HPS-SAD-DT-04	
	3.3 Rea	actor product	handling equipment	Basic data for phase separation, materials of construction, seals needed	>				ى	Only liquid handling equipment gets larger as temperature decreases; materials issues remain the same	HPS.SAD-01 HPS.SAD-12 HPS.SAD-13 HPS.SAD-14 HPS.SAD-14 HPS.SAD-DT-07	
	3.4 Acid	id concentratio	n vacuum column	HETP confirmation needed. Previous experience applicable but not sufficient; also included in feed acid handling and concentrating equipment	`				6	Only liquid handling equipment gets larger as temperature decreases, materials issues remain the same	HPS-SAD-15	
	3.5 Feed	ıd acid handlin	g and concentrating equipment	Materials of construction and seals confirmation needed	>				Q	Only liquid handling equipment in the recycle loop gets larger as temperature decreases; materials issues remain the same	HPS.SAD-01 HPS.SAD-10 HPS.SAD-11 HPS.SAD-12 HPS.SAD-13 HPS.SAD-13 HPS.SAD-14 HPS.SAD-07	
	3.6 Stea	am ejectors an	id vacuum pump			v 2			6			
	3.7 Heli	lium Control V	alves		`				4			

2008/12/10

Area System	Structure	Component	950°C Comments	Critical SSC	Non Critical	Road Map	TRL 07-Sep	TRL 08-Jul	750°C Comments	DDN #[1] *
3.8 SO2/	Absorber		HETP confirmation needed	>				9		HPS-SAD-16
)-non" ^[2]	Critical "SS	Cs are those which although they req	quire design data, this data-gathering is normally carried	out in the	design of p	lants and is not	considered technolog	gy development or r	esearch and development.	
Hydrogen i	Productio	m System (HPS), Process Tech	hnology #2 – Hybrid Sulfur Electrolysis							
4.1 Hybr	rid Sulfur Ele	ectrolysis					4	2		
4.2 Feed	Purification		Feed purification is critical to all water splitting technologies. Preliminary work on critical component tolerance has noy set been done. Commercially available purification may not be adequate; process fluid purification may be required. TRL for this cannot be assigned until the requirements are known. The DDN changes somewhat depending upon the main process technology.	>				ũ	No change	HPS-FUS-01 HPS-FUS-02 HPS-FUS-09 HPS-FUS-DT-09 HPS-FUS-DT-10
4.3 S021	Electrolyzer		Previous experience applicable but not sufficient. Scale- up, manufacturability, and cost are key issues	>				2	No change	HPS-ELE-01 HPS-ELE-02 HPS-ELE-03 HPS-ELE-05 HPS-ELE-05 HPS-ELE-05 HPS-ELE-DT-11
4.4 Produ	luct Purificat	ion	Commercially available		~			8	No change	HPS-PPU-01 HPS-PPU-02
4.5 Instru	-umentation a	and Controls	Chtef concern in this sub-system is valves and sensors in aggressive environments. Previous experience applicable unto sufficient. The DDN changes somewhat depending upon the main process technology.	>				9	No change	HPS-PCN-01 HPS-PCN-02 HPS-PCN-03 HPS-PCN-DT-12
Hydrogen J	Productio	in System (HPS), Process Tech	hnology #3 - Bunsen Reaction and HI Decom	position						
5.1 Buns	sen Reaction :	and HI Decomposition	A robust and stable simulation of the process using either measured or reasonably estimated physical property, phase and reaction equilibria data is required.	`		~	Not Incl.	2	No change	HPS-SI-DT-13
	5.1.1 Process	s flow scheme	Further development of the process flow scheme and confirmation of basic data needed for both sections; kinetic, heat transfer, mass and momentum transfer data and analyses to be incorporated.						(This is not a SSC, but line item kept for tracking DDN applicability) No change	10-LC- IS-SAH
~,	5.1.2 Integra	tion and operation	Previous experience applicable but not sufficient. Very I arge flows of hazardous material required for a reasonably sized hydrogen plant is beyond the experience of the chemical industry.						No change	HPS-SI -DT-13
~.	5.1.3 Hazard	ls and operability	Previous experience applicable but not sufficient. Possibility of very large iodine spills must be considered. Reactive distillation takes place at relatively elevated temperatures						No change	HPS-SI -DT-14
5.2 Buns]	sen Reactor [[12 + S02 + 2H20 → H2S05 + 2H	No previous commercial experience. ILS experience is applicable, but not sufficient. Basic thermodynamic data; materials of construction; seals; hydraulic, kinetic, and thermal design and analysis needed	>		>		e	No change	I0-NN8-SdH

Area	System S	Structure	Component	950°C Comments	Critical	Non	Road Map	TRL or Son	TRL 00 Loi	750°C	DDN #[1] *	_
1	5.	5.2.1 Kinetic	and mass transfer data	Bubbling gas through two liquid phases as is done in the ILS is not an optimal solution for good mass transfer. Alternative designs and data consistent with those designs are required				b i 2	0 es	(This is not a SSC, but line item kept for tracking DDN applicability) No change	HPS-BUN-02	· · · · · · · · · · · · · · · · · · ·
	У	5.2.2 Reactor	surface and gas/liquid contact device	Design and analysis based on kinetic and mass transfer data						No change	HPS-BUN-DT-15 HPS-BUN-DT-16 HPS-BUN-DT-18 HPS-BUN-DT-19	
	ý.	5.2.3 Seals		Economic seals and gaskets for use in the highly corrosive, acidic and halogen-rich environment	>				3	No change	HPS-BUN-03 HPS-BUN-04	
ľ	5.	5.2.5 Vessel		Materials of construction: arrangement of internals; attachment of corrosion resistant internals to a TFE lined vessel are some possible issues.	>				3	No change	HPS-BUN-05 HPS-BUN-06	
	5.3 Reactiv	iive Still [2H]	I → 12 + H2]	No previous experience. Reactive distillation must be demonstrated in principle. Thermodynamic data must be confirmed and kinetic and mass transfer data gathered	^		>		2	No change	HPS-HID-01 HPS-HID-02 HPS-BUN-DT-17	
•	5.	5.3.1 Commer	rcial catalyst	A commercial catalyst with adequate life (20,000 hours) must be developed.	^				2		HPS-HID-03	
	5.	5.3.2 Kinetic	and mass transfer data	Kinetic and mass transfer characteristics of the commercial catalyst must be determined						(This is not a SSC, but line item kept for tracking DDN applicability) No change	HPS-HID-04	
	5.	5.3.3 Reactor	surface and gas/liquid contact device	Reaction surface and the form of the catalyst and mass transfer devices must be determined based on the kinetic and mass transfer characteristics of the commercial catalyst	>				2	No change	HPS-HID-DT-21 HPS-HID-DT-22 HPS-HID-DT-24 HPS-HID-DT-25	
	5.	5.3.4 Seals		See 2.3 above	>				2	No change	HPS-HID-05 HPS-HID-06	
ļ	5.	5.3.5 Vessel		See 2.5 above	>				2	No change	HPS-HID-07 HPS-HID-08 HPS-HID-07-23	
	1.5 Reacto HI Decom	tor product h 1p)	andling equipment (both Bunsen and	seals clast for phase separation, materials of construction, seals needed. Pumping and handling very large streams of iodine and hydroiodic acid is a problem that has not been dealt with commercially. The large flows required are beyond the experience of chemical plants. The possibility of very large spills has to be considered. Economic solutions need to be found.	>				6	No change	HPS. BUN-07 HPS. BUN-DT-20 HPS. HID-09 HPS. HID-DT-26	
-,	5.6 Feed P	Purification		Previous experience applicable but not sufficient. See HyS electrolysis #1	>				C	No change	HPS-FUS-01 HPS-FUS-02 HPS-FUS-03 HPS-FUS-07-09 HPS-FUS-DT-10	
	5.7 Produc	uct Purificati	Ю	Previous experience applicable but not sufficient. Trace iodine removal is essential	>				U	No change	HPS-PPU-D1 HPS-PPU-D2 HPS-PPU-D7-27	
	5.8 Heliun	m Control V	alves		>				4			

Area	System	n Structure	Component	950°C Comments	Critical SSC	Non Critical	Road Map	TRL 07-Sep	TRL 08-Jul	750°C Comments	DDN #[1] *	1 I
	5.9 Inst	strumentation	and Controls	Previous experience applicable but not sufficient. See comments on HyS electrolysis #5	>				6	No change	HPS-ELE-10 HPS-ELE-11 HPS-PCN-DT-12	
6. H	lydrogei	en Producti	ion System (HPS), Process Tec	chnology #4 – High Temperature Steam Elect	trolysis							
	6.1 Hig	gh Temperatu	re Steam Electrolysis		>		>		ε	Lower temperature will reduce thermal efficiency. As an off-setting factor; it will reduce the cost of vessels and piping substantially.		
	6.2 Soli	lid Oxide Elect	trolyzer		>				e	Lower temperature will reduce thermal efficiency. As an off-setting factor; it will reduce the cost of vessels and piping substantially.		1
		6.2.1 Cells		Cells must be shown to be capable of being manufactured and successfully operated at a size approaching 0.25 m^2 . Cause of rapid cell degradation must be identified and a solution found.	>				3		HPS-ELE-01 HPS-ELE-02 HPS-ELE-03 HPS-ELE-04 HPS-ELE-05	
		6.2.2 Stacks		Stacks of approximately 2500 cells must be shown to operate successfully and with adequate flow distribution. Seals must be high-integrity and extremely reliable. Failure will cause a hydrogen fire or explosion	>				£		HPS-ELE-06 HPS-ELE-DT-03	
		6.2.3 Intern	als and Enclosure	Stacks are currently scaled using tension bars. In the enclosure at 800°C the bars will eventually creep causing loss of pressure on the cells and possible scal leakage. Electrical cables must pass through the pressure boundary from ambient conditions to the oxygen-rich high- temperature environment. Electrical connections must be made in this atmosphere. Either these issues must be solved or a successful enclosure design must be to avoid these and the danger of hydrogen fires.	`				S	Lower temperatures make fabrication, thermal stress, creep and sealing requirements slightly less difficult less difficult	HPS-ELE-DT-04 HPS-ELE-11 HPS-ELE-DT-04 HPS-ELE-DT-04	
	6.3 Pipi	ping to enclosu	ires from nuclear reactor.	Previous experience applicable but not sufficient. Pping very high temperature gas to several dozen cell modules will be an extremely difficult problem. Thermal expansion of the pipe is seprected to be from 11 ski. 0.2 %. Pipe runs will be on the order of 100+ meters. The growth that must be accommodated is therefore about 2m. Absorbing this amount of expansion in very high temperature piping has not been done commercially.	>				ū		HPS-ELE-10 HPS-ELE-11 HPS-ELE-12 HPS-ELE-13 HPS-ELE-DT-05	
	6.4 He-	÷to-Process Hı	eat Exchanger(s)	No previous experience: issues with high-temperature service, relatively large pressure differential between helium and process side and leakage of helium to process side	>				S	Lower temperatures allow use of a significantly less expensive material with better mechanical properties; should reduce development time significantly	HPS-ELE-07 HPS-ELE-08 HPS-ELE-08 HPS-ELE-DT-06	
	6.5 Elev	ectrolysis Heat	t Recuperation – H2									
		6.5.1 Superl	heater	No previous experience; high temperature service	>				S	Lower temperatures allow use of a significantly less expensive material with better mechanical properties; should reduce development time significantly	HPS-ELE-09 80-5LE-09 70-5LE-09	
		6.5.2 BFW	preheater and boiler	Commercially available		>			8			
	6.6 Ele	ectrolysis Hea	it Recuperation - O2									

Are	System	1 Structure	Component	950°C Comments	Critical SSC	Non Critical	Road Map	TRL 07-Sep	TRL 08-Jul	750°C Comments	DDN #[1] *	
		6.5.1 Supert	heater	No previous experience; high temperature service	>				5	Lower temperatures allow use of a significantly less expensive material with better mechanical properties; should reduce development time significantly	HPS-ELE-07 HPS-ELE-09 HPS-ELE-09	
		6.5.2 BFW _I	preheater and boiler	Commercially available		>			×			
	6.7 Swe	eep Gas Turbi	ine	Commercially available	>				7			
	6.8 H2 I	Recirculator		Commercially available		>			×			
	6.9 Feed	d Purification	-	Previous experience applicable but not sufficient. See HyS electrolysis #1	>				C		HPS.FUS.01 HPS.FUS.02 HPS.FUS.03 HPS.FUS.DT.01 HPS.FUS.DT.02 HPS.FUS.DT.02	-
	6.10 Pro	oduct Purific	ation	Commercially available		>			8			
	6.11 He	elium Control	l Valves		>				4			
	6.12 Ins	strumentatior	n and Controls	Previous experience applicable but not sufficient. See comments on HyS electrolysis #5	>				9			
7. P	ower Co Main St	onversion team System	System (PCS) n									
	7.1 Tur	rbine Genera	ator System					not incl.	∞			
		7.1.1 High-	-Pressure Turbine	Commercially available		>		not incl.	8			
		7.1.2 Intern	nediate- Pressure Turbine	Commercially available		>		not incl.	8			-
		7.1.3 Low-	-Pressure Turbines	Commercially available		>		not incl.	8			
		7.1.4 Low-	-Pressure Turbines	Commercially available		>		not incl.	8			
		7.1.5 Gene. CO2)	rator and Auxiliaries (incl. H2 and	Commercially available		`		not incl.	∞			
		7.1.6 Lube	s Oil System	Commercially available		>		not incl.	8			
		7.1.7 Vacui	um System	Commercially available		>		not incl.	8			
		7.1.8 Air-c	:ooled Condenser			>						
	7.2 Ma	tin Steam Sy:	stem		>			9	9			
Í												

Area Syster	am Structure	Component	950°C Comments	Critical SSC	Non Critical	Road Map	TRL 07-Sep	TRL 08-Jul	750°C Comments	DDN #[1] *
	7.2.1 Steam C	Generator	Previous experience is applicable: the main concern is the helium inter temperature is a design challenge. First-of-a-kind configuration depending on thermal rating, design parameters and specific design selections	```		`	Not Incl.	œ	The 750°C application should simplify the Steam Generator Dasign as the Steam Generator helium inlet temperature will be lowered. TRL is rated as 6 and a down select study on the bundle configuration is recommended regurdless of helium inlet temperature. The development needs are somewhat configuration and design condition dependent.	PCS-01-01 PCS-01-02 PCS-01-02 PCS-01-02 PCS-01-03 PCS-01-04 PCS-01-06 PCS-01-06 PCS-01-06 PCS-01-09 PCS-01-10 PCS-01-10 PCS-01-11 PCS-01-11 PCS-01-15 PCS-01-15 PCS-01-16 PCS-01-16 PCS-01-16 PCS-01-16 PCS-01-16 PCS-01-16 PCS-01-17 PCS-01-10 PCS-01-10 PCS-01-02 PCS-01-02 PCS-01-02 PCS-01-02 PCS-01-02 PCS-01-02 PCS-01-02 PCS-01-07 PCS-01-07 PCS-01-07 PCS-01-07 PCS-01-07 PCS-01-07 PCS-01-07 PCS-01-07 PCS-01-07 PCS-01-07 PCS-01-07 PCS-01-07 PCS-01-07 PCS-01-07 PCS-01-07 PCS-01-07 PCS-01-07 PCS-01-07 PCS-01-07 PCS-01-10 PCS-01-11 PCS-01
		7.2.1.1 Steam Generator Vessel	Commercially available technology, but first- of- a-kind configuration and system integration for the NGNP application. Transportation versus field fabrication is an issue		>		Not Incl.	٢	Reduce helium-side temperature will reduce design challenges.	
	(* 13	7.2.1.2 SG Superheater tube bundle and supports	Previous experience is applicable: the main concern is the helum inter temperature is a design challenge. First-of-a- kind configuration depending on thermal rating and design parameters.	>			not incl.	9		
	(* 03	7.2.1.3 SG Evaporator tube bundle and supports	Previous experience is applicable. First-of-a-kind configuration depending on thermal rating and design parameters.	>				9		
		7.2.1.4 SG Internal Ducts, Supports and Insulation	Previous experience is applicable, but not sufficient.	>					Reduced helium-side temperature will reduce design challenges.	HTS-04-01??
	<u>, с. д</u>	7.2.1.5 SG internal flow baffles and bypass seals	Minimal experience: the configuration is dependent on thermal rating. Performance to be determined.	>						
	· 4 4	7.2.1.6 SG vessel penetrations for feedwater tubesheet and superheater ubesheet, and instrumentation	Previous experience is applicable; configuration is dependent on system design.		>			7		
	(*	7.2.1.7 SG Vessel External Supports	Commercially available, but custom design for the application.		`		not incl.	8		
		7.2.1.8 SG Vessel External Insulation	Previous experience is applicable. Assume vessel operating temperature $<799^{\circ}F(~371^{\circ}C)$	>	`		not incl.	8		HTS-04-01??
	7.2.2 Startup	y/Shutdwn Steam System	Commercially available		>		not incl.	8		
	7.2.3 Extract	tion and Auxiliary Steam System	Commercially available		>		not incl.	∞		
	7.2.4 Steam I	Bypass/Dump System	Commercially available		>		not incl.	8		
	7.2.5 Seal Wi	ater System	Commercially available		>		not incl.	8		
	7.2.6 Gland S	Steam System	Commercially available		`		not incl.	8		
	7.2.7 Steam V	Vents and Drains	Commercially available		`		not incl.	8		
	7.2.8 Steam I	Pressure Relief System	Commercially available		>		not incl.	∞		

Area	System	a Structure Component	950°C Comments	Critical SSC	Non Critical	Road Map	TRL 07-Sen	TRL 08-Jul	750°C Comments	*[1] *
	7.3 Fee	edwater and Condensate System		>			not incl.	8		
		7.3.1 Heater Drains System	Commercially available		>		not incl.	∞		
		7.3.2 Feedwater Heater System	Commercially available		>		not incl.	∞		
		7.3.3 High-Pressure Feedwater Pump	Commercially available		>		not incl.	8		
		7.3.4 Condensate Pumps	Commercially available		>		not incl.	8		
	7.4 PC:	S Control and Instrumentation System	Commercially available		>		not incl.	8		
	7.5 PC:	S Electrical Distribution System	Commercially available		>		not incl.	8		
	7.6 PC	S Water Supply and Treatment System	Commercially available		>		not incl.	8		
		7.6.1 Condensate Polishing System	Commercially available		`		not incl.	8		
		7.6.2 Turbine Plant Sampling System	Commercially available		`		not incl.	8		
		7.6.3 Chemical Feed System	Commercially available		`		not incl.	8		
	7.7 PC:	S Component Cling Water System	Commercially available		`		not incl.	8		
	7.8 Tur	rbine Building HVAC	Commercially available		>		not incl.	8		
8. P(wer Co.	onversion Buildings and Structures								
	7.9 Ste	am Generator Building	Commercially available		`		not incl.	8		
	7.10 PC	CS (Turbine Building) Building	Commercially available		>		not incl.	8		
	7.11 Aı	.ux Steam Boiler Room	Commercially available		`		not incl.	8		
	7.12 Co	ondenser Area	Commercially available		>		not incl.	8		

* DDNs no longer applicable for 750°C application
(1) Identifying numbers for the DDNs from the WEC PCDR have been changed to reflect the application to Sulfuric Acid Decomposition technology. The leter designation "SAD" has been added after the system designator "HPS"
(1) Identifying numbers for the DDNs from the WEC PCDR have been changed to reflect the application to Sulfuric Acid Decomposition technology.

November 2008

NGNP and Hydrogen Production Conceptual Design Study

NGNP Technology Development Road Mapping Report

Section 1: NGNP Systems and Operational Description

Function **Printed Name and Signature** Date Author Herman van Antwerpen Name: November 18, 2008 wandatwegen M-Tech Industrial (Pty.) Ltd. Company: Reviewer Renee Grevvenstein Name: November 19, 2008 Pebble Bed Modular Reactor (Pty) Ltd. Company: Reviewer Name: Roger Young November 19, 2008 Company: Pebble Bed Modular Reactor (Pt) Ltd. Approval Jan van Ravenswaay Name: November 19, 2008 Company: M-Tech Industrial (Pty.) Ltd.

APPROVALS

Westinghouse Electric Company LLC Nuclear Power Plants Post Office Box 355 Pittsburgh, PA 15230-0355

©2008 Westinghouse Electric Company LLC All Rights Reserved

LIST OF CONTRIBUTORS

Name and Company	Date
Herman van Antwerpen, M-Tech Industrial (Pty) Ltd.	October 24, 2008
Renée Greyvenstein, Pebble Bed Modular Reactor (Pty) Ltd	October 24, 2008
Roger Young, Pebble Bed Modular Reactor (Pty) Ltd	October 24, 2008

BACKGROUND INTELLECTUAL PROPERTY CONTENT

Section	Title	Description
N/A		

REVISION HISTORY

RECORD OF CHANGES

Revision No.	Revision Made by	Description	Date
А	Herman van Antwerpen	First Release for review	October 24, 2008
В	Herman van Antwerpen	Updated with Reviewer Comments	October 24, 2008
0	Herman van Antwerpen	Approved document	October 26, 2008
0A	Herman van Antwerpen	Editorial / Content changes	October 30, 2008
1	Herman van Antwerpen	Document for release to WEC	October 31, 2008

DOCUMENT TRACEABILITY

Created to Support the Following Document(s)	Document Number	Revision
NGNP and Hydrogen Production Preconceptual Design Report	NGNP-01-RPT-001	0

TABLE OF CONTENTS

Sec	ction	Title	Page
1	NGN	P SYSTEMS AND OPERATIONAL DESCRIPTION	9
	1.1	STEADY STATE CONDITIONS (HYDROGEN PRODUCTION AT 950°C)	9
	1.2	STEADY STATE CONDITIONS (STEAM PRODUCTION AT 750°C)	11
	1.3	HIGH-LEVEL OPERATING ENVELOPE (HYDROGEN PRODUCTION AT 950°C)	12
RE	FERF	ENCES	15

LIST OF TABLES

N.A.

LIST OF FIGURES

Figure 1-1:	NGNP Demonstration Plant Process Flow Diagram – Hydrogen Production (950°C)	10
Figure 1-2:	Nominal Process Conditions for the NGNP Demonstration Plant (Hydrogen Production,	
	950°C)	11
Figure 1-3:	Nominal Process Conditions for a NGNP Steam Production Plant (750°C)	12
Figure 1-4:	Modes, States, Transitions and Transients for the NGNP	13

ACRONYMS & ABBREVIATIONS

Acronym	Definition	
AI	Inner Annulus (active cooling piping)	
AMS	Activity Measurement System	
AO	Outer Annulus (active cooling piping)	
AOO	Anticipated Operational Occurrence	
AS	Automation System	
ASME	American Society of Mechanical Engineers	
AVR	Arbeitsgemeinschaft Versuchs-Reaktor	
BOP	Balance of Plant	
BUMS	Burn-up Measurement System	
СВ	Core Barrel	
CCS	Core Conditioning System	
CEA	Commissariat à l'Énergie Atomique	
CFD	Computational Fluid Dynamics	
CHE	Compact Heat Exchanger	
CIP	Core Inlet Pipe	
CO2	Carbon Dioxide	
COC	Core Outlet Connection	
COP	Core Outlet Pipe	
COTS	Commercial Off The Shelf	
CRADA	Co-operative Research and Development Agreement	
CRD	Control Rod Drive	
CSC	Core Structure Ceramics	
CTF	Component Test Facility	
CTF	Component Test Facility	
CUD	Core Unloading Devices	
DAU	Data Acquisition Unit	
DBA	Design Base Accident	
DBE	Design Base Event	
DDN	Design Data Need	
DFC	Depressurized Forced Cooling	
DLOFC	De-pressurized Loss of Forced Cooling	
DOE	Department of Energy	
DPP	Demonstration Power Plant	
DRL	Design Readiness Level	
DWS	Demineralized Water System	
ELE	Elecrolyser System	
EM	Evaluation Model	
EMB	Electomagnetic Bearing	
EOFY	End of Fiscal Year	
EPCC	Equipment Protection Cooling Circuit	
EPCT	Equipment Protection Cooling Tower	
F&OR	Functional and Operational Requirements	
Acronym	Definition	
---------	--	--
FHS	Fuel Handling System	
FHSS	Fuel Handling and Storage System	
FIMA	Fissions per Initial Metal Atoms	
FMECA	Failure Modes, Effects and Criticality Analysis	
FS	Fuel Spheres	
FTA	Fault Tree Analysis	
FUS	Feed and Utility System	
H2	Hydrogen	
H2SO4	Sulfuric Acid	
HC	Helium Circulator	
Не	Helium	
HETP	Height Equivalent of the theoretical Plate	
HGD	Hot Gas Duct	
НІ	Hydro-lodic	
HLW	High Level Waste	
HPB	Helium Pressure Boundary	
HPC	High Pressure Compressor	
HPS	Helium Purification System	
HPS	Hydrogen Production System	
HPT	High Pressure Turbine	
HPU	Hydrogen Production Unit	
HRS	Heat Removal System	
HTF	Helium Test Facility	
HTGR	High Temperature Gas-Cooled Reactor	
HTR	High Temperature Reactor	
HTS	Heat Transport System	
HTSE	High Temperature Steam Electrolysis	
HTTR	High Temperature Test Reactor	
HVAC	Heating Ventilation and Air Conditioning	
HX	Heat Exchanger	
HyS	Hybrid Sulfur	
1&C	Instrumentation and Control	
12	lodine	
ID	Inner Diameter	
IHX	Intermediate Heat Exchanger	
ILS	Integrated Laboratory Scale	
I-NERI	International Nuclear Energy Research Initiative	
INL	Idaho National Laboratory	
INL	Idaho National Laboratory	
IPT	Intermediate Pressure Turbine	
ISR	Inner Side Reflector	
K-T	Kepner-Tregoe	
KTA	German nuclear technical committee	
LEU	Low Enriched Uranium	

Acronym	Definition	
LOFC	Loss of Forced Cooling	
LPT	Low Pressure Turbine	
MES	Membrane-electrode assembly	
MTR	Material Test Reactor	
NAA	Neutron Activation Analysis	
NCS	Nuclear Control System	
NGNP	Next Generation Nuclear Plant	
NHI	Nuclear Hydrogen Initiative	
NHS	Nuclear Heat Supply	
NHSS	Nuclear Heat Supply System	
NNR	National Nuclear Regulator	
NRG	Nuclear Research and consultancy Group	
NRV	Non-Return Valve	
O2	Oxygen	
OD	Outer Diameter	
PBMR	Pebble Bed Modular Reactor	
PCC	Power Conversion System	
PCDR	Pre-Conceptual Design Report	
PCHE	Printed Circuit Heat Exchanger	
PCHX	Process Coupling Heat Exchanger	
PCS	Power Conversion System	
PFHE	Plate Fin Heat Exchanger	
PHTS	Primary Heat Transport System	
PIE	Post-irradiation Examination	
PLOFC	Pressurized Loss of Forced Cooling	
POC	Power Conversion System	
PPM	Parts per million	
PPU	Product Purification Unit	
PPWC	Primary Pressurized Water Cooler	
QA	Quality Assurance	
RAMI	Reliability, Availability, Maintainability and Inspectability	
RC	Reactor Cavity	
RCCS	Reactor Cavity Cooling System	
RCS	Reactivity Control System	
RCSS	Reactivity Control and Shutdown System	
RDM	Rod Drive Mechanism	
RIM	Reliability and Integrity Management	
RIT	Reactor Inlet Temperature	
RM	Road Map	
ROT	Reactor Outlet Temperature	
RPS	Reactor Protection System	
RPT	Report	
RPV	Reactor Pressure Vessel	
RS	Reactor System	

Acronym	Definition	
RSS	Reserve Shutdown System	
RUS	Reactor Unit System	
SAD	Acid Decomposition System	
SAR	Safety Analysis Report	
SAS	Small Absorber Spheres	
SG	Steam Generator	
SHTS	Secondary Heat Transport System	
S-I	Sulfur lodine	
SiC	Silicon Carbide	
SNL	Sandia National Laboratory	
SO2	Sulfur Dioxide	
SOE	Sulfuric Oxide Electrolyzers	
SOEC	Sulfuric Oxide Electrolyzers Cells	
SR	Side Reflector	
SSC	System Structure Component	
SSCs	Systems, Structures and Components	
SSE	Safe Shutdown Earthquake	
SUD	Software Under Development	
TBC	To Be Confirmed	
TBD	To Be Determined	
TDL	Technology Development Loop (As incorporated in Concept 1)	
TDRM	Technology Development Road Map	
TER	Test Execution Report	
THTR	Thorium High Temperature Reactor	
TRISO	Triple Coated Isotropic	
TRL	Technology Readiness Level	
TRM	Technology Road Map	
UCO	Uranium Oxycarbide	
UO2	Uranium Dioxide	
USA.	United States of America	
V&V	Verification and Validation	
V&Ved	Verified and Validated	
VLE	Vapor-Liquid Equilibrium	
WBS	Work Breakdown Structure	
WEC	Westinghouse Electric Company	

SUMMARY AND CONCLUSIONS

This document summarizes the plant-level operation of the Pebble Bed Modular Reactor (PBMR)-based Next Generation Nuclear Plant (NGNP) Demonstration Plant concept and presents the nominal operating conditions as defined in the Preconceptual Design Report (PCDR) and modified in subsequent Conceptual Design Studies.

The modes diagram from *PCDR Section 11 – Overall NGNP Operation* [1-1] was rearranged into a more systematic arrangement in order to provide a qualitative overview of the plant operating envelopes.

To date, no plant-level NGNP transient simulations have been done. The transient analyses will form part of the conceptual design process and falls outside of the scope of this study. None of the operating Modes, States, Transients and Transitions, nor the SSC dimensions can be confirmed as of yet. Therefore, the conceptual design of the Component Test Facility (CTF) is based on the steady-state PCDR [1-2] and Intermediate Heat Exchanger (IHX) Conceptual Design Study [1-3] as reference.

It is further noted that the technology roadmaps and maturation plans will need to be adjusted as new design data needs (DDNs) evolve as part of the conceptual and preliminary design effort. Therefore requirements influencing the CTF will continue to emerge during the NGNP Conceptual Phase.

1 NGNP SYSTEMS AND OPERATIONAL DESCRIPTION

The NGNP Demonstration Plant consists of various Systems, Structures and Components (SSCs) integrated into a functional plant capable of producing process heat for hydrogen production as well as electricity (used notably for hydrogen plant but also for export). The Westinghouse Team NGNP Demonstration Plant consists of a 500 MW pebble bed reactor with primary and secondary helium loops coupling a 470 MW steam generator and a 50 MW process coupling heat exchanger for the hydrogen production system.

In order to minimize the safety and economic risk of the NGNP Demonstration Plant, the intent is that all the SSC's should have demonstrated the ability of the applied technologies to function according to specification within their intended operational environment, prior to nuclear start-up of the NGNP Demonstration Plant. This would then leave the ability of these technologies to perform according to specification when integrated into their final NGNP Demonstration Plant configuration as the remaining risk to be addressed.

Obviously the advancement of the readiness of technology for application within the NGNP needs to be addressed at the level of the SSC within which the technology is being applied. There are SSCs which use technology that is either commercially unavailable or lacks proven industry experience, thus further technology development needs to be done for these SSC's to achieve acceptable Technology Readiness Levels (TRL) prior to installation in the NGNP.

In addition, given the current design maturity of the NGNP Demonstration Plant, it is recognized that not all the DDNs are identified at this stage and it is highlighted that the technology development needs will be supplemented as the integrated design progresses.

This section will describe the overall NGNP system and provide an operational description of two NGNP applications (at different temperatures) under consideration. There are a number of systems that are similar between the two applications, however at different operating conditions.

1.1 Steady State Conditions (Hydrogen Production at 950 °C)

The overall operation and control of the NGNP is described in detail in *PCDR Section 11* - *Overall NGNP Operation* [1-1] and will not be repeated here, other than to present the steady state conditions which have evolved through the NGNP Conceptual Design Studies completed subsequent to the definition of the PCDR baseline.

The process flow diagram of the NGNP Demonstration Plant for Hydrogen Production is given in Figure 1-1.

Figure 1-1: NGNP Demonstration Plant Process Flow Diagram – Hydrogen Production (950°C)

The latest reference schematic of the NGNP at 950°C was documented in the *NGNP Conceptual Design Study: IHX and HTS* [1-3]. The Heat Transport System (HTS) is comprised of the primary HTS and the secondary HTS as described in *PCDR Section 6 - Heat Transport System* [1-4]. The reference steady state operating conditions are presented in Figure 1-2 of [1-3] and repeated below in Figure 1-2. below.

Figure 1-2: Nominal Process Conditions for the NGNP Demonstration Plant (Hydrogen Production, 950°C)

1.2 Steady State Conditions (Steam Production at 750 °C)

The NGNP Preconceptual Design and conceptual design studies to date have focused on a 950°C reactor outlet temperature for hydrogen production. Depending on the process application, various alternatives to the reference preconceptual design are possible. The schematic in Figure 1-3 presents one option for a steam production plant, and this option will be used as the 750°C reference for the purposes of this study. In this option, the Process Coupling Heat Exchanger (PCHX) is removed from the Secondary Heat Transport System (SHTS) and a single Intermediated Heat Exchanger (IHX) is retained. The steam could be used for electricity production, process steam or cogeneration. This configuration represents the minimum departure from the PBMR NGNP Preconceptual Design and would provide enveloping development requirements for 750°C applications. It is potentially representative of applications, such as oil sands, in which extreme water quality requirements or other considerations (e.g., tritium migration) would dictate the use of an IHX. In other applications, it may be possible to eliminate the IHX and relocate the SG to the Primary Heat Transport System (PHTS). The actual configuration of a 750°C application remains subject to trade studies that would be done when functions and requirements are identified.

Figure 1-3: Nominal Process Conditions for a NGNP Steam Production Plant (750°C)

1.3 High-Level Operating Envelope (Hydrogen Production at 950 ℃)

In order to have a clear link between component testing and the plant design, it is necessary to derive the test requirements from the intended operating range of each component in the NGNP. It is recognized that it is not sufficient to simply use nominal operating conditions to determine the test parameters for an SSC, as the design would notably need to accommodate various transitions such as startup or shut-down and transient events such as loss of heat sink. The risk of missing such a condition can only be avoided by explicitly determining the complete operating envelope of the plant and consequently each SSC. This is done by calculating the component conditions during each state and event in the Modes and States. However, at this stage, the conceptual design of the integrated NGNP system has not been done and, consequently, detailed transient constraints have not been analyzed or quantified for each SSC. Hence, at this point in time, the test plans of the CTF are mostly based on steady state requirements.

The Modes and States for the NGNP, as described in Figure 11.2-2 *PCDR Section 11: Overall NGNP Operation* [1-1], has been rearranged as shown in Figure 1-4, where the states are numbered in order to create a consistent numbering system for the Transitions and Transients. Transitions and Transients are numbered according to the start state and the end state between which it takes place.

Figure 1-4: Modes, States, Transitions and Transients for the NGNP.

<u>NOTE</u>: These modes, states, transitions and transients are all subject to revision during conceptual and preliminary design when a more thorough and intensive functional analysis is done to a level where the specific SSC Failure Modes, Effects and Criticality Analysis (FMECA) and Fault Tree Analysis (FTA) can identify the expected plant- and SSC level responses to component failures or responses to external events.

At this stage it is useful to distinguish between modes, states, transitions and transients. Modes are high-level groupings of steady-state conditions or "States", as shown in Figure 1-4. "Transitions" are events that the plant is designed to undergo as a matter of day-to-day operation, while "Transients" are undesirable events which the plant has to be able to withstand.

Given that transitions are controlled changes between modes and states, all transitions will be specified, designed and performed to ensure that the SSCs remain within their nominal operating parameters where possible.

Considering that transients are essentially plant and SSC responses to anticipated operational occurrences (AOOs) and the plant operational control system will be responding to these changes of conditions and a full analysis of the plant response has not been performed, an assumption is required at this stage regarding the ability of the operational control system to manage these events. For the purposes of determining a bounding set of conditions for all the SSCs it is thus assumed that the plant operating control system will be able to respond to all anticipated operational occurrences such that the operational parameters being measured will not exceed the nominal full power values by more than 10% (assumption to be confirmed during conceptual design).

It must be kept in mind that currently, only the nominal operating state is well defined. For other operating conditions, the power levels, detail control strategy and temperature levels still have to be clarified in more detail than described by *PCDR Section 11 - Overall NGNP Operation* [1-1] if component envelopes are to be properly defined.

For determining the transient requirements to SSC's, it is necessary to do full transient simulations of the applicable systems. To date, no plant-level NGNP transient simulations have been done. The transient analyses will form part of the system-level conceptual design and falls outside of the scope of this study. Therefore, this section will not cover transient simulations.

REFERENCES

- [1-1] NGNP and Hydrogen Production Preconceptual Design Report, NGNP-11-RPT-001, Section 11 – Overall NGNP Operation
- [1-2] NGNP and Hydrogen Production Preconceptual Design Report, NGNP-03-RPT-001, Section 3 – Plant Level Design and Integration
- [1-3] NGNP Conceptual Design Study: IHX and HTS, NGNP-HTS-RPT-TI001
- [1-4] NGNP and Hydrogen Production Preconceptual Design Report, NGNP-06-RPT-001, Section 6 – Heat Transport System

NGNP-CTF MTECH-TDRM-002 Revision 1

November 2008

NGNP and Hydrogen Production Conceptual Design Study

NGNP Technology Development Road Mapping Report

Section 2: Technology Development Road Mapping Process

APPROVALS

Function		Printed Name and Signature	Date
Author	Name: Company:	Werner Koekemoer M-Tech Industrial	November 19, 2008
Reviewer	Name: Company:	Renée Greyvenstein Pebble Bed Modular Reactor	November 20, 2008
Approval	Name: Company:	Jan van Ravenswaay M-Tech Industrial	November 21, 2008
	-		

Westinghouse Electric Company LLC Nuclear Power Plants Post Office Box 355 Pittsburgh, PA 15230-0355

©2008 Westinghouse Electric Company LLC All Rights Reserved

LIST OF CONTRIBUTORS

Name and Company	Date
Werner Koekemoer (M-Tech Industrial)	October 17, 2008
Gert Janse van Rensburg, Dewald Kleynhans, Roger Young, Renée Greyvenstein (PBMR)	October 17, 2008
Jan van Ravenswaay (M-Tech Industrial)	October 17, 2008

BACKGROUND INTELLECTUAL PROPERTY CONTENT

Section	Title	Description
N/A		

REVISION HISTORY

RECORD OF CHANGES

Revision No.	Revision Made by	Description	Date
А	Werner Koekemoer	Comments Review	October 2008
0	Werner Koekemoer	Document for approval	November 2008
0A	Louisa Venter	Incorporating editorial changes	November 2008
1	Werner Koekemoer	Document for release to WEC	November 2008

DOCUMENT TRACEABILITY

Created to Support the Following Document(s)	Document Number	Revision
NGNP and Hydrogen Production Preconceptual Design Report	NGNP-01-RPT-001	0

TABLE OF CONTENTS

Section	Title	Page
2 TEC	CHNOLOGY DEVELOPMENT ROADMAPPING PROCESS	9
2.1 2.2 2.3 2.4 2.5 2.6	INTRODUCTION TO NGNP TDRM PROCESS TECHNOLOGY DEVELOPMENT ROADMAP TECHNOLOGY READINESS LEVELS TEST SPECIFICATIONS PRINCIPLES FOLLOWED IN THE TDRM PROCESS REFERENCE	9 10 12 16 16 17
APPEN	DIX A: PBMR QUALIFICATION PROCESS	18
A THE	PBMR QUALIFICATION PROCESS	19
A1 INT	RODUCTION	19
A2 TH	E QUALIFICATION PROCESS	19
A2.1 A2.2 A2.3 A2.4 A2.5 A2.6	 EQUIPMENT QUALIFICATION	19 22 22 22 22 22 23
A3.EQ	QUIPMENT QUALIFICATION VS PLANT QUALIFICATION	23
A4 MA	NAGEMENT OF THE QUALIFICATION PROGRAMME	25
A4.1 A4.2 A4.3 A4.4 A4.5 A4.6 A4.7 A4.8	 1 ROLES AND RESPONSIBILITIES IN THE PBMR QUALIFICATION PROCESS	25 26 26 26 26 26 27 27 27
A4.9	MANAGEMENT OF FACILITIES AND EQUIPMENT DIX B: TERMINOLOGY OF TRL DEFINITIONS	28

LIST OF TABLES

Table 2-1 – TRL Definitions and Abbreviations	13
Table 2-2 – TRL Rating Sheet Example	15

LIST OF FIGURES

Figure 2-1 – TDRM Process with Associated Outputs	10
Figure 2-2 – TDRM Example	11
Figure 2-3 – TDRM Process with Associated Outputs	14

ACRONYMS & ABBREVIATIONS

Acronym	Definition
AI	Inner Annulus (active cooling piping)
AMS	Activity Measurement System
AO	Outer Annulus (active cooling piping)
AOO	Anticipated Operational Occurrence
AS	Automation System
ASME	American Society of Mechanical Engineers
AVR	Arbeitsgemeinschaft Versuchs-Reaktor
BOP	Balance of Plant
BUMS	Burn-up Measurement System
СВ	Core Barrel
CCS	Core Conditioning System
CEA	Commissariat à l'Énergie Atomique
CFD	Computational Fluid Dynamics
CHE	Compact Heat Exchanger
CIP	Core Inlet Pipe
CO2	Carbon Dioxide
COC	Core Outlet Connection
COP	Core Outlet Pipe
COTS	Commercial Off The Shelf
CRADA	Co-operative Research and Development Agreement
CRD	Control Rod Drive
CSC	Core Structure Ceramics
CTF	Component Test Facility
CTF	Component Test Facility
CUD	Core Unloading Devices
DAU	Data Acquisition Unit
DBA	Design Base Accident
DBE	Design Base Event
DDN	Design Data Need
DFC	Depressurized Forced Cooling
DLOFC	De-pressurized Loss of Forced Cooling
DOE	Department of Energy
DPP	Demonstration Power Plant
DRL	Design Readiness Level
DWS	Demineralized Water System
ELE	Elecrolyser System
EM	Evaluation Model
EMB	Electomagnetic Bearing
EOFY	End of Fiscal Year
EPCC	Equipment Protection Cooling Circuit
EPCT	Equipment Protection Cooling Tower

Acronym	Definition						
F&OR	Functional and Operational Requirements						
FHS	Fuel Handling System						
FHSS	Fuel Handling and Storage System						
FIMA	Fissions per Initial Metal Atoms						
FMECA	Failure Modes, Effects and Criticality Analysis						
FS	Fuel Spheres						
FTA	Fault Tree Analysis						
FUS	Feed and Utility System						
H2	Hydrogen						
H2SO4	Sulfuric Acid						
HC	Helium Circulator						
Не	Helium						
HETP	Height Equivalent of the theoretical Plate						
HGD	Hot Gas Duct						
НІ	Hydro-Iodic						
HLW	High Level Waste						
НРВ	Helium Pressure Boundary						
HPC	High Pressure Compressor						
HPS	Helium Purification System						
HPS	Hydrogen Production System						
HPT	High Pressure Turbine						
HPU	Hydrogen Production Unit						
HRS	Heat Removal System						
HTF	Helium Test Facility						
HTGR	High Temperature Gas-Cooled Reactor						
HTR	High Temperature Reactor						
HTS	Heat Transport System						
HTSE	High Temperature Steam Electrolysis						
HTTR	High Temperature Test Reactor						
HVAC	Heating Ventilation and Air Conditioning						
НХ	Heat Exchanger						
HyS	Hybrid Sulfur						
1&C	Instrumentation and Control						
12	lodine						
ID	Inner Diameter						
IHX	Intermediate Heat Exchanger						
ILS	Integrated Laboratory Scale						
I-NERI	International Nuclear Energy Research Initiative						
INL	Idaho National Laboratory						
INL	Idaho National Laboratory						
IPT	Intermediate Pressure Turbine						
ISR	Inner Side Reflector						
K-T	Kepner-Tregoe						

Acronym	Definition					
KTA	German nuclear technical committee					
LEU	Low Enriched Uranium					
LOFC	Loss of Forced Cooling					
LPT	Low Pressure Turbine					
MES	Membrane-electrode assembly					
MTR	Material Test Reactor					
NAA	Neutron Activation Analysis					
NCS	Nuclear Control System					
NGNP	Next Generation Nuclear Plant					
NHI	Nuclear Hydrogen Initiative					
NHS	Nuclear Heat Supply					
NHSS	Nuclear Heat Supply System					
NNR	National Nuclear Regulator					
NRG	Nuclear Research and consultancy Group					
NRV	Non-Return Valve					
02	Oxygen					
OD	Outer Diameter					
PBMR	Pebble Bed Modular Reactor					
PCC	Power Conversion System					
PCDR	Pre-Conceptual Design Report					
PCHE	Printed Circuit Heat Exchanger					
PCHX	Process Coupling Heat Exchanger					
PCS	Power Conversion System					
PFHE	Plate Fin Heat Exchanger					
PHTS	Primary Heat Transport System					
PIE	Post-irradiation Examination					
PLOFC	Pressurized Loss of Forced Cooling					
POC	Power Conversion System					
PPM	Parts per million					
PPU	Product Purification Unit					
PPWC	Primary Pressurized Water Cooler					
QA	Quality Assurance					
RAMI	Reliability, Availability, Maintainability and Inspectability					
RC	Reactor Cavity					
RCCS	Reactor Cavity Cooling System					
RCS	Reactivity Control System					
RCSS	Reactivity Control and Shutdown System					
RDM	Rod Drive Mechanism					
RIM	Reliability and Integrity Management					
RIT	Reactor Inlet Temperature					
RM	Road Map					
ROT	Reactor Outlet Temperature					
RPS	Reactor Protection System					

Acronym	Definition					
RPT	Report					
RPV	Reactor Pressure Vessel					
RS	Reactor System					
RSS	Reserve Shutdown System					
RUS	Reactor Unit System					
SAD	Acid Decomposition System					
SAR	Safety Analysis Report					
SAS	Small Absorber Spheres					
SG	Steam Generator					
SHTS	Secondary Heat Transport System					
S-I	Sulfur Iodine					
SiC	Silicon Carbide					
SNL	Sandia National Laboratory					
SO2	Sulfur Dioxide					
SOE	Sulfuric Oxide Electrolyzers					
SOEC	Sulfuric Oxide Electrolyzers Cells					
SR	Side Reflector					
SSC	System Structure Component					
SSCs	Systems, Structures and Components					
SSE	Safe Shutdown Earthquake					
SUD	Software Under Development					
TBC	To Be Confirmed					
TBD	To Be Determined					
TDL	Technology Development Loop (As incorporated in Concept 1)					
TDRM	Technology Development Road Map					
TER	Test Execution Report					
THTR	Thorium High Temperature Reactor					
TRISO	Triple Coated Isotropic					
TRL	Technology Readiness Level					
TRM	Technology Road Map					
UCO	Uranium Oxycarbide					
UO2	Uranium Dioxide					
USA.	United States of America					
V&V	Verification and Validation					
V&Ved	Verified and Validated					
VLE	Vapor-Liquid Equilibrium					
WBS	Work Breakdown Structure					
WEC	Westinghouse Electric Company					

2 TECHNOLOGY DEVELOPMENT ROADMAPPING PROCESS

2.1 Introduction to NGNP TDRM Process

For the NGNP, levels of readiness of needed technologies have been assessed. However, these levels vary significantly for the various Systems, Structures and Components (SSCs). The overall technology readiness assessment process is referred to as Technology Development Roadmapping (TDRM). The TDRM process is used to assess, map, plan and visualize the needed technology development activities to advance the technology readiness of a particular System, Structure or Component (SSC) to a state that will reduce commercial risk and support plant operation. The TDRM process determines what is needed *firstly* to verify the performance and safety of the SSC and *secondly* to minimize the risk associated with operating the SSC. The latter is achieved through a series of scale test programs, up to and including tests at full-scale NGNP plant temperatures, pressures and flow rates. These test programs are documented in Test Plans which specifies the needed maturation tasks to advance the relevant technologies (Refer to Figure 2.1).

For the purpose of this document, only critical SSCs to be utilized in the 950°C NGNP demonstration plant have been considered. Critical SSCs are defined as Systems, Structures and Components that are not commercially available or do not have proven industry experience. The following deliverables are relevant in the TDRM process for these SSCs:

- Technology Development Roadmaps, which sets out the high level vision for maturing certain technologies up to a point where the technology can be utilized in the NGNP
- Technology Readiness Level Rating Sheets, which supplies the current readiness of a particular SSC to serve as input into the NGNP
- Technology Maturation Plans, which specifies the more detailed plans/actions required to mature technologies for utilization in the NGNP
- Test Specification, which provide a requirement for specific testing

Figure 2-1: TDRM Process with Associated Outputs

2.2 Technology Development Roadmap

Shown in Figure 2.2 is a typical Technology Development Roadmap. The roadmap is typically populated with items relating to down selection of technologies (shown on the left side of the roadmap), TRL of the technology (yellow blocks) and technology maturation tasks needed for advancement (shown on the right side of the roadmap).

Items shown on the left of the roadmap involve the following aspects:

- Candidate Technologies
- Decision Discriminators
- Down Selection Task

Items shown on the right of the roadmap involve the following aspects

- Appropriate TRL Levels
- Technology Maturation Tasks

Additional information reflected in the roadmap involves:

- Timeframe for completion of maturation of technology
- Mission at reaching validated TRL levels
- All applicable references/input into the roadmap

NGNP Technology Development Road Mapping Report Section 2: Technology Development Road Mapping Process

Figure 2-2: TDRM Example

NGNP-CTF MTECH-TDRM-002_Rev 1-final.doc

12/8/2008

11 of 30

On the left side of the roadmap, all candidate technologies that are in contention to be utilized for the NGNP are shown. The Decision Discriminators shown just to the right of the technology candidates on the roadmap are used to guide a down selection of the available technologies. Typical decision discriminators may entail *inter alia service experience of technologies, available data* and *maturity of respective technologies*. Upon the screening of the candidate technologies against the decision discriminators, a down selection can be made.

On the right side of the roadmap, the current TRL rating together with the Maturation Tasks necessary to achieve progressively higher levels of Validated TRLs up to a TRL 8 are shown. At each validated TRL level, a mission statement is stated which gives an indication at which environmental parameters the qualification has been conducted. All the maturation tasks shown in the roadmap are also linked to a schedule in the form of the timeline shown in Figure 2-2. References that serve as input into the roadmap at this stage involve *Design Data Needs*, *Preconceptual Design Documents* and *Special Studies*.

2.3 Technology Readiness Levels

Technology Readiness Levels are ratings between 1 and 10 assigned by Subject Matter Experts to a certain Island/System/Structure/Component/Technology (ISSCT) which gives an indication of the maturity of the ISSCT involved. Various definitions are assigned to the existing TRL ratings and are shown in Table 2.1. For explanation of relevant terminology referred to in Table 2-1, please refer to Appendix B.

As an aid to understanding the context under which TRL ratings are applied, Figure 2-3 depicts the interrelationship among the TRL ratings, their abbreviated definition, the increasing amount of integration and testing.

Rating Level	Technology Readiness Level Definition	TRL Abbreviated Definition		
1	Basic principles observed and reported in white papers, industry literature, lab reports, etc. Scientific research without well defined application.	Basic principles observed		
2	Technology concept and application formulated. Issues related to performance identified. Issues related to technology concept have been identified. Paper studies indicate potentially viable system operation.	Application formulated		
3	Proof-of concept: Analytical and experimental critical function and/or characteristic proven in laboratory. Technology or component tested at laboratory scale to identify/screen potential viability in anticipated service.	Proof of Concept		
4	Technology or Component is tested at bench scale to demonstrate technical feasibility and functionality. For analytical modeling, use generally recognized benchmarked computational methods and traceable material properties.	Bench scale testing		
5	Component demonstrated at experimental scale in relevant environment . Components have been defined, acceptable <u>technologies</u> identified and technology issues quantified for the relevant environment. Demonstration methods include analyses, verification, tests, and inspection.	Component Verified at Experimental Scale		
6	Components have been integrated into a subsystem and demonstrated at a pilot scale in a relevant environment.	Subsystem Verified at Pilot scale		
7	Subsystem integrated into a system for integrated engineering scale demonstration in a relevant environment.	System demonstration at Engineering Scale		
8	Integrated prototype of the system is demonstrated in its operational environment with the appropriate number and duration of tests and at the required levels of test rigor and quality assurance. Analyses, if used support extension of demonstration to all design conditions. Analysis methods verified and validated. Technology issues resolved pending qualification (for nuclear application, if required). Demonstrated readiness for hot startup	Integrated Prototype Tested and Qualified		
9	The project is in final configuration tested and demonstrated in operational environment.	Plant Operational.		
10	Commercial-scale demonstration is achieved. Technological risks minimized by multiple units built and running through several years of service cycles.	Commercial Scale – Multiple Units		

 Table 2-1:
 TRL Definitions and Abbreviations [2-1]

Figure 2-3: TDRM Process with Associated Outputs

The TRL ratings for the associated SSCs are captured in the TRL Rating Sheets as displayed in Table 2-2. These sheets reflect the following information:

- The current TRL Rating of the SSC
- Basis of rating: Justification for the calculated readiness, which can include one of the following:
 - Trade studies completed
 - Tests and actions completed
 - Reference documentation
- Outline of actions/tests needed to advance to higher TRL ratings
- Cost and schedule associated with advancement to a successively higher TRL level
- All DDN's supported / resolved through the action plans to advance the TRL rating

Table 2-2: TRL Rating Sheet Example

TRL Rating Sheet										
Vendor Name: Docur		Docum	ment Number:			Revision:				
□ Island	□ System	□Subsys	bsystem/Structure			ient 🗆	Technology			
Title:										
Description:										
Island(s):	□ NHSS	□ HTS	□ HPS		D PCS	B	OP			
ISSCTBS: Parent:			nt:		WBS:					
Technology Readiness Level										
			Next Lower Rating Leve	l	Calculated Rating		Next Higher Rating Level			
Generic Definition	ns (abbreviated)									
TRL			#		#		#			
Basis for Rating (Attach additional sheets as needed) Outline of a plan to get from current level to next level (Attach additional sheets as needed)										
Actions (list all)					Schedule		Cost (K\$)			
DDN(s) supported:				Technology Case File:						
Subject Matter Expert Making Determination:										
Date:	Date: Originating Organization:									

12/8/2008

2.4 Test Specifications

In the TDRM process, the associated details for each action/test required to advance an SSC to progressively higher TRL levels are captured in test plans. These test plans incorporate details ranging from material qualification specifics to prototypical SSC testing details. The test plan content can reflect the following details:

- Function of test
- Duration of test
- Scale of test article
- Proposed Location
- Test Items
- Scope of testing (i.e. features to be tested)
- Approach/Method
- Evaluation Criteria
- Test Deliverables
- Planning Risks & Contingencies

2.5 Principles followed in the TDRM Process

Although the NGNP requires a critical SSC to be at a minimum of TRL 7 before utilization in the NGNP, the preferred option is to have an SSC qualified at a TRL 8 before being installed into the NGNP. Some critical SSC's are envisioned to be supplied to the NGNP at a validated TRL 7, primarily because qualification of the applicable full scale SSC in its operational environment is deemed uneconomical or unpractical outside the NGNP. Other SSC's that propose envisioned qualification testing in other locations (notably the CTF, PBMR HTF and the PBMR DPP) are advanced to TRL 8 levels independently from the NGNP if the operating conditions of these facilities envelope the NGNP requirements in the relevant fields (*fields may involve temperature, pressure, mass flows, etc.*). Consequently, no additional testing will then be required. However, if the NGNP operating envelope is not covered by these alternate testing facilities, testing in these facilities will only advance and supply the applicable SSC's to the NGNP at a TRL 7.

It must be recognized that once the down select of technology has been made and the SSC is at TRL 6, all subsequent tasks are in fact design maturity advancement tasks of the SSC, as it is no longer only the technology and the manner in which it is being applied within the SSC that is under scrutiny, but now the manner in which the SSC is being applied within its operational environment. For this reason it is believed pertinent to include a description of the PBMR (DPP) Qualification Process (Appendix A) which describes how the SSCs are individually brought to a status where the risk involved in starting up the plant is adequately addressed. In addition it covers the activities to ensure that the plant can operate within its design parameters for the intended life cycle.

2.6 References

[2-1] INLÆXT-08-14251, Rev 0: Technology Readiness Level Plan

APPENDIX A: PBMR QUALIFICATION PROCESS

A THE PBMR QUALIFICATION PROCESS

A1 INTRODUCTION

The PBMR Qualification Process is a formal and logical process aimed at the generation and maintenance of evidence to ensure that all safety classified systems and its equipment will operate reliably within design requirements under all operating and accident conditions. All SSCs within the PMBR plant are subjected to the same qualification approach graded according to its contribution to safety.

A2 THE QUALIFICATION PROCESS

The integrated qualification programme for the Structures, Systems and Components (SSC) is divided into logical stages to facilitate a process of progressive confidence building and risk reduction.

The SSC that uses software to implement operational functions needs that software to be completed according to the applicable Software Life Cycle Process before the SSC Equipment Qualification (EQ) can be finalised. The Software Lifecycle Process includes all the software verification and validation tasks that are needed to satisfy the requirements.

The quality assurance requirements for software used in SSC for the PBMR are as per ASME NQA-1-2004.

The major stages of EQ as indicated in Figure A1-1 are the following:

A2.1 Equipment Qualification

Equipment Qualification (EQ) ensures that the individual SSC designs are robust and comply with their design specifications, including safety and functional requirements.

The initial phase of EQ is conducted prior to installation in the plant (i.e. off-site). Termed the **EQ Verification Phase**, it includes functional, environmental and seismic assessment. The SSCs capability to perform its safety functions under anticipated operational and environmental stresses associated with Design Basis Accidents and postulated seismic events is deterministically verified during this phase. Seismic response is by analysis except for some systems that are physically tested. Some repetitive or cyclic testing may be done during this stage to provide supportive probabilistic data.

Only in exceptional cases, typically where infrastructure or interface restrictions have been identified, are functional verification tests conducted on site on installed SSC during commissioning of the plant.

NGNP-CTF MTECH-TDRM-002_Rev 1-final.doc

After installation on the plant (site-based) the **EQ Validation Phase** starts, validating the performance of the individual SSC within their installed environment. No environmental or seismic qualification activities are conducted during this phase.

During the commercial operation of the plant, the operating utility must ensure that all SSC of high and medium safety significance retain their qualification status. This **EQ Preservation Phase** shall be achieved through technical specification In-service Surveillance Testing, In-service Inspections, Surveillance Testing and Continuous Plant Health and Condition Monitoring, and Operational Performance Monitoring. This will tie in with the Technical Surveillance Programme.

NGNP-CTF MTECH-TDRM-002

NGNP Technology Development Road Mapping Report Section 2: Technology Development Road Mapping Process

Figure A1-1: PBMR Integrated Qualification Process

Post-delivery (Site-based)

T

L

I

ł ł Ĥ

I

Plan & Prepare for Qualification

Pre-delivery (Off-site)

L

Plant & SSC

SSC & Plant

NGNP-CTF MTECH-TDRM-002_Rev 1-final.doc

12/8/2008

Where SSC of high and medium safety significance have become obsolete and are replaced by new SSC, EQ tests shall be conducted before installation to verify the design of the new equipment. Commissioning testing shall be conducted after installation of the new equipment, or where major maintenance activities have been conducted on equipment, to verify the installation and integrated functioning of such equipment.

Probabilistic data shall also be captured during this phase to support the Reliability Growth Programme and Product Improvement Programmes.

A2.2 Installation Inspection (Site-based)

Installation Inspections are physical inspections that are conducted after SSC have been installed and integrated into the plant, to confirm correct installation before the equipment is commissioned. This phase will include the seismic qualification reconciliation process.

A2.3 Initial Testing (Site-based)

Initial Testing is divided into pre-fuel-load testing and post-fuel-load testing. The pre-fuel-load testing is carried out before fuel may be brought on site. The pre-fuel-load inspection and testing verifies that installed equipment, functional equipment groups, control systems and safety features are functional before fuel is loaded into the reactor. This phase also confirms that operational staff is suitably trained, and that required operating and maintenance procedures are in place.

Once the pre-fuel-load testing is completed successfully and the license to load fuel is approved by the Nuclear Regulator, the stepwise loading of fuel and start-up testing commences. This phase ends with the Integrated Plant Testing. All integrated functions of the plant, including start-up, reactivity control, power ascension, reactor shutdown, load following and load rejection are verified during this phase. The first electrical generation to the grid shall occur during this stage.

A2.4 Final Acceptance Testing (Site-based)

On successful completion of the post-fuel-load testing, the client verifies that the plant complies with contractual requirements, prior to handover. This is called the Plant Acceptance Testing.

A2.5 Performance Monitoring (Site-based)

Performance Monitoring is an engineering activity concerned with the validation of the performance of the plant and its individual SSC against their development specifications. Engineering data is gathered by design engineers from operational tests and inspections.

Instrumentation monitoring confirms and where necessary addresses variations in the plant and SSC performance and design data packs, software and computer models. This monitoring takes place throughout the pre-fuel-load, post-fuel-load, plant acceptance testing and operational phases.

A2.6 Operational Testing (Site-based)

On successful completion of the plant acceptance testing and demonstration of the safe operation of the plant, the client can apply for the license to operate the plant. During the operational phase and throughout the service life in-service testing, in-service inspection and monitoring of the plant and individual SSC performance will continue. Together with the maintenance programme Operational Testing will ensure that all systems are functioning to specification, and that the qualification status is retained.

A3. EQUIPMENT QUALIFICATION VS PLANT QUALIFICATION

Figure A1-2 emphasizes the difference as well as the interfacing between the Equipment Qualification process and the Plant Qualification process. This process is initiated prior to plant installation and is monitored and maintained throughout the service life of the plant by using data obtained from the plant qualification process and from operational testing conducted during commercial operations.

The qualification of the plant comprises a progressive process to build confidence in the plant's ability to operate as required. It starts with the verification of individual SSC performance during the EQ verification phase, followed by installation inspection of installed equipment, and then the initial testing on individual SSC, functional equipment groups, and the integrated plant during commissioning. The Plant Qualification process is more concerned with the functioning of the integrated plant when subjected to Anticipated Operational Occurrence and plant trips.

Figure A1-2: Equipment Qualification vs. Plant Qualification

A4 MANAGEMENT OF THE QUALIFICATION PROGRAMME

A4.1 Roles and Responsibilities in the PBMR Qualification Process

Due to the turnkey nature of the PBMR development, PBMR (Pty) Ltd is responsible for providing a qualified plant to the client. The plant is qualified to meet all regulatory safety requirements as well as the relevant contractual requirements. Off-site qualification activities are conducted by the SSC suppliers under PBMR supervision, while PBMR (Pty) Ltd and the client conduct most site-based activities. The qualification programme is compiled, executed and managed in accordance with a formal, well-documented and transparent process. Figure 3 illustrates the roles and responsibilities of the various parties involved in the Qualification process, and the detail is discussed in the remainder of this section.

Figure A1-3: Illustration of Roles and Responsibilities in the Qualification Process
A4.2 PBMR Plant Qualification Manager

The PBMR Plant Qualification Manager has the primary responsibility for the planning, documentation, execution and management of all qualification activities within PBMR (Pty) Ltd. The PBMR Plant Qualification Manager controls the qualification of SSC, manages the qualification tests at off-site locations, and provides supervision of any site-based qualification tests executed during commissioning of the integrated plant. All site-based tests executed during commissioning of the integrated plant are executed under the overall supervision of the Client Commissioning Manager. The responsibilities of the PBMR (Pty) Ltd personnel involved in qualification are detailed in the PBMR Qualification Management Plan. The Plant Qualification Manager is also the chairman of the PBMR Qualification Board.

A4.3 The Client

The client as the licensee ensures that the PBMR qualification programme sufficiently addresses all contractual performance and nuclear safety requirements in support of the various licensing stages. Interaction with the PBMR Plant Qualification group is done through the PBMR Qualification Board (PQB) on which the Client serves as a standing member. The client ensures the distribution of all qualification information pertaining to nuclear safety to the Nuclear Regulator.

A4.4 Nuclear Regulator

The Nuclear Regulator as the licensor ensures that the PBMR qualification programme complies with national nuclear safety requirements and international nuclear safety guidelines and participates in the PQB as an observer to ensure independent oversight. The Nuclear Regulator may request any qualification information and may conduct qualification audits at PBMR (Pty) Ltd and any of its suppliers.

A4.5 PBMR Qualification Board

The PQB is responsible for approving all SSC and plant qualification and commissioning programmes, as well as the associated qualification results. The Plant Qualification Board has the authority to certify, or refuse certification of, an SSC to meet its qualification requirements. In order to promote efficient handling and consideration of issues before the Plant Qualification Board, the NGNP client is a standing member of this board, and the Nuclear Regulator will be co-opted by the NGNP client as required.

A4.6 Qualification Management Structure

The qualification management structure internal to PBMR (Pty) Ltd varies depending on the project phase. Each of the following requires a different qualification management structure:

- Management of planning for qualification.
- Management of off-site qualification.
- Management of site-based qualification.
- Management of site-based commissioning.

The management structure for each phase given above is described in the Qualification Management Plan.

A4.7 Qualification Management Activities

Qualification Management activities include the following:

- Approval of the qualification programmes and reports
- SSC Certification process
- Scheduling of qualification tasks
- Qualification risk/hazard and operability assessment
- Safety assessment of qualification activities
- Manage the communication within PBMR and to the subcontractors
- Propose regulatory hold and witness points for approval by the Nuclear Regulator
- Manage the execution of the approved hold and witness points with involvement of the Nuclear Regulator
- Manage the configuration of documents and qualification data during qualification
- Execute qualification audits and design reviews during the qualification programme
- Manage the handling of failures during tests
- Manage the handling of deviations from test and analysis specifications
- Manage the reporting of the occurrence of unusual incidents during the qualification program.

A4.8 Qualification Documentation

The documents relating to the qualification programme is divided into the following six categories:

- Qualification planning documentation
- Qualification execution documentation
- Qualification output documentation
- Qualification control documentation
- Qualification process documentation
- Qualification guidelines

A4.9 Management of Facilities and Equipment

Existing test facilities are utilized as far as possible for development and qualification testing, however dedicated facilities may be constructed for specific SSC tests. All test facilities are subjected to a formal PBMR authorization process prior to initiation of any test programmes. The test facilities are evaluated for their suitability to fulfil identified test requirements.

APPENDIX B: TERMINOLOGY OF TRL DEFINITIONS

Nomenclature

Bench Scale – A technology to be tested that will provide the data or demonstration intended but is not necessarily like the design of the final SSC. $(\sim 1:3600 \text{ scale})^1$

Experimental Scale – A component to be tested that will provide the data or prove function intended but is not necessarily like the design of the final SSC. (~1:1000 scale)

Pilot Scale – A model or facsimile of the subsystem used as a basis or standard for proof of principle testing and/or operation. The model or facsimile may progress through several evolutions, but is not necessarily in form or fit a final version. (~1:100 scale)

Engineering Scale – A model or facsimile of the system used as a basis or standard for proof of principle testing and/or operation. The model or facsimile may progress through several evolutions, but is not necessarily in form or fit a final version. (~1:20 scale)

Prototype – Subsequent to Pilot/Engineering Scale model or facsimile of the SSC, a version that is intended to be the final version or is an evolutionary step toward the final version. (~1:4 scale)

Lab Environment – Refers to a controlled environment where effects can be quantified with appropriate accuracy.

Relevant Environment – Refers to an environment that does not necessarily have the same temperatures and pressures, but is close. Not necessarily the same fluids, but chemically similar insofar as thermo-fluid and corrosion/reaction. This would apply, for example, to AGR and AGC testing in ATR.

Operational Environment – For SSCs normally operating when the plant is running, the operational environment consists of the normal operating fluids, and anticipated temperatures (static and transient) and pressures (static and transient). For SSCs not normally operating, the operational environments are the design basis operating fluids, temperatures and pressures.

¹ Scale provided for illustrative purposes only. The applicable scale will be determined by the specific SSC development plan based on the SSC size and the ability to generate acceptable test results at a specific scale.

November 2008

NGNP and Hydrogen Production Conceptual Design Study

NGNP Technology Development Road Mapping Report

Section 3: PHTS Circulator

APPROVALS

Function	Printed Name and Signature	Date
Author	Name: Guido Baccaglini Guido Baccaglini Guido Baccaglini	November 18, 2008
Reviewer	Name: Renée Greyvenstein Company: Pebble Bed Modular Reactor (Pty) Ltd.	November 19, 2008
Approval	Name: Jan van Ravenswaay Company: M-Tech Industrial	November 19, 2008

Westinghouse Electric Company LLC Nuclear Power Plants Post Office Box 355 Pittsburgh, PA 15230-0355

©2008 Westinghouse Electric Company LLC All Rights Reserved

LIST OF CONTRIBUTORS

Name and Company	Date
Guido Baccaglini (Technology Insights)	October 30, 2008
Roger Young (Pebble Bed Modular Reactor (Pty) Ltd.)	October 30, 2008
Renee Greyvenstein (Pebble Bed Modular Reactor (Pty) Ltd.)	October 30, 2008
Werner Koekemoer (M-Tech Industrial)	October 30, 2008

BACKGROUND INTELLECTUAL PROPERTY CONTENT

Section	Title	Description
N/A	N/A	N/A

REVISION HISTORY

RECORD OF CHANGES

Revision No.	Revision Made by	Description	Date
А	G. Baccaglini	Comments Review	2008, August 14
В	G. Baccaglini	Formal Review	September 17 ,2008
0	G. Baccaglini	Document for approval	September 26 , 2008
0A	G. Baccaglini	Road Map Updated, BEA comments updated	October 29, 2008
1	L Venter	Document for release to WEC	November 28, 2008

DOCUMENT TRACEABILITY

Created to Support the Following Document(s)	Document Number	Revision
NGNP and Hydrogen Production Preconceptual Design Report	NGNP-01-RPT-001	0

TABLE OF CONTENTS

S	Section	Title	Page
MM	ARY A	ND CONCLUSIONS	9
PRI	MARY	HEAT TRANSPORT SYSTEM (PHTS) CIRCULATOR	11
3.1	Funct	TON AND OPERATING REQUIREMENTS	11
3.2	DESIG	N SELECTION STATUS	12
	3.2.1	Candidate Circulators	12
	3.2.2	Decision Discriminators	15
	3.2.3	Reference Design	18
	3.2.4	Alternatives for Further Evaluation	18
	3.2.5	Down Selection Task	18
3.3	TRL S	TATUS OF PHTS CIRCULATOR	20
3.4	TECHN	OLOGY DEVELOPMENT ROAD MAP SUMMARY	22
	3.4.1	Overview	22
3.5	TECHN	OLOGY MATURATION PLAN SUMMARY	22
3.6	SHTS	CIRCULATOR AND PHTS CHECK VALVE TECHNOLOGY DEVELOPMENT	25
	3.6.1	SHTS Circulator	25
	3.6.2	PHTS Check Valve	25
3.7	INPUTS	5 INTO CTF	25
3.8	Refer	ENCES	25
APP	endix A	: TRL RATING SHEETS	26
APP	endix B	: TECHNOLOGY DEVELOPMENT ROAD MAP	35
APP	endix C	: TECHNOLOGY MATURATION PLAN	37
	S MM. PRI 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 APP APP APP	Section MMARY AI PRIMARY 3.1 FUNCT 3.2 DESIGN 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.3 TRL S 3.4 TECHN 3.4.1 3.5 TECHN 3.6.1 3.6.2 3.7 INPUTS 3.8 REFER APPENDIX A APPENDIX C	Section Title MMARY AND CONCLUSIONS

LIST OF TABLES

Table 3-1: 1	NGNP PHTS Circulator Design Requirement	11
Table 3-2: 7	Trade Studies Recommended for the PHTS Helium Circulators	20
Table A-1:	Technology Readiness Levels for the Reference PHTS	27
Table A-2:	Technology Readiness Levels for the Reference PHTS	29
Table A-3:	Technology Readiness Levels for the Reference PHTS	31
Table A-4:	Technology Readiness Levels for the Reference PHTS	33

LIST OF FIGURES

Figure 3-1 Design Options of the PHTS Circulator	13
Figure 3-2 PHTS Circulator Development Logic	24
Figure B-1: Technology Development Road Map – Circulator	36

ACRONYMS & ABBREVIATIONS

Acronym	Definition
AI	Inner Annulus (active cooling piping)
AMS	Activity Measurement System
AO	Outer Annulus (active cooling piping)
AOO	Anticipated Operational Occurrence
AS	Automation System
ASME	American Society of Mechanical Engineers
AVR	Arbeitsgemeinschaft Versuchs-Reaktor
BOP	Balance of Plant
BUMS	Burn-up Measurement System
СВ	Core Barrel
CCS	Core Conditioning System
CEA	Commissariat à l'Énergie Atomique
CFD	Computational Fluid Dynamics
CHE	Compact Heat Exchanger
CIP	Core Inlet Pipe
CO2	Carbon Dioxide
COC	Core Outlet Connection
COP	Core Outlet Pipe
COTS	Commercial Off The Shelf
CRADA	Co-operative Research and Development Agreement
CRD	Control Rod Drive
CSC	Core Structure Ceramics
CTF	Component Test Facility
CTF	Component Test Facility
CUD	Core Unloading Devices
DAU	Data Acquisition Unit
DBA	Design Base Accident
DBE	Design Base Event
DDN	Design Data Need
DFC	Depressurized Forced Cooling
DLOFC	De-pressurized Loss of Forced Cooling
DOE	Department of Energy
DPP	Demonstration Power Plant
DRL	Design Readiness Level
DWS	Demineralized Water System
ELE	Elecrolyser System
EM	Evaluation Model
EMB	Electomagnetic Bearing
EOFY	End of Fiscal Year
EPCC	Equipment Protection Cooling Circuit
EPCT	Equipment Protection Cooling Tower

	Europtional and Operational Deguinements
FAUN	
ГПО	Fuel Handling and Storage System
	Ficcione por Initial Motal Atoms
	Fissions per initial Metal Atoms
	Fuel Spheres
	Fault Tree Analysis
F03	
н2304 НС	Holium Circulator
ПЕ	Height Equivalent of the theoretical Plate
	Hudro Iodio
	High Level Waste
НРВ	Hellum Pressure Boundary
HPC	High Pressure Compressor
HPS	Helium Purification System
HPS	Hydrogen Production System
HPT	High Pressure Turbine
HPU	Hydrogen Production Unit
HRS	Heat Removal System
HTF	Helium Test Facility
HTGR	High Temperature Gas-Cooled Reactor
HTR	High Temperature Reactor
HTS	Heat Transport System
HTSE	High Temperature Steam Electrolysis
HTTR	High Temperature Test Reactor
HVAC	Heating Ventilation and Air Conditioning
HX	Heat Exchanger
HyS	Hybrid Sulfur
I&C	Instrumentation and Control
12	lodine
ID	Inner Diameter
IHX	Intermediate Heat Exchanger
ILS	Integrated Laboratory Scale
I-NERI	International Nuclear Energy Research Initiative
INL	Idaho National Laboratory
INL	Idaho National Laboratory
IPT	Intermediate Pressure Turbine
ISR	Inner Side Reflector
K-T	Kepner-Tregoe
KTA	German nuclear technical committee

LPT	Low Pressure Turbine
MES	Membrane-electrode assembly
MTR	Material Test Reactor
NAA	Neutron Activation Analysis
NCS	Nuclear Control System
NGNP	Next Generation Nuclear Plant
NHI	Nuclear Hydrogen Initiative
NHS	Nuclear Heat Supply
NHSS	Nuclear Heat Supply System
NNR	National Nuclear Regulator
NRG	Nuclear Research and consultancy Group
NRV	Non-Return Valve
O2	Oxygen
OD	Outer Diameter
PBMR	Pebble Bed Modular Reactor
PCC	Power Conversion System
PCDR	Pre-Conceptual Design Report
PCHE	Printed Circuit Heat Exchanger
PCHX	Process Coupling Heat Exchanger
PCS	Power Conversion System
PFHE	Plate Fin Heat Exchanger
PHTS	Primary Heat Transport System
PIE	Post-irradiation Examination
PLOFC	Pressurized Loss of Forced Cooling
POC	Power Conversion System
PPM	Parts per million
PPU	Product Purification Unit
PPWC	Primary Pressurized Water Cooler
QA	Quality Assurance
RAMI	Reliability, Availability, Maintainability and Inspectability
RC	Reactor Cavity
RCCS	Reactor Cavity Cooling System
RCS	Reactivity Control System
RCSS	Reactivity Control and Shutdown System
RDM	Rod Drive Mechanism
RIM	Reliability and Integrity Management
BIT	Beactor Inlet Temperature
BM	Road Map
BOT	Beactor Outlet Temperature
BPS	Beactor Protection System
RPT	Beport
BPV	Beactor Pressure Vessel
BS	Beactor System
BSS	Beserve Shutdown System
BUS	Beactor Unit System
SAD	Acid Decomposition System

SAR	Safety Analysis Report
SAS	Small Absorber Spheres
SG	Steam Generator
SHTS	Secondary Heat Transport System
S-I	Sulfur Iodine
SiC	Silicon Carbide
SNL	Sandia National Laboratory
SO2	Sulfur Dioxide
SOE	Sulfuric Oxide Electrolyzers
SOEC	Sulfuric Oxide Electrolyzers Cells
SR	Side Reflector
SSC	System Structure Component
SSCs	Systems, Structures and Components
SSE	Safe Shutdown Earthquake
SUD	Software Under Development
TBC	To Be Confirmed
TBD	To Be Determined
TDL	Technology Development Loop (As incorporated in Concept 1)
TDRM	Technology Development Road Map
TER	Test Execution Report
THTR	Thorium High Temperature Reactor
TRISO	Triple Coated Isotropic
TRL	Technology Readiness Level
TRM	Technology Road Map
UCO	Uranium Oxycarbide
UO2	Uranium Dioxide
USA.	United States of America
V&V	Verification and Validation
V&Ved	Verified and Validated
VLE	Vapor-Liquid Equilibrium
WBS	Work Breakdown Structure
WEC	Westinghouse Electric Company

SUMMARY AND CONCLUSIONS

The PHTS circulator is a critical component of the NGNP with its main function being to circulate the primary coolant helium within the PHTS. The PHTS circulator primarily needs to overcome the pressure losses associated with the PHTS flow path (notably including the PBMR, the hot gas ducting and IHX). After leaving the circulator, helium flows through the reactor core where it removes approximately 500 MWt energy. From there the helium flows to the IHX where the energy removed from the core, along with the compression energy added by the circulator, is transferred to the SHTS.

Discriminators have been identified to assist in the selection of an optimum design for the PHTS circulator. These discriminators address the required technology development, the availability of a manufacturing base, the circulator operation and maintenance, the safety and investment implications and the lifecycle costs.

Several arrangements and design options are available for the PHTS helium circulator that satisfy the preconceptual functions and design requirements. The large PHTS circulator can be replaced by a number of smaller circulators arranged in parallel. The trade-offs of one versus multiple circulators also have system-level trade-offs (controllability, reliability, size, etc.), as documented in NGNP-HTS-RPT-TI001 Section 3.5.3. Hence, the decision of single versus multiple circulators will be influenced by a combination of system-level and circulator-specific trade-offs.

The compressor drive can be located inside or outside of the helium pressure boundary and the bearings can be conventional oil lubricated or electromagnetic. The type of bearings selected imposes additional requirements for dedicated service systems for support. Additionally, the compressor design can be of the radial, axial type or mixed flow (axial/radial), depending upon the economics, required efficiency, available space within the primary pressure boundary, and the maintenance intervals. For axial and mixed flow compressors, there is the further option of selecting a single versus multiple stage configuration.

Hence, several design selections remain to be made. It is not clear at this point if the drive should be submerged or located outside the primary pressure boundary. The same applies for the use of magnetic versus oil lubricated bearings and the selection of more than one circulator in parallel for the PHTS loop. Trade studies are recommended to select the design option that is best suited for the NGNP plant (at component, system and component/system level). The only key design selection provided by reference documentation [3-1] is an electric drive for the circulator.

Based on engineering judgment, two design options are proposed to which sound TRL ratings are assigned in Appendix A. The first design option is a submerged circulator with

magnetic bearings and the second design option is a circulator located outside the pressure boundary with oil lubricated bearing and rotating seals at pressure boundary. It should be noted that these design options as well as all work in this TDRM are based on current knowledge, engineering judgment and experience and remains to be supported by trade studies.

All the circulator sub-components have a TRL of 8 (except for the EMBs and primary pressure boundary rotating seals if included in the design), while the integrated assembly of these components as a subsystem has a TRL of 6 because it has not been demonstrated in a loop similar to the PHTS within a relevant environment. Following the selection of a reference circulator design, the circulator components that require technology development will be validated with supporting single effect tests. After that, the circulator subsystem will be validated with a partial scale or full-scale integrated test, subsequently qualifying the subsystem at a TRL of 7. Advancement to a validated TRL 8 will comprise the final integrated tests of the PHTS circulator prototype to take place in the first NGNP nuclear power plant.

Based on current pressure loss estimates, the PHTS pressure losses are expected to be larger than the SHTS pressure losses. Since the PHTS pressure losses are larger than the SHTS pressure losses and since the PHTS operates at a higher temperature, the PHTS circulator is expected to envelope the SHTS circulator and hence only the PHTS circulator will be discussed. It is assumed that the PHTS circulator testing can be applied to the SHTS circulator also and hence do not warrant a separate discussion.

The PHTS check valve functionally forms an integral part of the circulator and therefore will be tested as part of the circulator. It is recognized that design development will be required qualify the valve. At this stage no technology development is envisioned to the point where advance testing is required. However, as the design evolves unique tests might be identified which will be included at the appropriate time.

3 PRIMARY HEAT TRANSPORT SYSTEM (PHTS) CIRCULATOR

3.1 Function and Operating Requirements

During the NGNP preconceptual design phase [3-1] an electric-driven circulator was selected as the reference design to circulate the primary coolant helium within the PHTS. The PHTS circulator primarily needs to overcome the pressure losses associated with the PHTS flow path (notably including the PBMR, the hot gas ducting and IHX). After leaving the circulator, helium flows through the reactor core where it removes approximately 500 MWt energy. From there the helium flows to the IHX where the energy removed from the core, along with the compression energy added by the circulator, is transferred to the SHTS.

The circulator nominal operating conditions are summarized in Table 3-1. Under these conditions the required pumping power is 10.8 MWt. The circulator is located in the cold leg of the PHTS at the IHX exit and its piping and support structure could allow for a vertical or horizontal configuration. A self-acting check valve will be integrated with the circulator assembly or elsewhere in the PHTS cold-leg piping to limit backflow through the PHTS loop. The location of the circulator in the Nuclear Heat Supply building will allow for periodic maintenance and/or replacement during the life of the plant.

Parameters	PHTS Loop		
Douformanas Doguinamenta			
Performance Requirements			
Core power, MWt	500		
Rotor shaft power, MWt	10.8		
He flow rate, kg/s	159.6		
Inlet He temp., C	337		
Inlet He press, MPa	8.626		
Outlet He temp., C	350		
Outlet He pressure, Mpa	9.0		
Circ press rise, kPa	374		
Compression ratio	1.043		
Inlet density, Kg/m ³	6.81		

Table 3-1: NGNP PHTS Circulator Design Requirement

3.2 Design Selection Status

3.2.1 Candidate Circulators

Several arrangements and design options are available for the PHTS helium circulator that satisfy the preconceptual functions and design requirements. The large PHTS circulator can be replaced by a number of smaller circulators arranged in parallel. The compressor drive can be located inside or outside of the helium pressure boundary and the bearings can be conventional oil lubricated or electromagnetic. The type of bearings selected imposes additional requirements for dedicated service systems to support them. Additionally, the compressor design can be of the radial, axial type or mixed flow (axial/radial), depending upon the economics, required efficiency, available space within the primary pressure boundary, and the maintenance intervals. For axial and mixed flow compressors, there is the further option of selecting a single versus multiple stage configuration.

Figure 3-1 shows a schematic that illustrates how all the design options of the PHTS circulator are interconnected. The map has been color-coded to identify in green the design options that, at least at this pre conceptual design level, appear to require less design and technology development. This first assessment needs to be confirmed by furthering the design of the circulator and by trade studies that compare the advantages and disadvantages of the various design options using the decision discriminators specified in Section 3.2.2.

The left side of Figure 3-1 relates to the selection of the drive for the circulator impeller. An electric motor drive was recommended in [3-1] that is likely to be a synchronous with variable speed. This motor can be either located inside the primary pressure boundary (submerged) or outside this boundary (as shown in Figure 3-1).

Figure 3-1 Design Options of the PHTS Circulator

For the case in which the circulator motor is located inside the primary pressure boundary, either oil lubricated or magnetic bearings can be used. The former have been used with submerged circulators in the early British gas-cooled reactors and in the German THTR. The drawbacks of oil lubricated bearings are the potential for oil ingress into the reactor cooling loop, the flammability of oil, and the need for dedicated oil service modules which must be kept in an inert atmosphere in order to avoid potential fires. On the other hand, magnetic bearings require some technology development to understand their response during design transients (e.g. seismic events) and during the shaft run down on catcher bearings following a loss of the magnetic field. Recent progress in the magnetic bearing design and the advantage of not having to deal with oil inside the primary pressure boundary has made this option more appealing. At the moment, magnetic bearings are the preferred choice because of the progress made in recent years in sensing and controlling the shaft position, their proliferation in several industrial applications and because of the advantage of not having to deal with oil. On the other hand, considering the substantial operating experience that has been accumulated with submerged oil bearings in previous gas cooled reactors, oil lubricated bearings should not be excluded. In Section 3.5 down selection tasks are recommended to address these design options.

Locating the circulator's electric motor outside the primary pressure boundary alleviates the concern with oil ingress in the reactor core, but introduces the complication of external rotating seals along the compressor shaft. These seals must be highly reliable to prevent leakage of pressurized helium from the PHTS during steady state and transient operations. It is conceivable that these seals will require the use of purified buffer helium to separate the primary coolant from the air outside the pressure boundary and a helium recovery system to separate and recover the helium from the exhaust buffer stream. It should be noted that the experience gained in this area from the PBMR Demonstration Power Plant (DPP) turbo machinery could be a valuable support for using these external rotating seals. The arrangement with the motor outside can use either oil lubricated or magnetic bearings. Oil lubricated bearings seem in this case to be the preferred choice in view of the large experience with this type of bearings and in view of the fact that oil ingress in the reactor is not a concern. On the other hand, magnetic bearings cannot be excluded because of the advantages of removing the need for a dedicated oil supply and purification modules, plus related fire hazards. In Section 3.5 down selection tasks are recommended to address these design options.

The right side of Figure 3-1 relates to the selection of the type of the circulator impeller. Two types of compressors are available for this application: radial and axial. The selection of one versus the other depends upon several factors, including rotational speed and consequently diameter of the compressor disk, number of stages, and required efficiency – and notably also the economics. The selection of the type of impeller for the PHTS circulator is not further discussed because it is part of the design process and does not require technology development.

The integration of the PHTS circulator into the NHSS influences the design selection. A few considerations are applicable:

- The circulator should be located in the cold leg of the PHTS loop, because of the sensitivity of their electric components and blade material to high temperatures, plus impacts on efficiency and power requirements.
- For multiple parallel circulators, a check valve or other means must be included in conjunction with each circulator to prevent backflow during reactor core shutdown cooling with the Core Conditioning System and/or to isolate a circulator if more than one is arranged in parallel.
- Care must be taken to locate the circulator impeller away from large surfaces that could be affected by acoustic loads. Strengthening of the surrounding PBMR around the circulator is needed to prevent PB rupture as a result of impeller failure. As an alternative to strengthening the reactor vessel, the design could also consider positioning the circulator rotors to minimize the possibility of missiles impinging the reactor vessel, or include missile shields to absorb any possible debris. This may be a factor that favors radial compressors over axial compressors.
- For a design selection that locates the circulator drive within the primary pressure boundary (submerged), consideration must be given to supply and remove purified

helium to and from the driver cavity in order to prevent radionuclide contamination that will complicate maintenance.

- If oil bearings are used, provisions must be made to locate the dedicated oil bearing modules in a safe inert atmosphere environment to prevent fire.
- The failure probability and consequences must be used when determining the number and type of circulators to be employed in the PHTS.

An additional factor that could influence the integration of the circulators within the plant is the number of circulators per loop. The large pumping power required for the PHTS circulator could dictate a design option with two or more circulators in parallel to reduce the size of the electric motor. It should also be noted that the use of multiple circulators would provide redundancy, which may improve reliability / operability. The trade-offs of one versus multiple circulators also have system-level trade-offs (controllability, reliability, size, etc.), as documented in NGNP-HTS-RPT-TI001 Section 3.5.3. Hence, the decision of single versus multiple circulators will be influenced by a combination of system-level and circulator-specific trade-offs. Multiple parallel circulators have been used in several gas cooled reactors, including the Magnesium Non-Oxidizing (MAGNOX), Arbeitsgemeinschaft Versuchs Reaktor (AVR), Advanced Gas-Cooled Reactors (AGRs), Thorium Hoch Temperature Reaktor (THTR) and Fort St. Vrain (FSV).

Based on engineering judgment, two design options are proposed for the purpose of assigning TRL ratings - see Appendix A. The first design option is a submerged circulator with magnetic bearings and the second design option is a circulator located outside the pressure boundary with oil lubricated bearing and rotating seals at pressure boundary. It should be noted that these design options as well as all work in this TDRM are based on current knowledge, engineering judgment and experience. Trade studies remain to be completed relating to various design options in order to conduct a down selection for a reference circulator design, which may not necessarily entail one of the proposed design options.

3.2.2 Decision Discriminators

3.2.2.1 Introduction

Discriminators have been identified to help in the selection of an optimum design for the PHTS circulator. These discriminators address the required technology development, the availability of a manufacturing base, the circulator operation and maintenance, the safety and investment implications and the lifecycle costs.

A Kepner-Tregoe (K-T)-based comparative analysis will be used to facilitate the selection of the reference PHTS circulator design. The discriminating factors will be rated based

on the relative success with which each design meets them. Each discriminating factor will be further weighted proportionally to its perceived importance.

A summary of the K-T process was outlined in the IHX Conceptual Design Study (NGNP-HTS-RPT-TI001) in Section 3.5.3 - a similar rating and weighting scheme could be employed as basis for a circulator K-T.

3.2.2.2 Design / Technology Development

Gas circulators have been built and operated successfully in high temperature gas cooled reactors for several years. Most of these circulators have been operated in a carbon dioxide environment and some in helium. Nevertheless, due to the large pumping power required for the NGNP PHTS circulator, some new technology development could be required (alternatively multiple parallel circulator units can be employed). The following discriminating factors will aid to assist in identifying an optimal design from a developmental requirement perspective:

- What is the relevant experience base?
- Can the new technology be validated from similar proven technologies using only analytical methods?
- What testing is required? (single effects bench scale tests, integrated scaled tests, integrated full-scale prototype circulator tests)

3.2.2.3 Manufacturing and Transportability

The type of gas circulator to be used in the NGNP has not been built for several years. There are several companies capable of developing the design, validating the required technology and building this component for nuclear applications. Nevertheless it is expected that a lot of the specialized manufacturing experience has been lost, including experienced personnel. The discriminating factors to be used in this case are:

- What are the manufacturing constraints and what effort is required to overcome them?
- What are the unique manufacturing considerations?
- Have circulators with a similar design been built recently?
- What is the highest pumping power of these circulators?
- Does the manufacturing process require integration among several suppliers?
- Is a specific technology to be used for a circulator design available from several suppliers or can it only be provided by a few specialized suppliers?
- Can the circulator be transported as a single unit or must it be assembled at the site?

3.2.2.4 Operation and Maintenance

Operation and maintenance of the NGNP PHTS circulator will strongly affect by the its design selection. For example, maintenance of an electric motor located outside the primary helium pressure boundary is simpler than that of a submerged motor. On the other hand, the presence of a shaft rotating seal for the motor located outside the pressure boundary requires additional maintenance. The discriminating factors to be used in this case are:

- Does the design require specialized maintenance tools?
- Does the design require remote handling for maintenance?
- How often must the entire circulator assembly be replaced for maintenance?
- Can periodic maintenance be performed in place (without removing the circulator)?
- Does the design require the development of specialized instrumentation and control software?
- What is the operational performance (efficiency, transients, surge, etc.)?

3.2.2.5 Safety and Investment Protection

For the design selection in which the circulator motor is located outside the primary pressure boundary the key safety and investment risk for the NGNP PHTS circulator is the potential leakage of contaminated primary helium through the shaft rotating seal during normal operations and accident conditions. For the design selection with a submerged circulator and oil bearings, the key investment risk is oil ingress into the primary cooling loop. Plant level analyses will be done to determine design basis transients that cover all these scenarios and evaluate their probability of occurrence and their consequences to the plant personnel and the public and the impact on the plant investment. If necessary, the PHTS circulator design will be modified to satisfy the plant safety and investment goals.

3.2.2.6 Lifecycle Cost

Cost and impact on the plant schedule (indirect cost) will be evaluated for each of the PHTS circulator designs. The discriminating factors to be used in this case are:

- Design development cost (non-recurring)
- Capital cost (recurring) of circulator integrated into PHTS
- Operating and Maintenance costs (recurring)
- Impact on the plant schedule (non-recurring)

3.2.3 Reference Design

The present reference design for the PHTS circulator is described in Section 6.2.1.2.3 of the PCDR [3-1]. The only key design selection provided by this high level description is an electric drive for the circulator.

3.2.4 Alternatives for Further Evaluation

There are several design selections that are still to be made, as described in Section 3.2.1. It is not clear at this point if the drive should be submerged or located outside the primary pressure boundary. The same applies for the use of magnetic versus oil lubricated bearings and the selection of more than one circulator in parallel for the PHTS loop.

The degree to which the circulator options respond to the plant-level and NHSS functions and requirements will be analyzed and compared with each other on the basis of similar operating experience, recent applicable circulators designs, and engineering judgment. Decision discriminators will be used to facilitate this selection. The proposed trade studies will form a basis for the selection of a reference design. These studies should be done with the support of qualified gas circulator vendors.

3.2.5 Down Selection Task

Several design candidates have been identified for the PHTS circulator in Section 3.4.1. Trade studies are recommended to select the design option that is best suited for the NGNP plant. Some of these trade studies will be done at the system design level in order to provide clear requirements to the designers of the circulators. Other trade studies will be done at the component level to select a circulator design that best optimizes often conflicting requirements. A third type of trade study requires the close collaboration and interfacing between the system and component designers. Table 3-2 lists the recommended trade studies.

Trade studies identified as "System Level" are presumed to be done by the PHTS systems designers, trade studies identified as "Component Level" are presumed to be done by the circulators suppliers and, trade studies identified as "System/Component Level" are presumed to be done in close collaboration between the system and component designers.

Tr	Recommended ade Studies	System Level	Component Level	System/Component Level
a)	Number of circulators per loop			х
b)	Location of the circulators in each loop	Х		
c)	Horizontal versus vertical orientation			х
d)	Selection of circulators' drive.	Х		
e)	Type of motor cooling (water versus helium)			Х
f)	Submerged versus external circulators' drive			Х
g)	Oil lubricated versus magnetic bearings			х
h)	Radial versus axial compressors		х	
i)	Single versus multistage compressors		Х	
j)	Overhung versus supported compressor shaft		Х	
k)	Number of blades per stage, blades dimensions & shape, materials selection		х	

Each of these trade studies will evaluate the technical maturity of each subsystem design, establish the availability of the suppliers, perform a Reliability, Availability, Maintainability and Inspectability (RAMI) analysis and supporting plant level analyses to develop a mature reference circulator design with the best relative costs and impact on the plant schedule.

3.3 TRL Status of PHTS Circulator

The reference design of the PHTS circulator subsystem (see Section 3.2.3) has been classified at a TRL of 6. This classification was based on the fact that similar helium circulators have been successfully used in other relevant applications in a nuclear environment. The six THTR submerged helium circulators used oil bearings with a pumping power of 2.3 MW (each). The higher power submerged AGRs circulators (up to 5.4 MW) used also oil bearings in a in

CO2 environment. A relevant application of externally located gas circulators in a nuclear environment is provided by the 10.9 MW variable speed motors for the AGR at Windscale. For this application rotating shaft dry gas seals were used at the primary pressure boundaries.

Table 3.3 summarizes nominal operating conditions for key gas circulators previously used in the nuclear industry.

		AVR	PB	THTR	FSV	AGR
		Не	He	He	Не	CO2
Reactor Power	MWt	46	115	750	850	1500
Core inlet temp.	С	260	344	250	405	286
Core outlet temp.	С	960	728	750	775	675
Blower inlet temp	С	251	331	250	395	282
Blower inlet pressure	MPa	1.00	2.34	3.8	4.73	3.81
Mass flow per circ.	kg/s	6.4	30	51	126	476
Pressure ratio	-	1.01	1.03	1.03	1.02	1.09
Blower inlet density	kg/m ³	0.9	1.85	3.49	3.41	36.9
Number of circ.		2	2	6	4	8
Туре		radial	radial	radial	axial	radial
Motor configuration		submerged	submerged	submerged	submerged	submerged
Blower speed	rpm	4,000	3,460	5,600	9,550	2770
Blower motor power	MWe	0.16	1.5	2.3	3.95	5.37

Table 3.3 Prior Experience with Gas Circulator in the Nuclear Industry

Applicable industrial experience in electro magnetic bearings is provided by Siemens that built 26 MW motors for the gas pipeline compressors in the Netherlands that operate on Waukesha EMBs. On the other hand, none of the previous applications is an exact match of what could become the new PHTS circulator reference design after the trade studies, because of the demand for a high pumping power in a helium environment and the possibility of using EMBs.

Section 0 provides a detailed explanation of the design and technology readiness levels of the PHTS circulator subsystem and its components. The Table shows that, although all the circulator components have a TRL of 8 (except for the EMBs and primary pressure boundary rotating seals if included in the design), and the integrated assembly of these components as a subsystem has a TRL of 6 because it has not been demonstrated in a loop similar to the PHTS within a relevant environment.

The applicable TRL Sheets are attached in Appendix A.

3.4 Technology Development Road Map Summary

3.4.1 Overview

The PHTS circulator design is only at a preconceptual level. The TDRM identifies several design options that have to be addressed during the plant conceptual design phase and trade studies that will justify a selection of a more mature reference design. In addition the TDRM proposes selection criteria that will support this design selection.

Once a mature reference design is selected, the technologies of this design will be validated in two major areas.

The first area includes the validation of technologies not previously used in similar circulators or used in non-nuclear relevant applications. Typical examples of these technologies are the EMBs with their catcher bearings and the shaft external rotating seals if the electric motor is located outside the pressure boundary. It is conceivable that single effects tests can address this first area of development.

The second area in which some technology development is required is the validation of a partial or a full-scale circulator model in a relevant environment. This validation will verify that each component of the circulator subsystem performs within its specifications.

The PHTS Circulator Technology Development Road can be seen in Appendix B while the maturation tasks are described below.

3.5 Technology Maturation Plan Summary

The Technology Maturation Plan required to mature this technology to a TRL of 8 is attached in Appendix C.

The section below describes the maturation tasks needed to advance the technology of the PHTS Circulator from a validated TRL 6 to a validated TRL 8.

Advancement to a validated TRL 7 will require parallel execution of firstly the design and fabrication of the PHTS circulator with the circulator test facility and secondly the development of the required sub-component technologies (EMB's, CB tests, Helium external rotating shaft seals tests). During the conceptual design phase, trade studies will support the down selection from various design options and a mature reference design will be established (see Figure 3-2). The components tests will be done during preliminary design to validate the selected technologies. The test facility (either partial of full-scale) will be constructed in parallel with the circulator construction as part of detail design. Advancement to a validated TRL 8 will comprise the final integrated tests of the PHTS circulator to take place in the first NGNP nuclear power plant.

12/9/2008

3.6 SHTS Circulator and PHTS Check Valve Technology Development

3.6.1 SHTS Circulator

Based on current pressure loss estimates, the PHTS pressure losses are expected to be larger than the SHTS pressure losses. Since the PHTS pressure losses are larger than the SHTS pressure losses and since the PHTS operates at a higher temperature, the PHTS circulator is expected to envelope the SHTS circulator and hence only the PHTS circulator will be discussed. It is assumed that the PHTS circulator testing can be applied to the SHTS circulator also and hence do not warrant a separate discussion.

3.6.2 PHTS Check Valve

The PHTS check valve functionally forms an integral part of the circulator and therefore will be tested as part of the circulator. It is recognized that design development will be required to qualify the valve. At this stage no technology development is envisioned to the point where advance testing is required. However, as the design evolves unique tests might be identified which will be included at the appropriate time.

3.7 Inputs into CTF

The PHTS circulator may be tested in the CTF for qualification of a TRL 7.

3.8 References

[3-1] NGNP-06-RPT-003, Rev0, April 2007 – NGNP and Hydrogen Production Preconceptual Design Report

Appendix A: TRL Rating Sheets

Table A-3: Technology Readiness Levels for the Reference PHTS

Circulator

TRL Rating Sheet						
Vendor Name: Document Number: Revision:						
□ Island □ System ☑ S	□ Island □ System ☑ Subsystem/Structure □ Component □ Technole					
Title: PHTS Circulator Subsys	tem					
Description:						
A circulator driven by an electric-motor was selected to move the primary coolant helium within the PHTS. For the purpose of defining its readiness level, the circulator is classified as a subsystem within the PHTS. The circulator subsystem comprises of five components: the impeller and the rotating shaft, the bearings with their supports, stationary and rotating seals (external or internal), the electric motor with its cooling system and the required instrumentation and controls.						
Island(s): □ NHSS ☑	ÍHTS 🗆 HPS	\square PCS \square BC)P			
ISSCTBS: N/A Parent: N/A WBS: N/A						
Technology Readiness Level						
	Next Lower Rating	Calculated Rating	Next Higher Rating Level			
Generic Definitions (abbreviated)	Component Verified at Experimental Scale	Subsystem Verified at Pilot scale	System demonstration at Engineering Scale			
TRL	5	6	7			
Basis for Rating (Attach additional sheets as needed) There is relevant operating experience with gas circulators in several gas-cooled reactors that have been built and tested. There is experience with similar helium circulators in THTR and HTTR.						
Outline of a plan to get from current level to next level (Attach additional sheets as needed)						
Following the selection of a reference circulator design, the circulator components that require technology development will be validated with supporting single effect tests. After that, the circulator subsystem will be validated with a partial scale or full-scale integrated test.						
Actions (list all)		Schedule	Cost (K\$)			

• Validation of EMBs, if the	August 2010					
bearings.				Refer to Section		
• Validation of primary bo	undary ex	ternal rotating	August 2010	C3		
seals, if the electric motor is						
• Integrated test of a partia	August 2013					
the circulator subsystem						
DDN(s) supported: None						
		<u> </u>				
Subject Matter Expert Making Determination: G. Baccaglini	Originating Org	ganization: Techno	ology Insights			
Date: 3 September 08						

Table A-4: Technology Readiness Levels for the Reference PHTS

Circulator

TRL Rating Sheet								
Vendor Nan	Vendor Name: Document Number: Revision:							
□ Island	□ System ☑	Sub	system/Structure		Compo	onent 🗆	Technology	
Title: PHTS Circulator Components – Impeller and Shaft/ Oil Bearings and Bearing Supports/ Seals (rotating & stationary)/ Electric Motor/ Instrumentation & Control								
Description:								
The impelle supported by	r and shaft assemb y the bearings asser	ly c nbly	omprises of the en	ntire	rotatin	g section of	the circulator that is	
This bearings and bearing support comprise of the bearings housing, its supports, the bearings auxiliary systems and the required control and instrumentation. The TRL rating of this sheet applies only if the mature circulator conceptual design uses oil bearings and a submerged motor (non rotating seals at the primary boundary). Specific TRL sheets have been develop (see Tables A-4 and A-5) for a conceptual design with EMBs and the motor outside the primary boundary. The use of electromagnetic versus oil bearings will be determined by the scheduled trade studies.								
The assembly of the rotating and stationary seals comprises of the stationary seals if this motor is submerged (at the primary pressure boundary flange) and the internal rotating seals required to isolate the submerged motor cavity for maintenance access (between the impeller and the electric motor cavity).								
The electric cooling syst	motor assembly c em.	omp	orises of the electr	ric m	notor it	self, the mo	tor supports and the	
The instrumentation and control assembly comprises of the hardware and software required to control the entire circulator subsystem while interfacing with local bearings and electric motor controls.								
Island(s):	Island(s): \Box NHSS \Box HTS \Box HPS \Box PCS \Box BOP							
ISSCTBS: N/	ISSCTBS: N/A Parent: N/A WBS: N/A							
Technology Readiness Level								
			Next Lower Rati Level	ng	Calcu	lated Rating	Next Higher Rating Level	
Generic Definiti	ons (abbreviated)		System demonstration at Engineering Scale		Integra Protot and Q	ated ype Tested ualified	Plant Operational.	
TRL			7			8	9	

Basis for Rating (Attach additional sheets as needed)

There is operating experience with gas circulators with similar components in several industrial applications and in gas-cooled reactors. There is experience with similar helium circulators in THTR and HTTR.

Outline of a plan to get from current level to next level (Attach additional sheets as needed)

The PHTS circulator components, integrated in the circulator prototype, will be verified in the NGNP when the performance of the circulator in its final configuration is verified during preoperational testing in hot operational environment. Successful completion of the NGNP preoperational tests will qualify the circulator assembly as TRL 9.

Actions (list all)	Schedule	Cost (K\$)			
 Test the circulator protection of the PHTS loop, to verify loop subsystems It is noted that the circulator 	August 2016	Refer to Section 17			
helium, and air or a mixture					
DDN(s) supported: None	Technology Case	File:			
Subject Matter Expert Making Determination: G. Baccaglini					
Date: 6 August 08	ate: 6 August 08 Originating Organization: Technology Insights				

Table A-5: Technology Readiness Levels for the Reference PHTS

Circulator

TRL Rating Sheet								
Vendor Name: Document Number:						Revisio	on:	
□ Island □	System	Sub	system/Structure		Compo	nent 🛛	Technology	
Title: PHTS Circulator EMBs and Their Support								
Description:								
The EMBs comprise of the radial and axial bearings, the CBs, their supports, the bearings auxiliary systems and the required control and instrumentation. The TRL rating of this sheet applies only if the mature circulator conceptual design selects EMBs to support the circulator shaft.								
Island(s):	Island(s): \Box NHSS \Box HTS \Box HPS \Box PCS \Box BOP							
ISSCTBS: N/A Parent: N/A				WBS: N/A				
Technology Readiness Level								
			Next Lower Rating	g	Calcu	lated Rating	Next Higher Rating Level	
Generic Definitions (abbreviated)			Component Verified at Experimental Scale		Subsystem Verified at Pilot scale		System demonstration at Engineering Scale	
TRL			5		6		7	
Basis for Ratin	g (Attach additio	onal	sheets as needed)				_	
There is operating experience with EMBs in several industrial applications, but not in gas-cooled reactors. Applicable industrial experience is provided by Siemens that built 26 MW motors for the gas pipeline compressors in the Netherlands that operate on Waukesha EMBs and several other Waukesha industrial applications								
Outline of a plan to get from current level to next level (Attach additional sheets as needed)								
Following the selection of a reference circulator design, the EMBs performance will be validated with engineering scale tests After that, they will be included in the circulator subsystem that will be validated with a partial or full-scale integrated test.								
Actions (list all	l)				Sche	dule	Cost (K\$)	

Actions (list all)	Schedule	Cost (K\$)	
--------------------	----------	------------	
• Validation of EMBs, if they are selected over oil bearings.		August 2010	Refer to Section 17
---	--	-------------------	------------------------
DDN(s) supported: None		Technology Case	File:
Subject Matter Expert Making Determination: G. Baccaglini			
Date: 6 November 08 Originating Organization: T		chnology Insights	

Table 3-6: Technology Readiness Levels for the Reference PHTS

Circulator

TRL Rating Sheet				
Vendor Name: Document Number: Revision:				
□ Island □ System ☑ S	Subsystem/Structure		Technology	
Title: PHTS Circulator Primary	Boundary Rotating Sea	lls		
Description:				
The primary boundary rotating s and the buffer helium recovery circulator conceptual design sele	seals comprise of the sea system. The TRL rating tets a circulator motor lo	Is housing, the buffe g of this sheet applie cated outside the prin	er gas supply system s only if the mature nary boundary.	
Island(s): □ NHSS ☑	HTS 🗆 HPS	\Box PCS \Box B	OP	
ISSCTBS: N/A	Parent: N/A	WBS: N/A		
	Technology Readiness	Level		
	Next Lower Rating Level	Calculated Rating	Next Higher Rating Level	
Generic Definitions (abbreviated)	Component Verified at Experimental Scale	Subsystem Verified at Pilot scale	System demonstration at Engineering Scale	
TRL	5	6	7	
Basis for Rating (Attach additional sheets as needed) There is operating experience with primary boundary rotating seals in several industrial applications, but not in gas-cooled reactors. Applicable industrial experience is provided for example by the John Crane company with their single, tandem, or triple seal cartridge designs.				
Outline of a plan to get from cur	rent level to next level (A	Attach additional she	ets as needed)	
Following the selection of a reference circulator design, the primary boundary rotating seals performance will be validated with engineering scale tests After that, they will be included in the circulator subsystem that will be validated with a partial or full-scale integrated test.				
Actions (list all)	Schedule	Cost (K\$)		
• Validation of primary bo seals, if the electric motor is	August 2010	Refer to Section 17		

DDN(s) supported: None		Technology Case File:
Subject Matter Expert Making Determination: G. Baccaglini		
Date:6 November 08Originating Organization: Technology Insights		chnology Insights

Page 34 of 50

Appendix B: Technology Development Road Map

NGNP-CTF MTECH-TDRM-003_Rev1-final.doc

Appendix C: Technology Maturation Plan

TABLE OF CONTENTS

	Section	Title	age
C1	TECHNOL	OGY MATURATION PLAN - TRL 6 TO TRL 7	. 40
	C1.1TECHN	NOLOGY MATURATION PLAN SUMMARY	. 40
	C1.1.1	Objectives	. 40
	C1.1.2	Scope	. 40
	C1.1.3	Anticipated Schedule	. 41
	C1.1.4	Overall Cost	. 41
	C1.2 TEST S	PECIFICATIONS	. 41
	C1.2.1	Electro Magnetic Bearings (EMBs), and Catcher Bearings Test Specification	n 41
	C1.2.2	Helium Rotating Seals Test Specification	. 43
	C1.2.3	Partial or Full Scale Circulator Model Test Specification	. 44
C2	TECHNOL	OGY MATURATION PLAN FOR PHTS CIRCULATOR (TRL 7 TO	
	TRL 8)		. 47
	C2.1 TECH	NOLOGY MATURATION PLAN SUMMARY	. 47
	C.2.1.1	Objectives	. 47
	C2.1.2	Scope	. 47
	C2.1.3	Anticipated Schedule	. 47
	C2.1.4	Overall Cost	. 48
	C2.2 TEST S	PECIFICATIONS	. 48
	C2.2.2	Prototype Circulator Test Specification	. 48

REQUIRED SPECIFICATIONS/TEST TO ACHIEVE NEXT TRL

TRL 6 to TRL 7:

- Specification 1: Electro Magnetic Bearings (EMBs), and Catcher Bearings Test Specification
- Specification 2: Helium Rotating Seals Test Specification
- Specification 3: Partial or Full Scale Circulator Model Test Specification

TRL 7 to TRL 8:

• Specification 1: Prototype Circulator Test Specification

C1 TECHNOLOGY MATURATION PLAN - TRL 6 TO TRL 7

C1.1 TECHNOLOGY MATURATION PLAN SUMMARY

C1.1.1 Objectives

The purpose of this Technology Maturation Plan is to describe the activities required to advance the maturity of the technology for the PHTS circulator from a TRL of 6 to a TRL of 7. Some of the maturations tasks required to achieve this goal involve the validation of the performance of the EMBs, if they are selected over oil bearings, in helium and in a nuclear environment and the validation of primary boundary external rotating seals, if the circulator electric motor is located outside the pressure boundary. A verification of the external rotating seals technology is required because of the safety implications of accidental leaks of contaminated primary coolant through the external rotating seals dictates a more rigorous verification of the technology maturity. These tasks will be followed by an integrated test of a partial or full-scale model of the circulator subsystem that will complete its maturation to a TRL of 7. This integrated test is required because some of the operating conditions and design features to be used in the NGNP (depending on which PHTS circulator reference design will be selected) do not match the experience with similar circulators used in previous gas cooled reactors.

Planning for full scale testing introduces severe risk in terms of time scales before definitive results are achieved. Scaled testing is expected to provide adequately addressed technical issues. However, it needs to be recognised that the step from scaled to full-scale could possibly introduce unexpected risks.

The technology maturation tasks from TRL 6 to 7 will be done in parallel with the design and fabrication of the circulator itself. A mature circulator reference design will be developed from the various design options by the end of the conceptual design phase with the support of trade studies. Once a mature reference design is achieved, ad hoc tests will validate some of the technologies used in the circulator assembly, followed by the integrated test.

A Test Specification is provided to cover each of the maturation tasks as shown in Section C1.2.

C1.1.2 Scope

The maturation tasks and associated testing and other activities necessary to advance the maturity of the technology of the PHTS circulator from TRL 6 to TRL 7 are as shown below.

- Validation of the use of EMBs, if they are selected over oil bearings, for use in helium and in a nuclear environment.
- Validation of primary boundary external rotating seals if the electric motor is located outside.
- Integrated test of a partial or full-scale model of the circulator subsystem.

The tasks above will be described fully in individual Test Specifications provided in sections to follow.

C1.1.3 Anticipated Schedule

The work described by the Test Specification in this Technology Maturation Plan could be accomplished during the period FY2010 through FY2013. Work described in the Test Specifications to validate the performance of individual portions on the circulator assembly can be done in parallel.

C1.1.4 Overall Cost

Cost and schedule for the overall maturation plan with associated specifications are addressed in Section 17 of this document.

C1.2 Test Specifications

C1.2.1 Electro Magnetic Bearings (EMBs), and Catcher Bearings Test Specification

C1.2.1.1 Objectives

If electromagnetic bearings are selected by the trade studies over oil bearings for the circulator reference design, some technology development may be required since EMBs of this size have not been previously used in helium and in a nuclear environment.

The EMB subsystem comprises of the EMB rotor and stator, the rotor position sensors, the EMB control system and the associated power supplies, cabling, etc. Catcher Bearings (CB) are included to provide auxiliary and backup support for the PHTS circulator rotor when either the primary support from the EMB subsystem is not available, or when transient loads exceed its capabilities.

The objective of this task is to address, through validation tests, the following technical issues for the EMBs and CBs:

• Static and dynamic EMBs load response

- Control of shaft rotordynamic
- Modeling of EMBs redundancy features to increase reliability and verification of on-line maintenance
- Adequacy of the CB for the assigned plant duty cycle
- Validation of techniques for assessing the condition of the CBs following actuation without circulator assembly removal.

C1.2.1.2 Test Conditions

C1.2.1.2.1 Test Configuration/Set-up

A full scale model of the radial and axial EMBs with their CBs will be used to support a full scale rotor with a simulated impeller. The shaft will be rotated by an electric motor.

C1.2.1.2.2 Test Duration

The duration of this activity could be up to 12 months.

C1.2.1.2.3 Proposed Test Location

The work should likely be performed at the EMBs supplier test facility.

C1.2.1.3 Measured Parameters

The supplier is to determine the measured parameters, which may include the following:

- Rotor rotordynamic stability as a function of bearings stiffness and location during simulated startups and shutdowns.
- Loads and rotordynamic stability during rundown on CBs.
- Electric currents, temperatures, loads, shaft displacements, rotor mode shapes and amplitudes, vibration frequencies, and unbalances.

C1.2.1.4 Data Requirements

Measured parameters will be determined using recognized techniques, codes, standards, and QA that will be developed, identified, and/or agreed to as part of the test program.

C1.2.1.5 Test Evaluation Criteria

The EMBs and CBs must perform according to specifications during simulated steady state plant operating conditions and Anticipated Operational Occurrences (AOO) and Design Basis Accidents (DBA).

C1.2.1.6 Test Deliverables

Deliverables are as follows.

- Validated EMBs and CBs specifications
- Procurement requirements and specifications for EMBs and CBs
- Specifications and design of the test facility
- Test Procedure
- Report confirming that the EMBs and CBs meet all specifications and requirements

C1.2.1.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing the PHTS circulator technology for TRL 6 to TRL 7 is addressed in Sections C1.1.3 and C1.1.4. There is no or only minimal risk associated with Section C1.2.1.

C1.2.2 Helium Rotating Seals Test Specification

C1.2.2.1 Objectives

Trade studies will determine whether the PHTS circulator electric motor is submerged (inside the primary pressure boundary) or outside this boundary. If the circulator motor is submerged, internal rotating shaft seals are required to keep the motor cavity from being contaminated by the primary coolant and allow for periodic maintenance without remote handling. If the circulator motor is located outside the primary boundary, external rotating shaft seals are required to keep the primary coolant from leaking and affecting the plant personnel and eventually the public. Rotating shaft seals are industrially available, and in the case of a submerged motor do not require technology development. For an external motor, the safety implications of accidental leaks of contaminated primary coolant dictate a more rigorous verification of the external seals technology.

The objective of this task is to address, through validation tests, the following technical issues for the helium external rotating seals:

- Leakage control during normal and off-normal operations
- Need for buffer purified helium and helium recovery
- Leakages during plant pressurized shutdowns (external motor)
- Safety related leakage monitoring system.

C1.2.2.2 Test Conditions

C1.2.2.2.1 Test Configuration/Set-up

A full scale model of the primary boundary rotating seal will be used with a simulated full scale shaft. The shaft will be rotated by an electric motor and supported by oil bearings.

C1.2.2.2.2 Test Duration

The duration of this activity could be up to 12 months.

C1.2.2.2.3 Proposed Test Location

The work should likely be performed at the test facility of the rotating seal supplier.

C1.2.2.3 Measured Parameters

The supplier is to determine the measured parameters, which may include the following: Leakages across the rotating seal as a function of pressure differential, shaft rotating speed, buffer gas flow rates, and gas pressures and temperatures.

C1.2.2.4 Data Requirements

Measured parameters will be determined using recognized techniques, codes, standards, and QA that will be developed, identified, and/or agreed to as part of the test program.

C1.2.2.5 Test Evaluation Criteria

The primary boundary external rotating seals must perform according to specifications during simulated steady state plant operating conditions and Anticipated Operational Occurrences (AOO) and Design Basis Accidents (DBA).

C1.2.2.6 Test Deliverables

Deliverables are as follows.

- Validated rotating seal specifications
- Report confirming that the rotating seal meets all specifications and requirements.

C1.2.2.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing the PHTS circulator technology for TRL 6 to TRL 7 is addressed in C1.1.3 and C1.1.4. There is no or only minimal risk associated with Section C1.2.2.

C1.2.3 Partial or Full Scale Circulator Model Test Specification

C1.2.3.1 Objectives

The PHTS circulator comprises of a rotating impeller/shaft assembly supported by EMBs or oil bearings that transmits static and dynamic loads between the stationary and rotating portions of the circulator. A water or helium cooled variable speed electric motor rotates the shaft. Rotating internal shaft seals keep the motor cavity accessible for maintenance for a design with a submerged motor or prevent primary coolant helium for escaping if the motor is located outside.

A partial or full-scale model of the circulator must be tested to verify the performance of each of its components in an integrated representative environment. This integrated test is desirable because some of the operating conditions and design features to be used in the NGNP (depending on which PHTS circulator reference design will be selected) do not match the experience with similar circulators used in previous gas cooled reactors.

At this early stage of the design, a full rather than a partial scale model of the circulator is preferred (if schedule and budget allows) because of the different scaling requirements of its various components and their complex interaction (to be confirmed at appropriate time). The test environment and the scale of the circulator model will be better defined later on when the reference design is selected. Air, nitrogen or combination of other gases will be considered for the individual circulator components and for the entire circulator tests.

The objective of this task is to address, through validation tests, technical issues for the integrated partial or full-scale circulator model which may include the following (suppliers to ultimately define tests):

- Compressor gas dynamic performance under steady state, full and part load conditions, and during design transients
- Shaft stability as it passes through its critical speeds
- Thermal performance of the motor and bearings cooling systems
- Strength of the circulator acoustic source under key operating conditions
- Verification of the clearances between the rotor and the EMBs and catcher bearings while turning the circulator on EMB system suspension
- Transition from EMBs full suspension to operation on catcher bearings under loss of power simulation
- Rotating shaft seal performance when operating from 0 rpm to the circulator maximum speed
- Verification of maintenance and handling techniques.

C1.2.3.2 Test Conditions

C1.2.3.2.1 Test Configuration/Set-up

A full or partial scale model of the circulator will be tested.

C1.2.3.2.2 Test Duration

NGNP-CTF MTECH-TDRM-003_Rev1-final.doc

The duration of this activity could be up to 18 months.

C1.2.3.2.3 Proposed Test Location

The circulator integrated tests are likely to be done at the CTF site.

C1.2.3.3 Measured Parameters

Supplier to provide measured parameters which may include the following:

- Circulator performance under steady state and transient conditions.
- Gas temperatures and pressures at the circulator inlet and outlet, circulator assembly temperatures, loads and frequency/amplitudes of vibrations.
- Acoustic intensity and frequencies at the inlet and outlet of the impeller and flow induced vibrations at the outlet.
- Rotational speed and shaft mode shapes and amplitudes.

C1.2.3.4 Data Requirements

Measured parameters will be determined using recognized techniques, codes, standards, and QA that will be developed, identified, and/or agreed to as part of the test program.

C1.2.3.5 Test Evaluation Criteria

The full or partial scale circulator must perform according to specifications during simulated steady state plant operating conditions and Anticipated Operational Occurrences (AOO) and Design Basis Accidents (DBA).

C1.2.3.5 Test Deliverables

Deliverables are as follows.

- Validated circulator model design specifications
- Report confirming that the circulator model meets all specifications and requirements

C1.2.3.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing the PHTS circulator technology for TRL 6 to TRL 7 is addressed in Sections C1.1.3 and C1.1.4. There is only minimal risk associated with Section C1.2.3.

C2 TECHNOLOGY MATURATION PLAN FOR PHTS CIRCULATOR (TRL 7 TO TRL 8)

C2.1 TECHNOLOGY MATURATION PLAN SUMMARY

C.2.1.1 Objectives

The purpose of this Technology Maturation Plan is to describe the activities required to advance the maturity of the technology for the PHTS circulator from a TRL of 7 to a TRL of 8. The final integrated tests of the PHTS circulator will take place in the first NGNP nuclear power plant.

In the first phase, the testing will take place without a heat source and the PHTS circulator will be used to move the coolant around the primary loop and provide heat of compression. The main objective of these tests is to verify the integrated performance of all the PHTS subsystems operating as a system in the first NGNP plant. More specifically, the scope for the circulator tests will be similar to that of the integrated partial or full-scale model tests done to progress it from a TRL of 6 to 7, with the difference that the remaining PHTS and SHTS subsystems will be also involved. Since the reactor core has not yet gone critical, there will still be access during and after these tests for inspection and possible design improvements of PHTS circulator(s), if necessary.

C2.1.2 Scope

The maturation task and associated testing necessary to advance the maturity of the technology of the PHTS circulator from TRL 7 to TRL 8 involves the non-nuclear testing of the circulator prototype integrated within the NGNP PHTS loop

The task above will be described fully in a test specification provided in the following section.

C2.1.3 Anticipated Schedule

The work described by the Test Specification in this Technology Maturation Plan could be accomplished during the period FY2016 through FY2018.

C2.1.4 Overall Cost

Cost and schedule for the overall maturation plan with associated specifications are addressed in Section 17 of this document.

C2.2 Test Specifications

C2.2.2 Prototype Circulator Test Specification

C2.2.2.1 Objectives

The objective of testing the circulator in helium without nuclear heat, while mounted in the PHTS loop, is too verify its interaction with the other loop subsystems in an environment that is as close as possible with the NGNP operating conditions. The heat to bring the helium to temperatures representative of the NGNP nuclear operation is provided by the circulator compression. The IHX and the bearing and motor cooling subsystems will be acting as heat sinks. The absence of nuclear heating allows access for inspections and adjustments.

The technical issues to be addressed by the prototype circulator test in helium are:

- Compressor gas dynamic performance under steady state, full and part load conditions, and during design transients
- Shaft stability as it passes through its critical speeds
- Thermal performance of the motor and bearings cooling systems
- Presence of flow induce phenomena upstream and downstream of the circulator
- Strength of the circulator acoustic source under key operating conditions and its propagation throughout the PHTS loop
- Verification of clearances between the rotor and the EMBs and catcher bearings while turning the circulator on EMB system suspension
- Transition from EMBs full suspension to operation on catcher bearings under loss of power simulation
- Rotating shaft seal performance when operating from 0 rpm to the circulator maximum speed
- Maintenance and handling techniques

It is anticipated that testing will likely be conducted in air also. This will be specified at a later stage.

C2.2.2.2 Test Conditions

C2.2.2.1 Test Configuration/Set-up

The circulator prototype will be tested in the PHTS loop mounted with all the other subsystems in helium under pressures and temperatures selected to represent as close as possible the NGNP operating environment.

C2.2.2.2.2 Test Duration

The duration of this activity is expected to be in the range of 3 months but could be as long as 12 months.

C2.2.2.3 Proposed Test Location

The circulator integrated tests in helium will be done at the NGNP site.

C2.2.2.3 Measured Parameters

The supplier is to determine the measured parameters, which may include the following:

- Circulator performance under steady state and transient conditions.
- Gas temperatures and pressures at the circulator inlet and outlet, circulator assembly temperatures, loads and frequency/amplitudes of vibrations.
- Acoustic intensity and frequencies at the inlet and outlet of the impeller and in key locations around the PHTS loop and flow induced disturbances at the inlet and outlet of the circulator assembly.
- Rotational speed and shaft mode shapes and amplitudes.

C2.2.2.4 Data Requirements

Measured parameters will be determined using recognized techniques, codes, standards, and QA.

C2.2.2.5 Test Evaluation Criteria

The prototype circulator must perform according to specifications during simulated steady state plant operating conditions and Anticipated Operational Occurrences (AOO) and Design Basis Accidents (DBA).

C2.2.2.6 Test Deliverables

Deliverables are as follows.

- Validated Circulator performance specifications in helium
- Report confirming that the circulator prototype meets all specifications and requirements.

C2.2.2.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing the PHTS circulator technology for TRL 7 to TRL 8 is addressed in Sections C2.1.3 and C2.1.4. There is only minimal risk associated with Section C2.2.2.

NGNP-CTF MTECH-TDRM-004 Revision 1

November 2008

NGNP and Hydrogen Production Conceptual Design Study

NGNP Technology Development Road Mapping Report

Section 4: Intermediate Heat Exchanger A

Function]	Printed Name and Signature	Date
Author	Name; Company:	Phil Rittenhouse Technology Insights	November 18, 2008
Reviewer	Name: Company:	Johan Markgraaff M-Tech Industrial	November 19, 2008
Reviewer	Name: Company:	Werner Koekemoer M-Tech Industrial	November 19, 2008
Reviewer	Name: Company:	Renée Greyvenstein Pebble Bed Modular Reactor	November 19, 2008
Approval	Name: Company:	Jan van Ravenswaay M-Tech Industrial	November 19, 2008

APPROVALS

Westinghouse Electric Company LLC Nuclear Power Plants Post Office Box 355 Pittsburgh, PA 15230-0355

©2008 Westinghouse Electric Company LLC All Rights Reserved

LIST OF CONTRIBUTORS

Name and Company	Date
Phil Rittenhouse (Technology Insights)	October 29, 2008
Johan Markgraaff (M-Tech Industrial)	October 29, 2008
Werner Koekemoer (M-Tech Industrial)	October 29, 2008
Renée Greyvenstein (PBMR)	October 29, 2008
Jim Nash (Brayton Energy)	October 29, 2008
George Hayner (Technology Insights)	November 2008
Roger Young (PBMR)	November 2008

BACKGROUND INTELLECTUAL PROPERTY CONTENT

Section	Title	Description
N/A		

REVISION HISTORY

RECORD OF CHANGES

Revision No.	Revision Made by	Description	Date
А	Phil Rittenhouse	Comments Review	August 18, 2008
В	Phil Rittenhouse	Formal Review	September 5, 2008
0	Phil Rittenhouse	Document for approval	September 29, 2008
0A	Phil Rittenhouse	BEA comments incorporated	October 29, 2008
1	Louisa Venter	Document for release to WEC	November 25, 2008

DOCUMENT TRACEABILITY

Created to Support the Following Document(s)	Document Number	Revision
NGNP and Hydrogen Production Preconceptual Design Report	NGNP-01-RPT-001	0

NGNP-CTF MTECH-TDRM-004_Rev1-final.doc

TABLE OF CONTENTS

Se	ction	Title	Page
4	INT	CRMEDIATE HEAT EXCHANGER A	10
	4.1	FUNCTION AND OPERATING REQUIREMENTS	10
	4.2	IHX DOWN SELECTION STATUS	12
		4.2.1 Candidate Designs and Materials	12
		4.2.2 Decision Discriminators	. 13
		4.2.3 Reference Design	. 16
		4.2.4 Summary of IHX A Down Selection Task	. 17
	4.3	TRL STATUS	. 17
	4.4	TECHNOLOGY DEVELOPMENT ROAD MAP SUMMARY	17
		4.4.1 Overview	
	4.5	TECHNOLOGY MATURATION PLAN SUMMARY	. 18
		4.5.1 Summary of Maturation Tasks – Metallic IHX A	18
		4.5.2 Summary of Maturation Tasks – Ceramic IHX A	. 19
	4.6	INPUTS INTO CTF	. 19
	4.7	REFERENCES	20
	APP	ENDIX A: TRL RATING SHEETS	
	APP	ENDIX B: TECHNOLOGY DEVELOPMENT ROAD MAP	
	APP	ENDIX C: TECHNOLOGY MATURATION PLAN – METALLIC IHX A	
	APP	ENDIX D: TECHNOLOGY MATURATION PLAN – CERAMIC IHX A	69

LIST OF TABLES

Table A-1:	Technology Readiness Levels for the IHX A (Metallic)	22
Table A-2:	Technology Readiness Levels for the IHX A (Ceramic)	24

LIST OF FIGURES

Figure B-1: TDRM for IHX A (Pages 1-4 to follow hereafter)	
Figure B-2: TDRM for IHX A (Page 1 of 4)	
Figure B-3: TDRM for IHX A (Page 2 of 4)	
Figure B-4: TDRM for IHX A (Page 3 of 4)	
Figure B-5: TDRM for IHX A (Page 4 of 4)	
Figure C-1: Proposed setup and relevant parameters in testing the unit cell	56

ACRONYMS & ABBREVIATIONS

Acronym	Definition
AI	Inner Annulus (active cooling piping)
AMS	Activity Measurement System
AO	Outer Annulus (active cooling piping)
AOO	Anticipated Operational Occurrence
AS	Automation System
ASME	American Society of Mechanical Engineers
AVR	Arbeitsgemeinschaft Versuchs-Reaktor
BOP	Balance of Plant
BUMS	Burn-up Measurement System
СВ	Core Barrel
CCS	Core Conditioning System
CEA	Commissariat à l'Énergie Atomique
CFD	Computational Fluid Dynamics
CHE	Compact Heat Exchanger
CIP	Core Inlet Pipe
CO2	Carbon Dioxide
COC	Core Outlet Connection
COP	Core Outlet Pipe
COTS	Commercial Off The Shelf
CRADA	Co-operative Research and Development Agreement
CRD	Control Rod Drive
CSC	Core Structure Ceramics
CTF	Component Test Facility
CTF	Component Test Facility
CUD	Core Unloading Devices
DAU	Data Acquisition Unit
DBA	Design Base Accident
DBE	Design Base Event
DDN	Design Data Need
DFC	Depressurized Forced Cooling
DLOFC	De-pressurized Loss of Forced Cooling
DOE	Department of Energy
DPP	Demonstration Power Plant
DRL	Design Readiness Level
DWS	Demineralized Water System
ELE	Elecrolyser System
EM	Evaluation Model
EMB	Electomagnetic Bearing
EOFY	End of Fiscal Year
EPCC	Equipment Protection Cooling Circuit
EPCT	Equipment Protection Cooling Tower

NGNP-CTF MTECH-TDRM-004_Rev1-final.doc

Acronym	Definition
F&OR	Functional and Operational Requirements
FHS	Fuel Handling System
FHSS	Fuel Handling and Storage System
FIMA	Fissions per Initial Metal Atoms
FMECA	Failure Modes, Effects and Criticality Analysis
FS	Fuel Spheres
FTA	Fault Tree Analysis
FUS	Feed and Utility System
H2	Hydrogen
H2SO4	Sulfuric Acid
HC	Helium Circulator
Не	Helium
HETP	Height Equivalent of the theoretical Plate
HGD	Hot Gas Duct
Н	Hydro-lodic
HLW	High Level Waste
HPB	Helium Pressure Boundary
HPC	High Pressure Compressor
HPS	Helium Purification System
HPS	Hydrogen Production System
HPT	High Pressure Turbine
HPU	Hydrogen Production Unit
HRS	Heat Removal System
HTF	Helium Test Facility
HTGR	High Temperature Gas-Cooled Reactor
HTR	High Temperature Reactor
HTS	Heat Transport System
HTSE	High Temperature Steam Electrolysis
HTTR	High Temperature Test Reactor
HVAC	Heating Ventilation and Air Conditioning
НХ	Heat Exchanger
HyS	Hybrid Sulfur
I&C	Instrumentation and Control
12	lodine
ID	Inner Diameter
IHX	Intermediate Heat Exchanger
ILS	Integrated Laboratory Scale
I-NERI	International Nuclear Energy Research Initiative
INL	Idaho National Laboratory
INL	Idaho National Laboratory
IPT	Intermediate Pressure Turbine
ISR	Inner Side Reflector
K-T	Kepner-Tregoe
KTA	German nuclear technical committee

NGNP-CTF MTECH-TDRM-004_Rev1-final.doc

Acronym	Definition
LEU	Low Enriched Uranium
LOFC	Loss of Forced Cooling
LPT	Low Pressure Turbine
MES	Membrane-electrode assembly
MTR	Material Test Reactor
NAA	Neutron Activation Analysis
NCS	Nuclear Control System
NGNP	Next Generation Nuclear Plant
NHI	Nuclear Hydrogen Initiative
NHS	Nuclear Heat Supply
NHSS	Nuclear Heat Supply System
NNR	National Nuclear Regulator
NRG	Nuclear Research and consultancy Group
NRV	Non-Return Valve
O2	Oxygen
OD	Outer Diameter
PBMR	Pebble Bed Modular Reactor
PCC	Power Conversion System
PCDR	Pre-Conceptual Design Report
PCHE	Printed Circuit Heat Exchanger
PCHX	Process Coupling Heat Exchanger
PCS	Power Conversion System
PFHE	Plate Fin Heat Exchanger
PHTS	Primary Heat Transport System
PIE	Post-irradiation Examination
PLOFC	Pressurized Loss of Forced Cooling
POC	Power Conversion System
PPM	Parts per million
PPU	Product Purification Unit
PPWC	Primary Pressurized Water Cooler
QA	Quality Assurance
RAMI	Reliability, Availability, Maintainability and Inspectability
RC	Reactor Cavity
RCCS	Reactor Cavity Cooling System
RCS	Reactivity Control System
RCSS	Reactivity Control and Shutdown System
RDM	Rod Drive Mechanism
RIM	Reliability and Integrity Management
RIT	Reactor Inlet Temperature
RM	Road Map
ROT	Reactor Outlet Temperature
RPS	Reactor Protection System
RPT	Report
RPV	Reactor Pressure Vessel

NGNP-CTF MTECH-TDRM-004_Rev1-final.doc

Acronym	Definition
RS	Reactor System
RSS	Reserve Shutdown System
RUS	Reactor Unit System
SAD	Acid Decomposition System
SAR	Safety Analysis Report
SAS	Small Absorber Spheres
SG	Steam Generator
SHTS	Secondary Heat Transport System
S-I	Sulfur lodine
SiC	Silicon Carbide
SNL	Sandia National Laboratory
SO2	Sulfur Dioxide
SOE	Sulfuric Oxide Electrolyzers
SOEC	Sulfuric Oxide Electrolyzers Cells
SR	Side Reflector
SSC	System Structure Component
SSCs	Systems, Structures and Components
SSE	Safe Shutdown Earthquake
SUD	Software Under Development
TBC	To Be Confirmed
TBD	To Be Determined
TDL	Technology Development Loop (As incorporated in Concept 1)
TDRM	Technology Development Road Map
TER	Test Execution Report
THTR	Thorium High Temperature Reactor
TRISO	Triple Coated Isotropic
TRL	Technology Readiness Level
TRM	Technology Road Map
UCO	Uranium Oxycarbide
UO2	Uranium Dioxide
USA.	United States of America
V&V	Verification and Validation
V&Ved	Verified and Validated
VLE	Vapor-Liquid Equilibrium
WBS	Work Breakdown Structure
WEC	Westinghouse Electric Company

SUMMARY AND CONCLUSIONS

The IHX is a critical high-temperature component of the NGNP and its main function is to transfer thermal energy from the Primary Heat Transport System (PHTS) to the Secondary Heat Transport System (SHTS). Previous studies related to the NGNP Heat Transport System (HTS) have shown the advisability of splitting the IHX into two units, IHX A operating at up to 950° C and IHX B operating at up to $~760^{\circ}$ C – particularly when metallic are employed. Uncertainties related to achieving full service life at 950°C using metallic materials argue for parallel development of metallic and ceramic heat exchangers. This portion of the document deals only with ceramic and metallic versions of IHX A. The lower temperature heat exchanger, IHX B, will be addressed in a later section.

Decision Discriminators were established and exercised in decisions taken relative to heat exchanger designs and materials. Cost/performance, state-of-the-art, robustness, environmental compatibility, RIM, IHX integration, and design/licensing basis were considered in the down select of potential designs. A wide range of heat exchanger designs were evaluated and the result was the selection of a compact design (PCHE or PFHE) for a metallic heat exchanger. A down select has not been made for a ceramic IHX design and awaits the completion of future Trade Studies as proposed in this document.

Decision discriminators applied to the selection of a metallic material for IHX A were materials database (e.g., maturity of data and service experience), materials lifetime (e.g., creep lifetime and corrosion behavior), and fabrication related factors. The choice based on the above was Ni-base Alloy 617. As for the ceramic heat exchanger design, selection of specific ceramic materials awaits completion of future Trade Studies.

Evaluations of the status of technology for metallic and ceramic heat exchangers were made and resulted in the determination of TRL 2 for both. The underlying bases for these selections are described in the TRL rating sheets provided for both metallic and ceramic heat exchanger versions.

TDRMs are provided to summarize down select tasks, TRL status, and maturations tasks necessary to increase the maturity of technology for metallic and ceramic IHX designs to a level of TRL 8. These tasks include consideration of materials properties and performance, material and design codes, model development for thermal and mechanical performance, and testing of IHX modules progressing from unit cells to full-size IHX units. Details of the tasks necessary for technology advancement between TRL levels are presented as a series of Technology Maturation Plans that include information on objectives, test conditions, measured parameters, data requirements, test evaluation criteria, test deliverables, and cost/schedule/risk. It is noted that the technology roadmap and maturation plans will need to be adjusted as new DDNs evolve as part of the conceptual and detail designs.

4 INTERMEDIATE HEAT EXCHANGER A

4.1 Function and Operating Requirements

The IHX is a critical high-temperature component of the NGNP. Because of cost and performance goals for the NGNP and related commercial process heat plants, compact heat exchangers have been selected as the reference design. The IHX has been separated into two regions, a high-temperature IHX A and a lower temperature IHX B, because it is unlikely that the corrosion resistance of the candidate metallic materials can provide for full service life (60 years) at the higher temperatures. Therefore, one or more replacements of a metallic based IHX A are anticipated and planned. A parallel development of an IHX based on ceramics is to be pursued because a ceramic IHX A should be able to provide for the full desired life. The alloy selected for IHX B should provide for the entire life of the plant without replacement.

The IHX transfers thermal energy between the Primary Heat Transport System (PHTS) and the Secondary Heat Transport System (SHTS). The PHTS is comprised of the primary piping, primary circulator, and primary helium working fluid. By current definition, the IHX is considered part of the PHTS. Its main functions are to contain the primary and secondary helium coolants and to transport thermal energy from the reactor to the SHTS working fluid. The SHTS is comprised of the secondary piping, secondary circulator and secondary helium working fluid. Its main function is to transport thermal energy from the IHX to the Process Coupling Heat Exchanger and Steam Generator.

The Intermediate Heat Exchanger (IHX) is comprised of:

- Heat exchanger cores and/or modules containing the heat transfer surface
- The IHX vessel
- Headers and/or piping that provide a transition between the heat exchanger cores and/or modules and the PHTS/SHTS piping
- Internal structures that provide for support (steady state, transients and seismic loading) of the IHX and related internal components within the IHX vessel
- Thermal baffles and/or insulation that is attached to the above IHX components

The IHX Vessel is part of the helium pressure boundary and includes internal support features, incorporated within the vessel structure, that interface with the IHX internal supports. It also includes thermal baffles and/or insulation that are directly attached to the vessel. The allocation of the IHX vessel (or parts thereof) as being part of the PHTS or SHTS will depend upon which fluids (PHTS or SHTS) are contained within the shell-side of the heat exchanger. This, in turn will be subject to the further selection of which circuit (PHTS or SHTS) will be coupled to the "shell" side of the heat exchanger.

The specified service conditions and other key requirements for IHX A are as given below.

- The nominal helium temperature at the primary side entrance to IHX A is 950°C.
- The nominal helium temperature at the secondary side entrance to IHX A is 710°C.
- The nominal helium temperature at the secondary side exit from IHX A is 900°C.
- The nominal helium temperature at the primary side exit from IHX A is 760°C.
- IHX A will provide for transfer of ~160 MWt.
- Helium in both the PHTS and SHTS will have controlled levels of impurities.
- Primary loop pressure will be nominally 9 MPa and essentially pressure balanced with the secondary loop pressure.
- The forced outage allocation is <1%.
- Required operating life is >10 years for a metallic IHX A and 60 years for a ceramic version.
- The pressure loss across the entire IHX (IHX A + IHX B) primary side and also across secondary side of IHX shall be smaller than 1.23 % of its respective inlet pressures.

Further, there are a substantial number of fixed and preferred requirements in the areas

of:

- Interfaces (e.g., IHX internal structures and fluid flow shall ensure that the vessel temperature be limited to 371°C during normal operation).
- System Configuration (e.g., the size ratio of IHX B to IHX A shall be as large as possible and overall capacity shall be 510 MW).
- Operation (e.g., the components of IHX A shall be able to accommodate 600 start-up and shut-down cycles).
- Tritium Migration Allowance (Tritium migration is s NHSS-level issue taking into account production and mitigation provided by various barriers and the He purification system. The specific IHX requirement is TBD.)
- Structure the IHX vessel diameter shall be smaller than 6 m.
- Environment all subject to further review
- Instrumentation & Control to be determined
- Availability and Reliability inherent availability of the IHX shall be >99.98%.
- Maintenance (e.g., the IHX shall not require preventive maintenance)
- Transport design features shall be included to allow for transportation of subassemblies with final assembly on-site.
- Testing, Qualification, Commissioning the entire PHTS, including the IHX, shall be pressure tested in accordance to ASME requirements.

All of the above are discussed in more detail in the *IHX and Heat Transport System* (*NGNP-HTS-RPT-TI001*) report.

4.2 IHX Down Selection Status

4.2.1 Candidate Designs and Materials

Various designs and materials for IHX A were proposed and evaluated in a series of recent studies. These studies were described and discussed in the following reports:

- Special Study 20.3: High-Temperature Process Heat Transfer and Transport, NGNP-20-RPT-003, Rev 0, January 2007 [4-1]
- PCDR Section 6: Heat Transport Systems, NGNP-06-RPT-003, Rev 0, April 2007 [4-2]
- NGNP Conceptual Design Study: IHX and Heat Transport System, NGNP-HTS-RPT-TI001, Rev 0, April 2008 [4-3].

The first of these studies considered both helical shell and tube and compact designs, primarily the Heatric based PCHE for the latter, and evaluated a broad range of Ni- and Fe/Ni base alloys for their construction. Based on this study, it was recommended that the compact heat exchanger design should be pursued with separate high-temperature (IHX A) and lower temperature (IHX B originally specified at <850°C and subsequently at <760°C) sections. It was also noted that a full life (60 year) IHX A was, because of corrosion limitations, almost certainly unobtainable with existing metallic materials. This implies one or more replacements during life, and argues that a compact IHX concept with a ceramic core should be pursued in parallel to achieve a 60 year version of IHX A. Alloy 617 was proposed as the reference material for the metallic version of IHX A with Alloy 230 as a backup; no specific ceramic material was proposed.

The second study confirmed the conclusions above (i.e., IHX A and IHX B sections, a PCHE compact design, Alloy 617 and Alloy 230 metallics, and parallel development of a ceramic based IHX) and further recommended that the IHX A/IHX B split be set at <760°C to take advantage of the ASME Section III qualification of Alloy 800H (760°C max).

The third study above was by far the most comprehensive in its evaluation of designs, performance, and materials. It also included two additional designs, a Capillary Heat Exchanger (small-diameter tube shell-and-tube) and a novel Involute (small-diameter tubes in an involute configuration) design. Also, an extensive study and evaluation of a plate-fin version of a compact heat exchanger was performed. No new recommendations were made relative to materials of construction for IHX A but data needs and concerns were covered in detail.

4.2.2 Decision Discriminators

This section provides discussion of the decision discriminators that were used in the *IHX* and *Heat Transport* study (*NGNP-HTS-RPT-TI001*) to evaluate various IHX designs and candidate materials. The five designs considered are as shown below.

- Conventional helical coil shell & tube
- Capillary tube
- PCHE
- Plate-fin
- Involute

Candidate materials evaluated were Alloy 230, Alloy 617, Alloy 800H, Hastelloy X, and ceramics (undefined). The metallic materials above were selected based on analyses of a much wider range of Alloys (Ref. 1).

The qualitative comparisons of the heat exchanger concepts were based on the following parameters.

- Cost/Performance Indicators
 - Compactness in terms of heat transfer density (MWt/m³)
 - Materials utilization (t/MWt)
 - Manufacturing cost
- State-of --the-Art
 - Experience base
 - Design & manufacturing
- Robustness
 - Normal operation
 - Transients
- Environmental Compatibility
 - Corrosion effects
 - Erosion effects
 - o Tritium transport
- Reliability & Integrity Management
 - Detection of leaks/degradation during operation
 - Detection of leaks/degradation during outages
 - *Leak location/isolation/repair/replacement*
- IHX Integration
 - Integration with vessels and piping
 - Compatibility with multi-stage designs
 - Compatibility with multi-module designs
 - o Compatibility with alternate heat transfer fluids
- Design & Licensing Basis
 - Code basis for design

The Decision Discriminators applied for the materials were those shown below.

• Thermal Conductivity

- Materials Database
 - *Maturity of data*
 - Specifications and standards status
 - ASME Code qualification requirement
 - Service experience
 - *R&D status*
- Materials Lifetime
 - *Maximum operating temperature*
 - Thermal and mechanical fatigue
 - *Creep and creep-rupture*
 - Erosion
 - Loss-of-secondary-pressure (LOSP) effects
 - Transient behavior
 - Corrosion
- Fabrication Related Factors
 - *Product availability*
 - Workability
 - Joining technology maturity and effects
 - Cost

The application of the factors above to both the design and materials down select process is given and discussed below.

The following was indicated for design concepts based on the Decision Discriminators for design:

Cost/Performance Indicators

- The shell & tube design is poor except for established manufacturing processes.
- The capillary concept appears to be very expensive and labor intensive in terms of manufacturing.
- The PCHE is relatively good in all aspects.
- The plate-fin is good overall and best in terms of materials utilization
- PCHE and PFHE are best in terms of compactness (MWt/m³).
- Materials costs for all are high, but least for the plate-fin assuming the same metallic materials.

State-of-the Art

- There is a reasonable and applicable experience base with design, manufacturing, and operation of metallic IHXs of shell & tube, PCHE, and plate-fin designs, although at somewhat lower temperatures.
- The experience base and technology for the capillary and involute designs are essentially nonexistent.
- There is no metallic material currently proven for any design for 10-year operation at 950°C. Further, no specific ceramic candidates have been identified.

Robustness

- Shell & tube designs are by far the most robust under normal operating conditions.
- The integrity of the braze joints in the plate-fin design offers some concern or uncertainty but the design appears good under normal operation and transients.
- The PCHE should be good under both normal operation and transients.
- Assessment of the capillary and involute designs is at best speculative at this time.
- There is concern relative to corrosion in the compact designs because of the use of very thin sections; the shell & tube design is of less concern because of the use of greater material thicknesses.

Environmental Compatibility

- As noted above, the shell & tube design would provide the maximum resistance to corrosion and erosion effects and tritium transport because of its heavier section thicknesses.
- The compact PCHE and plate-fin concepts are inferior to the shell & tube design because of associated thin sections and small fluid passages.
- The capillary and involute designs are intermediate in all of these factors.
- Corrosion allowances to be applied to the thin metallic sections of the PCHE and plate-fin designs are not currently quantitative and are somewhat worrisome.

Reliability & Integrity Management

- Detection of leaks during operation is possible and equivalent for all concepts.
- Easiest inspection for leaks during outages is for the shell & tube design but is possible for all concepts.
- Shell & tube, capillary, and involute designs permit plugging of individual tubes but the number of tubes to be accessed for the latter two is very large.
- Leaks in the PCHE and plate-fin designs can be identified and isolated at the module level.

HX Integration

- Integration with vessels and piping has been demonstrated for the shell & tube concept and appears acceptable for the PCHE and plate-fin designs; further evaluation would be needed for the capillary and involute designs.
- The PCHE and plate-fin designs are superior with respect to multi-stage and multimodule concepts.

Code Basis for Design

- There is an existing ASME Section VIII Code for design of shell & tube heat exchangers. This would likely also apply to the tubes for the capillary and involute designs but their headers have no precedent in the ASME Code.
- There is no existing ASME Code basis for either the PCHE or plate-fin designs.
- There are no existing ASME Code bases for either ceramic materials or a ceramic IHX design.

Application of the materials Decision Discriminators resulted in the following observations and decisions:

NGNP-CTF MTECH-TDRM-004_Rev1-final.doc

Materials Database

- All of the metallic candidates have significant databases but those for Alloy 800H and Hastelloy X are the most complete.
- All of the metallic candidates are recognized by the ASTM and the ASME but only Alloy 800H has ASME Section III approval and only to a maximum temperature of 760°C.
- All metallic candidates have substantial elevated temperature service in non-nuclear environments; Alloy 800H and Hastelloy X have seen some application in nuclear plants.
- Little if any R&D is ongoing on any of the metallic candidates.
- Little can be said about the database for a ceramic until specific selections have been made.

Materials Lifetime

- Potential lifetime of the metallic candidates at 950°C based on high-temperature creep strength increases from Alloy 800H, to Hastelloy X, to Alloy 230, and to Alloy 617.
- The fatigue resistance of all of the metallic candidates is likely sufficient for IHX operation.
- There is no current basis for down select of the metallic materials candidates based on transient behavior or erosion.
- The time before creep-rupture or creep-collapse under 950°C LOSP conditions is almost ten times greater for Alloy 617 than for Alloy 230. This was a significant factor in the selection of Alloy 617 for IHX A.
- The corrosion performance of any of the candidate metallics in NGNP He is suspect and possibly life-limiting at 950°C.

Fabrication Related Factors

- Product forms necessary for the fabrication of the compact heat exchanger designs are available for all of the metallic material candidates.
- Brazing and diffusion bonding processes for all of the alloys remain to be proven but all can likely be achieved.
- Alloy 800H is the least expensive material but will not suffice for construction of IHX A; the costs for Hastelloy X, Alloy 230, and Alloy 617 are higher but comparable.
- Costs for ceramic materials will exceed those for the metallics and a number of fabrication problems will need to be resolved.

4.2.3 Reference Design

The single alternate relative to the metallic IHX A is a decision to be taken at TRL 5 on the PCHE versus plate-fin design.

No alternates currently exist for the ceramic IHX. However, alternates could emerge as a result of Trade Studies recommended in Technology Maturation Plan from TRL 1-2.

4.2.4 Summary of IHX A Down Selection Task

The IHX A down select evaluation conducted for the IHX and reported in the *NGNP Conceptual Design Study: IHX and Heat Transport System* resulted in the various conclusions and recommendations listed below.

- The earlier recommendation to utilize PCHE or plate-fin compact heat exchanger technology as the basis for the metallic IHX design has been confirmed. This is the current metallic reference design and both are to employ Alloy 617 in the high temperature sections.
- A compact IHX configuration (applicable to both PCHE and plate-fin heat exchangers) that potentially allows leak detection, location and isolation at the module-level has been identified.
- Due to potential life limitations associated with high-temperature corrosion, the acceptability of a compact metallic IHX at 950°C remains to be confirmed. The present database for thin section materials is inadequate to support a definitive assessment.
- The earlier recommendation to separate the IHX into IHX-A and IHX-B sections, based on temperature, is supported by the results of the present study. Alloy 617 will be used for IHX A and Alloy 800H for IHX B.

The earlier recommendation to undertake a parallel development of ceramic HX technology for IHX A is confirmed.

4.3 TRL Status

Evaluations of the status of technology for the metallic and ceramic heat exchangers were made and resulted in the determination of TRL 2 for both heat exchangers. The underlying bases for these selections are described in TRL rating sheets provided for both metallic and ceramic heat exchanger versions (refer to section 0).

4.4 Technology Development Road Map Summary

4.4.1 Overview

The TDRM for IHX A begins (left side) with a listing of candidate materials considered for the IHX core and a listing of candidate designs for both the metallic and ceramic versions of the IHX. The Decision Discriminators shown just to the right of the materials candidates on the *NGNP-CTF MTECH-TDRM-004_Rev1-final.doc* 12/9/2008
Road Map were used to guide a down select to Alloy 617 for the metallic IHX A. Decision Discriminators shown in association with candidate designs formed the basis for the selection of both PCHE and plate-fin designs as options. Similarly, a ceramic version of IHX A was selected, but with Trade Studies (shown as down select tasks) still needed to finalize ceramic materials selections and ceramic heat exchanger designs.

Further to the right on the Road Map are shown the Maturation Tasks necessary to achieve succeedingly higher levels of Validated TRLs up to a TRL 8. For the metallic IHX A the paths for materials and designs merge at TRL 4 and a final design concept is achieved at TRL 5. The ceramic IHX A paths merge at TRL 4 with a final design concept at TRL 5.

The IHX A Technology Development Road Map is attached in Appendix B while the maturation tasks are described below.

4.5 Technology Maturation Plan Summary

4.5.1 Summary of Maturation Tasks – Metallic IHX A

The section below describes maturation tasks needed to advance the technology of the metallic IHX A from a validated TRL 2 to a validated TRL 8. The materials tasks include studies of thermal/physical and mechanical properties of Alloy 617, joining and fabrication techniques applicable to the alloys use in compact heat exchangers, determination of corrosion allowances for Alloy 617, and the establishment of appropriate ASME Code qualification. Significant levels of effort will also be devoted to methods for thermal/fluid and stress/strain modeling and to establishment of structural integrity criteria. Methods for performance modeling of compact heat exchangers will also be developed. Small elements or modules containing the heat transfer surface of the IHX will be fabricated, tested, and evaluated. These maturation tasks will be keyed to the DDNs described in the *NGNP Conceptual Design Study: IHX and Heat Transport System* whenever possible.

At this point on the TDRM, IHX A will have achieved a level of validated TRL 5 and a PCHE versus plate-fin decision will have been made. Advancement to a validated TRL 6 will require manufacture of a nominally 1.2 MW single module of IHX A, its testing in a representative environment, and verification of its performance. It will also be necessary to establish an ASME Code Case design of compact heat exchangers.

Moving the technology of IHX A from TRL 6 to TRL 7 will require tests to assess shellside flow distribution and bypass leakage and multi-module tests for confirmation of heat transfer and flow performance.

Advancement of IHX technology from TRL 7 to TRL 8 will be fulfilled by the manufacture of a full-size IHX A compact heat exchanger and its testing in the NGNP.

The costs and schedules associated with the DDNs given in the NGNP Conceptual Design Study: IHX and Heat Transport System report were first presented in PCDR Section 6: Heat Transport System. Subsequently, more extensive and detailed estimates of schedules and costs for IHX A design, development, testing, and manufacture were performed and can be examined in Metallic Component Schedule Risk and Cost Uncertainty Assessment, NGNP_RPT_, 30 April, 2008. Further, schedules and costs will be provided in each of the Maturation Plans.

The Technology Maturation Plan required to mature the technology for a metallic IHX A to a TRL of 8 is attached in Appendix C.

4.5.2 Summary of Maturation Tasks – Ceramic IHX A

It is generally recognized that the maturity of the technology for a ceramic IHX is no better than TRL 2 and is probably several years behind that of the metallic IHX. However, the importance of achieving a heat exchanger capable of full-life service at 950°C compels its development.

The maturation tasks listed in the ceramic technology maturation plans follow parallel in many ways those for the metallic IHX but do not have a parallel benefit of well defined DDNs. The *PCDR* report (Ref. 2) provided only 6 DDNs, and only as placeholders. They were as follows:

- HTS-02-01 Review Existing Technology
- HTS-02-02 Materials Property Database
- HTS-02-03 Design Methods
- HTS-02-04 Performance Verification
- HTS-02-05 Manufacturing Technology
- HTS-02-06 Codes & Standards

These DDNs can be used, however, as a rough guide to technology needs. Costs for ceramics materials and methods development were estimated in *PCDR Section 16* in 2007 to be at least 50% greater than those for similar activities for the metallic counterpart. Manufacturing costs have not been addressed.

The Technology Maturation Plan required to mature this technology for a ceramic IHX A to a TRL of 8 is attached in Appendix D.

4.6 Inputs into CTF

The metallic and ceramic versions of the IHX A will be tested in the CTF for qualification of a TRL5, TRL 6 as well as a TRL 7.

The following tasks noted in the Maturation Plans will be qualified in the CTF:

- Metallic IHX Unit Cell (In the Small Scale Development Test Facility)
- 1.2 MW Metallic IHX Module (In the Technology Development Loop)
- Testing of a Multiple Metallic IHX Modules (In the Component Qualification Loop).
- Ceramic IHX Unit Cell (In the Small Scale Development Test Facility)
- 1.2 MW Ceramic IHX Module (In the Technology Development Loop)
- Testing of a Multiple Ceramic IHX Modules (In the Component Qualification Loop).

4.7 References

- [4-1] Special Study 20.3: High-Temperature Process Heat Transfer and Transport, NGNP-20-RPT-003, Rev 0, January 2007
- [4-2] PCDR Section 6: Heat Transport Systems, NGNP-06-RPT-003, Rev 0, April 2007
- [4-3] NGNP Conceptual Design Study: IHX and Heat Transport System, NGNP-HTS-RPT-TI001, Rev 0, April 2008

APPENDIX A: TRL RATING SHEETS

Table A-1: Technology Readiness Levels for the IHX A (Metallic)

	TRL Rating Sheet						
Vendor Nan	Document	Document Number:			Revision:		
□ Island	□ System	⊠Subsystem.	⊠Subsystem/Structure		Component	Technolog	gy
Title: Inter	Title: Intermediate Heat Exchanger (IHX A - Metallic) (950°C)						
Description: The Techno the NGNP at 950°C The actions required	logy Readines for up to 10 d to go to a le	ss Level for a m years has been a vel of TRL 3 ar	etallic i assessed e also sl	nterme l as TR nown b	diate heat exch L 2 based on st elow.	anger operating tudies noted belo	in ow.
Area(s):	□ NHSS	☑ HTS	□ HF	PS	\square PCS	□ BOP	
ISSCTBS: N/	ISSCTBS: N/A Par		Ά	WBS:		N/A	
Technology Readiness Level							
		N Lower Ra Level	lext ating		Calculated Rating	Nex Higher Ratin Level	t Ig
Generic Definitions (abbreviated)		Basi principles ob	c served	formul	Application ated	Proof of concept	
TRL			1	2		3	
Basis for Ra	ting (Attach ad	ditional sheets as	needed)			
Various desig and evaluated in recent	gns and metallion the studies report	c materials for an tred in:	IHX op	erating	at 950°C (IHX	A) were proposed	
 Special Study 20.3: High-Temperature Process Heat Transfer and Transport, NGNP-20-RPT-003, Rev 0, January 2007 							
• PCDR Section 6: Heat Transport Systems, NGNP-06-RPT-003, Rev 0, April 2007							
 NGNP Conceptual Design Study: IHX and Heat Transport System, NGNP-HTS-RPT-TI001, Rev 0, April 2008 					Rev		
The recommendation resulting from these studies was a compact heat exchanger design (PCHE or plate-fin) using Alloy 617 as the material for the heat exchanger core.							

Outline of a plan to get from current level to next level (Attach additional sheets as needed)					
Actions (list all)	Schedule	Cost (K\$)			
Alloy 617 Material Specifications and Broouroment	FY 2009 –	Refer to			
 Alloy 617 Joining Technology and Resultant Properties 	11 2012	Section Co			
 Thermal/Physical and Mechanical Properties of Alloy 617 					
• Effects of Thermal Aging and Environment on Alloy 617 Properties					
• Effects of Grain Size and Section Thickness on Alloy 617 Properties					
 Corrosion Allowances for Alloy 617 					
DDN(s) supported: HTS-01-01, HTS-01-02, HTS-01-03, HTS-01-04, HTS-01-05, HTS-01-06, HTS-01-20, HTS-01-21, HTS-01-30					
SME Making Determination: Phil Rittenhouse					
Date: August 25, 2008 Originating Organi	Originating Organization: Technology Insights				

Table A-2: Technology Readiness Levels for the IHX A (Ceramic)

TRL Rating Sheet						
Vendor Nar	Document Number:		Revision:			
□ Island	□ System	ØSubsystem/Structure		re	Component	□ Technology
Title: Inter	Title: Intermediate Heat Exchanger (IHX A - Ceramic) (950°C)					
Description	:					
The Techno the NGNP at 950°C The actions require	logy Readiness C for up to 60 y d to go to a lev	s Level for a ce ears has been a el of TRL 2 ar	eramic i assessec e also si	nterme l as TR hown l	ediate heat exch L 1 based on s below.	hanger operating in tudies noted below.
Island(s):	□ NHSS	☑ HTS	ΠH	IPS	\Box PCS	□ BOP
ISSCTBS: N	/A	Parent: N/A			WBS: N/A	
Technology Readiness Level						
		N Lower Ra Level	ext ting		Calculated Rating	Next Higher Rating Level
Generic Definitions (abbreviated)				princip	Basic bles observed	Application formulated
TRL	TRL 1 2		3			
Basis for Ra	Basis for Rating (Attach additional sheets as needed)					
Various designs and materials for an IHX operating at 950°C (IHX A) were proposed and evaluated in recent studies reported in:						
 Special Study 20.3: High-Temperature Process Heat Transfer and Transport, NGNP-20-RPT-003, Rev 0, January 2007 						
• PCDR Section 6: Heat Transport Systems, NGNP-06-RPT-003, Rev 0, April 2007						
 NGNP Conceptual Design Study: IHX and Heat Transport System, NGNP-HTS-RPT-TI001, Rev 0, April 2008 						
A recommendation resulting from these studies was to select and develop a ceramic heat exchanger.						
Work on evaluation of ceramic heat exchanger materials, joining techniques, and heat exchanger performance was reported by Ceramatec in several venues (e.g., UNLV/DOE NHI Review and UNLVRF						
NGNP-CTF MTECH-TDRM-004_Rev1-final.doc 12/9/2008						

HTHX Project Review) in 2006. The work supports a TRL level of 2.					
Outline of a plan to get from current level to next level (Attach additional sheets as needed)					
Actions (list all)	Schedule Cost (K\$)				
 Trade Study to evaluate ceramic materials for heat exchangers with the goal of selecting a reference material or materials. Trade Study to evaluate candidate ceramic h exchanger designs with the goal of selecting reference design or designs. 	or FY 2009- Refer to 2011 Section D7				
DDN(s) supported: HTS-02-01, HTS-02-02, HTS-02-03					
SME Making Determination: Phil Rittenhouse					
Date: August 25, 2008 Originating Org	ganization: Technology Insights				

APPENDIX B: TECHNOLOGY DEVELOPMENT ROAD MAP

NGNP Technology Development Road Mapping Report Section 4: Intermediate Heat Exchanger A

NGNP-CTF MTECH-TDRM-004_Rev1-final.doc

NGNP-CTF MTECH-TDRM-004_Rev1-final.doc

12/9/2008

NGNP Technology Development Road Mapping Report Section 4: Intermediate Heat Exchanger A

NGNP-CTF MTECH-TDRM-004_Rev1-final.doc

NGNP Technology Development Road Mapping Report Section 4: Intermediate Heat Exchanger A

Figure B-4: TDRM for IHX A (Page 3 of 4)

NGNP-CTF MTECH-TDRM-004_Rev 1-final.doc

NGNP-CTF MTECH-TDRM-004

IHX A Material & Design Technology Development Roadmap

A02	blicable Reference Documentation.
Lest Specification Numbers:	Sherial Studies
C1 - WEC-TS-IHXA-001 Alloy 617 Material Specification and procurement	
C2 - WEC-1S-IHXA-UUZAIIOy 617 JOINING 1 ECONOLOGY and RESUITART Properties C3 - WEC-TS-IHXA-003 Thermal/physical and mechanical properties of Alloy 617	AI - WEST ITS.000 SOUTH TARIA SECURARY PHERITISPOL LOOP ANEINARY AZ - MIGNE-HTS-RPT-T1001 "NGNP Concedural Pesitin Study: IHX and Hear Transport System"
C4 - WEC-TS-IHXA-004 Effects of themail Aging and environment on Alloy 617	
C5 - WEC-TS-IHXA-005Effects of Grain size and selection thickness on Alloy 617 properties	
C6 - WEC-TS-IHXA-006 Corrosion Allowances for Alloy 617	
C7 - WEC-TS-IHXA-007 ASME selection III Code Case for Alloy 617	UPS/MIL Data Needs
C0 - WEC-TO-ITIZA-000 ITIETHAI/FUIU MOUGHING MEMOUS INI MERIAILY IN A C0 - WEC-TS-IHXA-009 Methods for stress/strain modeling of metallic IHX A	B1 - HTS-01-01 Establish Reference Specifications for Alloy 617
C10 - WEC-TS-IHXA-010 Criteria for structural integrity of IHX A	B2 HTS-01-02 Thermal/Physical and Mechanical Properties of Alloy 617
C11 - WEC-TS-IHXA-011 Performance Modeling Methods for IHX A	B3 - HIS-U-103 Weilding and As-weilded Properties of Materials of Alloy 617 for Compact Heat Exchangers into a data Asian Effective Asian Section 545 Alloy 647 (2014)
C12 - WEC-TS-IHXA-012Specification of testing of unit cell of compact Heat Exchangers C13 - WEC-TS-IHXA-013Testion of interroted compact heat exchanger module (~1.3MM)	b4 - 113-01-04 Augu Ellects of Augu of 1 B5 - HTS-01-05 Environmental Effects of moure Helium on Alloy 617
C14 - WEC-TS-IHXA-014 Specification 2: Establishing ASME III Code Case for Metallic Compact Heat Exchanger	B6 - HTS-01-06 Influence of Grain Size on Materials Properties on Alloy 617
Designs	B/ HIS-01-13 Methods for Inflammellinual feature type compact has textbanges R8 HIS-01-14 Methods for Stress(Scientin Methons) feature. Trans Commercial Heal Exchanges
C15 - WEC-TS-HTXA-U15 Shell-side how distribution and pypass leakage testing	B9 HT3-01-15 Criteria for Structural Adequatory of Plater Two Connecting at Very High Temperatures HT3-01-15 Criteria for Structural Adequatory of Plater Two Connecting at Very High Temperatures
CT0 - WEC-TS-ITAX-017.Specification of testing of a full scale compact Heat Exchangers	B10 - HTS-01-16 Methods for Performance Modeling of Plate-Type Compact Heat Exchangers
C18 - WEC-TS-IHXA-018 Trade study on Candidate Ceranica Material for IHX A	B11 - HTS-01-17 IHX Performance Verification
C19 - WEC-TS-IHXA-010Trade study on Candidate Ceramic Designs for IHX A	B12 - HTS-01-18 Data Supporting Materials Code Case
C20 - WEC-TS-IHXA-020 Caramic HC Detailed Design Data Needs (DDNs)	B13 - HIS-01-19 Data supporting Design Code Case Intermediate Heat Exchanger
C21 - WEC-TS-HXA-021 Ceramic Materials Specifications and Procurement	Dist - Tribol 2.2 minutened is south unitate in triaterial properties or minor our B45 - HT2.011-21 Correction allowances for Allow 641
U22 - WEU-TS-IHXA-U22 INERMAI Physical Properties of Ceramics C23 - MEC-TS-IHXA-D3Machanical Pronacties of Caramics	B16 HTS-01-22 Establish references performed provide Alloy 800H*
0.02 - WEC-1011/WY02/andeutatinediatin of benanic Antaraiate In NGND Hallawinimment	B17 - HTS-01-23 Supplemental High-Temperature Mechanical Properties of Alloy 800H*
C25 - WEC-TS-IHXA-025Manufacturing of certainte materials to room the entrinominant C25 - WEC-TS-IHXA-025Manufacturing Technologies for Certainte Heat Exchangers	B18 - HTS-01-24 Effects of Joining Techniques on the properties of Alloy 800H*
C26 - WEC-TS-IHXA-026 Ceramic Materials Codes and Standards	B19 - HTS-01-25 Effects of aging on the properties of Alloy 800H*
C27 - WEC-TS-IHXA-027 Methods for Thermal/Fluid and Stress/Strain Modeling	B20 - HTS-01-26 Effects of exposure in mpure Helium on Alloy 800H*
C28 - WEC-TS-IHXA-028 Structural Integrity Criteria for Ceramic Heat Exchangers	B21 HIS-01-22 Influence of grain state on Material Properties of Alloy BUHH B23 HITS-01-29 Influence of service thickness on materials encendrate and Alloy BODL*
C29 - WEC-15-HXA-U39 Performance Modeling of Ceramic Heat Exchangers	E23 - HTS-01-29 Corrosion allowances for Alloy 800H*
Cod - WEC-To-IntAr-too resurg of unit cell of compact heat excitangel C31 - WEC-TS-IHXA-031 Testing of integrated compact heat exchanger module (~1 2MM)	B24 - HTS-01-30 Brazing and diffusion bonding processes for Alloy 617 and Alloy 800H**
C32 - WEC-TS-IHXA-032Estabilishing ASME III Code Case for Ceramic Compact Heat Exchanger Designs	825 - HTS-01-31 Readiness assessment for Hastelloy XR as an IHX Material
C33 - WEC-TS-IHXA-033 Shell-side flow distribution and bypass leakage tests.	B26 - HTS-02-07 Review Existing Technology
C34 - WEC-TS-IHXA-U34 Multi-module heat transfer tests. C35 - MEC-TS-IHXA-D36 Swarifications of faction of a full scala convoct Hoot Exchanger	B28 HTS-02-03 Deston Methods
000 - WEC-LO-ILIVA-000 OPENINGROUP OF RESILTE OF A TOIL SCARE COTINARY FRAME EXCITATING	B29 - HTS-02-04 Performance Verification
	B31 - H15-02-05 Codes and Standards B31 - HTS-02-06 Codes and Standards
	 Applicable to IHX B only
	 Applicable to IHX B

Figure B-5: TDRM for IHX A (Page 4 of 4)

APPENDIX C: TECHNOLOGY MATURATION PLAN – METALLIC IHX A

TABLE OF CONTENTS

Section	Title	Page
C1 TECHNOL	OGY MATURATION PLAN FOR IHX A (METALLIC) - TRL 2 T	O TRL
3		
C1.1 TECH	NOLOGY MATURATION PLAN SUMMARY	
C1.1.1	Objectives	
C1.1.2	Scope 36	
C1.1.3	Anticipated Schedule	
C1.1.4	Overall Cost	37
C1.2 TEST S	SPECIFICATIONS	37
C1.2.1	Alloy 617 Material Specifications and Procurement (WEC-TS-IHXA-0	01) 37
C1.2.2	Alloy 617 Joining Technology and Resultant Properties (WEC-TS-IHX	(A-002)
C1.2.3	Thermal/Physical and Mechanical Properties of Alloy 617 (WEC-TS-II	-1XA-
C1 2 4	003)	
C1.2.4	Effects of Thermal Aging and Environment on Alloy 617 Properties (W	/EC-15-
C1 2 5	Effacts of Grain Size and Section Thickness on Alloy 617 Properties (V	
C1.2.3	TS_IHX A_005)	VEC- /3
C126	Corrosion Allowances for Alloy 617 (WFC-TS-IHXA-006)	
C2 TECHN	OLOGY MATURATION PLAN FOR IHX A (METALLIC) - TRL	3 TO
]	ΓRL 4	
C2.1 TECH	NOLOGY MATURATION PLAN SUMMARY	46
C2.1.1	Objectives	46
C2.1.2	Scope 46	
C2.1.3	Anticipated Schedule	
C2.1.4	Overall Cost	47
C2.2 TEST S	SPECIFICATIONS	47
C2.2.1	ASME Section III Code Case for Alloy 617 (WEC-TS-IHXA-007)	
C2.2.2	Thermal/Fluid Modeling Methods for Metallic IHX A (WEC-TS-IHXA	x-008)48
C2.2.3	Methods for Stress/Strain Modeling of Metallic IHX A (WEC-TS-IHX)	A-009)
C2.2.4	Criteria for Structural Integrity of IHX A (WEC-IS-IHXA-010)	
C2.2.5	Performance Modeling Methods for IHX A (WEC-15-IHXA-011)	
C3 TECHNOL	OGY MATURATION PLAN FOR IHX A (METALLIC) - TRL 4 T	O TRL
5		54
C3.1 TECH	NOLOGY MATURATION PLAN SUMMARY	54
C3.1.1	Objectives	
C3.1.2	Scope 54	
C3.1.3	Anticipated Schedule	54
C3.1.4	Overall Cost	54

12/9/2008

C3.2 TEST SPECIFICATIONS	55
C3.2.1 Specification of testing of unit cell of compact heat exchanger (WEC-TS-	-
IHXA-012)	55
C4 TECHNOLOGY MATURATION PLAN FOR IHX A (METALLIC) - TRL 5 TO	TRL
6	59
C4.1 TECHNOLOGY MATURATION PLAN SUMMARY	
C4.1.1 Objectives	59
C4.1.2 Scope 59	
C4.1.3 Anticipated Schedule	59
C4.1.4 Overall Cost	59
C4.2 TEST SPECIFICATIONS	60
C4.2.1 Specification of testing of compact heat exchanger module (~1.2MW) (W TS-IHXA-013)	EC-
C4.2.2 ASME Section III Code Case for Compact Heat Exchanger Designs (WE IHXA-014)	C-TS-
C5 TECHNOLOGY MATURATION PLAN FOR IHX A (MEALLIC) – TRL 6 TO 1	CRL 7
C5.1 TECHNOLOGY MATURATION PLAN SUMMARY	66
C5.1.1 Objectives	66
C5.1.2 Scope 66	
C5.1.3 Anticipated Schedule	66
C5.1.4 Overall Cost	66
C5.2 TEST SPECIFICATIONS	66
C5.2.1 Shell-side Flow Distribution and Bypass Leakage Testing (WEC-TS-IHX	A-
015)	66
C5.2.2 Multi-module Heat Transfer Testing (WEC-TS-IHXA-016)	67
C6 TECHNOLOGY MATURATION PLAN FOR IHX A (METALLIC) - TRL 7 TO	TRL
8	67
C6.1 ΤΕCΗΝΟΙ ΟCV ΜΑΤΗΡΑΤΙΟΝ ΡΙ ΑΝ SUMMARV	67
C6.1.1 Objectives	07
C6.1.2 Scope 68	07
C5.1.3 Anticipated Schedule	68
C5.1.4 Overall Cost	68
C5.2 TEST SPECIFICATIONS	68
C5.2.1 Specification of testing of a full scale compact heat exchanger (WEC-TS-IH	XA-
017)	68

REQUIRED SPECIFICATIONS/TEST TO ACHIEVE NEXT TRL

TRL 2 to TRL 3:

- Specification 1: Alloy 617 Material Specifications and Procurement (WEC-TS-IHXA-001)
- Specification 2: Alloy 617 Joining Technology and Resultant Properties (WEC-TS-IHXA-002)
- Specification 3: Thermal/Physical and Mechanical Properties of Alloy 617 (WEC-TS-*IHXA-003*)
- Specification 4: Effects of Thermal Aging and Environment on Alloy 617 Properties (WEC-TS-IHXA-004)
- Specification 5: Effects of Grain Size and Section Thickness on Alloy 617 Properties (WEC-TS-IHXA-005)
- Specification 6: Corrosion Allowances for Alloy 617 (*WEC-TS-IHXA-006*)

TRL 3 to TRL 4:

- Specification 1: ASME Section III Code Case for Alloy 617 (WEC-TS-IHXA-007)
- Specification 2: Thermal/Fluid Modeling Methods for Metallic IHX A (WEC-TS-IHXA-008)
- Specification 3: Methods for Stress/Strain Modeling of Metallic IHX A (WEC-TS-IHXA-009)
- Specification 4: Criteria for Structural Integrity of IHX A (WEC-TS-IHXA-010)
- Specification 5: Performance Modeling Methods for IHX A (WEC-TS-IHXA-011)

TRL 4 to TRL 5:

• Specification 1: Testing of unit cell compact heat exchanger (*WEC-TS-IHXA-012*)

TRL 5 to TRL 6:

- Specification 1: Testing of integrated compact heat exchanger module (~1.2MW) (WEC-*TS-IHXA-013*)
- Specification 2: Establishing ASME III Code Case for Metallic Compact Heat Exchanger Designs (WEC-TS-IHXA-014)

TRL 6 to TRL 7

- Specification 1: Shell-side flow distribution and bypass leakage testing (WEC-TS-IHXA-015)
- Specification 2: Multi-module heat transfer testing (WEC-TS-IHXA-016)

TRL 7 to TRL 8:

• Specification 1: Testing of full size compact heat exchanger (*Full scale NGNP IHX A*) (WEC-TS-IHXA-0017)

C1 TECHNOLOGY MATURATION PLAN FOR IHX A (METALLIC) -TRL 2 TO TRL 3

C1.1 TECHNOLOGY MATURATION PLAN SUMMARY

C1.1.1 Objectives

The purpose of this Technology Maturation Plan is to describe the activities required to advance the maturity of the technology for the metallic IHX A from a TRL level of 2 to a TRL level of 3. Several of the maturations tasks required to achieve this goal involve the mechanical and thermal/physical properties of Alloy 617 and how they are affected by material thickness, grain size, thermal aging, and environmental exposure. Joining processes (welding, brazing, and diffusion bonding) and their effects on properties are also addressed. Finally, one of the maturation tasks addresses the corrosion (scale formation, internal oxidation, etc.) of Alloy 617 in NGNP primary and secondary He atmospheres containing low levels of impurities. A Test Specification is provided to cover each of the maturation tasks. These are given in Section C1.2.

C1.1.2 Scope

The maturation tasks and associated testing and other activities necessary to advance the maturity of the technology of the metallic version of IHX A from TRL 2 to TRL 3 are as shown below.

- Alloy 617 material specifications and procurement
- Alloy 617 joining technology and resultant properties
- Determine and/or confirm thermal/physical and mechanical properties of Alloy 617
- Confirm effects of thermal aging and environmental exposure on Alloy 617 properties
- Assess effects of grain size and section thickness on Alloy 617 properties
- Determine corrosion allowances for Alloy 617

The tasks above will be described fully in individual Test Specifications provided in the sections to follow.

C1.1.3 Anticipated Schedule

The work described by the Test Specifications in this Technology Maturation Plan could be accomplished during the period FY2009 through FY2012. No individual Test Specification describes work requiring more than 42 months and the work in most Test Specifications can be done in parallel.

C1.1.4 Overall Cost

Cost and schedule for the overall maturation and with associated specifications are addressed in Section 17 of this document.

C1.2 Test Specifications

C1.2.1 Alloy 617 Material Specifications and Procurement (WEC-TS-IHXA-001)

C1.2.1.1 Objectives

Activities covered in this Test Specification are the finalization of the material specifications (alloy chemistry, fabrication processes etc.), development of procurement requirements for NGNP Alloy 617, and procurement of three heats of Alloy 617 for evaluation and testing. With respect to the former, it is expected that existing ASTM standards will encompass the NGNP specification. No actual physical testing will be performed. This Test Specification responds to DDN HTS-01-01.

C1.2.1.2 Test Conditions

C1.2.1.2.1 Test Configuration/Set-up

No test equipment/facility is needed except for existing conventional test machines (e.g., tensile test machine) for confirming that the procured Alloy 617 meets specifications.

C1.2.1.2.2 Test Duration

The duration of this activity could be up to 12 months.

C1.2.1.2.3 Proposed Test Location

The work could be performed at an appropriate National Laboratory.

C1.2.1.3 Measured Parameters

Properties, chemistry, grain size, etc. specified in the material specifications and requirements.

C1.2.1.4 Data Requirements

Measured parameters will be determined using recognized techniques, codes, standards, and QA.

C1.2.1.5 Test Evaluation Criteria

Heats of Alloy 617 acquired shall meet all procurement requirements and material specifications.

C1.2.1.6 Test Deliverables

Deliverables are as follows.

- Alloy 617 material purchase specification
- Three heats of Alloy 617 acquired per the above
- Report confirming that the heats of Alloy 617 meet all specifications and requirements (e.g. Certified Materials Test Report, for each heat)

C1.2.1.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing metallic materials technology for IHX A from TRL 2 to TRL 3 is addressed in Sections C1.1.3 and C1.1.4 Risks include that the material doesn't qualify and that the overall schedule will be delayed.

C1.2.2 Alloy 617 Joining Technology and Resultant Properties (WEC-TS-IHXA-002)

C1.2.2.1 Objectives

Work conducted under this Test Specification will demonstrate that Alloy 617 can be welded, brazed, and diffusion bonded to produce structurally sound unit cells and modules of compact heat exchangers and that the properties of these joints will have properties appropriate to this use. This Test Specification responds to DDN HTS-01-03 and to DDN HTS-01-30.

C1.2.2.2 Test Conditions

C1.2.2.2.1 Test Configuration/Set-up

These activities require the following.

- Equipment and facilities for welding, brazing, and diffusion bonding
- Equipment for microscopic examination
- Equipment for mechanical property testing

C1.2.2.2.2 Test Duration

The duration of these joining and testing activities could be up to 30 months.

C1.2.2.2.3 Proposed Test Location

A National Laboratory or University could perform the work on microscopic examination and mechanical properties. Commercial organizations involved in compact heat exchanger manufacture would be appropriate for the joining studies, and to produce the bonded unit cells for test specimens.

C1.2.2.3 Measured Parameters

Parameters to be measured include the following.

- Conditions and parameters applied in producing the joints
- Condition of the Alloy 617 joints as evidenced by metallography
- Chemistry profiles in the joints determined by SEM
- Tensile, creep, fatigue, and fracture toughness at temperatures up to 1000°C

C1.2.2.4 Data Requirements

All data shall be acquired using recognized techniques, codes, standards, and QA.

C1.2.2.5 Test Evaluation Criteria

This work or an accepted variation thereof will provide the basis for determination of the suitability of the three joining methods to the manufacture of compact heat exchangers. Criteria involved in the evaluation of each joint type will include:

- Structural integrity as evidenced by metallography and SEM
- Minimal or no reduction in strength or ductility of the Alloy 617 joints

C1.2.2.6 Test Deliverables

Deliverables are as follows.

- Brazing procedure specifications
- Diffusion bonding procedure specifications
- Conventional welding procedure specifications
- Reports on structural integrity of joints formed by welding, brazing, and diffusion bonding
- Reports on mechanical properties of welded, brazed, and diffusion bonded joints

C1.2.2.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing metallic materials technology for IHX A from TRL 2 to TRL 3 is addressed in Sections C1.1.3 and

C1.1.4. The risks associated with Section C1.2.2 are small but include the possibility that one or more of the joining techniques may prove unsuitable for thin section of Alloy 617.

C1.2.3 Thermal/Physical and Mechanical Properties of Alloy 617 (WEC-TS-IHXA-003)

C1.2.3.1 Objectives

The objective of this work is to confirm that Alloy 617 materials procured to NGNP specifications will have thermal/physical and mechanical properties adequate for a compact IHX A. This Test Specification responds to DDN HTS-01-02.

C1.2.3.2 Test Conditions

C1.2.3.2.1 Test Configuration/Set-up

Accomplishment of testing prescribed in DDN HTS-01-02 requires:

- Equipment for thermal/physical property testing
- Equipment for mechanical property testing up to 1000°C

C1.2.3.2.2 Test Duration

Thermal/physical and mechanical property testing could require up to 36 months.

C1.2.3.2.3 Proposed Test Location

Property tests on NGNP Alloy 617 could be conveniently performed at a National Laboratory or University.

C1.2.3.3 Measured Parameters

Data to be determined include:

- Thermal conductivity to 1000°C
- Coefficients of thermal expansion to 1000°C
- Elastic properties to 1000°C
- Tensile properties (yield strength, tensile strength, elongation, and RA) to 1000°C
- Fatigue strength (LCF and HCF) to 1000°C
- Creep strength to 1000°C for 10,000 h
- Fracture toughness
- •

C1.2.3.4 Data Requirements

All data shall be acquired using recognized techniques, codes, standards, and QA.

C1.2.3.5 Test Evaluation Criteria

Mechanical property data from the three heats of NGNP Alloy 617 shall agree to within +/-15%; the data obtained shall also be representative of the existing database for Alloy 617.

C1.2.3.6 Test Deliverables

Deliverables are as follows.

- Reports of thermal/physical properties of Alloy 617 procured to NGNP specifications
- Reports on elastic, tensile, fatigue, creep, and fracture toughness of Alloy 617 procured to NGNP specifications

C1.2.3.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing metallic materials technology for IHX A from TRL 2 to TRL 3 is addressed in Sections C1.1.3 and C1.1.4. The associated risk is high (since parameters are time and temperature dependant) and includes the possibility that one or more of the properties measured falls short of what is required for use of Alloy 617 in a high temperature compact heat exchanger.

C1.2.4 Effects of Thermal Aging and Environment on Alloy 617 Properties (WEC-TS-IHXA-004)

C1.2.4.1 Objectives

The objective of the testing performed under this Test Specification is to demonstrate that Alloy 617 purchased to the NGNP specification and weld, braze, and diffusion bond joints prepared to accepted standards can be used at temperatures between 750° C and 950° C for up to at least 10 years without unacceptable degradation of mechanical properties or microstructure. Additionally, the work is to demonstrate that exposures conducted in NGNP He environment (low levels of CO, CO₂, H₂, H₂O, O₂ and CH₄) do not further degrade the properties of Alloy 617. This Test Specification responds to DDN HTS-01-03 and DDN HTS-01-04.

C1.2.4.2 Test Conditions

C1.2.4.2.1 Test Configuration/Set-up

Equipment/facilities must be available for:

- Thermal aging of Alloy 617 for up to 10,000 h at temperatures from 700°C to 1000°C.
- Exposure in representative NGNP He environment over the same time/temperature range

NGNP-CTF MTECH-TDRM-004_Rev1-final.doc

12/9/2008

- Test equipment and facilities for measuring mechanical properties after thermal and environmental exposures
- Metallographic capability to determine structural changes

C1.2.4.2.2 Test Duration

Thermal aging and environmental exposures of Alloy 617 and subsequent testing will require about 42 months.

C1.2.4.2.3 Proposed Test Location

Thermal and environmental exposures of Alloy 617 and subsequent examinations are best suited to be conducted at a National Laboratory.

C1.2.4.3 Measured Parameters

Data and exposure parameters to be measured/recorded include:

- Thermal exposure times and temperatures
- Environmental exposure times, temperatures, and He chemistry
- Tensile properties (yield strength, tensile strength, elongation, and RA) after exposures
- Fatigue strength (LCF and HCF) after exposures
- Creep strength after exposures
- Fracture toughness after exposures.

C1.2.4.4 Data Requirements

All data shall be acquired using recognized techniques, codes, standards, and QA.

C1.2.4.5 Test Evaluation Criteria

Mechanical property data from the three heats of NGNP Alloy 617 obtained after thermal and environmental exposures shall be in reasonable heat-to-heat agreement and shall be consistent with the existing database for Alloy 617.

C1.2.4.6 Test Deliverables

Deliverables are as follows.

- Reports documenting details of the thermal and environmental exposures
- Reports describing the effects of thermal and environmental exposures on mechanical properties of base metal, welds, braze joints, and diffusion bonds
- Report describing the effects of thermal and environmental exposures on Alloy 617 structure of base metal, welds, braze joints, and diffusion bonds.

C1.2.4.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing metallic materials technology for IHX A from TRL 2 to TRL 3 is addressed in Sections C1.1.3 and C1.1.4. The risk associated with Section C1.2.4 is small but includes the possibility that one or more of the properties measured after exposure may fall short of what is required for use of Alloy 617 in a compact heat exchanger at up to 950°C for 10 years.

C1.2.5 Effects of Grain Size and Section Thickness on Alloy 617 Properties (WEC-TS-IHXA-005)

C1.2.5.1 Objectives

The objective of the work prescribed in this Test Specification is to 1) demonstrate that the very thin as-fabricated material sections of Alloy 617 (significantly less than 1 mm) required in the IHX A compact heat exchanger will have creep and fatigue properties equivalent or only slightly degraded relative to those of products of more typical thickness and 2) that fatigue and creep properties of Alloy 617 with grain sizes smaller than those found in typical 617 products are acceptable for compact heat exchanger operation. Smaller grain sizes normally favor enhanced fatigue resistance at the expense of creep strength. This Test Specification responds to DDN HTS-01-06 and DDN HTS-01-20.

C1.2.5.2 Test Conditions

C1.2.5.2.1 Test Configuration/Set-up

Conduct of this work requires equipment/facilities for creep and fatigue measurement and for metallographic determination of grain size.

C1.2.5.2.2 Test Duration

The work relative to grain size and section thickness effects on Alloy 617 creep and fatigue properties should require about 24 months.

C1.2.5.2.3 Proposed Test Location

Study and measurements relative to grain size and section thickness effects on properties are best suited to be conducted at a National Laboratory.

C1.2.5.3 Measured Parameters

Data to be taken include:

- Creep properties (up to 1000°C) as a function of fabricated material thickness
- Creep properties (up to 1000°C) as a function of grain size
- Fatigue properties as a function of fabricated material thickness

12/9/2008

• Fatigue properties as a function of grain size.

C1.2.5.4 Data Requirements

All data shall be acquired using recognized techniques, codes, standards, and QA.

C1.2.5.5 Test Evaluation Criteria

The creep and fatigue properties determined on thin section and small grain size Alloy 617 material must meet the requirements for fatigue and creep resistance in the IHX A compact heat exchanger.

C1.2.5.6 Test Deliverables

Deliverables for this Test Specification shall include:

- Report on the influence of section thickness on creep and fatigue properties of Alloy 617
- Report on the influence of grain size on creep and fatigue properties of Alloy 617.

C1.2.5.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing metallic materials technology for IHX A from TRL 2 to TRL 3 is addressed in Sections C1.1.3 and C1.1.4. The risk associated with Section C1.2.5 is small but includes the possibility that either thin sections or small grain size may result in creep or fatigue properties inconsistent with the use of Alloy 617 in the IHX A compact heat exchanger.

C1.2.6 Corrosion Allowances for Alloy 617 (WEC-TS-IHXA-006)

C1.2.6.1 Objectives

The major objective of this activity is to ensure that exposure of Alloy 617 base metal, weldments, braze joints, and diffusion bonds at high temperatures (up to 950°C) for up to 10 years in NGNP He does not compromise the structural integrity of the material cross-section by oxide scale formation, internal oxidation, or other phenomena from either the primary or secondary side of the HTS. This Test Specification responds to DDN HTS-01-21.

C1.2.6.2 Test Conditions

C1.2.6.2.1 Test Configuration/Set-up

Determination of corrosion allowances for Alloy 617 will require the following.

• Facility for exposure in He (700°C to 1000°C) / 9MPa with low levels of CO, CO₂, H₂, H₂O, and CH₄ for up to 10,000 hours

- Provisions for introduction, control, and measurement of impurity levels
- Metallographic and SEM equipment for determination of thickness of the oxides, depths of internal oxidation, alloy element depletion, and carburization/decarburization

C1.2.6.2.2 Test Duration

Conduct of this work will require 36 months.

C1.2.6.2.3 Proposed Test Location

This work can most effectively be done by ASME members from industry, with supporting data from the test labs.

C1.2.6.3 Measured Parameters

Parameters to be measured and data taken include:

- Impurity levels in primary side NGNP He as a function of time at all exposure temperatures
- Impurity levels in secondary side NGNP He as a function of time at all exposure temperatures
- Oxide scale thickness and composition
- Depth of internal oxidation
- Depth of depletion of alloy elements, primarily Cr
- Depth affected by carburization or decarburization.

C1.2.6.4 Data Requirements

All data shall be acquired using best practice techniques and QA.

C1.2.6.5 Test Evaluation Criteria

The corrosion allowances determined for Alloy 617 must not be of such magnitude that they degrade the structural integrity of the thin material sections (including welds, brazes, and diffusion bonds) required for the IHX A compact heat exchanger.

C1.2.6.6 Test Deliverables C1.2.6.

The following will be provided to meet the objectives of this Test Specification.

- Reports providing details of all exposures in impure primary and secondary side NGNP He
- Oxide scale thickness as a function of time, temperature, and He chemistry
- Depth of internal oxidation as a function of time, temperature, and He chemistry
- Depth of alloy element depletion as a function of time, temperature, and He chemistry

- Depth of carburized or decarburized zone as a function of time, temperature, and He chemistry
- Analysis of all data above for prediction of corrosion allowances for Alloy 617 and Alloy 617 joints for all temperatures and times of interest

C1.2.6.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing metallic materials technology for IHX A from TRL 2 to TRL 3 is addressed in Sections C1.1.3 and C1.1.4. The risk associated with Section C1.2.6 is that the measured corrosion allowances may preclude the operation of IHX A at full life (~10 years) at full temperature (950°C).

C2 TECHNOLOGY MATURATION PLAN FOR IHX A (METALLIC) - TRL 3 TO TRL 4

C2.1 TECHNOLOGY MATURATION PLAN SUMMARY

C2.1.1 Objectives

The purpose of this Technology Maturation Plan is to describe the activities required to advance the maturity of the technology for the metallic IHX A from a TRL level of 3 to a TRL level of 4. The first of these maturation tasks is to develop and establish an ASME Section III Code Case for the use of Alloy 617 in the NGNP IHX. Four other maturation tasks involve the development of models to guide the design of high temperature compact heat exchangers and to form the predictive basis for their operation and performance. A Test Specification is provided to cover each of the maturation tasks. These are given in Section C2.2.

C2.1.2 Scope

The maturation tasks and associated testing and other activities necessary to advance the maturity of the technology of the metallic version of IHX A from TRL 3 to TRL 4 are as shown below.

- Establish ASME Section III Code Case for Alloy 617
- Develop methods for thermal/fluid modeling of compact heat exchangers
- Develop methods for stress/strain modeling of compact heat exchangers
- Establish criteria for structural integrity of compact heat exchangers at very high temperature
- Develop methods for performance modeling of compact heat exchangers

The tasks above will be described fully in individual Test Specifications provided in the sections to follow.

C2.1.3 Anticipated Schedule

The work described by the Test Specifications in this Technology Maturation Plan could be accomplished during the period FY2010 through FY2015.

C2.1.4 Overall Cost

Cost and schedule for the overall maturation and with associated specifications are addressed in Section 17 of this document.

C2.2 Test Specifications

C2.2.1 ASME Section III Code Case for Alloy 617 (WEC-TS-IHXA-007)

C2.2.1.1 Objectives

This Test Specification has the overall objective of developing and establishing a Section III ASME Code Case for Alloy 617. It will involve the drafting of the code case, interactions with ASME during the approval process, and provision of any additional specific data/information requested by the ASME. This Test Specification responds to DDN HTS-01-18.

C2.2.1.2 Test Conditions

C2.2.1.2.1 Test Configuration/Set-up

No test equipment or facility is needed.

C2.2.1.2.2 Test Duration

The duration of this activity will be a minimum of 48 months.

C2.2.1.2.3 Proposed Test Location

The supplier / design authority may be best suited to perform the modeling work.

C2.2.1.3 Measured Parameters

Not applicable.

C2.2.1.4 Data Requirements

Measured parameters will be determined using recognized techniques, codes, standards, and QA.

NGNP-CTF MTECH-TDRM-004_Rev1-final.doc

12/9/2008

C2.2.1.5 Test Evaluation Criteria

Not applicable.

C2.2.1.6 Test Deliverables

The test deliverable is a Section III ASME Code case fully qualifying Alloy 617 for service in the NGNP IHX up to 950° C.

C2.2.1.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing metallic materials technology for IHX A from TRL 3 to TRL 4 is addressed in Sections C2.1.3 and C2.1.4 There is minimal technical risk associated with C2.2.1. There is some risk that the Code Case will not be approved per the desired schedule; however, the schedule should be achievable with dedicated and directed efforts by a designer team.

C2.2.2 Thermal/Fluid Modeling Methods for Metallic IHX A (WEC-TS-IHXA-008)

C2.2.2.1 Objectives

The work to be conducted under this Test Specification is the development of thermal structural models to provide a predictive basis for operation and performance characteristics of compact heat exchangers. This is required for both quasi-steady state and transient analyses. This Test Specification responds to DDN HTS-01-13.

C2.2.2.2 Test Conditions

C2.2.2.1 Test Configuration/Set-up

None currently identified but the models will likely be applied to the results obtained under Section C3.2.1 and DDN HTS-01-17. Relative to the latter, see Technology Maturation Plans for TRL 5 to TRL 7 and TRL 7 to TRL 8.

C2.2.2.2.2 Test Duration

Development of the thermal/fluid models would occur over a 36-month period.

C2.2.2.3 Proposed Test Location

The supplier / design authority may be best suited to perform the modeling work.

C2.2.2.3 Measured Parameters

The models to be developed will incorporate and combine the mechanical and thermal/physical property database for Alloy 617 with finite element analysis (FEA) techniques and known relationships relative to temperature, fluid flow, interface conditions, and structural stresses.

C2.2.2.4 Data Requirements

Model development activities will follow best standard practice and QA requirements.

C2.2.2.5 Test Evaluation Criteria

The usefulness and predictive capability of the models developed will be assessed based on its application to testing described in Section C3.2.1 and in DDN HTS-01-17.

C2.2.2.6 Test Deliverables

The test deliverable is a model for predicting operation and performance characteristics of compact heat exchanger IHX A.

C2.2.2.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing metallic materials technology for IHX A from TRL 3 to TRL 4 is addressed in Sections C2.1.3 and C2.1.4. There are no risks associated with Section C2.2.2.

C2.2.3 Methods for Stress/Strain Modeling of Metallic IHX A (WEC-TS-IHXA-009)

C2.2.3.1 Objectives

The objective of this work is to develop structural modeling methods to provide a physical and mechanical design and predictive basis for operation and performance characteristics of compact heat exchanger IHX A. No physical testing is required to accomplish this task. This Test Specification responds to DDN HTS-01-14.

C2.2.3.2 Test Conditions

C2.2.3.2.1 Test Configuration/Set-up

None currently identified but the models will likely be applied to the results obtained under Section C3.2.1 and DDN HTS-01-17. Relative to the latter, see Technology Maturation Plans for TRL 5 to TRL 6, TRL 6 to TRL 7, and TRL 7 to TRL 8.

C2.2.3.2.2 Test Duration

Development of the thermal/fluid models would occur over a 36-month period

C2.2.3.2.3 Proposed Test Location

The supplier/design authority might be best suited for this task.

C2.2.3.3 Measured Parameters

The models to be developed will incorporate and combine the mechanical property database for Alloy 617 with finite element analysis (FEA) techniques and know relationships relative to temperature, fluid flow, interface conditions, and structural stresses.

C2.2.3.4 Data Requirements

Model development activities will follow best standard practice and QA requirements.

C2.2.3.5 Test Evaluation Criteria

The usefulness and predictive capability of the models developed will be assessed based on its application to testing described in Section C3.2.1 and in DDN HTS-01-17. They will also form a part of an ASME design code (see DDN HTS-01-19 for TRL 5 to TRL 7).

C2.2.3.6 Test Deliverables

The test deliverable is a model for predicting operation and performance characteristics and to form a design basis for compact heat exchanger IHX A.

C2.2.3.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing metallic materials technology for IHX A from TRL 3 to TRL 4 is addressed in Sections C2.1.3 and C2.1.4. There is no risk associated with Section C2.2.3.

C2.2.4 Criteria for Structural Integrity of IHX A (WEC-TS-IHXA-010)

12/9/2008

C2.2.4.1 Objectives

The objective of this Test Specification is to establish criteria for the structural integrity of compact heat exchangers operating at very high temperature. This includes criteria for stresses and strains as well as development of safety factors needed in ASME Code development. These criteria will help to establish acceptable operational boundaries for compact heat exchangers. No physical testing is required to establish structural integrity criteria. This Test Specification responds to DDN HTS-01-15.

C2.2.4.2 Test Conditions

C2.2.4.2.1 Test Configuration/Set-up

None currently identified.

C2.2.4.2.2 Test Duration

Establishment of structural integrity criteria will occur over a 36-month period.

C2.2.4.2.3 Proposed Test Location

The supplier/design authority might be best suited for this task.

C2.2.4.3 Measured Parameters

Criteria for structural integrity will be developed from a review of appropriate ASME Code documentation, discussions with ASME Code personnel, and interactions during the development of stress/strain models (see activities associated with DDN HTS-01-14 under Section C2.2.3).

C2.2.4.4 Data Requirements

Structural integrity criteria development activities will employ best standard practice and QA requirements.

C2.2.4.5 Test Evaluation Criteria

The usefulness and predictive capability of the structural integrity models developed will be assessed based on its application to testing described in Section C3.2.1 and in DDN HTS-01-17. They will also form a part of an ASME design code (see DDN HTS-01-19 for TRL 5 to TRL 6).

C2.2.4.6 Test Deliverables

Deliverables are as follows.

• Criteria for acceptable stresses and strains

• Safety factors for application to an ASME design code.

C2.2.4.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing metallic materials technology for IHX A from TRL 3 to TRL 4 is addressed in Sections C2.1.3 and C2.1.4. There is no risk associated with Section C2.2.4.

C2.2.5 Performance Modeling Methods for IHX A (WEC-TS-IHXA-011)

C2.2.5.1 Objectives

The objective of the work prescribed in this Test Specification is to provide performance modeling methods to adequately evaluate the results of performance testing of compact heat exchangers and to assist in the development of an ASME Code Case for design of compact heat exchangers. No physical testing is required for performance modeling. This Test Specification responds to DDN HTS-01-16.

C2.2.5.2 Test Conditions

C2.2.5.2.1 Test Configuration/Set-up

None, but the performance models will be applied to the results obtained under DDN HTS-01-17 (see Technology Maturation Plans for TRL 4 to TRL 5, TRL 5 to TRL 7 and TRL 7 to TRL 8.

C2.2.5.2.2 Test Duration

Establishment of structural integrity criteria will occur over a 48-month period.

C2.2.5.2.3 Proposed Test Location

The supplier/design authority might be best suited for this task.

C2.2.5.3 Measured Parameters

The performance models to be developed will incorporate all parameters necessary to predict the thermal and structural behavior of compact heat exchangers.

C2.2.5.4 Data Requirements

Model development activities will follow best standard practice and QA requirements.

C2.2.5.5 Test Evaluation Criteria

The usefulness and predictive capability of the models developed will be assessed based on its application to testing associated with DDN HTS-01-17 (see Technology Maturation Plans for IHX A from TRL 4 to TRL 5, TRL 5 to TRL 7 and TRL 7 to TRL 8).

C2.2.5.6 Test Deliverables

The deliverable for this Test Specification is a model to assess the thermal and structural performance of the compact heat exchanger modules to be tested in association with DDN HTS-01-17.

C2.2.5.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing metallic materials technology for IHX A from TRL 3 to TRL 4 is addressed in Sections C2.1.3 and C2.1.4. There is no risk associated with Section C2.2.5.
C3 TECHNOLOGY MATURATION PLAN FOR IHX A (METALLIC) - TRL 4 TO TRL 5

C3.1 TECHNOLOGY MATURATION PLAN SUMMARY

C3.1.1 Objectives

The purpose of this Technology Maturation Plan is to describe the activities required to advance the maturity of the technology for the metallic IHX A from a TRL level of 4 to a TRL level of 5. The maturation task required to achieve this goal involve the testing of the compact heat exchanger unit cell (It is assumed that the compact heat exchanger unit cell will be provided by a compact heat exchanger vendor). A Test Specification is provided to cover the maturation task. This is given in Section C3.2.

C3.1.2 Scope

The maturation task necessary to advance the maturity of the technology of the metallic version of IHX A from TRL 4 to TRL 5 is as shown below.

• Specification 1: Testing of unit cell compact heat exchanger

The task above will be described fully in a Test Specification in the following section.

C3.1.3 Anticipated Schedule

The work described by the Test Specifications in this Technology Maturation Plan could be accomplished during the period FY 2014 through FY 2016.

C3.1.4 Overall Cost

Cost and schedule for the overall maturation and with associated specifications are addressed in Section 17 of this document.

C3.2 Test Specifications

C3.2.1 Specification of testing of unit cell of compact heat exchanger (WEC-TS-IHXA-012)

C3.2.1.1 Objectives

The objective of testing the compact heat exchanger unit cell is:

• To determine the joint integrity of the compact heat exchanger unit cell joints under tensile load at a typical pressure environment and elevated temperatures.

C3.2.1.2 Test Conditions

C3.2.1.2.1 Component Requirements

Component requirements include the following:

- Size limitation: dependant on testing environment (e.g. furnace)
- Temperature threshold see test requirements
- Pressure threshold see test requirements
- Environment Helium with controlled impurity levels

C3.2.1.2.2 Interfacing Requirements

n/a

C3.2.1.2.3 Test Requirements

Test requirements for the compact heat exchanger unit cell tests (not integrated) are as follows:

• Test environment which compact heat exchanger unit cell will be subjected to before post test evaluation:

- \circ Temperature = 950°C
- \circ Pressure = 9MPa
- Cyclic loading (magnitude and cycles TBD)
- Proposed setup and relevant parameters (see following page):

Figure C-1: Proposed setup and relevant parameters in testing the unit cell

C3.2.1.2.4 Test Duration

The duration of this activity will be a minimum of **24** months.

C3.2.1.2.5 Facility Requirements

- 1. Furnace suitable for test requirements
- 2. Facilities required for metallographic analysis of material and joints after testing

C3.2.1.2.6 Proposed Test Location

Manufacturers of metallic unit cells would most appropriately evaluate the joint integrities of the as-manufactured unit cells.

C3.2.1.3 Measured Parameters

The following parameters will be measured:

- Temperature
- Pressure
- Post-test joint integrity inferred from SEM, microscopic/metallographic evaluations and tests
 - Creep and creep rupture data
 - •

C3.2.1.4 Data Requirements

It is assumed that the compact heat exchanger unit cell will be produced by a vendor of metallic heat exchangers. The fabricated unit cell will require the following before progressing with testing:

- Materials certificates
- Weld certificates
- Inspection certificates
- All other quality assurance documents (bonding procedures, etc)

All new data shall be acquired using recognized techniques, codes, standards, and QA.

C3.2.1.5 Test Evaluation Criteria

Satisfactory structural integrity of the compact heat exchanger unit cell joints as evidenced by post-testing examinations relating to metallographic procedures and tests.

C3.2.1.6 Test Deliverables

Deliverables are as follows.

- Test Data for all areas as indicated in section C3.2.1.3.
- Documentation containing performance verification criteria and test results relating to the joint integrities of the CHE unit cell as observed through microscopic/metallographic evaluations and tests.

C3.2.1.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing metallic materials technology for IHX A from TRL 4 to TRL 5 is addressed in Sections C3.1.3 and C3.1.4.

The risk associated with Section C3.2 1 involves the non-satisfactory condition/integrity of the CHE unit cell joint, and may consequently require a re-evaluation of the unit cell design (or certain aspects thereof).

C4 TECHNOLOGY MATURATION PLAN FOR IHX A (METALLIC) - TRL 5 TO TRL 6

C4.1 TECHNOLOGY MATURATION PLAN SUMMARY

C4.1.1 Objectives

The purpose of this Technology Maturation Plan is to describe the activities required to advance the maturity of the technology for the metallic IHX A from a TRL level of 5 to a TRL level of 6. The maturation tasks required to achieve this goal involve the testing of the integrated compact heat exchanger module (~1.2MW) in the CTF (It is assumed that the compact heat exchanger module will be provided by a compact heat exchanger vendor) and the establishment of a Section III ASME Code case fully qualifying compact heat exchanger designs for service in the NGNP IHX. Test Specifications are provided to cover these maturation tasks (given in Section C4.2).

C4.1.2 Scope

The maturation tasks necessary to advance the maturity of the technology of the metallic version of IHX A from TRL 5 to TRL 6 is as shown below.

- Specification 1: Testing of integrated compact heat exchanger module (~1.2MW)
- Specification 2: Establishing ASME Section III design code for compact heat exchanger designs

The tasks above will be described in the test specification provided hereafter.

C4.1.3 Anticipated Schedule

The work described by the Test Specification in this Technology Maturation Plan will be accomplished during the period FY 2017 through FY 2019.

C4.1.4 Overall Cost

Cost and schedule for the overall maturation and with associated specifications are addressed in Section 17 of this document.

C4.2 Test Specifications

C4.2.1 Specification of testing of compact heat exchanger module (~1.2MW) (WEC-TS-IHXA-013)

C4.2.1.1 Objectives

The objectives of testing the compact heat exchanger module (~1.2MW) are:

- To demonstrate the operating effectiveness of the compact heat exchanger module
- To demonstrate the fatigue life of the integrated compact heat exchanger module in terms of *thermal fatigue, joint integrity* and *corrosion & high temperature oxidation*
- •

C4.2.1.2 Test Conditions

C4.2.1.2.1 Compact Heat Exchanger Module (subsystem and system) Requirements

Subsystem and system requirements include the following:

- Size limitation: TBD
- Certain interface design requirements and specifications (see interfacing requirements)
- Heat transfer fluid Helium with controlled impurities
- Temperature threshold see test requirements
- Pressure threshold see test requirements
- Mass flow threshold see test requirements
- Pressure drop threshold see test requirements

C4.2.1.2.2 Interfacing Requirements

- TBD by Technology Development Loop and Subsystem Configuration / Design.
- Certain interface design requirements and specifications:
 - Appropriate surface finish of interfacing components
 - Gasket materials applicable
 - Flange torque values where applicable

C4.2.1.2.3 Measurement Requirements

- Measurement of strains
- Measurement of internal and external pressures
- Measurement of temperature
- Measurement of mass flow
- Measurement of fluid composition
- Measurement of leak rates from CHE module

C4.2.1.2.4 Test Requirements

Test requirements for the compact heat exchanger module tests (integrated) are as follows:

- 1) Test compact heat exchanger module operating effectiveness and behavior in typical steady state pressure, temperature and temperature/pressure drop environment (Helium)
 - i. Temperature = 950°C
 - ii. Pressure = 9MPa
 - iii. Temperature $\Delta =$ 250°C
 - iv. Pressure Δ 500 – 600 kPa sustained (Primary to Secondary) =
 - v. Mass flow = tbd
 - vi. He environment with varied composition
- 2) Test compact heat exchanger module behavior in typical pressure transient environment:
 - i. Expose module to a high frequency, **normal** operating pressure transient, present with a startup / shutdown sequence
 - 1. Pressurizing transient (ambient to 9MPa in certain time frame)
 - 2. De-pressurizing transient (9MPa to ambient in certain time frame)
 - ii. Number of cycles and temperature level TBD
- 3) Test compact heat exchanger module behavior in typical temperature transient environment:
 - i. Expose module to a high frequency, normal operating temperature transient (ambient to 950°C) present with a startup / shutdown sequence
 - 1. Heat up transition
 - 2. Cool down transition
 - ii. Number of cycles and pressure level TBD

4) Test compact heat exchanger module behavior at varying process parameters:

- i. Temperature = 950°C
- ii. Pressure = 9MPa primary (secondary TBD)
- TBD (Rapid depressurization) iii. Pressure Δ =
- iv. Mass flow TBD =

Proposed setup and parameters (see following page):

Figure C-2 :Proposed setup and durability parameters in testing the CHE Module

C4.2.1.2.5 Tests Duration

NGNP-CTF MTECH-TDRM-004_Rev1-final.doc

The duration of this activity will be a minimum of **24** months.

C4.2.1.2.6 Facility Requirements

The following facilities will be required:

- 1. TDL facilities (TBD)
- 2. Gas analyzing facilities
- 3. Facilities required for metallographic analysis of material and joints after testing

C4.2.1.2.7 Proposed Test Location

Proposed tests will take place at the CTF or in a representative environment. This work can most effectively be done by ASME members from industry.

C4.2.1.3 Measured Parameters

The following parameters will be measured:

- Temperatures
- Pressures
- Measurement of magnitude and number of temperature gradients and temperature gradient cycles respectively up to thermal fatigue failure
- Fluid composition
- Leak rates at varying process conditions
- Operating effectiveness of compact heat exchanger module
- Corrosion of module materials and joints over a predetermined time
- Oxidation of module materials and joints over a predetermined time
- Thermal fatigue observations through SEM, TEM and other analyses techniques, inclusive of Element Distribution Maps of selected joint samples
- Joint integrity(ies) Tensile tests, SEM, microscopic/metallographic evaluations and testing of joint sections.

C4.2.1.4 Data Requirements

It is assumed that the compact heat exchanger module will be produced by a vendor of metallic heat exchangers. The fabricated module of the compact heat exchanger will require the following before progressing with testing:

- Materials certificates
- Weld certificates
- Inspection certificates
- All other quality assurance documents (bonding procedures, etc)

All new data shall be acquired using recognized techniques, codes, standards, and QA.

C4.2.1.5 Test Evaluation Criteria

- Satisfactory number of transient cycles up to thermal fatigue of the module material/joints
- Structural integrity of the whole compact heat exchanger module assembly (system) as evidenced by
 - metallographic procedures and tests
 - analyses inclusive of remaining life assessments (if applicable)
 - o comparison of data with assessment models, FEM's or other calculations
- An acceptable level of deformation of the compact heat exchanger module (subsystem) as evidenced by strain measurement measures
- The corrosion must not be of such magnitude as to degrade the structural integrity of the module material sections and joints.
- Limited oxidation formation thickness or no oxidation over a predetermined time
- An acceptable effectiveness of the compact heat exchanger module
- An acceptable rate of leakage of the compact heat exchanger module at varying process conditions.

C4.2.1.6 Test Deliverables

Deliverables are as follows.

- Test Data for all areas as indicated in section C4.2.1.3
- Documentation containing test requirements, performance verification criteria and test results verified against stress/strain models of the compact heat exchanger module and material properties.

C4.2.1.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing metallic materials technology for IHX A from TRL 5 to TRL 7 is addressed in Sections C4.1.3 and C4.1.4.

The risk involved is the substantial difference that might be present between the generated test data and the predictions derived from the simulation models.

C4.2.2 ASME Section III Code Case for Compact Heat Exchanger Designs (WEC-TS-IHXA-014)

C4.2.2.1 Objectives

This Test Specification has the overall objective of developing and establishing a Section III ASME Code Case for compact heat exchanger designs. It will involve the drafting of the code case, interactions with ASME during the approval process, and provision of any additional

specific data/information requested by the ASME. This Test Specification responds to DDN HTS-01-19

C4.2.2.2 Test Conditions

C4.2.2.2.1 Test Configuration/Set-up

No test equipment or facility is needed.

C4.2.2.2.2 Test Duration

The duration of this activity will be a minimum of 48 months.

C4.2.2.2.3 Proposed Test Location

The supplier/design authority might be best suited for this task.

C4.2.2.3 Measured Parameters

Not applicable.

C4.2.2.4 Data Requirements

Measured parameters will be determined using recognized techniques, codes, standards, and QA.

C4.2.2.5 Test Evaluation Criteria

Not applicable.

C4.2.2.6 Test Deliverables

The test deliverable is a Section III ASME Code case fully qualifying metallic compact heat exchanger designs for service in the NGNP IHX up to 950°C.

C4.2.2.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing metallic materials technology for IHX A from TRL 5 to TRL 6 is addressed in Sections C4.1.3 and C4.1.4.

The risk associated with Section C4.2.2 entails the failure to establish an ASME Code Case for compact heat exchanger designs.

C5 TECHNOLOGY MATURATION PLAN FOR IHX A (MEALLIC) - TRL 6 TO TRL 7

C5.1 TECHNOLOGY MATURATION PLAN SUMMARY

C5.1.1 Objectives

The purpose of this Technology Maturation Plan is to describe the activities required to advance the maturity of the technology for the metallic IHX A from a TRL level of 6 to a TRL level of 7. The maturation tasks required to achieve this goal involve the testing of models to determine shell-side flow distribution and bypass leakage and the heat transfer testing of multimodules (e.g., 3 x ~1.2MW). Test Specifications are provided to cover the maturation tasks (given in section C5.2).

C5.1.2 Scope

The maturation task necessary to advance the maturity of the technology of the metallic version of IHX A from TRL 6 to TRL 7 is as shown below.

- Specification 1: Shell-side flow distribution and bypass leakage tests.
- Specification 2: Multi-module heat transfer tests.

These tasks will be described in C5.2.

C5.1.3 Anticipated Schedule

The work described by the Test Specification in this Technology Maturation Plan could be accomplished during the period FY 2018 through FY 2020.

C5.1.4 Overall Cost

Cost and schedule for the overall maturation plan with associated specifications are addressed in Section 17 of this document.

C5.2 Test Specifications

C5.2.1 Shell-side Flow Distribution and Bypass Leakage Testing (WEC-TS-IHXA-015)

NGNP-CTF MTECH-TDRM-004_Rev1-final.doc

C5.2.1.1 Objectives

The objectives of testing are to

- Confirm shell-side flow distribution modeling
- Confirm that shell-side bypass leakage is acceptable
- Confirm shell-side pressure losses.

There is also the potential to use this test to characterize dust transport/dropout as a function of particulate size.

C5.2.1.2 Test Conditions

This likely would be an ambient temperature test with air as the working fluid. The test article would model inlet and outlet regions of the heat exchanger, features that promote good distribution to the core modules on the shell-side, and features that minimize bypass leakage. Details of the testing will be finalized at later stage.

C5.2.2 Multi-module Heat Transfer Testing (WEC-TS-IHXA-016)

C5.2.2.1 Objectives

The objectives of this testing are to

- Investigate module-to-module interactions on both the tube- and shell-sides of the heat exchanger
- Confirm bypass leakage and effects.

C2.2.2.2 Test Conditions

The multi-module test would be a heated test in the CTF with 3 or more core modules (~4MWt would be required for 3 modules) representing a segment of the IHX. Details of the testing will be finalized at later stage.

C6 TECHNOLOGY MATURATION PLAN FOR IHX A (METALLIC) - TRL 7 TO TRL 8

C6.1 TECHNOLOGY MATURATION PLAN SUMMARY

C6.1.1 Objectives

The purpose of this Technology Maturation Plan is to describe the activities required to advance the maturity of the technology for the metallic IHX A from a TRL level of 7 to a TRL level of 8. The maturation task required to achieve this goal involve the testing of the full-scale compact heat exchanger. (It is assumed that the full-scale compact heat exchanger will be

provided by a compact heat exchanger vendor and/or assembled by vendor staff on the NGNP site). The scope of this test on the full-scale compact heat exchanger will vary slightly from the scope of test noted to progress from a TRL 5 to TRL 6 and TRL 6 to TRL 7. A Test Specification is provided to cover the maturation task (given in section C6.2).

C6.1.2 Scope

The maturation task necessary to advance the maturity of the technology of the metallic version of IHX A from TRL 7 to TRL 8 is as shown below.

• Specification 1: Testing of full scale compact heat exchanger in the NGNP

This task will be described in the following test specification.

C5.1.3 Anticipated Schedule

The work described by the Test Specification in this Technology Maturation Plan could be accomplished during the period FY 2019 through FY 2020.

C5.1.4 Overall Cost

Refer to Section C7 for the estimated costs regarding the development of metallic IHX A

C5.2 Test Specifications

C5.2.1 Specification of testing of a full scale compact heat exchanger (WEC-TS-IHXA-017)

C5.2.1.1 Objectives

The objectives of testing the full-scale compact heat exchanger are:

- To determine the leak rate of the compact heat exchanger (system) at various typical process parameters.
- To determine the operating effectiveness of the full-scale compact heat exchanger at various typical process parameters.

The metallic IHX A will be fully tested and commissioned in the NGNP. Details of the testing and commissioning will be finalized at later stage.

APPENDIX D: TECHNOLOGY MATURATION PLAN - CERAMIC IHX A

TABLE OF CONTENTS

Section	Title	Page
D1. TECHNOI	LOGY MATURATION PLAN FOR IHX A (CERAMIC) - TRL 2 TO T	RL
3		73
D1.1 TECH	NOLOGY MATURATION PLAN SUMMARY	73
D1.1.1	Objectives	73
D1.1.2	Scope 73	
D1.1.3	Anticipated Schedule	73
D1.1.4	Overall Cost	73
D1.2 TEST S	PECIFICATIONS	74
D1.2.1	Trade Study on Candidate Ceramic Materials for IHX A (WEC-TS-IHXA-	-018) 74
D1.2.2	Trade Study on Candidate Ceramic Designs for IHX A (WEC-TS-IHXA-0)19) 75
D2 TECHNOL	OGY MATURATION PLAN FOR IHX A (CERAMIC) - TRL 3 TO T	RL 4
••••••		76
D2.1 TECH	NOLOGY MATURATION PLAN SUMMARY	76
D2.1.1	Objectives	76
D2.1.2	Scope 77	
D2.1.3	Anticipated Schedule	77
D2.1.4	Overall Cost	77
D2.2 TEST S	PECIFICATIONS	
D2.2.1	Ceramic Heat Exchanger Detailed Design Data Needs (DDNs) (WEC-1S-	77
נננת	(WEC TS IIIXA 021)	/ / 70
D2.2.2 D2.2.2	Thermal/Physical Properties of Coromics (WEC TS IHVA 022)	0/ 09
D2.2.3	Mechanical Properties of Ceramics (WEC-TS-IIIXA-022)	00
D2.2.4 D2.2.5	Compatibility of Ceramic Materials to NGNP He Environment (WEC-TS-	01
	IHXA-024)	83
D2.2.6	025)	A- 84
D3 TECHNOL	OGY MATURATION PLAN FOR IHX A (CERAMIC) - TRL 4 TO TI	RL 5
••••••		86
D3 1 TECH	NOLOGY MATURATION PLAN SUMMARY	86
D3.1.1	Objectives	86
D3.1.2	Scope 86	
D3.1.3	Anticipated Schedule	86
D3.1.4	Overall Cost	86
D3.2 TEST S	PECIFICATIONS	87
D3.2.1	Ceramic Materials Codes and Standards (WEC-TS-IHXA-026)	87

D3.2.2	Methods for Thermal/Fluid and Stress/Strain Modeling (WEC-TS-IHXA-027)	8
D3.2.3	Structural Integrity Criteria for Ceramic Heat Exchangers (WEC-TS-IHXA- 021)	9
D3.2.4	Performance Modeling of Ceramic Heat Exchangers (WEC-TS-IHXA-029).9	0
D4 TECHNOL	OGY MATURATION PLAN FOR IHX A (CERAMIC) - TRL 5 TO TRL 6	5
•••••		4
D4.1 TECH	NOLOGY MATURATION PLAN SUMMARY9	4
D4.1.1	Objectives	4
D4.1.2	Scope 94	
D4.1.3	Anticipated Schedule	4
D4.1.4	9.	4
D4.2 TEST S	PECIFICATIONS	5
D4.2.1	TS INVA (021) (WEC-	5
D_{4}	ASME Code Case for ceramic Compact Heat Exchanger Designs (WEC TS	5
D4.2.2	IHXA-032)	8
D5 TECHNOL	DGY MATURATION PLAN FOR IHX A (CERAMIC) – TRL 6 TO TRL '	7
••••••		0
D5.1 TECHNO	LOGY MATURATION PLAN SUMMARY 10	0
D5.1 TECHNO D5.1.1	LOGY MATURATION PLAN SUMMARY 10 Objectives	0 0
D5.1 TECHNO D5.1.1 D5.1.2	LOGY MATURATION PLAN SUMMARY 10 Objectives	0 0
D5.1 TECHNO D5.1.1 D5.1.2 D5.1.3	LOGY MATURATION PLAN SUMMARY10Objectives10Scope 10010Anticipated Schedule10	0 0
D5.1 TECHNO D5.1.1 D5.1.2 D5.1.3 D5.1.4	LOGY MATURATION PLAN SUMMARY10Objectives10Scope 10010Anticipated Schedule10Overall Cost10	0 0 0 0
D5.1 TECHNO D5.1.1 D5.1.2 D5.1.3 D5.1.4 D5.2 TEST S	LOGY MATURATION PLAN SUMMARY10Objectives10Scope 10010Anticipated Schedule10Overall Cost10PECIFICATIONS10	0 0 0 0 1
D5.1 TECHNO D5.1.1 D5.1.2 D5.1.3 D5.1.4 D5.2 TEST S D5.2.1	LOGY MATURATION PLAN SUMMARY 10 Objectives 10 Scope 100 10 Anticipated Schedule 10 Overall Cost 10 PECIFICATIONS 10 Shell-side Flow Distribution and Bypass Leakage Testing (WEC-TS-IHXA-	0 0 0 0 1
D5.1 TECHNO D5.1.1 D5.1.2 D5.1.3 D5.1.4 D5.2 TEST S D5.2.1	LOGY MATURATION PLAN SUMMARY 10 Objectives 10 Scope 100 10 Anticipated Schedule 10 Overall Cost 10 PECIFICATIONS 10 Shell-side Flow Distribution and Bypass Leakage Testing (WEC-TS-IHXA-033) 10	0 0 0 0 1 1
D5.1 TECHNO D5.1.1 D5.1.2 D5.1.3 D5.1.4 D5.2 TEST S D5.2.1 D6 TECHNOLO	LOGY MATURATION PLAN SUMMARY 10 Objectives 10 Scope 100 10 Anticipated Schedule 10 Overall Cost 10 PECIFICATIONS 10 Shell-side Flow Distribution and Bypass Leakage Testing (WEC-TS-IHXA-033) 10 OGY MATURATION PLAN FOR IHX A (CERAMIC) - TRL 7 TO TRL 8 10	0 0 0 0 1 1 3
D5.1 TECHNO D5.1.1 D5.1.2 D5.1.3 D5.1.4 D5.2 TEST S D5.2.1 D6 TECHNOLO	LOGY MATURATION PLAN SUMMARY 10 Objectives 10 Scope 100 10 Anticipated Schedule 10 Overall Cost 10 PECIFICATIONS 10 Shell-side Flow Distribution and Bypass Leakage Testing (WEC-TS-IHXA-033) 10 OGY MATURATION PLAN FOR IHX A (CERAMIC) - TRL 7 TO TRL 8 10 10 10	0 0 0 1 1 8 2
D5.1 TECHNO D5.1.1 D5.1.2 D5.1.3 D5.1.4 D5.2 TEST S D5.2.1 D6 TECHNOLO D6.1 TECH	LOGY MATURATION PLAN SUMMARY 10 Objectives 10 Scope 100 10 Anticipated Schedule 10 Overall Cost 10 PECIFICATIONS 10 Shell-side Flow Distribution and Bypass Leakage Testing (WEC-TS-IHXA-033) 10 DGY MATURATION PLAN FOR IHX A (CERAMIC) - TRL 7 TO TRL 8 10 NOLOGY MATURATION PLAN SUMMARY 10	0 0 0 1 1 3 2 2
D5.1 TECHNO D5.1.1 D5.1.2 D5.1.3 D5.1.4 D5.2 TEST S D5.2.1 D6 TECHNOLO D6.1 TECH D6.1.1	LOGY MATURATION PLAN SUMMARY10Objectives10Scope 10010Anticipated Schedule10Overall Cost10PECIFICATIONS10Shell-side Flow Distribution and Bypass Leakage Testing (WEC-TS-IHXA- 033)10DGY MATURATION PLAN FOR IHX A (CERAMIC) - TRL 7 TO TRL 810NOLOGY MATURATION PLAN SUMMARY10Objectives10	0 0 0 1 1 3 2 2
D5.1 TECHNO D5.1.1 D5.1.2 D5.1.3 D5.1.4 D5.2 TEST S D5.2.1 D6 TECHNOLO D6.1 TECH D6.1.1 D6.1.2	LOGY MATURATION PLAN SUMMARY10Objectives10Scope 10010Anticipated Schedule10Overall Cost10PECIFICATIONS10Shell-side Flow Distribution and Bypass Leakage Testing (WEC-TS-IHXA-033)10DGY MATURATION PLAN FOR IHX A (CERAMIC) - TRL 7 TO TRL 810NOLOGY MATURATION PLAN SUMMARY10Objectives10Scope 10210	0 0 0 1 1 3 2 2 2
D5.1 TECHNO D5.1.1 D5.1.2 D5.1.3 D5.1.4 D5.2 TEST S D5.2.1 D6 TECHNOLO D6.1 TECH D6.1.1 D6.1.2 D6.1.3	LOGY MATURATION PLAN SUMMARY 10 Objectives 10 Scope 100 10 Anticipated Schedule 10 Overall Cost 10 PECIFICATIONS 10 Shell-side Flow Distribution and Bypass Leakage Testing (WEC-TS-IHXA-033) 10 OGY MATURATION PLAN FOR IHX A (CERAMIC) - TRL 7 TO TRL 8 10 NOLOGY MATURATION PLAN SUMMARY 10 Objectives 10 Scope 102 10 Anticipated Schedule 10	0 0 0 1 1 3 2 2 2 2
D5.1 TECHNO D5.1.1 D5.1.2 D5.1.3 D5.1.4 D5.2 TEST S D5.2.1 D6 TECHNOLO D6.1 TECH D6.1.1 D6.1.2 D6.1.3 D6.1.4	LOGY MATURATION PLAN SUMMARY 10 Objectives 10 Scope 100 10 Anticipated Schedule 10 Overall Cost 10 PECIFICATIONS 10 Shell-side Flow Distribution and Bypass Leakage Testing (WEC-TS-IHXA-033) 10 OGY MATURATION PLAN FOR IHX A (CERAMIC) - TRL 7 TO TRL 8 10 NOLOGY MATURATION PLAN SUMMARY 10 Objectives 10 Scope 102 10 Anticipated Schedule 10 Overall Cost 10	0 0 0 0 1 1 3 2 2 2 2 2 2 2
D5.1 TECHNO D5.1.1 D5.1.2 D5.1.3 D5.1.4 D5.2 TEST S D5.2.1 D6 TECHNOLO 06.1 TECH D6.1.1 D6.1.2 D6.1.3 D6.1.4 D6.2 TEST S	LOGY MATURATION PLAN SUMMARY 10 Objectives 10 Scope 100 10 Anticipated Schedule 10 Overall Cost 10 PECIFICATIONS 10 Shell-side Flow Distribution and Bypass Leakage Testing (WEC-TS-IHXA-033) 10 DGY MATURATION PLAN FOR IHX A (CERAMIC) - TRL 7 TO TRL 8 10 NOLOGY MATURATION PLAN SUMMARY 10 Objectives 10 Scope 102 10 Anticipated Schedule 10 Overall Cost 10 Scope 102 10 Anticipated Schedule 10 Overall Cost 10 Decifications 10	0 0 0 1 1 3 2 2 2 3
D5.1 TECHNO D5.1.1 D5.1.2 D5.1.3 D5.1.4 D5.2 TEST S D5.2.1 D6 TECHNOLO 06.1 TECH D6.1.1 D6.1.2 D6.1.3 D6.1.4 D6.2 TEST S 6.2.1 Spe	LOGY MATURATION PLAN SUMMARY 10 Objectives 10 Scope 100 10 Anticipated Schedule 10 Overall Cost 10 PECIFICATIONS 10 Shell-side Flow Distribution and Bypass Leakage Testing (WEC-TS-IHXA-033) 10 DGY MATURATION PLAN FOR IHX A (CERAMIC) - TRL 7 TO TRL 8 10 NOLOGY MATURATION PLAN SUMMARY 10 Objectives 10 Scope 102 10 Anticipated Schedule 10 Overall Cost 10 Scope 102 10 Anticipated Schedule 10 Overall Cost 10 PECIFICATIONS 10 Overall Cost 10 Overall Cost 10 PECIFICATIONS 10	$0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 3 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3$

REQUIRED SPECIFICATIONS/TEST TO ACHIEVE NEXT TRL

TRL 2 to TRL 3:

- Specification 1: Trade study on candidate ceramic materials for IHX A (WEC-TS-IHXA-018)
- Specification 2: Trade study on candidate ceramic designs for IHX A (WEC-TS-IHXA-018)

TRL 3 to TRL 4:

- Specification 1: Ceramic Heat Exchanger Detailed Design Data Needs (DDNs) (WEC-TS-IHXA-018)
- Specification 2: Ceramic Materials Specifications and Procurement (WEC-TS-IHXA-018)
- Specification 3: Thermal/Physical Properties of Ceramics (WEC-TS-IHXA-018)
- Specification 4: Mechanical Properties of Ceramics (WEC-TS-IHXA-018)
- Specification 5: Compatibility of ceramic Materials to NGNP He Environment (WEC-TS-IHXA-018)
- Specification 6: Manufacturing Technology for Ceramic Heat Exchangers (WEC-TS-IHXA-018)
- TRL 4 to TRL 5:
- Specification 1: Ceramic Materials Codes and Standards (WEC-TS-IHXA-018)
- Specification 2: Methods for Thermal/Fluid and Stress/Strain Modeling (WEC-TS-IHXA-018)
- Specification 3: Structural Integrity Criteria for Ceramic Heat Exchangers (WEC-TS-IHXA-018)
- Specification 4: Performance Modeling of Ceramic Heat Exchangers (WEC-TS-IHXA-018)
- Specification 5: Testing of unit cell of compact heat exchanger (WEC-TS-IHXA-018)
- TRL 5 to TRL 6:
- Specification 1: Testing of integrated compact heat exchanger module (~1.2MW) (WEC-TS-IHXA-018)
- Specification 2: Establishing ASME III Code Case for Ceramic Compact Heat Exchanger Designs (WEC-TS-IHXA-018)

TRL 6 to TRL 7

- Specification 1: Shell-side flow distribution and bypass leakage tests. (WEC-TS-IHXA-018)
- Specification 2: Multi-module heat transfer tests. (WEC-TS-IHXA-018)

TRL 7 to TRL 8:

• Specification 1: Testing of full size compact heat exchanger (Full scale NGNP IHX A) (WEC-TS-IHXA-018)

D1. TECHNOLOGY MATURATION PLAN FOR IHX A (CERAMIC) - TRL 2 TO TRL 3

D1.1 TECHNOLOGY MATURATION PLAN SUMMARY

D1.1.1 Objectives

The purpose of this Technology Maturation Plan is to describe the activities required to advance the maturity of the technology for the ceramic IHX A from a TRL level of 2 to a TRL level of 3. Advancing the technology of a ceramic heat exchanger to a level higher than TRL 2 will require Trade Studies to guide selection of candidate ceramic materials and ceramic heat exchanger designs for the NGNP. Test Specifications are provided to cover both of these trade study maturation tasks. These are given in Section D1.2.

D1.1.2 Scope

The maturation tasks and associated testing and other activities necessary to advance the maturity of the technology of the ceramic version of IHX A from TRL 2 to TRL 3 are as shown below.

- Specification 1: Trade study on candidate ceramic materials for IHX A
- Specification 2: Trade study on candidate ceramic designs for IHX A

The tasks above will be described fully in individual Test Specifications provided in sections to follow.

D1.1.3 Anticipated Schedule

The work described by the Test Specifications in this Technology Maturation Plan could be accomplished during FY2009 to FY2010.

D1.1.4 Overall Cost

Cost and schedule for the overall maturation and with associated specifications are addressed in Section 17 of this document.

D1.2 Test Specifications

D1.2.1 Trade Study on Candidate Ceramic Materials for IHX A (WEC-TS-IHXA-018)

D1.2.1.1 Objectives

The Trade Study prescribed by this Test Specification responds to DDN HTS-02-01. It will evaluate, assess, and select ceramic materials for application in ceramic heat exchangers under the demanding conditions required of IHX A.

D1.2.1.2Test Conditions

D1.2.1.2.1 Test Configuration/Set-up

Not applicable

D1.2.1.2.2 Test Duration

The duration of the trade study could be up to 12 months.

D1.2.1.2.3 Proposed Test Location

The supplier/design authority might be best suited for this task.

D1.2.1.3 Measured Parameters

Parameters to be considered include the following.

- Environmental compatibility of candidates at high temperatures
- Service temperature capability of candidates
- Product forms available and processing/forming potential of candidates
- Joining potential
- Thermal, physical and mechanical properties of candidates (including thermal shock resistance, thermal conductivity, CTE and creep properties)
- Chemical composition of candidate precursor materials/powders.

D1.2.1.3.1 Data Requirements

Personnel employed to conduct this Trade Study will be qualified by education and/or experience in the areas of heat exchanger design and materials.

D1.2.1.3.2 Test Evaluation Criteria

Ceramic materials identified as candidates for ceramic heat exchangers must have a reasonable expectation of achieving the goals and requirements for IHX A.

D1.2.1.3.3 Test Deliverables

Deliverables are as follows.

- Report on ceramics potentially capable of meeting IHX A service requirements
- Report on ceramics product form availability and potential forming/shaping methods
- Report on joining of candidates
- Summary of thermal, physical, and mechanical properties of ceramics
- Recommendation of candidate ceramic materials for further study with respect to IHX A
- •

D1.2.1.3.4 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing metallic materials technology for ceramic IHX A from TRL 2 to TRL 3 addressed in Sections D1.1.3 and D1.1.4 The only risk associated with Section D1.2.1 would be the inability to identify suitable candidate ceramic material and this is extremely small.

D1.2.2 Trade Study on Candidate Ceramic Designs for IHX A (WEC-TS-IHXA-019)

D1.2.2.1 Objectives

The Trade Study prescribed by this Test Specification responds to DDN HTS-02-01. It will explore existing applications of ceramics heat exchangers and service experience with such heat exchangers. A major goal is to select candidate ceramic heat exchanger designs and potential heat exchanger vendors.

D1.2.2.2 Test Conditions

D1.2.2.2.1 Test Configuration/Set-up

Not applicable

D1.2.2.2.2 Test Duration

The duration of the trade study could be up to 12 months.

D1.2.2.2.3 Proposed Test Location

The supplier/design authority might be best suited for this task.

D1.2.2.3Measured Parameters

The following parameters will be considered.

- Existing and potentially viable ceramic heat exchanger designs
- Commercially available ceramic heat exchangers and vendors

NGNP-CTF MTECH-TDRM-004_Rev1-final.doc

• Experience with ceramic heat exchangers in service with special reference to feasibility of joining, joint integrity/debonding on thermal shock.

1.2.2.3.1 Data Requirements

Personnel employed to conduct this Trade Study will be qualified by education and/or experience in the areas of heat exchanger design and materials.

1.2.2.3.2 Test Evaluation Criteria

Designs identified must have a reasonable expectation of achieving the goals and requirements for IHX A.

1.2.2.3.3 Test Deliverables

Deliverables are as follows.

- Report on integrated ceramic heat exchanger designs (notably including report on integrating ceramics with metallic piping/vessel)
- Report on service experience with ceramic heat exchangers
- Report on commercial availability of ceramic heat exchangers
- Recommendation for candidate ceramic heat exchanger designs for IHX A (inclusive of materials selection applicable to designs).
- •

1.2.2.3.4 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing ceramic heat exchanger technology for IHX A from TRL 2 to 3 is addressed in Sections D1.1.3 and D1.1.4. There is essentially no risk associated with Section D1.2.2.

D2 TECHNOLOGY MATURATION PLAN FOR IHX A (CERAMIC) - TRL 3 TO TRL 4

D2.1 TECHNOLOGY MATURATION PLAN SUMMARY

D2.1.1 Objectives

The purpose of this Technology Maturation Plan is to describe the activities required to advance the maturity of the technology for the ceramic IHX A from a TRL level of 3 to a TRL level of 4. These tasks include the preparation of detailed DDNs, establishing specifications for candidate ceramic materials, materials acquisition, property determinations, and fabricability questions. A Test Specification is provided to cover each of the maturation tasks. These are given in Section D2.2.

NGNP-CTF MTECH-TDRM-004_Rev1-final.doc

D2.1.2 Scope

The maturation tasks and associated testing and other activities necessary to advance the maturity of the technology of the ceramic version of IHX A from TRL 3 to TRL 4 are as shown below.

- Specification 1: Ceramic Heat Exchanger Detailed Design Data Needs (DDNs)
- Specification 2: Ceramic Materials Specifications and Procurement
- Specification 3: Thermal/Physical Properties of Ceramics
- Specification 4: Mechanical Properties of Ceramics
- Specification 5: Compatibility of ceramic Materials to NGNP He Environment
- Specification 6: Manufacturing Technology for Ceramic Heat Exchangers

The tasks above will be described in individual Test Specifications provided in sections to follow.

D2.1.3 Anticipated Schedule

The work described by the Test Specifications in this Technology Maturation Plan could be accomplished during the period FY2011 through FY2016. No individual Test Specification describes work requiring more than 48 months and the work in most Test Specifications can be done in parallel.

D2.1.4 Overall Cost

Cost and schedule for the overall maturation and with associated specifications are addressed in Section 17 of this document.

D2.2 Test Specifications

D2.2.1 Ceramic Heat Exchanger Detailed Design Data Needs (DDNs) (WEC-TS-IHXA-020)

D2.2.1.1 Objectives

The objective of this Test Specification is to develop detailed DDNs relative to materials, properties, modeling, and codes and standards for the ceramic IHX. Placeholder DDNs were provided in the *NGNP PCDR* but the more detailed DDNs to be provided here are necessary to define an efficient and effective path forward for ceramic IHX technology maturation.

D2.2.1.2 Test Conditions

D2.2.1.2.1 Test Configuration/Set-up

NGNP-CTF MTECH-TDRM-004_Rev1-final.doc

Not applicable.

D2.2.1.2.2 Test Duration

The duration of this activity could be up to 18 months.

D2.2.1.2.3 Proposed Test Location

TBD.

D2.2.1.3 Measured Parameters

Not applicable.

D2.2.1.4 Data Requirements

Knowledgeable personnel qualified by education and/or experience should do preparation of the DDNs.

D2.2.1.5 Test Evaluation Criteria

The DDNs produced must provide a quantitative description of the technology maturation work needed.

D2.2.1.6 Test Deliverables

Deliverables (DDNs) are, as a minimum, the following.

- Specifications for ceramic materials to be acquired for test
- Processing of ceramic materials
- Determination of thermal, physical, and mechanical properties of ceramic
- Aging and environmental effects on properties of ceramic materials
- Codes and Standards development for ceramic materials
- Methods for modeling of the thermal and structural performance of the ceramic IHX
- Performance testing of the ceramic IHX.

D2.2.1.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing technology of ceramic IHX A from TRL 3 to TRL 4 is addressed in Sections D2.1.3 and D2.1.4. There is no risk associated with D2.2.1.

D2.2.2 Ceramic Materials Specifications and Procurement (WEC-TS-IHXA-021)

D2.2.2.1 Objectives

Work conducted under this Test Specification will define the specifications for the ceramic materials selected in Test Specification D1.2.1 and provide for their procurement with appropriate documentation and QA. This Test Specification responds in general to placeholder DDN HTS-02-02.

D2.2.2.2 Test Conditions

D2.2.2.2.1 Test Configuration/Set-up

No testing will be required

D2.2.2.2.2 Test Duration

Preparation of ceramic material specifications and procurement of the ceramic materials will require up to 30 months.

D2.2.2.3 Proposed Test Location

N/A

D2.2.2.3 Measured Parameters

Parameters to be measured include the following.

- Manufacturing/processing history of the ceramic material acquired
- Condition (dimensions, absence of defects, etc.) composition in terms of major, minor and trace elements of the ceramic materials
- •

D2.2.2.4 Data Requirements

All materials shall be acquired/processed using best procurement practices, QA and certification.

D2.2.2.5 Test Evaluation Criteria

• The ceramic material acquired must meet all requirements of the materials specification, procurement procedures, and QA.

•

D2.2.2.6 Test Deliverables

Deliverables are as follows.

- Material specifications for candidate ceramic materials
- Procurement requirements for candidate ceramic materials
- Representative lots of candidate ceramic materials

• Inspection reports and test certificates on the material procured.

D2.2.2.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing technology for a ceramic IHX A from TRL 3 to TRL 4 is addressed in Sections D2.1.3 and D2.1.4. The risks associated with D2.2.2 are very small.

D2.2.3 Thermal/Physical Properties of Ceramics (WEC-TS-IHXA-022)

D2.2.3.1 Objectives

The objective of this work is to confirm by testing that the ceramic materials procured to NGNP specifications will have thermal/physical adequate for a compact IHX A. This Test Specification responds in general to placeholder DDN HTS-02-02. However, a more detailed and directed DDN addressing thermal/physical properties will be prepared as part of the Test Specification in section D2.2.1 above.

D2.2.3.2 Test Conditions

D2.2.3.2.1 Test Configuration/Set-up

Conduct of thermal/physical property testing (principally thermal conductivity and coefficients of thermal expansion) of ceramics materials should involve only test rigs normally used for such work. However, testing will be required up to at least 1000°C.

D2.2.3.2.2 Test Duration

Thermal/physical property testing could require up to 18 months.

D2.2.3.2.3 Proposed Test Location

Property tests of ceramic materials could be conveniently performed at a National Laboratory or University.

D2.2.3.3 Measured Parameters

Data to be determined include:

- Thermal conductivity to at least 1000°C
- Coefficients of thermal expansion to at least 1000°C
- Thermal shock resistance
- Permeability to various gases (up to 1000°C)
- •

D2.2.3.4 Data Requirements

All data shall be acquired using recognized techniques, codes, standards, and QA.

D2.2.3.5 Test Evaluation Criteria

All thermal/physical property data obtained shall be reasonably consistent with values in the literature.

.D2.2.3.6 Test Deliverables

Deliverables, at a minimum, are as follows.

- Reports of thermal conductivity measurements on ceramic materials procured to NGNP specifications
- Reports of coefficient of thermal expansion measurements on ceramic materials procured to NGNP specifications
- Reports on thermal shock resistance on ceramic materials procured to NGNP specifications.

D2.2.3.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing the technology of ceramic IHX A from TRL 3 to TRL 4 is addressed in Sections D2.1.3 and D2.1.4. The risk associated with D2.2.3 is very small but includes the possibility that one or more of the properties measured falls short of what is required for use in a high temperature compact heat exchanger.

D2.2.4 Mechanical Properties of Ceramics (WEC-TS-IHXA-023)

D2.2.4.1 Objectives

The objective of the testing performed under this Test Specification is to demonstrate that the mechanical properties of ceramic materials purchased to the NGNP specification are appropriate for their use in a high temperature ceramic IHX. This Test Specification responds in general to placeholder DDN HTS-02-02.

D2.2.4.2 Test Conditions

D2.2.4.2.1 Test Configuration/Set-up

Equipment/facilities must be available for testing to determine the mechanical properties (strength, creep, fatigue, and toughness) of NGNP ceramics up to at least 1000°C and to provide for thermal aging and environmental exposures and post test evaluations.

D2.2.4.2.2 Test Duration

Mechanical property determinations and evaluations will require up to 36 months.

D2.2.4.2.3 Proposed Test Location

Property tests of ceramic materials could be conveniently performed at a National Laboratory or University.

D2.2.4.3 Measured Parameters

Data and exposure parameters to be measured/recorded include:

- Test temperatures and test techniques
- Thermal and environmental exposure conditions
- Compression/tensile properties to 1000°C
- Fatigue strength to 1000°C
- Creep strength to 1000°C for 10,000 h
- Fracture toughness.

D2.2.4.4 Data Requirements

All data shall be acquired using recognized techniques, codes, standards, and QA.

D2.2.4.5 Test Evaluation Criteria

All mechanical property data obtained shall be reasonably consistent between lots and with values in the literature.

D2.2.4.6 Test Deliverables

Deliverables are as follows.

- Reports on strength of candidate ceramic materials
- Reports on fatigue properties of candidate ceramic materials
- Reports on creep properties of candidate ceramic materials
- Reports on toughness of candidate ceramic materials
- Reports on any effects of aging or environmental exposures on the mechanical properties of candidate ceramic materials.

D2.2.4.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing the technology for a ceramic IHX A from TRL 3 to TRL 4 is addressed in Sections D2.1.3 and D2.1.4. The risk associated with D2.2.4 is small but includes the possibility that one or more of the properties measured may fall short of what is required for use in a ceramic IHX.

D2.2.5 Compatibility of Ceramic Materials to NGNP He Environment (WEC-TS-IHXA-024)

D2.2.5.1 Objectives

The objective of the work prescribed in this Test Specification is to confirm that there are no adverse surface or internal structure effects when candidate ceramic IHX materials are exposed to NGNP He environment. No significant effects are expected but this work should to done to minimize risk A DDN has not previously been prepared for this work.

D2.2.5.2 Test Conditions

D2.2.5.2.1 Test Configuration/Set-up

Conduct of this work requires equipment/facilities for exposure of ceramic materials in NGNP He for prolonged periods of time (duration to be determined). Equipment for post-exposure examination for surface and internal structure changes is also required.

D2.2.5.2.2 Test Duration

Work on NGNP He exposure and post-test examinations will require about 18 months.

D2.2.5.2.3 Proposed Test Location

Exposures and examinations of ceramic materials could be conveniently performed at a National Laboratory.

D2.2.5.3 Measured Parameters

Parameters and data to be taken include:

- He exposure chemistry history
- Any observable surface changes on the ceramics
- Any exposure-related subsurface changes in the ceramics

D2.2.5.4 Data Requirements

All data shall be acquired using recognized techniques, codes, standards, and QA.

D2.2.5.5 Test Evaluation Criteria

Any observable effects on the surface condition or internal structure of the IHX ceramics must be insignificant relative the integrity of the ceramic cross-section.

D2.2.5.6 Test Deliverables

Deliverables for this Test Specification shall include:

- Reports on the exposure conditions and history of ceramic materials
- Reports on surface effects if observed
- Reports on sub-surface effects if observed.

D2.2.5.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing the technology for a ceramic IHX A from TRL 3 to TRL 4 is addressed in Sections D2.1.3 and D2.1.4. The risk associated with D2.2.5 is very small because no significant corrosion effects are expected.

D2.2.6 Manufacturing Technology for Ceramic Heat Exchangers (WEC-TS-IHXA-025)

D2.2.6.1 Objectives

The major objective of this activity is to ensure that methods and techniques are available and effective for the manufacture of a ceramic IHX. This Test Specification responds to placeholder DDN HTS-02-02.

D2.2.6.2 Test Conditions

D2.2.6.2.1 Test Configuration/Set-up

Facilities, equipment, and fixing/joining must be available to develop ceramic-toceramic joints, C/C composite joints, ceramic-to-metal joints, and core/piping interfacing. Facilities must also be available to demonstrate that product forms needed for the IHX are fabricable.

D2.2.6.2.2 Test Duration

Conduct of this work will require 36 months.

D2.2.6.2.3Proposed Test Location

Conduct of the manufacturing technology tasks should be contracted to commercial organizations with expertise in ceramic materials, composites, ceramic heat exchangers, etc.

D2.2.6.3 Measured Parameters

Parameters and information to be measured and recorded include:

- Techniques and processes employed in producing ceramic-to-ceramic joints
- Techniques and processes employed in producing ceramic-to-metal joints
- Details of methods employed to investigate the integrity of the ceramic-to-ceramic and ceramic-to-metal joints
- Techniques and processes employed to produce required product forms

D2.2.6.4 Data Requirements

All data shall be acquired using best practice techniques and QA.

D2.2.6.5 Test Evaluation Criteria

The basis for evaluation of the results of the fabrication studies will be the success or failure of the processes employed to produce satisfactory joints and structures.

D2.2.6.6 Test Deliverables

The following will be provided to meet the objectives of this Test Specification.

- Fabrication reports for all processes/materials used in producing ceramic-to-ceramic joints
- Fabrication reports for all processes/materials used in producing ceramic-to-metal joints
- Fabrication reports describing production of required product forms
- Reports providing characterization of all joints produced
- Reports describing structural integrity test methods and results.

D2.2.6.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing the technology for a ceramic IHX A from TRL 3 to TRL 4 is addressed in Sections D2.1.3 and D2.1.4. The risk associated with D2.2.6 is that some of the procedures and techniques necessary for the fabrication of a ceramic heat exchanger may pose significant difficulties relative to cost and success.

D3 TECHNOLOGY MATURATION PLAN FOR IHX A (CERAMIC) - TRL 4 TO TRL 5

D3.1 TECHNOLOGY MATURATION PLAN SUMMARY

D3.1.1 Objectives

The purpose of this Technology Maturation Plan is to describe the activities required to advance the maturity of the technology for the ceramic IHX A from a TRL level of 4 to a TRL level of 5. The tasks required to achieve this advancement include establishment of ASTM and ASME standards, modeling activities supporting ceramic heat exchanger design and performance evaluation, and testing of unit cells of ceramic IHX cores. A Test Specification is provided to cover each of the maturation tasks. These are given in Section D3.2.

D3.1.2 Scope

The maturation tasks and associated testing and other activities necessary to advance the maturity of the technology of the ceramic version of IHX A from TRL 4 to TRL 5 are as shown below.

- Specification 1: Ceramic Materials Codes and Standards
- Specification 2: Methods for Thermal/Fluid and Stress/Strain Modeling
- Specification 3: Structural Integrity Criteria for Ceramic Heat Exchangers
- Specification 4: Performance Modeling of Ceramic Heat Exchangers
- Specification 5: Testing of unit cell of compact heat exchanger

The tasks above will be described fully in individual Test Specifications provided in the sections to follow.

D3.1.3 Anticipated Schedule

The work described by the Test Specifications in this Technology Maturation Plan could be accomplished during the period FY2017 through FY2020. No individual Test Specification describes work requiring more than 48 months and the work in most Test Specifications can be done in parallel.

D3.1.4 Overall Cost

Cost and schedule for the overall maturation and with associated specifications are addressed in Section 17 of this document.

D3.2 Test Specifications

D3.2.1 Ceramic Materials Codes and Standards (WEC-TS-IHXA-026)

D3.2.1.1 Objectives

This Test Specification has the overall objective of developing and establishing of ASTM standards and an ASME Code Case for ceramic materials. It will involve the drafting of the code case, interactions with ASTM and ASME during the approval process, and provision of any additional specific data/information requested by the ASTM and/or ASME. This Test Specification responds to placeholder DDN HTS-02-06.

D3.2.1.2 Test Conditions

D3.2.1.2.1 Test Configuration/Set-up

No test equipment or facility is needed.

D3.2.1.2.2 Test Duration

The duration of this activity will be a minimum of 48 months.

D3.2.1.2.3 Proposed Test Location

N/A

D3.2.1.3 Measured Parameters

Not applicable.

D3.2.1.4 Data Requirements

The ASME Section III Code case developed will meet all QA and ASME requirements; Similarly, ASTM ceramic materials standards will meet all QA and ASTM requirements.

D3.2.1.5 Test Evaluation Criteria

N/A

D3.2.1.6 Test Deliverables

Deliverables are as follows.

NGNP-CTF MTECH-TDRM-004_Rev1-final.doc

- A Section III ASME Code Case qualifying the use of specific ceramic materials for service in the NGNP IHX up to at least 1000°C
- An ASTM Standard specifying allowable commercial ceramic materials and their characteristics
- •

D3.2.1.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing the technology for a ceramic IHX A from TRL 4 to TRL 5 is addressed in Sections D3.1.3 and D3.1.4. The major risk associated with D3.2.1 is that the time required to obtain ASTM/ASME approvals could extend to 60 months.

D3.2.2 Methods for Thermal/Fluid and Stress/Strain Modeling (WEC-TS-IHXA-027)

D3.2.2.1 Objectives

The work to be conducted under this Test Specification is development of thermal and mechanical structural models to provide a basis for design and predictive capability for operation and performance characteristics of compact heat exchangers. This is required for both quasisteady state and transient analyses. This Test Specification responds to placeholder DDN HTS-02-03.

D3.2.2.2 Test Conditions

D3.2.2.2.1 Test Configuration/Set-up

None currently identified but the models will likely be applied to the results obtained under D3.2.5 and larger scale tests responding to placeholder DDN HTS-02-04.

D3.2.2.2.2 Test Duration

The duration of the modeling activities could be up to 48 months.

D3.2.2.2.3 Proposed Test Location

The supplier/design authority might be best suited for this task.

D3.2.2.3Measured Parameters

The models to be developed will incorporate and combine the mechanical and thermal/physical property database of ceramic materials with finite element analysis (FEA) techniques, and known relationships relative to temperature, fluid flow, interface conditions, and structural stresses.

D3.2.2.4 Data Requirements

Model development activities will follow best standard practice and QA requirements.

D3.2.2.5 Test Evaluation Criteria

The usefulness and predictive capability of the models developed will be assessed based on its application to testing conducted in D3.2.5 and in later larger scale tests of ceramic heat exchanger modules.

D3.2.2.6 Test Deliverables

The test deliverable is a model for combining thermal/fluid and stress/strain parameters to guide the design of a ceramic heat exchanger IHX A and to predict its operation and performance characteristics.

D3.2.2.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing the technology for a ceramic IHX A from TRL 4 to TRL 5 is addressed in Sections D3.1.3 and D3.1.4. There are no risks associated with D3.2.2.

D3.2.3 Structural Integrity Criteria for Ceramic Heat Exchangers (WEC-TS-IHXA-021)

D3.2.3.1 Objectives

The objective of this Test Specification is to establish criteria for the structural integrity of ceramic heat exchangers operating at very high temperature. This includes criteria for stresses and strains as well as development of safety factors needed in ASME Code development. These criteria will help to establish acceptable operational boundaries for ceramic heat exchangers. This Test Specification responds to the placeholder DDNs HTS-02-03, HTS-02-04, and HTS-02-06.

D3.2.3.2 Test Conditions

D3.2.3.2.1 Test Configuration/Set-up

None currently identified.

D3.2.3.2.2 Test Duration

Establish of structural integrity criteria for ceramic heat exchangers could require up to 48 months.

NGNP-CTF MTECH-TDRM-004_Rev1-final.doc
D3.2.3.2.3 Proposed Test Location

The supplier/design authority might be best suited for this task.

D3.2.3.3 Measured Parameters

Criteria for structural integrity will be developed from a review of appropriate ASME Code documentation, discussions with ASME Code personnel, and interactions during the development of stress/strain models (see activities associated D3.2.2).

D3.2.3.4 Data Requirements

Structural integrity criteria development activities will employ best standard practice and QA requirements.

D3.2.3.5 Test Evaluation Criteria

The usefulness and predictive capability of the structural integrity models developed will be assessed based on its application to testing described in D3.2.5 and in later larger scale tests responding to placeholder DDN HTS-02-04. They will also form a part of an ASME design code for moving from TRL 5 to TRL 7.

D3.2.3.6 Test Deliverables

Deliverables are as follows.

- Criteria for acceptable stresses and strains in ceramic heat exchangers
- Safety factors for application to an ASME design code.

D3.2.3.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing the technology for a ceramic IHX A from TRL 4 to TRL 5 is addressed in Sections D3.1.3 and D3.1.4. There is no risk associated with D3.2.3.

D3.2.4 Performance Modeling of Ceramic Heat Exchangers (WEC-TS-IHXA-029)

D3.2.4.1 Objectives

The objective of the work prescribed in this Test Specification is to provide performancemodeling methods to adequately evaluate the results of performance testing of ceramic heat exchangers and to assist in the development of an ASME Code Case for their design. This Test Specification responds to placeholder DDN HTS-02-04.

NGNP-CTF MTECH-TDRM-004_Rev1-final.doc

12/9/2008

D3.2.4.2 Test Conditions

D3.2.4.2.1 Test Configuration/Set-up

None, but the performance models will be applied to the results obtained under DDN HTS-02-04 (see Technology Maturation Plans for TRL 4 to TRL 5, TRL 5 to TRL 6, and TRL 6 to TRL 7).

D3.2.4.2.2 Test Duration

Establishment of structural integrity criteria will occur over a 48-month period

D3.2.4.2.3 Proposed Test Location

The supplier/design authority might be best suited for this task.

D3.2.4.3 Measured Parameters

The performance models to be developed will incorporate all parameters necessary to predict the thermal and structural behavior of compact heat exchangers.

D3.2.4.4 Data Requirements

Model development activities will follow best standard practice and QA requirements.

D3.2.4.5 Test Evaluation Criteria

The usefulness and predictive capability of the models developed will be assessed based on its application to testing associated with placeholder DDN HTS-02-04 (see Technology Maturation Plans for ceramic IHX A from TRL 4 to TRL 5, TRL 5 to TRL 6, and TRL 6 to TRL 7).

D3.2.4.6 Test Deliverables

The deliverable for this Test Specification is a model to assess the thermal and structural performance of the compact heat exchanger modules to be tested in association with placeholder DDN HTS-02-04.

D3.2.4.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing the technology for a ceramic IHX A from TRL 4 to TRL 5 is addressed in Sections D3.1.3 and D3.1.4. There is no risk associated with D3.2.4.

D3.2.5 Testing of Unit Cell of Compact Heat Exchanger (WEC-TS-IHXA-030)

D3.2.5.1 Objectives

The objective of testing the compact heat exchanger unit cell is:

• To determine the joint integrity of the compact heat exchanger unit cell joints under tensile load at a typical pressure environment and elevated temperatures.

D3.2.5.2 Test Conditions

D3.2.5.2.1 Component Requirements

Component requirements include the following:

- Size limitation: dependant on testing environment (e.g. furnace)
- Temperature threshold see test requirements
- Pressure threshold see test requirements
- Environment Helium

D3.2.5.2.2 Interfacing Requirements

n/a

D3.2.5.2.3 Test Requirements

Test requirements for the compact heat exchanger unit cell tests (not integrated) are as follows:

• Test environment which compact heat exchanger unit cell will be subjected to before post test evaluation:

- \circ Temperature = 1000°C (at least)
- \circ Pressure = 9MPa
- Cyclic loading (magnitude and cycles TBD)

D3.2.5.2.4 Test Duration

The duration of this activity will be a minimum of **12**months.

D3.2.5.2.5 Facility Requirements

The following facilities will be required:

- 4. Furnace suitable for test requirements
- 5. Facilities required for metallographic analysis of material and joints after testing

D3.2.5.2.6 Proposed Test Location

Manufacturers of ceramic / metallic heat exchangers (depending on joint type) would most appropriately evaluate the joint integrities of the as manufactured unit cells.

D3.2.5.3 Measured Parameters

The following parameters will be measured:

- Temperature
- o Pressure
- Post-test joint integrity inferred from SEM, microscopic/metallographic evaluations and tests
 - Creep and creep rupture data

D3.2.5.4 Data Requirements

It is assumed that the compact heat exchanger unit cell will be produced by a vendor of ceramic heat exchangers. The fabricated unit cell will require the following before progressing with testing:

- Materials certificates
- Joining certificates (if and when applicable)
- Inspection certificates
- All other quality assurance documents (bonding procedures, etc)

All new data shall be acquired using recognized techniques, codes, standards, and QA.

D3.2.5.5 Test Evaluation Criteria

Satisfactory structural integrity of the compact heat exchanger unit cell joints as evidenced by post-testing examinations relating to metallographic procedures and tests.

D3.2.5.6 Test Deliverables

Deliverables are as follows.

- Test Data for all areas as indicated in section D3.2.5.3
- Documentation containing performance verification criteria and test results relating to the joint integrities of the CHE unit cell as observed through microscopic/metallographic evaluations and tests.

•

D3.2.5.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing ceramic materials technology for IHX A from TRL 4 to TRL 5 is addressed in Sections D3.1.3 and D3.1.4.

The risk associated with Section D3.2.5 involves the non-satisfactory condition/integrity of the CHE unit cell joints, and may consequently require a reevaluation of the unit cell design (or certain aspects thereof).

D4 TECHNOLOGY MATURATION PLAN FOR IHX A (CERAMIC) - TRL 5 TO TRL 6

D4.1 TECHNOLOGY MATURATION PLAN SUMMARY

D4.1.1 Objectives

The purpose of this Technology Maturation Plan is to describe the activities required to advance the maturity of the technology for the ceramic IHX A from a TRL level of 5 to a TRL level of 6. The maturation tasks required to achieve this goal involve the testing of the integrated compact heat exchanger module (~1.2MW) in the CTF (It is assumed that the compact heat exchanger module will be provided by a compact heat exchanger vendor) and the establishment of a Section III ASME Code case fully qualifying compact heat exchanger designs for service in the NGNP IHX. Test Specifications are provided to cover these maturation tasks.

D4.1.2 Scope

The maturation tasks necessary to advance the maturity of the technology of the ceramic version of IHX A from TRL 5 to TRL 6 is as shown below.

- Specification 1: Testing of integrated compact heat exchanger module (~1.2MW)
- Specification 2: Establishing ASME Section III design code for compact heat exchanger designs

The tasks above will be described in the test specification provided hereafter.

D4.1.3 Anticipated Schedule

The work described by the Test Specifications in this Technology Maturation Plan will be accomplished during the period FY 2020 through FY 2022.

D4.1.4 Overall Cost

Cost and schedule for the overall maturation and with associated specifications are addressed in Section 17 of this document.

D4.2 Test Specifications

D4.2.1 Specification of testing of compact heat exchanger module (~1.2MW) (WEC-TS-IHXA-031)

D4.2.1.1 Objectives

The objectives of testing the compact heat exchanger module (~1.2MW) are:

- To demonstrate the operating effectiveness of the compact heat exchanger module
- To demonstrate the fatigue life of the integrated compact heat exchanger module in terms of *thermal fatigue, joint integrity* and *corrosion & high temperature oxidation*.

D4.2.1.2 Test Conditions

D4.2.1.2.1 Compact Heat Exchanger Module (subsystem and system) Requirements

Subsystem and system requirements include the following:

- Size limitation: dependant on test vessel size in Technology Development Loops 1 – 3 (TBD)
- Certain interface design requirements and specifications (see interfacing requirements)
- Heat transfer fluid Helium with controlled impurities
- Temperature threshold see test requirements
- Pressure threshold see test requirements
- Mass flow threshold see test requirements
- Pressure drop threshold– see test requirements

D4.2.1.2.2 Interfacing Requirements

- TBD by Technology Development Loop and Subsystem Configuration / Design.
- Certain interface design requirements and specifications:
 - Appropriate surface finish of interfacing components
 - Gasket materials applicable
 - Flange torque values where applicable

D42.1.2.3 Measurement Requirements

- 1. Measurement of internal and external pressures
- 2. Measurement of temperatures
- 3. Measurement of mass flows
- 4. Measurement of fluid composition
- 5. Measurement of leak rates from CHE module

D4.2.1.2.4 Test Requirements

Test requirements for the compact heat exchanger module tests (integrated) are as follows:

- 1) Test compact heat exchanger module operating effectiveness and behavior in typical steady state pressure, temperature and temperature/pressure drop environment (Helium)
 - i. Temperature = $950^{\circ}C$
 - ii. Pressure = 9MPa
 - iii. Temperature $\Delta = 250^{\circ}$ C
 - iv. Pressure $\Delta = 500 600$ kPa sustained (Primary to Secondary)
 - v. Mass flow = tbd
 - vi. He environment with varied composition
- 2) Test compact heat exchanger module behavior in typical pressure transient environment:
 - i. Expose module to a high frequency, **normal** operating pressure transient, present with a startup / shutdown sequence
 - 1. Pressurizing transient (ambient to 9MPa in certain time frame)
 - 2. De-pressurizing transient (9MPa to ambient in certain time frame)
 - ii. Number of cycles and temperature level TBD
- 3) Test compact heat exchanger module behavior in typical temperature transient environment:
 - i. Expose module to a high frequency, **normal** operating temperature transient (ambient to 950°C), present with a startup / shutdown sequence
 - 1. Heat up transition
 - 2. Cool down transition
 - ii. Number of cycles and pressure level TBD

4) Test compact heat exchanger module behavior at varying process parameters:

- i. Temperature = $950^{\circ}C$
- ii. Pressure = 9MPa primary (secondary TBD) iii. Pressure Δ = TBD (Primary to Secondary and Inlet to Outlet) iv. Mass flow = TBD

D4.2.1.2.5 Tests Duration

The duration of this activity will be a minimum of **12** months.

D4.2.1.2.6 Facility Requirements

The following facilities will be required:

- 1. TDL facilities 1-3 (TBD)
- 2. Gas analyzing facilities

3. Facilities required for metallographic analysis of material and joints after testing

D4.2.1.2.7 Proposed Test Location

Proposed tests will take place at the CTF.

D4.2.1.3 Measured Parameters

The following parameters will be measured:

- Temperatures
- Pressures
- Measurement of magnitude and number of temperature gradients and temperature gradient cycles respectively up to thermal fatigue
- Fluid composition
- Leak rates at varying process conditions
- Operating effectiveness of compact heat exchanger module
- Corrosion of module materials and joints over a predetermined time
- Oxidation of module materials and joints over a predetermined time
- Thermal fatigue observations through SEM, TEM and other analyses techniques, inclusive of Element Distribution Maps of selected joint samples
- Joint integrity(ies) Tensile tests, SEM, microscopic/metallographic evaluations and testing of joint sections.

D4.2.1.4 Data Requirements

It is assumed that the compact heat exchanger module will be produced by a vendor of ceramic heat exchangers. The fabricated module of the compact heat exchanger will require the following before progressing with testing:

- Materials certificates specifying composition, sinter or compaction density, theoretical density
- Joining certificates
- Inspection certificates
- All other quality assurance documents

All new data shall be acquired using recognized techniques, codes, standards, and QA.

D4.2.1.5 Test Evaluation Criteria

- Satisfactory number of transient cycles up to thermal fatigue of the module material/joints
- Structural integrity of the whole compact heat exchanger module assembly (system) as evidenced by
 - metallographic procedures and tests
 - analyses inclusive of remaining life assessments (if applicable)

12/9/2008

- o comparison of data with assessment models, FEM's or other calculations
- The corrosion/oxidation over a predetermined time must not be of such magnitude as to degrade the structural integrity of the module material sections and joints.
- Limited reduction of oxide candidate materials. Limit value TBD.
- An acceptable effectiveness of the compact heat exchanger module
- An acceptable rate of leakage of the compact heat exchanger module at variable process conditions.

D4.2.1.6 Test Deliverables

Deliverables are as follows:

- Test Data for all areas as indicated in section D5.2.1.3
- Documentation containing performance verification criteria and test results verified against stress/strain models of the compact heat exchanger module and material properties.

•

D4.2.1.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing ceramic materials technology for IHX A from TRL 5 to TRL 7 is addressed in Sections D5.1.3 and D5.1.4.

Depending on the failure modes of the compact heat exchanger module, the design of relevant interfaces of the compact heat exchanger module will have to be reevaluated.

D4.2.2 ASME Code Case for ceramic Compact Heat Exchanger Designs (WEC-TS-IHXA-032)

D4.2.2.1 Objectives

This Test Specification has the overall objective of developing and establishing an ASME Code Case for ceramic compact heat exchanger designs. It will involve the drafting of the code case, interactions with ASME during the approval process, and provision of any additional specific data/information requested by the ASME. This Test Specification responds to DDN HTS-01-19

D4.2.2.2 Test Conditions

D4.2.2.2.1 Test Configuration/Set-up

No test equipment or facility is needed.

D4.2.2.2.2 Test Duration

The duration of this activity will be a minimum of 48 months.

D4.2.2.2.3 Proposed Test Location

The supplier/design authority might be best suited for this task.

D4.2.2.3 Measured Parameters

Not applicable.

D4.2.2.4 Data Requirements

Measured parameters will be determined using recognized techniques, codes, standards, and QA.

D4.2.2.5 Test Evaluation Criteria

Not applicable.

D4.2.2.6 Test Deliverables

The test deliverable is an ASME Code case (subsection to be determined) fully qualifying ceramic compact heat exchanger designs for service in the NGNP IHX up to 950°C.

D4.2.2.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing ceramic materials technology for IHX A from TRL 5 to TRL 6 is addressed in Sections D4.1.3 and D4.1.4.

The associated risk entails the failure to establish an ASME Code Case for ceramic compact heat exchanger designs.

D5 TECHNOLOGY MATURATION PLAN FOR IHX A (CERAMIC) – TRL 6 TO TRL 7

D5.1 TECHNOLOGY MATURATION PLAN SUMMARY

D5.1.1 Objectives

The purpose of this Technology Maturation Plan is to describe the activities required to advance the maturity of the technology for the ceramic IHX A from a TRL level of 6 to a TRL level of 7. The maturation tasks required to achieve this goal involve the testing of models to determine shell-side flow distribution and bypass leakage and the heat transfer testing of multi-modules (e.g., $3 \ge -1.2$ MW). Test Specifications are provided to cover the maturation tasks (given in section D5.2).

D5.1.2 Scope

The maturation task necessary to advance the maturity of the technology of the ceramic version of IHX A from TRL 6 to TRL 7 is as shown below.

- Specification 1: Shell-side flow distribution and bypass leakage tests.
- Specification 2: Multi-module heat transfer tests.

These tasks will be described in D5.2.

D5.1.3 Anticipated Schedule

The work described by the Test Specification in this Technology Maturation Plan could be accomplished during the period FY 2022 through FY 2024.

D5.1.4 Overall Cost

Cost and schedule for the overall maturation plan with associated specifications are addressed in Section 17 of this document.

D5.2 Test Specifications

D5.2.1 Shell-side Flow Distribution and Bypass Leakage Testing (WEC-TS-IHXA-033)

D5.2.1.1 Objectives

The objectives of testing are to

- Confirm shell-side flow distribution modeling
- Confirm that shell-side bypass leakage is acceptable
- Confirm shell-side pressure losses.

There is also the potential to use this test to characterize dust transport/dropout as a function of particulate size.

D5.2.1.2 Test Conditions

This likely would be an ambient temperature test with air as the working fluid. The test article would model inlet and outlet regions of the heat exchanger, features that promote good distribution to the core modules on the shell-side, and features that minimize bypass leakage. Details of the testing will be finalized at later stage.

D5.2.2 Multi-module Heat Transfer Testing (WEC-TS-IHXA-034)

D5.2.2.1 Objectives

The objectives of this testing are to

- Investigate module-to-module interactions on both the tube- and shell-sides of the heat exchanger
- Confirm bypass leakage and effects.

D5.2.2.2 Test Conditions

The multi-module test would be a heated test in the CTF with 3 or more core modules (~4MWt would be required for 3 modules) representing a segment of the IHX. Details of the testing will be finalized at later stage.

D6 TECHNOLOGY MATURATION PLAN FOR IHX A (CERAMIC) - TRL 7 TO TRL 8

D6.1 TECHNOLOGY MATURATION PLAN SUMMARY

D6.1.1 Objectives

The purpose of this Technology Maturation Plan is to describe the activities required to advance the maturity of the technology for the ceramic IHX A from a TRL level of 7 to a TRL level of 8. The maturation task required to achieve this goal involve the testing of the full scale ceramic compact heat exchanger. (It is assumed that the full-scale compact heat exchanger will be provided by a compact heat exchanger vendor and/or assembled by vendor staff on the NGNP site). The scope of this test on the full scale compact heat exchanger will vary slightly from the scope of test noted to progress from a TRL 5 to TRL 6 and from TRL 6 to TRL 7. A Test Specification is provided to cover the maturation task (given in section D6.2).

D6.1.2 Scope

The maturation task necessary to advance the maturity of the technology of the ceramic version of IHX A from TRL 7 to TRL 8 is as shown below.

• Specification 1: Testing of full scale ceramic compact heat exchanger in the NGNP

This task will be described in the following test specification.

D6.1.3 Anticipated Schedule

The work described by the Test Specification in this Technology Maturation Plan could be accomplished during the period FY 2024 through FY 2027.

D6.1.4 Overall Cost

Cost and schedule for the overall maturation plan with associated specifications are addressed in Section 17 of this document.

D6.2 Test Specifications

D6.2.1 Specification of testing of a full scale compact heat exchanger (WEC-TS-IHXA-035)

D6.2.1.1 Objectives

The objectives of testing the full-scale compact heat exchanger are:

- To determine the leak rate of the full scale compact heat exchanger (system) at various typical process parameters.
- To determine the operating effectiveness of the full scale compact heat exchanger at various typical process parameters.

The ceramic IHX A will be fully tested and commissioned in the NGNP. Details of the testing and commissioning will be finalized at later stage.

November 2008

NGNP and Hydrogen Production Conceptual Design Study

NGNP Technology Development Road Mapping Report

Section 5: Intermediate Heat Exchanger B

Function]	Printed Name and Signature	Date
Author	Name; Company:	Phil Rittenhouse Technology Insights	November 18, 2008
Reviewer	Name: Company:	Johan Markgraaff M-Tech Industrial	November 19, 2008
Reviewer	Name: Company:	Werner Koekemoer M-Tech Industrial	November 19, 2008
Reviewer	Name: Company:	Renée Greyvenstein Pebble Bed Modular Reactor	November 19, 2008
Approval	Name: Company:	Jan van Ravenswaay M-Tech Industrial	November 19, 2008

APPROVALS

Westinghouse Electric Company LLC Nuclear Power Plants Post Office Box 355 Pittsburgh, PA 15230-0355

©2008 Westinghouse Electric Company LLC All Rights Reserved

LIST OF CONTRIBUTORS

Name and Company	Date
Phil Rittenhouse (Technology Insights)	September 30, 2008
Johan Markgraaff (M-Tech Industrial)	September 30, 2008
Werner Koekemoer (M-Tech Industrial)	September 30, 2008
Renée Greyvenstein (PBMR)	September 30, 2008
Jim Nash (Brayton Energy)	September 30, 2008

BACKGROUND INTELLECTUAL PROPERTY CONTENT

Section	Title	Description
N/A		

REVISION HISTORY

RECORD OF CHANGES

Revision No.	Revision Made by	Description	Date
A	Phil Rittenhouse	Comments Review	September 25, 2008
0	Phil Rittenhouse	Document for approval	September 30, 2008
0A	Phil Rittenhouse	BEA Comments incorporated	October 30, 2008
1	Louisa Venter	Document for release to WEC	November 24, 2008

DOCUMENT TRACEABILITY

Created to Support the Following Document(s)	Document Number	Revision
NGNP and Hydrogen Production Preconceptual Design Report	NGNP-01-RPT-001	0
NGNP Conceptual Design Study: IHX and Heat Transport System	NGNP-HTS-RPT-TI001	0

TABLE OF CONTENTS

Section Title	Page
LIST OF TABLES	
LIST OF FIGURES	
SUMMARY AND CONCLUSIONS	9
5 INTERMEDIATE HEAT EXCHANGER B (IHX B)	
5.1 FUNCTION AND OPERATING REQUIREMENTS	
5.2 IHX B DOWN SELECT STATUS	
5.2.1 Candidate Technologies	
5.2.2 Decision Discriminators	
5.2.3 Application of the Decision Discriminators to the IH	X B Down Select13
5.2.4 Reference Design	
5.2.5 Summary of the IHX B Down Selection Task	
5.3 TRL STATUS	
5.4 TECHNOLOGY DEVELOPMENT ROAD MAP SUMMARY	
5.4.1 Overview	
5.5 TECHNOLOGY MATURATION PLAN SUMMARY	
5.6 INPUTS TO CTF	
5.7 REFERENCES	
APPENDIX A: TRL RATING SHEETS	
APPENDIX B: TECHNOLOGY DEVELOPMENT ROAD M	AP
APPENDIX C: TECHNOLOGY MATURATION PLAN	22

LIST OF TABLES

Table A-1: 7	Fechnology Readines	s Levels for the IHX B	
--------------	---------------------	------------------------	--

LIST OF FIGURES

Figure B-1: TDRM for IHX B	. 21
Figure C-1: Proposed Setup and Relevant Parameters in Testing the Unit Cell	. 46
Figure C-2: Proposed Setup and Durability Parameters in Testing the CHE Module	. 52

ACRONYMS & ABBREVIATIONS

Acronym	Definition
AI	Inner Annulus (active cooling piping)
AMS	Activity Measurement System
AO	Outer Annulus (active cooling piping)
AOO	Anticipated Operational Occurrence
AS	Automation System
ASME	American Society of Mechanical Engineers
AVR	Arbeitsgemeinschaft Versuchs-Reaktor
BOP	Balance of Plant
BUMS	Burn-up Measurement System
СВ	Core Barrel
CCS	Core Conditioning System
CEA	Commissariat à l'Énergie Atomique
CFD	Computational Fluid Dynamics
CHE	Compact Heat Exchanger
CIP	Core Inlet Pipe
CO2	Carbon Dioxide
COC	Core Outlet Connection
COP	Core Outlet Pipe
COTS	Commercial Off The Shelf
CRADA	Co-operative Research and Development Agreement
CRD	Control Rod Drive
CSC	Core Structure Ceramics
CTF	Component Test Facility
CTF	Component Test Facility
CUD	Core Unloading Devices
DAU	Data Acquisition Unit
DBA	Design Base Accident
DBE	Design Base Event
DDN	Design Data Need
DFC	Depressurized Forced Cooling
DLOFC	De-pressurized Loss of Forced Cooling
DOE	Department of Energy
DPP	Demonstration Power Plant
DRL	Design Readiness Level
DWS	Demineralized Water System
ELE	Elecrolyser System
EM	Evaluation Model
EMB	Electomagnetic Bearing
EOFY	End of Fiscal Year
EPCC	Equipment Protection Cooling Circuit
EPCT	Equipment Protection Cooling Tower
F&OR	Functional and Operational Requirements
FHS	Fuel Handling System

FURS	
FHSS	Fuel Handling and Storage System
	Fissions per Initial Metal Atoms
FMECA	Failure Modes, Effects and Criticality Analysis
FS	Fuel Spheres
FIA	
FUS	Feed and Utility System
H2	Hydrogen
H2SO4	
HC	Helium Circulator
He	Hellum
HEIP	Height Equivalent of the theoretical Plate
HGD	Hot Gas Duct
HI	Hydro-lodic
HLW	High Level Waste
HPB	Helium Pressure Boundary
HPC	High Pressure Compressor
HPS	Helium Purification System
HPS	Hydrogen Production System
HPT	High Pressure Turbine
HPU	Hydrogen Production Unit
HRS	Heat Removal System
HTF	Helium Test Facility
HTGR	High Temperature Gas-Cooled Reactor
HTR	High Temperature Reactor
HTS	Heat Transport System
HTSE	High Temperature Steam Electrolysis
HTTR	High Temperature Test Reactor
HVAC	Heating Ventilation and Air Conditioning
HX	Heat Exchanger
HyS	Hybrid Sulfur
I&C	Instrumentation and Control
12	lodine
ID	Inner Diameter
IHX	Intermediate Heat Exchanger
ILS	Integrated Laboratory Scale
I-NERI	International Nuclear Energy Research Initiative
INL	Idaho National Laboratory
INL	Idaho National Laboratory
IPT	Intermediate Pressure Turbine
ISR	Inner Side Reflector
K-T	Kepner-Tregoe
KTA	German nuclear technical committee
LEU	Low Enriched Uranium
LOFC	Loss of Forced Cooling
LPT	Low Pressure Turbine
MES	Membrane-electrode assembly
MTR	Material Test Reactor

NAA	Neutron Activation Analysis
NCS	Nuclear Control System
NGNP	Next Generation Nuclear Plant
NHI	Nuclear Hydrogen Initiative
NHS	Nuclear Heat Supply
NHSS	Nuclear Heat Supply System
NNR	National Nuclear Regulator
NRG	Nuclear Research and consultancy Group
NRV	Non-Return Valve
O2	Oxygen
OD	Outer Diameter
PBMR	Pebble Bed Modular Reactor
PCC	Power Conversion System
PCDR	Pre-Conceptual Design Report
PCHE	Printed Circuit Heat Exchanger
PCHX	Process Coupling Heat Exchanger
PCS	Power Conversion System
PFHE	Plate Fin Heat Exchanger
PHTS	Primary Heat Transport System
PIE	Post-irradiation Examination
PLOFC	Pressurized Loss of Forced Cooling
POC	Power Conversion System
PPM	Parts per million
PPU	Product Purification Unit
PPWC	Primary Pressurized Water Cooler
QA	Quality Assurance
RAMI	Reliability, Availability, Maintainability and Inspectability
RC	Reactor Cavity
RCCS	Reactor Cavity Cooling System
RCS	Reactivity Control System
RCSS	Reactivity Control and Shutdown System
RDM	Rod Drive Mechanism
RIM	Reliability and Integrity Management
RIT	Reactor Inlet Temperature
RM	Road Map
ROT	Reactor Outlet Temperature
RPS	Reactor Protection System
RPT	Report
RPV	Reactor Pressure Vessel
RS	Reactor System
RSS	Reserve Shutdown System
RUS	Reactor Unit System
SAD	Acid Decomposition System
SAR	Safety Analysis Report
SAS	Small Absorber Spheres
SG	Steam Generator
SHTS	Secondary Heat Transport System

S-I	Sulfur Iodine
SiC	Silicon Carbide
SNL	Sandia National Laboratory
SO2	Sulfur Dioxide
SOE	Sulfuric Oxide Electrolyzers
SOEC	Sulfuric Oxide Electrolyzers Cells
SR	Side Reflector
SSC	System Structure Component
SSCs	Systems, Structures and Components
SSE	Safe Shutdown Earthquake
SUD	Software Under Development
TBC	To Be Confirmed
TBD	To Be Determined
TDL	Technology Development Loop (As incorporated in Concept 1)
TDRM	Technology Development Road Map
TER	Test Execution Report
THTR	Thorium High Temperature Reactor
TRISO	Triple Coated Isotropic
TRL	Technology Readiness Level
TRM	Technology Road Map
UCO	Uranium Oxycarbide
UO2	Uranium Dioxide
USA.	United States of America
V&V	Verification and Validation
V&Ved	Verified and Validated
VLE	Vapor-Liquid Equilibrium
WBS	Work Breakdown Structure
WEC	Westinghouse Electric Company

SUMMARY AND CONCLUSIONS

The IHX is a critical high-temperature component of the NGNP and its bottom-line function is to transfer thermal energy from the Primary Heat Transport System (PHTS) to the Secondary Heat Transport System (SHTS). Previous studies related to the NGNP Heat Transport System (HTS) have shown the advisability of splitting the IHX into two units, IHX A operating at up to 950°C and IHX B operating at up to ~760°C. This portion of the document deals only with the lower temperature IHX B. Metallic and ceramic versions of the higher temperature heat exchanger, IHX A, are treated in an earlier section.

Decision Discriminators were established and exercised in decisions taken relative to heat exchanger designs and materials. Cost/performance, state-of-the-art, robustness, environmental compatibility, RIM, IHX integration, and design/licensing basis were considered in the down select of designs. A wide range of heat exchanger designs were evaluated and the result was the selection of a compact design (Printed Circuit Heat Exchanger (PCHE) or Plate Fin Heat Exchanger (PFHE)) for a metallic heat exchanger. Decision discriminators applied to the selection of a material for IHX B were materials database (e.g., maturity of data and service experience), materials lifetime (e.g., creep lifetime and corrosion behavior), and fabrication related factors. The choice based on the above was Fe/Ni-base Alloy 800H.

The status of technology for metallic heat exchangers was evaluated, and resulted in the determination of a level of TRL 3 for IHX B. The underlying bases for these selections are described in the TRL rating sheet for IHX B.

TDRMs are provided to summarize down select tasks, TRL status, and maturations tasks necessary to increase the maturity of the technology of IHX B to a level of TRL 8. These tasks include consideration of materials properties and performance, material and design codes, model development for thermal and mechanical performance, and testing of IHX modules progressing from unit cells to full-size IHX units. Details of the tasks necessary for technology advancement between TRL levels are presented as a series of Technology Maturation Plans that include information on objectives, test conditions, measured parameters, data requirements, test evaluation criteria, test deliverables, and cost/schedule/risk. It is noted that the technology roadmap and maturation plans will need to be adjusted as new DDNs evolve as part of the conceptual and detail designs.

5 INTERMEDIATE HEAT EXCHANGER B (IHX B)

5.1 Function and Operating Requirements

The IHX is a critical high-temperature component of the NGNP. Cost and performance goals for the NGNP and related commercial process heat plants have lead to the selection of compact heat exchangers as the reference design. Further, the IHX has been separated into two regions, a high-temperature IHX A and a lower temperature IHX B. This economically driven decision provides for the majority of heat exchange to be serviced by the IHX B, constructed from a lower cost alloy. This leaves a smaller portion for IHX A, constructed from a premium alloy, that will necessarily be replaced due to limitations of metals exposed to the high temperature gas issuing from the reactor (950°C temperature range under consideration).

The IHX transfers thermal energy between the Primary Heat Transport System (PHTS) and the Secondary Heat Transport System (SHTS). The PHTS is comprised of the primary piping, primary circulator, and primary helium working fluid. By current definition, the IHX is considered part of the PHTS. Its main functions are to contain the primary and secondary helium coolants and to transport thermal energy from the reactor to the SHTS working fluid. The SHTS is comprised of the secondary piping, secondary circulator and secondary helium working fluid. Its main function is to transport thermal energy from the IHX to the Process Coupling Heat Exchanger and Steam Generator.

The Intermediate Heat Exchanger (IHX) is comprised of:

- Heat transfer surface and/or modules containing the heat transfer surface
- The IHX vessel
- Headers and/or piping that provide a transition between the heat transfer surface and/or modules and the PHTS/SHTS piping
- Internal structures that provide for support (steady state, transients and seismic loading) of the IHX and related internal components within the IHX vessel
- Thermal baffles and/or insulation that is attached to the above IHX components

The IHX Vessel is part of the helium pressure boundary and includes internal support features, incorporated within the vessel structure, that interface with the IHX internal supports. It also includes thermal baffles and/or insulation that are directly attached to the vessel. The allocation of the IHX vessel (or parts thereof) as being part of the PHTS or SHTS will depend upon which fluids (PHTS or SHTS) are contained within the shell-side of the heat exchanger. This, in turn will be subject to the further selection of which circuit (PHTS or SHTS) will be coupled to the "shell" side of the heat exchanger.

The specified service conditions and other key requirements for IHX B are as given below.

- The nominal helium temperature at the primary side entrance to IHX B is 760°C.
- The nominal helium temperature at the secondary side entrance to IHX B is 287°C.

- The nominal helium temperature at the secondary side exit from IHX B is 710°C.
- The nominal helium temperature at the primary side exit from IHX B is 337°C.
- IHX B will provide for transfer of ~350 MW of heat.
- Helium in both the PHTS and SHTS will have controlled levels of impurities.
- Primary loop pressure is nominally 9 MPa and essentially pressure balanced with the secondary loop pressure.
- The forced outage allocation is <1%.
- The required operating life is 60 years.
- The pressure loss across the entire IHX (IHX A + IHX B) primary side and also across secondary side of IHX shall be smaller than 1.23 % of its respective inlet pressures.

Further, there are a substantial number of fixed and preferred requirements in the areas

- of:
- Interfaces (e.g., IHX B internal structures and fluid flow shall ensure that the vessel temperature be limited to 371°C during normal operation)
- System Configuration (e.g., the size ratio of IHX B to IHX A shall be as large as possible and overall capacity shall be 510 MW)
- Operation (e.g., the components of IHX B shall be able to accommodate 600 start-up and shut-down cycles)
- Tritium Migration Allowance Tritium migration is a NHSS-level issue taking into account production and mitigation provided by various barriers and the He purification system. The specific IHX requirement is TBD.
- Structure (e.g., the IHX B vessel diameter shall be smaller than 6 m)
- Environment (all subject to further review)
- Instrumentation & Control (to be determined)
- Availability and Reliability (e.g., inherent availability of the IHX B shall be >99.98%)
- Maintenance (e.g., IHX B shall not require preventive maintenance)
- Transport (e.g., design features shall be included to allow for transportation of subassemblies with final assembly on-site)
- Testing, Qualification, Commissioning (e.g., the entire PHTS, including IHX B, shall be pressure tested in accordance to ASME requirements)

All of the above are discussed in more detail in the *IHX and Heat Transport System* [5-3] report.

5.2 IHX B Down Select Status

5.2.1 Candidate Technologies

Various designs and materials for IHX B were proposed and evaluated in a series of recent studies. These studies were described and discussed in the following reports.

- Special Study 20.3: High-Temperature Process Heat Transfer and Transport, NGNP-20-RPT-003, Rev 0, January 2007 [5-1]
- PCDR Section 6: Heat Transport Systems, NGNP-06-RPT-003, Rev 0, April 2007 [5-2]
- NGNP Conceptual Design Study: IHX and Heat Transport System, NGNP-HTS-RPT-TI001, Rev 0, April 2008 [5-3]

The first of these studies considered both helical shell and tube and compact designs, primarily the Heatric based PCHE for the latter, and evaluated a broad range of Ni- and Fe/Ni base alloys for their construction. Based on this study, it was recommended that the compact heat exchanger design should be pursued with separate high-temperature (IHX A) and lower temperature (IHX B at <850°C) sections. Alloy 800H was designated as a leading candidate for IHX B.

The second study confirmed the conclusions above (i.e., IHX A and IHX B sections, a PCHE compact design, and further recommended that the IHX A/IHX B split be set at <760°C to take advantage of the ASME Section III qualification of Alloy 800H (760°C max).

The third study above was by far the most comprehensive in its evaluation of designs, performance, and materials. It also included two additional designs, a Capillary Heat Exchanger (small-diameter tube shell-and-tube) and a novel Involute (small-diameter tubes in an involute configuration) design. Also, an extensive study and evaluation of a plate-fin version of a compact heat exchanger was performed. Further consideration was given to materials alternate to Alloy 800H (e.g. Hastelloy X), but the recommendation remained to be Alloy 800H.

5.2.2 Decision Discriminators

This section provides a detailed listing of the decision discriminators that were used in the *IHX and Heat Transport* [5-3] study to evaluate various IHX designs. They were applied to the four designs below.

- Conventional helical coil shell & tube
- Capillary tube
- Printed Circuit Heat Exchanger
- Plate-fin
- Involute

The qualitative comparisons of these heat exchanger concepts were based on the following parameters.

- Cost/Performance Indicators
 - \circ Compactness in terms of heat transfer density (MWt/m³)
 - Materials utilization (t/MWt)
 - Manufacturing cost
- State-of –the-Art
 - Experience base
 - Design & manufacturing
- Robustness
 - Normal operation
 - Transients
- Environmental Compatibility
 - Corrosion effects
 - Erosion effects
 - Tritium transport
- Reliability & Integrity Management
 - Detection of leaks/degradation during operation
 - Detection of leaks/degradation during outages
 - Leak location/isolation/repair/replacement
- IHX Integration
 - Integration with vessels and piping
 - Compatibility with multi-stage designs
 - Compatibility with multi-module designs
 - o Compatibility with alternate heat transfer fluids
- Design & Licensing Basis
 - Code basis for design

As for the higher temperature IHX A, metallic materials considered were Alloy 800H, Alloy 230, Alloy 617, and Hastelloy X. Also as for IHX A, materials database (maturity, status of codes and standards, and service experience), materials lifetime (high temperature properties and behavior and corrosion performance), and fabrication related factors (availability, joining, cost, etc.) were used as decision discriminators to select the preferred alloy.

The application of the materials decision discriminators as noted above to the down select process is given and discussed in Section 5.2.3 below (for the design decision discriminators, refer to Section 4 (IHX A)).

5.2.3 Application of the Decision Discriminators to the IHX B Down Select

Application of the materials decision discriminators to the four alloy candidates noted earlier, resulted in the identification of the following factors which overwhelmingly suggest the selection of Alloy 800H for IHX B.

• Alloy 800H has the most mature database and the greatest service experience.

- Alloy 800H is qualified under ASME Section III, Subsection NH for service in nuclear environments up to 760°C.
- The high-temperature mechanical properties (creep, fatigue, etc.) of Alloy 800H are more than adequate for use during normal operation and loss-of-secondary-pressure events.
- Corrosion performance of Alloy 800H in NGNP He at 760°C appears to be comparable to that for Alloy 617 and Alloy 230.
- Fabrication and joining technologies for Alloy 800H are the most mature of the candidate alloys. (However, work is still needed on brazing and diffusion bonding processes and effects.)
- Alloy 800H is the least expensive of the materials.

Reference Design

5.2.4 Reference Design

The single alternate relative to IHX B is a decision to be taken at TRL 5 on the PCHE versus plate-fin design.

5.2.5 Summary of the IHX B Down Selection Task

The IHX B down select evaluation conducted for the IHX and reported in the *NGNP Conceptual Design Study: IHX and Heat Transport System* [5-3] resulted in the various conclusions and recommendations listed below.

- The earlier recommendation to utilize PCHE or plate-fin compact heat exchanger technology as the basis for the metallic IHX B design has been confirmed. These are the current reference designs and both would employ Alloy 800H.
- A compact IHX configuration (applicable to both PCHE and plate-fin heat exchangers) that potentially allows leak detection, location and isolation at the module-level has been identified.
- The earlier recommendation to separate the IHX into IHX A and IHX B sections, based on temperature, is supported by the results of the present study.
- The recommendation to employ Alloy 800H for the heat exchanger core of IHX B was confirmed.

5.3 TRL Status

Evaluations of the status of the technology for IHX B were made and resulted in the determination of a level of TRL 3. (Note that this is higher than the TRL 2 assigned to the metallic IHX A. The major factor for this difference is the much lower temperatures associated with IHX B. This eases concerns with materials performance and is more consistent with temperatures in existing conventional and compact heat exchangers.) The bases for this selection are described in the TRL rating sheet provided in Appendix A.

5.4 Technology Development Road Map Summary

5.4.1 Overview

The TDRM lists the maturation tasks that are required to advance the maturity of the technology of IHX B from TRL 3 to TRL 8.

The IHX B Technology Development Road Map is attached in Appendix B and the maturation tasks in Appendix C.

5.5 Technology Maturation Plan Summary

This section describes the maturation tasks needed to advance the technology of IHX B from a validated TRL 3 to a validated TRL 8. Progress from a validated TRL 3 to a TRL 4 involves the completion of relevant material qualification tasks as well as the development of simulation models for the IHX B. The materials tasks include some consideration of thermal/physical and mechanical properties of Alloy 800H, joining and fabrication techniques applicable to Alloy 800H in compact heat exchangers, and determination of corrosion allowances for Alloy 800H. Significant levels of effort will also be devoted to methods for thermal/fluid and stress/strain modeling and to establishment of structural integrity criteria. Methods for performance modeling of compact heat exchangers will also be developed. Progress from a validated TRL 4 to TRL 5 involves the fabrication, testing and evaluation of small elements or modules containing the heat transfer surface of the IHX. These maturation tasks will be keyed to the DDNs described in the *NGNP Conceptual Design Study: IHX and Heat Transport System* [5-3] whenever possible.

At completion of the tasks above, IHX B will have achieved a level of validated TRL 5 and a PCHE versus PF design decision will have been made. Advancement to a validated TRL 6 requires manufacture of a nominally 1.2 MW module of IHX B, testing of the module in the CTF, and verification of its performance. It will also be necessary to establish an ASME Code Case the design of compact heat exchangers.

Moving the technology of IHX B from TRL 6 to TRL 7 will require tests to assess shellside flow distribution and bypass leakage and multi-module tests for confirmation of heat transfer and flow performance.

Advancement of IHX B technology from TRL 7 to TRL 8 will be fulfilled by the manufacture of a full-size IHX B compact heat exchanger and its testing in the NGNP. The costs and schedules associated with the DDNs given in the NGNP Conceptual Design Study: IHX and Heat Transport System [5-3] report were first presented in PCDR Section 6: Heat Transport System [5-2]. Subsequently, more extensive and detailed estimates of schedules and costs for IHX B design, development, testing, and manufacture were performed and can be examined in

the *Metallic Component Schedule Risk and Cost Uncertainty Assessment report*. Additionally, schedules and costs will be provided in each of the Technology Maturation Plans.

5.6 Inputs to CTF

IHX B modules will be tested in the CTF for qualification of a TRL 6 and a TRL 7.

5.7 References

- [5-1] Special Study 20.3: High-Temperature Process Heat Transfer and Transport, NGNP-20-RPT-003, Rev 0, January 2007 (Ref. 1)
- [5-2] PCDR Section 6: Heat Transport Systems, NGNP-06-RPT-003, Rev 0, April 2007 (Ref. 2)
- [5-3] NGNP Conceptual Design Study: IHX and Heat Transport System, NGNP-HTS-RPT-TI001, Rev 0, April 2008 (Ref. 3)
- [5-4] Metallic Component Schedule Risk and Cost Uncertainty Assessment report

APPENDIX A: TRL RATING SHEETS

TRL Rating Sheet Vendor Name: Document Number: Revision: □ Island □ System ØSubsystem/Structure □ Component □ Technology Title: Intermediate Heat Exchanger (IHX B) (760°C) Description: The Technology Readiness Level for a metallic IHX operating in the NGNP at 760°C for 60 years has been assessed as TRL 3 based on studies shown below; actions needed to advance the level to TRL 4 are also given below. Island(s): \Box NHSS ☑ HTS \Box HPS \square PCS \square BOP **ISSCTBS: N/A** Parent: N/A WBS: N/A **Technology Readiness Level** Next Next Calculated Higher Rating Lower Rating Rating Level Level Application Proof of Bench Generic Definitions (abbreviated) formulated concept scale testing 3 2 4 TRL Basis for Rating (Attach additional sheets as needed) Designs and materials for an IHX operating at 760°C were proposed and evaluated in recent studies reported in: Special Study 20.3: High-Temperature Process Heat Transfer and Transport, NGNP-20-RPT-003, Rev 0, January 2007 PCDR Section 6: Heat Transport System, NGNP-06-RPT-003, Rev 0, April 2007 NGNP Conceptual Design Study: IHX and Heat Transport System, NGNP-HTS-RPT-• TI001, Rev 0, April 2008 Outline of a plan to get from current level to next level (Attach additional sheets as needed) Actions (list all) Schedule Cost (K\$)

Table A-1: Technology Readiness Levels for the IHX B

 Anoy soon Material Specifications and Procurement Database for Brazed and Diffusion Bonded Alloy 800H Alloy 800H High Temperature Materials Properties Effects of Thermal Aging and Environment on Alloy 800H Properties Effects of Environmental Exposure on Alloy 800H Braze and Diffusion Bonded Joints Effects of Grain Size and Section Thickness on Alloy 800H Properties Corrosion Allowances for Alloy 800H Thermal/Fluid Modeling Methods for IHX B Methods for Stress/Strain Modeling of IHX B Criteria for Structural Integrity of IHX B Performance Modeling Methods for IHX B 		FY 2009 – FY 2015	Refer Section 17	to
DDN(s) supported: HTS-01-22, HTS-01-23, HTS-01-24, HTS-01-25, HTS-01-26, HTS-01-27, HTS-01-28, HTS-01-29, HTS-01-30, HTS-01-13, HTS-01-14, HTS-01-15, HTS-01-16.				
Subject Matter Expert Making Determination: Phil Rittenhouse				
Date: September 16, 2008Originating Organization: Technology Insights				

APPENDIX B: TECHNOLOGY DEVELOPMENT ROAD MAP

NGNP-CTF MTECH-TDRM-005

NGNP Technology Development Road Mapping Report Section 5: Intermediate Heat Exchanger B

21 of 59

APPENDIX C: TECHNOLOGY MATURATION PLAN
TABLE OF CONTENTS

Section	Title	age	
C1 TECNOLO	GY MATURATION PLAN FOR IHX B – TRL 3 TO TRL 4	. 26	
C1.1 TECHN	OLOGY MATURATION PLAN SUMMARY	. 26	
C1.1.1	Objectives	. 26	
C1.1.2	Scope	26	
C1.1.3	Anticipated Schedule	. 27	
C1.1.4	Overall Cost	. 27	
C1.2 TEST S	PECIFICATIONS	. 27	
C1.2.1	Alloy 800H Material Specifications and Procurement (WEC-TS-IHXB-001)	27	
C1.2.2	Database for Brazed and Diffusion Bonded Alloy 800H (WEC-TS-IHXB-00)2) . 28	
C1.2.3	Alloy 800H High Temperature Material Properties (WEC-TS-IHXB-003)	30	
C1.2.4	Effects of Thermal Aging and Environment on Alloy 800H Properties (WEC TS-IHXB-004)	C- . 31	
C1.2.5	Effects of Environmental Exposure on Alloy 800H Braze and Diffusion Bonded Joints (WEC-TS-IHXB-005)	. 33	
C1.2.6	Effects of Grain Size and Section Thickness on Alloy 800H Properties (WECTS-IHXB-006)	C- . 35	
C1.2.7	Corrosion Allowances for Alloy 800H (WEC-TS-IHXB-007)	. 36	
C1.2.8	Thermal/Fluid Modeling Methods for IHX B (WEC-TS-IHXB-008)	. 38	
C1.2.9	Methods for Stress/Strain Modeling of IHX B (WEC-TS-IHXB-009)	. 39	
C1.2.10	Criteria for Structural Integrity of IHX B (WEC-TS-IHXB-010)	41	
C1.2.11	Performance Modeling Methods for IHX B (WEC-TS-IHXB-011)	. 42	
C2 TECHNOLOGY MATURATION PLAN FOR IHX B - TRL 4 TO TRL 5			
C2.1 TECHN	OLOGY MATURATION PLAN SUMMARY	. 44	
C2.1.1	Objectives	. 44	
C2.1.2	Scope.	. 44	
C2.1.3	Anticipated Schedule	. 44	
C2.1.4	Overall Cost	. 44	
C2.2 TEST S	PECIFICATIONS	45	
C2.2.1	Specification of testing of unit cell of compact heat exchanger (WEC-TS-IHXB-012)	. 45	
C3 TECHNOLO	OGY MATURATION PLAN FOR IHX B - TRL 5 TO TRL 6	. 48	
C3.1 TECH	NOLOGY MATURATION PLAN SUMMARY	48	
C3.1.1	Objectives	. 48	
C3.1.2	Scope.	48	
C3.1.3	Anticipated Schedule	. 49	
C3.1.4	Overall Cost	. 49	
C3.2 TEST SPECIFICATIONS			
C3.2.1	Specification of testing of compact heat exchanger module (~1.2MW) (WEC TS-IHXB-013)	C- . 49	

C3.2.2	ASME Section III Code Case for Compact Heat Exchanger Designs (WEC-TIHXB-014)	ГS- . 55
C4 TECHNOL	OGY MATURATION PLAN FOR IHX B – TRL 6 TO TRL 7	. 56
C4.1 TECH	NOLOGY MATURATION PLAN SUMMARY	. 56
C4.1.1	Objectives	. 56
C4.1.2	Scope.	. 56
C4.1.3	Anticipated Schedule	. 57
C4.1.4	Overall Cost	. 57
C4.2 TEST S	PECIFICATIONS	. 57
C4.2.1	Shell-side Flow Distribution and Bypass Leakage Testing (WEC-TS-IHXB-	
	015)	. 57
C4.2.2	Multi-module Heat Transfer Testing (WEC-TS-IHXB-016)	. 58
C5 TECHNOL	OGY MATURATION PLAN FOR IHX B (METALLIC) - TRL 7 TO TR	RL
8	······································	. 58
C5.1 TECH	NOLOGY MATURATION PLAN SUMMARY	. 58
C5.1.1	Objectives	. 58
C5.1.2	Scope.	. 58
C5.1.3	Anticipated Schedule	. 59
C5.1.4	Overall Cost	. 59
C5.2 TEST S	PECIFICATIONS	. 59
C5.2.1	Specification of testing of a full scale compact heat exchanger (WEC-TS-IHXB-017)	59

9/30/2008

REQUIRED SPECIFICATIONS/TEST TO ACHIEVE NEXT TRL

TRL 3 to TRL 4:

- Specification 1: Alloy 800H Material Specifications and Procurement (*WEC-TS-IHXB-001*)
- Specification 2: Database for Brazed and Diffusion Bonded Alloy 800H (*WEC-TS-IHXB-002*)
- Specification 3: Alloy 800H High Temperature Materials Properties (*WEC-TS-IHXB-003*)
- Specification 4: Effects of Thermal Aging and Environment on Alloy 800H Properties (*WEC-TS-IHXB-004*)
- Specification 5: Effects of Environmental Exposure on Alloy 800H Braze and Diffusion Bonded Joints (*WEC-TS-IHXB-005*)
- Specification 6: Effects of Grain Size and Section Thickness on Alloy 800H Properties (*WEC-TS-IHXB-006*)
- Specification 7: Corrosion Allowances for Alloy 800H (WEC-TS-IHXB-007)
- Specification 8: Thermal/Fluid Modeling Methods for IHX B (*WEC-TS-IHXB-008*)
- Specification 9: Methods for Stress/Strain Modeling of IHX B (WEC-TS-IHXB-009)
- Specification 10: Criteria for Structural Integrity of IHX B (WEC-TS-IHXB-010)
- Specification 11: Performance Modeling Methods for IHX B (*WEC-TS-IHXB-011*)

TRL 4 to TRL 5:

• Specification 1: Testing of unit cell of compact heat exchanger (*WEC-TS-IHXB-012*)

TRL 5 to TRL 6:

- Specification 1: Testing of integrated compact heat exchanger module (~1.2MW) (*WEC-TS-IHXB-013*)
- Specification 2: Establishing ASME III Code Case for Metallic Compact Heat Exchanger Designs (*WEC-TS-IHXB-014*)

TRL 6 to TRL 7

- Specification 1: Shell-side flow distribution and bypass leakage testing (*WEC-TS-IHXB-015*)
- Specification 2: Multi-module heat transfer testing (*WEC-TS-IHXB-016*)

TRL 7 to TRL 8:

• Specification 1: Testing of full size compact heat exchanger (IHX B) (*WEC-TS-IHXB-017*)

C1 TECNOLOGY MATURATION PLAN FOR IHX B – TRL 3 TO TRL 4

C1.1 Technology Maturation Plan Summary

C1.1.1 Objectives

The objective of this Technology Maturation Plan is to describe the activities required to advance the maturity of the technology for IHX B from a TRL level of 3 to a TRL level of 4. Several of the maturations tasks required to achieve this goal involve the mechanical and thermal/physical properties of Alloy 800H and how they are affected by material thickness, grain size, thermal aging, and environmental exposure. Joining processes (welding, brazing, and diffusion bonding) and their effects on properties are also addressed. Another of the maturation tasks addresses the corrosion (scale formation, internal oxidation, etc.) of Alloy 800H in NGNP primary and secondary He atmospheres containing low levels of impurities. Four maturation tasks discussed are involved with the development of models to guide the design of high temperature compact heat exchangers and to form the predictive basis for their operation and performance. A Test Specification is provided to cover each of the maturation tasks. These are given in Section C1.2.

C1.1.2 Scope

The maturation tasks and associated testing and other activities necessary to advance the maturity of the technology of the metallic IHX B from TRL 3 to TRL 4 are as shown below.

- Alloy 800H material specifications and procurement
- Develop mechanical property database for brazed and diffusion bonded Alloy 800H.
- Accept existing high temperature properties database for Alloy 800H.
- Accept existing Alloy 800H database on effects of thermal aging and environment.
- Obtain environmental effects data for brazed and diffusion bonded joints of Alloy 800H.
- Assess effects of grain size and section thickness on Alloy 800H properties.
- Determine corrosion allowances for Alloy 800H.
- Develop methods for thermal/fluid modeling of compact heat exchangers.
- Develop methods for stress/strain modeling of compact heat exchangers.
- Establish criteria for structural integrity of compact heat exchangers at very high temperature.
- Develop methods for performance modeling of compact heat exchangers.

The tasks above will be described fully in individual Test Specifications in sections to follow.

C1.1.3 Anticipated Schedule

The work described by the Test Specifications in this Technology Maturation Plan could be accomplished during the period FY2009 through FY2015. No individual Test Specification describes work requiring more than 30 months and the work in most Test Specifications can be done in parallel.

C1.1.4 Overall Cost

Cost and schedule for the overall maturation plan with associated specifications are addressed in Section 17 of this document.

C1.2Test Specifications

C1.2.1 Alloy 800H Material Specifications and Procurement (WEC-TS-IHXB-001)

C1.2.1.1 Objectives

Activities covered in this Test Specification are the finalization of the material specifications (alloy chemistry, fabrication processes etc.), development of procurement requirements for NGNP Alloy 800H, and procurement of one or more heats of Alloy 800H as necessary. With respect to the former, it is expected that existing ASTM standards will be used. No actual physical testing will be performed. This Test Specification responds to DDN HTS-01-22.

C1.2.1.2 Test Conditions

C1.2.1.2.1Test Configuration/Set-Up

No test equipment/facility is needed except for existing conventional test machines (e.g., tensile test machine) for confirming that Alloy 800H procured meets specifications.

C1.2.1.2.2Test Duration

The duration of this activity could be up to 12 months.

C1.2.1.2.3Proposed Test Location

NGNP-CTF MTECH-TDRM-005-Rev1-final.doc

The work could be performed at an appropriate National Laboratory. Refer to Section 17 of the document .

C1.2.1.3 Measured Parameters

Properties, chemistry, grain size, etc. specified in the material specifications and requirements for the material procured.

C1.2.1.4 Data Requirements

Measured parameters will be determined using recognized techniques, codes, standards, and QA.

C1.2.1.5 Test Evaluation Criteria

Heats of Alloy 800H acquired shall meet all procurement requirements and material specifications.

C1.2.1.6 Test Deliverables

Deliverables are as follows.

- Alloy 800H materials purchase specification
- One or more heats of Alloy 800H acquired per the above
- Report confirming that the heats of Alloy 800H meet all specifications and requirements (e.g. Certified Materials Test Report, for each heat).

C1.2.1.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing the technology for IHX B from TRL 3 to TRL 4 is addressed in Sections C1.1.3 and C1.1.4. Risks include that the material doesn't qualify and that the overall schedule will be delayed.

C1.2.2 Database for Brazed and Diffusion Bonded Alloy 800H (WEC-TS-IHXB-002)

C1.2.2.1 Objectives

NGNP-CTF MTECH-TDRM-005-Rev1-final.doc

9/30/2008

Work conducted under this Test Specification is intended to demonstrate that Alloy 800H brazed and diffusion-bonded joints will have mechanical properties appropriate to their use in compact heat exchangers. This Test Specification responds to DDN HTS-01-24 and to DDN HTS-01-30.

C1.2.2.2 Test Conditions

C1.2.2.2.1Test Configuration/Set-Up

These activities require the following.

- Equipment and facilities for brazing and diffusion bonding
- Equipment for microscopic examination
- Equipment for mechanical property testing

C1.2.2.2.2Test Duration

The duration of these joining and testing activities could be up to 30 months.

C1.2.2.3Proposed Test Location

A National Laboratory or University could perform the work on microscopic examination and mechanical properties. Commercial organizations involved in compact heat exchanger manufacture would be appropriate for the joining studies, and to produce the bonded unit cells for test specimens. Refer to Section 17 of the document .

C1.2.2.3 Measured Parameters

Parameters to be measured include the following.

- Conditions and parameters applied in producing the joints
- Condition of the Alloy 800H joints as evidenced by metallography
- Chemistry profiles in the joints determined by SEM
- Tensile, creep, fatigue, and fracture toughness at temperatures up to 850°C.

C1.2.2.4 Data Requirements

All data shall be acquired using recognized techniques, codes, standards, and QA.

C1.2.2.5 Test Evaluation Criteria

NGNP-CTF MTECH-TDRM-005-Rev1-final.doc

This work or an accepted variation thereof will provide the basis for determination of the suitability of brazing and diffusion bonding methods to the manufacture of compact heat exchangers. Criteria involved in the evaluation of each joint type will include:

- Structural integrity as evidenced by metallography and SEM
- Minimal or no reduction in strength or ductility of the Alloy 800H joints.

C1.2.2.6 Test Deliverables

Deliverables are as follows.

- Brazing procedure specifications
- Diffusion bonding procedure specifications
- Conventional welding procedure specifications
- Reports on structural integrity of joints formed by brazing and diffusion bonding
- Reports on mechanical properties of brazed and diffusion bonded joints.

C1.2.2.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing the technology for IHX B from TRL 3 to TRL 4 is addressed in Sections C1.1.3 and C1.1.4. The risks associated with Section C1.2.2 are very small but include the possibility that one or both of the joining techniques may prove unsuitable for thin section of Alloy 800H.

C1.2.3 Alloy 800H High Temperature Material Properties (WEC-TS-IHXB-003)

C1.2.3.1 Objectives

The objectives of this work are to agree to adopt the existing high temperature property database for Alloy 800H materials and to accept that these thermal/physical and mechanical properties are suitable for design and operation of compact heat exchanger IHX B. This Test Specification responds to DDN HTS-01-23.

C1.2.3.2 Test Conditions

C1.2.3.2.1Test Configuration/Set-Up

N/A.

C1.2.3.2.2 Test Duration

Agreement to the database and its collection should require no more than 3 months.

C1.2.3.2.3 Proposed Test Location

The database should be collected and archived by a National Laboratory. Most of this has been accomplished in a joint DOE-ASME program. Refer to Section 17 of the document .

C1.2.3.3 Measured Parameters

Parameters to be recorded are:

- High temperature property data
- Source of the data.

C1.2.3.4 Data Requirements

All data shall meet ASME standards and requirements.

C1.2.3.5 Test Evaluation Criteria

N/A

C1.2.3.6 Test Deliverables

The test deliverable is an achieved Alloy 800H high temperature property database.

C1.2.3.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing the technology for IHX B from TRL 3 to TRL 4 is addressed in Sections C1.1.3 and C1.1.4. The risk associated with Section C1.2.3. involves that the Alloy 800H high temperature property database does not provide for certain conditions and might consequently have to be revisited.

C1.2.4 Effects of Thermal Aging and Environment on Alloy 800H Properties (WEC-TS-IHXB-004)

C1.2.4.1 Objectives

The objective of this work is to agree to accept the existing database on the effects of thermal aging and environmental exposure on the thermal/physical and mechanical properties

NGNP-CTF MTECH-TDRM-005-Rev1-final.doc

9/30/2008

of Alloy 800H materials. This Test Specification responds to DDN HTS-01-25 and DDN HTS-01-26.

C1.2.4.2 Test Conditions

C1.2.4.2.1Test Configuration/Set-Up

N/A.

- C1.2.4.2.2Test Duration
- Collection and archiving of information of the effects of thermal aging and environmental exposure on the properties of Alloy 800H should require no more than 6 months.

C1.2.4.2.3Proposed Test Location

The database should be collected and archived by a National Laboratory. Most of this has been accomplished in a joint DOE-ASME program. Refer to Section 17 of the document

C1.2.4.3 Measured Parameters

Parameters to be recorded are:

- Thermal aging and environmental exposure effects data
- Source of the data.

C1.2.4.4 Data Requirements

All data shall meet NGNP standards and requirements for data.

C1.2.4.5 Test Evaluation Criteria

N/A.

C1.2.4.6 Test Deliverables

The test deliverable is an achieved database on the effects of thermal aging and environmental exposure on the properties of Alloy 800H.

C1.2.4.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing the technology for IHX B from TRL 3 to TRL 4 is addressed in Sections C1.1.3 and C1.1.4. The risk associated with Section C1.2.4 involves that the relevant Alloy 800H property database does not provide for certain conditions and might consequently have to be revisited.

C1.2.5 Effects of Environmental Exposure on Alloy 800H Braze and Diffusion Bonded Joints (WEC-TS-IHXB-005)

C1.2.5.1 Objectives

The objective of this task is to determine the response of the properties of welded, brazed, and diffusion bonded Alloy 800H to exposures in NGNP primary and secondary He environments (low levels of CO, CO_2 , H_2 , O_2 , H_2O and CH_4). This Test Specification responds to DDN HTS-02-26 and DDN HTS-02-30.

C1.2.5.2 Test Conditions

C1.2.5.2.1Test Configuration/Set-Up

The following are required relative determining the effects of NGNP He on the properties of Alloy 800H:

- Facility for exposure of specimens of welded, brazed, and diffusion bonded Alloy 800H to He environment representative of the NGNP for a predetermined time
- Equipment appropriate for conducting tensile, creep, fatigue, and fracture toughness tests
- Instruments for post-test characterization of structure of welds, brazes, and diffusion bonds

C1.2.5.2.2 Duration

Preparation, exposure, and testing of the weld, braze, and diffusion bonded specimens of Alloy 800H could require up to 36 months.

C1.2.5.2.3 Proposed Test Location

Preparation of the weld, braze, and diffusion bond specimens could be conducted at a National Laboratory or by commercial organizations experienced in these techniques. Refer to Section 17 of the document .

C1.2.5.3 Measured Parameters

Parameters to be measured include the following.

- Conditions and parameters applied in producing the joints
- Environmental exposure conditions (times and temperatures) and He chemistry
- Condition of the Alloy 800H joints as evidenced by metallography
- Chemistry profiles in the joints determined by SEM
- Tensile, creep, fatigue, and fracture toughness at temperatures up to 850°C before and after He exposures
- •

C1.2.5.4 Data Requirements

All data shall be acquired using recognized techniques, codes, standards, and QA

C1.2.5.5 Test Evaluation Criteria

Evaluation of the effects of environmental exposures on the properties of Alloy 800H welds, brazes, and diffusion bonds will be based on before and after values of tensile, creep, fatigue, and fracture toughness properties.

C1.2.5.6 Test Deliverables

Deliverables are as follows.

- Reports documenting the details of preparation of the Alloy 800H joints
- Reports documenting details of the environmental exposures
- Reports describing the effects of environmental exposures on mechanical properties of welds, braze joints, and diffusion bonds
- Report describing the effects of environmental exposures of Alloy 800H on the structure of welds, braze joints, and diffusion bonds.

C1.2.5.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing the technology for IHX B from TRL 3 to TRL 4 is addressed in Sections C1.1.3 and C1.1.4. The risk associated with C1.2.5 is small but includes the possibility that one or more of the properties measured after exposure could fall short of what is required for use of Alloy 800H in a compact heat exchanger at up to 760 °C for 60 years.

C1.2.6 Effects of Grain Size and Section Thickness on Alloy 800H Properties (WEC-TS-IHXB-006)

C1.2.6.1 Objectives

The objective of the work prescribed in this Test Specification is to *firstly* demonstrate that the very thin as-fabricated sections of Alloy 800H (significantly less than 1 mm) required in the IHX B compact heat exchanger will have creep and fatigue properties equivalent or only slightly degraded relative to those of products of more typical thickness and *secondly* that fatigue and creep properties of Alloy 800H with typical grain sizes (ASTM 5) are acceptable for compact heat exchanger operation. This Test Specification responds to DDN HTS-01-27 and DDN HTS-01-28.

C1.2.6.2 Test Conditions

C1.2.6.2.1 Test Configuration/Set-Up

Conduct of this work requires equipment/facilities for creep and fatigue measurement and for metallographic determination of grain size.

C1.2.6.2.2 Test Duration

The work relative to grain size and section thickness effects on Alloy 800H creep and fatigue properties should require about 24 months.

C1.2.6.2.3 Proposed Test Location

Study and measurements relative to grain size and section thickness effects on properties are best suited to be conducted at a National Laboratory. Refer to Section 17 of the document .

C1.2.6.3 Measured Parameters

Data to be taken include:

- Creep properties (up to 850°C) as a function of fabricated material thickness
- Creep properties (up to 850°C) as a function of grain size, if required
- Fatigue properties as a function of fabricated material thickness
- Fatigue properties as a function of grain size, if required.

C1.2.6.4 Data Requirements

All data shall be acquired using recognized techniques, codes, standards, and QA.

C1.2.6.5 Test Evaluation Criteria

The creep and fatigue properties determined on thin section and standard grain size Alloy 800H material must meet the requirements for fatigue and creep resistance in the IHX B compact heat exchanger.

C1.2.6.6 Test Deliverables

Deliverables for this Test Specification shall include:

- Report on the influence of section thickness on creep and fatigue properties of Alloy 800H
- Report on the influence of grain size on creep and fatigue properties of Alloy 800H with emphasis on ASTM 5.

C1.2.6.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing the technology for IHX B from TRL 3 to TRL 4 is addressed in Sections C1.1.3 and C1.1.4. The risk associated with C1.2.6 is small but includes the possibility that either thin sections or small grain size could result in creep or fatigue properties inconsistent with the use of Alloy 800H in the IHX B compact heat exchanger.

C1.2.7 Corrosion Allowances for Alloy 800H (WEC-TS-IHXB-007)

C1.2.7.1 Objectives

The major objective of this activity is to ensure that exposure of Alloy 800H at high temperatures (up to \sim 760°C) for up to 60 years in NGNP He does not compromise the structural integrity of the material cross-section by oxide scale formation, internal oxidation, or other phenomena from either the primary or secondary side of the HTS. This Test Specification responds to DDN HTS-01-29.

C1.2.7.2 Test Conditions

C1.2.7.2.1 Test Configuration/Set-Up

Determination of corrosion allowances for Alloy 800H will require the following.

• Facility for exposure in He (600°C to 850°C) / 9MPa with low levels of CO, CO₂, H₂, H₂O, and CH₄ for up to 10,000 hours

- Provisions for introduction, control, and measurement of impurity levels
- Metallographic and SEM equipment for determination of thickness of oxides and depths of internal oxidation, alloy element depletion, and carburization/decarburization

C1.2.7.2.2 Test Duration

Conduct of this work will require 36 months.

C1.2.7.2.3 Proposed Test Location

This work can most effectively be done by ASME members from industry, with supporting data from the test labs. Refer to Section 17 of the document.

C1.2.7.3 Measured Parameters

Parameters to be measured and data taken include:

- Impurity levels in primary side NGNP He as a function of time at all exposure temperatures
- Impurity levels in secondary side NGNP He as a function of time at all exposure temperatures
- Oxide scale thickness and composition
- Depth of internal oxidation
- Depth of depletion of alloy elements, primarily Cr
- Depth affected by carburization or decarburization.

C1.2.7.4 Data Requirements

All data shall be acquired using best practice techniques and QA.

C1.2.7.5 Test Evaluation Criteria

The corrosion allowances determined for Alloy 800H must not be of such magnitude that they degrade the structural integrity of the thin material sections (including welds, brazes, and diffusion bonds) required for the IHX B compact heat exchanger.

C1.2.7.6 Test Deliverables

The following will be provided to meet the objectives of this Test Specification.

• Reports providing details of all exposures in impure primary and secondary side NGNP He

- Oxide scale thickness as a function of time, temperature, and He chemistry
- Depth of internal oxidation as a function of time, temperature, and He chemistry
- Depth of alloy element depletion as a function of time, temperature, and He chemistry
- Depth of carburized or decarburized zone as a function of time, temperature, and He chemistry
- Analysis of all data above for prediction of corrosion allowances for Alloy 800H and Alloy 800H joints for all temperatures and times of interest.

C1.2.7.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing the technology for IHX B from TRL 3 to TRL 4 is addressed in Sections C1.1.3 and C1.1.4. The risk associated with C1.2.7 is that the measured corrosion allowances may preclude the operation of IHX B for full life (~60 years) at full temperature (~760°C).

C1.2.8Thermal/Fluid Modeling Methods for IHX B (WEC-TS-IHXB-008)

C1.2.8.1 Objectives

The work to be conducted under this Test Specification is development of thermal structural models to provide a predictive basis for operation and performance characteristics of compact heat exchanger IHX B. This is required for both quasi-steady state and transient analyses. This Test Specification responds to DDN HTS-01-13.

C1.2.8.2 Test Conditions

C1.2.8.2.1Test Configuration/Set-Up

None currently identified but the models will likely be applied to the results obtained under DDN HTS-01-17. Relative to the latter, see Technology Maturation Plans for TRL 5 to TRL 7 and TRL 7 to TRL 8.

C1.2.8.2.2Test Duration

Development of the thermal/fluid models would occur over a 36-month period.

C1.2.8.2.3Proposed Test Location

The supplier / design authority may be best suited to perform the modeling work. Refer to Section 17 of the document.

C1.2.8.3 Measured Parameters

The models to be developed will incorporate and combine the mechanical and thermal/physical property database for Alloy 800H with finite element analysis (FEA) techniques and known relationships relative to temperature, fluid flow, interface conditions, and structural stresses.

C1.2.8.4 Data Requirements

Model development activities will follow best standard practice and QA requirements.

C1.2.8.5 Test Evaluation Criteria

The usefulness and predictive capability of the models developed will be assessed based on its application to testing described in DDN HTS-01-17.

C1.2.8.6 Test Deliverables

The test deliverable is a model for predicting operation and performance characteristics of compact heat exchanger IHX B relevant to thermal, structural and lifting analyses.

C1.2.8.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing the technology for IHX B from TRL 3 to TRL 4 is addressed in Sections C1.1.3 and C1.1.4. There are no risks associated with C1.2.8.

C1.2.9 Methods for Stress/Strain Modeling of IHX B (WEC-TS-IHXB-009)

C1.2.9.1 Objectives

The objective of this work is to develop structural modeling methods to provide a basis for prediction of stresses and strains under thermo-mechanical, mechanical and hydromechanical loading of compact heat exchanger IHX B. This Test Specification responds to DDN HTS-01-14.

NGNP-CTF MTECH-TDRM-005-Rev1-final.doc

9/30/2008

C1.2.9.2 Test Conditions

C1.2.9.2.1 Test Configuration/Set-Up

None currently identified but the models will likely be applied to the results obtained under DDN HTS-01-17. Relative to the latter, see Technology Maturation Plans for TRL 5 to TRL 7 and TRL 7 to TRL 8.

C1.2.9.2.2 Test Duration

Development of the stress/strain models would occur over a 36-month period

C1.2.9.2.3 Proposed Test Location

The supplier / design authority might be best suited for this task. Refer to Section 17 of the document.

C1.2.9.3 Measured Parameters

The models to be developed will incorporate and combine the mechanical property database for Alloy 800H with finite element analysis (FEA) techniques and known relationships relative to temperature, fluid flow, interface conditions, and structural stresses.

C1.2.9.4 Data Requirements

Model development activities will follow best standard practice and QA requirements.

C1.2.9.5 Test Evaluation Criteria

The usefulness and predictive capability of the models developed will be assessed based on its application to testing described in DDN HTS-01-17. They will also form a part of an ASME design code (see DDN HTS-01-19 for TRL 5 to TRL 7).

C1.2.9.6 Test Deliverables

The test deliverable is a model for predicting operation and performance characteristics and to form a design basis for compact heat exchanger IHX B.

C1.2.9.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing metallic materials technology for IHX B from TRL 3 to TRL 4 is addressed in Sections C1.1.3 and C1.1.4. There is no risk associated with C1.2.9.

C1.2.10 Criteria for Structural Integrity of IHX B (WEC-TS-IHXB-010)

C1.2.10.1 Objectives

The objective of this Test Specification is to establish criteria for the structural integrity of compact heat exchangers operating at high temperature. This includes criteria for stresses and strains as well as development of safety factors needed in ASME Code development. These criteria will help to establish acceptable operational boundaries for compact heat exchangers. This Test Specification responds to DDN HTS-01-15.

C1.2.10.2 Test Conditions

C1.2.10.2.1 Test Configuration/Set-Up

None currently identified.

C1.2.10.2.2 Test Duration

Establishment of structural integrity criteria will occur over a 36-month period.

C1.2.10.2.3 Proposed Test Location

The supplier / design authority might be best suited for this task.

C1.2.10.3 Measured Parameters

Criteria for structural integrity will be developed from a review of appropriate ASME Code documentation, discussions with ASME Code personnel, and interactions during the development of stress/strain models (see activities associated with DDN HTS-01-14).

C1.2.10.4 Data Requirements

Structural integrity criteria development activities will employ best standard practice and QA requirements.

C1.2.10.5 Test Evaluation Criteria

The usefulness and predictive capability of the structural integrity models developed will be assessed based on its application to testing described in DDN HTS-01-17. They will also form a part of an ASME design code (see DDN HTS-01-19 for TRL 5 to TRL 7).

C1.2.10.6 Test Deliverables

Deliverables are as follows.

- Criteria for acceptable stresses and strains
- Safety factors for application to an ASME design code.

C1.2.10.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing the technology for IHX B from TRL 3 to TRL 4 is addressed in Sections C1.1.3 and C1.1.4. There is no risk associated with C1.2.10.

C1.2.11 Performance Modeling Methods for IHX B (WEC-TS-IHXB-011)

C1.2.11.1 Objectives

The objective of the work prescribed in this Test Specification is to provide performance-modeling methods to adequately evaluate the results of performance testing of compact heat exchangers and to assist in the development of an ASME Code Case for design of compact heat exchangers. This Test Specification responds to DDN HTS-01-16.

C1.2.11.2 Test Conditions

C1.2.11.2.1 Test Configuration/Set-Up

None, but the performance models will be applied to the results obtained under DDN HTS-01-17 (see Technology Maturation Plans for TRL 4 to TRL 5, TRL 5 to TRL 7 and TRL 7 to TRL 8).

C1.2.11.2.2 Test Duration

Establishment of structural integrity criteria will occur over a 48-month period.

NGNP-CTF MTECH-TDRM-005-Rev1-final.doc

C1.2.11.2.3 Proposed Test Location

The supplier / design authority might be best suited for this task. Refer to Section 17 of the document.

C1.2.11.3 Measured Parameters

The performance models to be developed will incorporate all parameters necessary to predict the thermal and structural behavior of compact heat exchangers.

C1.2.11.4 Data Requirements

Model development activities will follow best standard practice and QA requirements.

C1.2.11.5 Test Evaluation Criteria

The usefulness and predictive capability of the models developed will be assessed based on its application to testing associated with DDN HTS-01-17 (see Technology Maturation Plans for TRL 4 to TRL 5, TRL 5 to TRL 7 and TRL 7 to TRL 8).

C1.2.11.6 Test Deliverables

The deliverable for this Test Specification is a model to assess the thermal and structural performance of the compact heat exchanger modules to be tested in association with DDN HTS-01-17

C1.2.11.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing the technology for IHX B from TRL 3 to TRL 4 is addressed in Sections C1.1.3 and C1.1.4. There is no risk associated with C1.2.11.

C2 TECHNOLOGY MATURATION PLAN FOR IHX B - TRL 4 TO TRL 5

C2.1 Technology Maturation Plan Summary

C2.1.1 Objectives

The purpose of this Technology Maturation Plan is to describe the activities required to advance the maturity of the technology for the metallic IHX B from a TRL level of 4 to a TRL level of 5. The maturation task required to achieve this goal involve the testing of the compact heat exchanger unit cell. (It is assumed that a compact heat exchanger vendor will provide the compact heat exchanger unit cell.) A Test Specification is provided to cover the maturation task. This is given in Section C2.2.

C2.1.2 Scope

The maturation task necessary to advance the maturity of the technology of IHX B from TRL 4 to TRL 5 is as shown below.

• Specification 1: Testing of unit cell compact heat exchanger

The task above will be described fully in a Test Specification in the following section.

C2.1.3 Anticipated Schedule

The work described by the Test Specifications in this Technology Maturation Plan could be accomplished during the period FY 2014 through FY 2016.

C2.1.4 Overall Cost

Cost and schedule for the overall maturation plan with associated specifications are addressed in Section 17 of this document.

C2.2Test Specifications

C2.2.1 Specification of testing of unit cell of compact heat exchanger (WEC-TS-IHXB-012)

C2.2.1.1 Objectives

The objective of testing the compact heat exchanger unit cell is:

To determine the joint integrity of the compact heat exchanger unit cell joints under • tensile load at a typical pressure environment and elevated temperatures.

C2.2.1.2 Test Conditions

C2.2.1.2.1 Component Requirements

Component requirements include the following:

- Size limitation: dependant on testing environment (e.g. furnace)
- Temperature threshold see test requirements
- Pressure threshold see test requirements
- Environment Helium with controlled impurity levels

C2.2.1.2.2 2Interfacing Requirements

n/a

C2.2.1.2.3 Test Requirements

Test requirements for the compact heat exchanger unit cell tests (not integrated) are as follows:

- Test environment which compact heat exchanger unit cell will be subjected ٠ to before post test evaluation:
 - Temperature 760°C = 9MPa
 - Pressure =
 - Cyclic loading (magnitude and cycles TBD)
- Proposed setup and relevant parameters (see following page):

Figure C-1: Proposed Setup and Relevant Parameters in Testing the Unit Cell

C2.2.1.2.4Test Duration

The duration of this activity will be a minimum of **24** months.

C2.2.1.2.5Facility Requirements

- 1. Furnace suitable for test requirements
- 2. Facilities required for metallographic analysis of material and joints after testing
- C2.2.1.2.6Proposed Test Location

NGNP-CTF MTECH-TDRM-005-Rev1-final.doc

Manufacturers of metallic unit cells would most appropriately evaluate the joint integrities of the as manufactured unit cells. Refer to Section 17 of the document.

C2.2.1.3 Measured Parameters

The following parameters will be measured:

- Temperature
- Pressure
- Post-test joint integrity inferred from SEM, microscopic/metallographic evaluations and tests
 - Creep and creep rupture data.

C2.2.1.4 Data Requirements

It is assumed that a vendor of metallic heat exchangers will produce the compact heat exchanger unit cell. The fabricated unit cell will require the following before progressing with testing:

- Materials certificates
- Weld certificates
- Inspection certificates
- All other quality assurance documents (bonding procedures, etc)

All new data shall be acquired using recognized techniques, codes, standards, and QA

C2.2.1.5 Test Evaluation Criteria

Satisfactory structural integrity of the compact heat exchanger unit cell joints as evidenced by post-testing examinations relating to metallographic procedures and tests.

C2.2.1.6 Test Deliverables

Deliverables are as follows.

- Test Data for all areas as indicated in section C2.2.1.3
- Documentation containing performance verification criteria and test results relating to the joint integrities of the CHE unit cell as observed through microscopic/metallographic evaluations and tests

C2.2.1.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing metallic materials technology for IHX B from TRL 4 to TRL 5 is addressed in Sections C2.1.3 and C2.1.4.

The risk associated with Test Specification C2.2.1 involves the non-satisfactory condition/integrity of the CHE unit cell joint, and may consequently require a reevaluation of the unit cell design (or certain aspects thereof).

C3 TECHNOLOGY MATURATION PLAN FOR IHX B - TRL 5 TO TRL 6

C3.1TECHNOLOGY MATURATION PLAN SUMMARY

C3.1.1 Objectives

The purpose of this Technology Maturation Plan is to describe the activities required to advance the maturity of the technology for IHX B from a TRL level of 5 to a TRL level of 6. The maturation tasks required to achieve this goal involve the testing of the integrated compact heat exchanger module (~1.2MW) in the CTF (It is assumed that the compact heat exchanger module will be provided by a compact heat exchanger vendor) and the establishment of a Section III ASME Code case fully qualifying compact heat exchanger designs for service in the NGNP. Test Specifications are provided to cover these maturation tasks (given in Section C3.2).

C3.1.2 Scope

The maturation tasks necessary to advance the maturity of the technology of IHX B from TRL 5 to TRL 6 are as shown below.

- Specification 1: Testing of integrated compact heat exchanger module (~1.2MW)
- Specification 2: Establishing ASME Section III design code for compact heat exchanger designs

The tasks above will be described in the test specifications provided hereafter.

C3.1.3 Anticipated Schedule

The work described by the Test Specification in this Technology Maturation Plan will be accomplished during the period FY 2017 through FY 2019.

C3.1.4 Overall Cost

Cost and schedule for the overall maturation plan with associated specifications are addressed in Section 17 of this document.

C3.2Test Specifications

C3.3

C3.3.1 Specification of testing of compact heat exchanger module (~1.2MW) (WEC-TS-IHXB-013)

C3.3.1.1 Objectives

The objectives of testing the compact heat exchanger module (~1.2MW) are:

- To demonstrate the operating effectiveness of the compact heat exchanger module
- To demonstrate the fatigue life of the integrated compact heat exchanger module in terms of *thermal fatigue, joint integrity* and *corrosion & high temperature oxidation*.

C3.3.1.2 Test Conditions

C3.3.1.2.1 Compact Heat Exchanger Module (subsystem and system) Requirements

Subsystem and system requirements include the following:

- Size limitation: TBD
- Certain interface design requirements and specifications (see interfacing requirements)
- Heat transfer fluid Helium with controlled impurities
- Temperature threshold see test requirements
- Pressure threshold see test requirements
- Mass flow threshold see test requirements
- Pressure drop threshold see test requirements

C3.3.1.2.2 Interfacing Requirements

• TBD by Technology Development Loop and Subsystem Configuration / Design

9/30/2008

- Certain interface design requirements and specifications:
 - Appropriate surface finish of interfacing components
 - o Gasket materials applicable
 - Flange torque values where applicable

C3.3.1.2.3 Measurement Requirements

- Measurement of strains
- Measurement of internal and external pressures
- Measurement of temperature
- Measurement of mass flow
- Measurement of fluid composition
- Measurement of leak rates from CHE module

C3.3.1.2.4 Test Requirements

Test requirements for the compact heat exchanger module tests (integrated) are as follows:

- 1. Test compact heat exchanger module operating effectiveness and behavior in typical steady state pressure, temperature and temperature/pressure drop environment (Helium)
 - i. Temperature = $760^{\circ}C$
 - ii. Pressure = 9MPa
 - iii. Temperature $\Delta = 473^{\circ}C$
 - iv. Pressure Δ = tbd
 - v. Mass flow = tbd
 - vi. He environment with varied composition
- 2. Test compact heat exchanger module behavior in typical pressure transient environment:
 - i. Expose module to a high frequency, normal operating pressure transient, present with a startup / shutdown sequence
 - 1. Pressurizing transient (ambient to 9MPa in certain time frame)
 - 2. De-pressurizing transient (9MPa to ambient in certain time frame)
 - ii. Number of cycles and temperature level TBD
- 3. Test compact heat exchanger module behavior in typical temperature transient environment:
 - i. Expose module to a high frequency, normal operating temperature transient (ambient to 760°C), present with a startup / shutdown sequence
 - 1. Heat up transition
 - 2. Cool down transition
 - ii. Number of cycles and pressure level TBD

9/30/2008

4. Test compact heat exchanger module behavior at varying process parameters:

- i. Temperature = $760^{\circ}C$
- ii. Pressure = 9MPa primary (secondary TBD)
- iii. Pressure Δ = TBD (Primary to Secondary and Inlet to Outlet)
- iv. Mass flow = T
 - TBD

Proposed setup and parameters (see following page):

Figure C-2: Proposed Setup and Durability Parameters in Testing the CHE Module

C3.3.1.2.5 Tests Duration

The duration of this activity will be a minimum of 24 months.

NGNP-CTF MTECH-TDRM-005-Rev1-final.doc

C3.3.1.2.6 Facility Requirements

The following facilities will be required:

- 1. TDL facilities 1-3 (TBD)
- 2. Gas analyzing facilities
- 3. Facilities required for metallographic analysis of material and joints after testing

C3.3.1.2.7 Proposed Test Location

Proposed tests will take place at the CTF or in a representative environment. This work can most effectively be done by ASME members of industry. Refer to Section 17 of the document.

C3.3.1.3 Measured Parameters

The following parameters will be measured:

- Temperatures
- Pressures
- Measurement of magnitude and number of temperature gradients and temperature gradient cycles respectively up to thermal fatigue failure
- Fluid composition
- Leak rates at varying process conditions
- Operating effectiveness of compact heat exchanger module
- Corrosion of module materials and joints over a predetermined time
- Oxidation of module materials and joints over a predetermined time
- Thermal fatigue observations through SEM, TEM and other analyses techniques, inclusive of Element Distribution Maps of selected joint samples
- Joint integrity(ies) Tensile tests, SEM, microscopic/metallographic evaluations and testing of joint sections.

C3.3.1.4 Data Requirements

It is assumed that a vendor of metallic heat exchangers will produce the compact heat exchanger module. The fabricated module of the compact heat exchanger will require the following before progressing with testing:

- Materials certificates
- Weld certificates
- Inspection certificates
- All other quality assurance documents (bonding procedures, etc)

All new data shall be acquired using recognized techniques, codes, standards, and QA

C3.3.1.5 Test Evaluation Criteria

- Satisfactory number of transient cycles up to thermal fatigue of the module material/joints
- Satisfactory structural integrity of the whole compact heat exchanger module assembly (system) as evidenced by
 - metallographic procedures and tests
 - analyses inclusive of remaining life assessments (if applicable)
 - o comparison of data with assessment models, FEM's or other calculations
- An acceptable level of deformation of the compact heat exchanger module (subsystem) as evidenced by strain measurement measures
- The corrosion must not be of such magnitude as to degrade the structural integrity of the module material sections and joints.
- Limited oxidation formation thickness or no oxidation over a predetermined time
- An acceptable effectiveness of the compact heat exchanger module
- An acceptable rate of leakage of the compact heat exchanger module at varying process conditions.

C3.3.1.6 Test Deliverables

Deliverables are as follows.

- Test Data for all areas as indicated in section C3.2.1.3
- Documentation containing performance verification criteria and test results verified against stress/strain models of the compact heat exchanger module and material properties.

C3.3.1.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing the technology of IHX B from TRL 5 to TRL 6 is addressed in Sections C3.1.3 and C3.1.4.

Depending on the failure modes of the compact heat exchanger module, the design of relevant interfaces of the compact heat exchanger module will have to be re-evaluated.

C3.3.2 ASME Section III Code Case for Compact Heat Exchanger Designs (WEC-TS-IHXB-014)

C3.3.2.1 Objectives

This Test Specification has the overall objective of developing and establishing a Section III ASME Code Case for compact heat exchanger designs. It will involve the drafting of the code case, interactions with ASME during the approval process, and provision of any additional specific data/information requested by the ASME. This Test Specification responds to DDN HTS-01-19.

C3.3.2.2 Test Conditions

C3.3.2.2.1 Test Configuration/Set-up

No test equipment or facility is needed.

C3.3.2.2.2 Test Duration

The duration of this activity will be a minimum of 48 months.

C3.3.2.2.3 Proposed Test Location

The supplier / design authority might be best suited for this task. Refer to Section 17 of the document.

C3.3.2.3 Measured Parameters

N/A

C3.3.2.4 Data Requirements

Measured parameters will be determined using recognized techniques, codes, standards, and QA.

C3.3.2.5 Test Evaluation Criteria

N/A.

NGNP-CTF MTECH-TDRM-005-Rev1-final.doc

C3.3.2.6 Test Deliverables

The test deliverable is a Section III ASME Code case fully qualifying metallic compact heat exchanger designs for service in the NGNP IHX up to 760°C.

C3.3.2.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing metallic materials technology for IHX B from TRL 5 to TRL 6 is addressed in Sections C3.1.3 and C3.1.4.

The risk associated with Test Specification C3.2.2 entails the failure to establish an ASME Code Case for compact heat exchanger designs.

C4 TECHNOLOGY MATURATION PLAN FOR IHX B – TRL 6 TO TRL 7

C4.1TECHNOLOGY MATURATION PLAN SUMMARY

C4.1.1 Objectives

The purpose of this Technology Maturation Plan is to describe the activities required to advance the maturity of the technology for IHX B from a TRL level of 6 to a TRL level of 7. The maturation tasks required to achieve this goal involve the testing of models to determine shell-side flow distribution and bypass leakage and the heat transfer testing of multi-modules (e.g., 3×1.2 MW). Test Specifications are provided to cover the maturation tasks (given in section C4.2).

C4.1.2 Scope

The maturation tasks necessary to advance the maturity of the technology of IHX B from TRL 6 to TRL 7 are as shown below.

- Specification 1: Shell-side flow distribution and bypass leakage tests.
- Specification 2: Multi-module heat transfer tests.

These tasks will be described in D5.2.

C4.1.3 Anticipated Schedule

The work described by the Test Specification in this Technology Maturation Plan could be accomplished during the period FY 2018 through FY 2020.

C4.1.4 Overall Cost

Cost and schedule for the overall maturation plan with associated specifications are addressed in Section 17 of this document.

C4.2Test Specifications

C4.2.1 Shell-side Flow Distribution and Bypass Leakage Testing (WEC-TS-IHXB-015)

C4.2.1.1 Objectives

The objectives of testing are to

- Confirm shell-side flow distribution modeling
- Confirm that shell-side bypass leakage is acceptable
- Confirm shell-side pressure losses.

There is also the potential to use this test to characterize dust transport/dropout as a function of particulate size.

C4.2.1.2 Test Conditions

This likely would be an ambient temperature test with air as the working fluid. The test article would model inlet and outlet regions of the heat exchanger, features that promote good distribution to the core modules on the shell-side, and features that minimize bypass leakage. Details of the testing will be finalized at later stage.

C4.2.2 Multi-module Heat Transfer Testing (WEC-TS-IHXB-016)

C4.2.2.1 Objectives

The objectives of this testing are to

- Investigate module-to-module interactions on both the tube- and shell-sides of the heat exchanger
- Confirm bypass leakage and effects.

C4.2.2.2 Test Conditions

The multi-module test would be a heated test in the CTF with 3 or more core modules (~4MWt would be required for 3 modules) representing a segment of the IHX. Details of the testing will be finalized at later stage.

C5 TECHNOLOGY MATURATION PLAN FOR IHX B (METALLIC) -TRL 7 TO TRL 8

C5.1TECHNOLOGY MATURATION PLAN SUMMARY

C5.1.1 Objectives

The purpose of this Technology Maturation Plan is to describe the activities required to advance the maturity of the technology for IHX B from a TRL level of 7 to a TRL level of 8. The maturation task required to achieve this goal involve the testing of the full-scale compact heat exchanger. (It is assumed that a compact heat exchanger vendor will provide the full-scale compact heat exchanger and/or assembled by vendor staff on the NGNP site). The scope of this test on the full scale compact heat exchanger will vary slightly from the scope of test noted to progress from TRL 5 to TRL 6 a TRL 6 to TRL 7. A Test Specification is provided to cover the maturation task (given in section C5.2).

C5.1.2 Scope

The maturation task necessary to advance the maturity of the technology of IHX B from TRL 7 to TRL 8 is as shown below.

• Specification 1: Testing of full scale compact heat exchanger in the NGNP

NGNP-CTF MTECH-TDRM-005-Rev1-final.doc

9/30/2008
This task will be described in the following test specification.

C5.1.3 Anticipated Schedule

The work described by the Test Specification in this Technology Maturation Plan could be accomplished during the period FY 2020 through FY 2022.

C5.1.4 Overall Cost

Cost and schedule for the overall maturation plan with associated specifications are addressed in Section 17 of this document.

C5.2Test Specifications

C5.2.1 Specification of testing of a full scale compact heat exchanger (WEC-TS-IHXB-017)

C5.2.1.1 Objectives

The objectives of testing the full-scale compact heat exchanger are:

- To determine the leak rate of the compact heat exchanger (system) at various typical process parameters
- To determine the operating effectiveness of the full-scale compact heat exchanger at various typical process parameters

IHX B will be fully tested and commissioned in the NGNP. Details of the testing and commissioning will be finalized at later stage.

NGNP-CTF MTECH-TDRM-006 Revision 1 November 2008

NGNP and Hydrogen Production Conceptual Design Study

NGNP Technology Development Road Mapping Report

Section 6 – HTS Piping

APPROVALS

Function		Printed Name and	l Signature	Date
Author	Name: Company:	Phil Rittenhouse Technology Insights	Phian	November 18, 2008
Reviewer	Name: Company:	Johan Markgraaff M-Tech Industrial	perarlyraaff	November 19, 2008
Reviewer	Name: Company:	Werner Koekemoer M-Tech Industrial	J Adams	~ November 19, 2008
Reviewer	Name: Company:	Ruttie Nel Pebble Bed Modular Reacto	or A fellel.	November 19, 2008
Approval	Name: Company:	Jan van Ravenswaay M-Tech Industrial	board	November 19, 2008

Westinghouse Electric Company LLC Nuclear Power Plants Post Office Box 355 Pittsburgh, PA 15230-0355

©2008 Westinghouse Electric Company LLC All Rights Reserved

LIST OF CONTRIBUTORS

Name and Company	Date
Phil Rittenhouse (Technology Insights)	September 30, 2008
Scott Penfield (Technology Insights)	September 30, 2008
Ruttie Nel (PBMR)	September 30, 2008
Renee Greyvenstein (PBMR)	September 30, 2008
Johan Markgraaff (M-Tech Industrial)	September 30, 2008
Werner Koekemoer (M-Tech Industrial)	September 30, 2008

BACKGROUND INTELLECTUAL PROPERTY CONTENT

Section	Title	Description
N/A		

REVISION HISTORY

RECORD OF CHANGES

Revision No.	Revision Made by	Description	Date
А	Phil Rittenhouse	Comments Review	September 17, 2008
В	Phil Rittenhouse	Formal Review	September 24, 2008
0	Phil Rittenhouse	Approved document	September 30, 2008
0A	Louisa Venter	Editorial changes	November 15, 2008
1	Phil Rittenhouse	Document for release to WEC	November 18, 2008

DOCUMENT TRACEABILITY

Created to Support the Following Document(s)	Document Number	Revision
NGNP and Hydrogen Production Preconceptual Design Report	NGNP-01-RPT-001	0

TABLE OF CONTENTS

	S	Section Title	Page
6	HTS	S PIPING	10
	6.1	DESCRIPTION, FUNCTIONS, AND OPERATING REQUIREMENTS	10
	6.2	TRL STATUS OF SSC	20
	6.3	TECHNOLOGY DEVELOPMENT ROAD MAP	20
		6.3.1 Overview	20
	6.4	TECHNOLOGY MATURATION PLAN SUMMARY	20
	6.5	INPUTS TO CTF	21
	6.6	APPENDIX A: TRL RATING SHEETS	22
	6.7	APPENDIX B: TECHNOLOGY DEVELOPMENT ROAD MAP	25
	6.8	APPENDIX C: TECHNOLOGY MATURATION PLAN – HTS PIPING	27

LIST OF TABLES

Table 6-1: Helium Temperatures in HTS Piping Sections	10
Table A-1: Technology Readiness Levels for the HTS Piping	23
Table C-1: Applicability of maturation plan objectives to HTS piping sections	47

LIST OF FIGURES

Figure 6-1:	Nominal Temperatures of HTS Piping (950°C)	11
Figure 6-2:	Example of Active Cooling Configuration	12
Figure 6-3:	Design Options for High Temperature PHTS Piping Sections (950℃ and 760℃).	14
Figure 6-4:	Design Options for Low Temperature PHTS Piping Sections (350°C)	15
Figure 6-5:	Example of Passive Cooling Configuration	16
Figure 6-6:	Design Options for High Temperature SHTS Piping Sections (900 °C /840 °C and	
700	℃/659℃)	18
Figure 6-7 -	- Design Options for Low Temperature SHTS Piping Sections (300 °C)	19
Figure B-1:	TDRM for the HTS Piping	26
Figure C 1:	Proposed Setup and Relevant Parameters in Testing the Prototypical HTS Piping.	50

ACRONYMS

Acronym	Definition
AI	Inner Annulus (active cooling piping)
AMS	Activity Measurement System
AO	Outer Annulus (active cooling piping)
AOO	Anticipated Operational Occurrence
AS	Automation System
ASME	American Society of Mechanical Engineers
AVR	Arbeitsgemeinschaft Versuchs-Reaktor
BOP	Balance of Plant
BUMS	Burn-up Measurement System
СВ	Core Barrel
CCS	Core Conditioning System
CEA	Commissariat à l'Énergie Atomique
CFD	Computational Fluid Dynamics
CHE	Compact Heat Exchanger
CIP	Core Inlet Pipe
CO2	Carbon Dioxide
COC	Core Outlet Connection
COP	Core Outlet Pipe
COTS	Commercial Off The Shelf
CRADA	Co-operative Research and Development Agreement
CRD	Control Rod Drive
CSC	Core Structure Ceramics
CTF	Component Test Facility
CTF	Component Test Facility
CUD	Core Unloading Devices
DAU	Data Acquisition Unit
DBA	Design Base Accident
DBE	Design Base Event
DDN	Design Data Need
DFC	Depressurized Forced Cooling
DLOFC	De-pressurized Loss of Forced Cooling
DOE	Department of Energy
DPP	Demonstration Power Plant
DRL	Design Readiness Level
DWS	Demineralized Water System
ELE	Elecrolyser System
EM	Evaluation Model
EMB	Electomagnetic Bearing
EOFY	End of Fiscal Year
EPCC	Equipment Protection Cooling Circuit
FPCT	Equipment Protection Cooling Tower
F&OR	Functional and Operational Requirements
FHS	Fuel Handling System

FHSS	Fuel Handling and Storage System
FIMA	Fissions per Initial Metal Atoms
FMECA	Failure Modes, Effects and Criticality Analysis
FS	Fuel Spheres
FTA	Fault Tree Analysis
FUS	Feed and Utility System
H2	Hydrogen
H2SO4	Sulfuric Acid
HC	Helium Circulator
He	Helium
HETP	Height Equivalent of the theoretical Plate
HGD	Hot Gas Duct
HI	Hydro-Iodic
HLW	High Level Waste
HPB	Helium Pressure Boundary
HPC	High Pressure Compressor
HPS	Helium Purification System
HPS	Hydrogen Production System
HPT	High Pressure Turbine
HPU	Hydrogen Production Unit
HRS	Heat Removal System
HTF	Helium Test Facility
HTGR	High Temperature Gas-Cooled Reactor
HTR	High Temperature Reactor
HTS	Heat Transport System
HTSE	High Temperature Steam Electrolysis
HTTR	High Temperature Test Reactor
HVAC	Heating Ventilation and Air Conditioning
HX	Heat Exchanger
HyS	Hybrid Sulfur
I&C	Instrumentation and Control
12	lodine
ID	Inner Diameter
IHX	Intermediate Heat Exchanger
ILS	Integrated Laboratory Scale
I-NERI	International Nuclear Energy Research Initiative
INL	Idaho National Laboratory
INL	Idaho National Laboratory
IPT	Intermediate Pressure Turbine
ISR	Inner Side Reflector
K-T	Kepner-Tregoe
KTA	German nuclear technical committee
LEU	Low Enriched Uranium
LOFC	Loss of Forced Cooling
LPT	Low Pressure Turbine
MES	Membrane-electrode assembly
I MTR	Material Test Reactor

NAA	Neutron Activation Analysis
NCS	Nuclear Control System
NGNP	Next Generation Nuclear Plant
NHI	Nuclear Hydrogen Initiative
NHS	Nuclear Heat Supply
NHSS	Nuclear Heat Supply System
NNR	National Nuclear Regulator
NRG	Nuclear Research and consultancy Group
NRV	Non-Beturn Valve
02	Oxygen
	Outer Diameter
PBMR	Pebble Bed Modular Beactor
PCC	Power Conversion System
PCDB	Pre-Conceptual Design Beport
PCHF	Printed Circuit Heat Exchanger
PCHX	Process Counting Heat Exchanger
	Power Conversion System
	Plate Fin Heat Exchanger
	Primary Heat Transport System
	Point irrediction Examination
	Pressuitzed Loss of Porced Cooling
POC	Power Conversion System
	Parts per million
	Product Purification Unit
PPWC	Primary Pressurized Water Cooler
RAMI	Reliability, Availability, Maintainability and Inspectability
RC	Reactor Cavity
RCCS	Reactor Gavity Gooling System
RCS	Reactivity Control System
RCSS	Reactivity Control and Shutdown System
RDM	Rod Drive Mechanism
RIM	Reliability and Integrity Management
RIT	Reactor Inlet Temperature
RM	Road Map
ROT	Reactor Outlet Temperature
RPS	Reactor Protection System
RPT	Report
RPV	Reactor Pressure Vessel
RS	Reactor System
RSS	Reserve Shutdown System
RUS	Reactor Unit System
SAD	Acid Decomposition System
SAR	Safety Analysis Report
SAS	Small Absorber Spheres
SG	Steam Generator
SHTS	Secondary Heat Transport System

S-I	Sulfur Iodine
SiC	Silicon Carbide
SNL	Sandia National Laboratory
SO2	Sulfur Dioxide
SOE	Sulfuric Oxide Electrolyzers
SOEC	Sulfuric Oxide Electrolyzers Cells
SR	Side Reflector
SSC	System Structure Component
SSCs	Systems, Structures and Components
SSE	Safe Shutdown Earthquake
SUD	Software Under Development
TBC	To Be Confirmed
TBD	To Be Determined
TDL	Technology Development Loop (As incorporated in Concept 1)
TDRM	Technology Development Road Map
TER	Test Execution Report
THTR	Thorium High Temperature Reactor
TRISO	Triple Coated Isotropic
TRL	Technology Readiness Level
TRM	Technology Road Map
UCO	Uranium Oxycarbide
UO2	Uranium Dioxide
USA.	United States of America
V&V	Verification and Validation
V&Ved	Verified and Validated
VLE	Vapor-Liquid Equilibrium
WBS	Work Breakdown Structure
WEC	Westinghouse Electric Company

SUMMARY AND CONCLUSIONS

The HTS involves pipes of varying temperature capabilities in both the PHTS and SHTS. High-temperature piping is utilized within the PHTS to direct He flow from the reactor to IHX A and from IHX A to IHX B. Lower temperature portions of the PHTS piping circuit transport the He flow from the exit of IHX B to the circulator and thereon from the circulator to the reactor. High-temperature piping is utilized within the SHTS to direct He flow from the high-temperature exit of IHX A to the mixing chamber and the PCHX and from the mixing chamber to the SG. Also, high-temperature portions of the SHTS piping circuit transport the He from IHX B to IHX A and from the PCHX to the mixing chamber. Low-temperature sections of the SHTS piping direct He from the SG to the circulator and from the circulator to IHX B. Very preliminary design selections for the various piping sections were made on the basis of pre-conceptual design studies (these selections remain to be revisited during conceptual design):

- The high-temperature portion of the PHTS piping is to combine both active cooling and insulation.
- The low-temperature section of the PHTS piping and all SHTS piping is to be passively cooled (insulation only).

An evaluation of the status of technology for the HTS piping was made and resulted in the determination of a level of TRL 4. The underlying bases for this selection are described in the TRL rating sheet (refer to Appendix A).

The TDRM provided for HTS piping summarizes TRL status and maturations tasks necessary to increase the maturity of HTS piping technology to a level of TRL 8. These tasks include five separate Trade Studies aimed at providing the basis for design selections for each of the PHTS and SHTS piping sections. Additional maturation tasks address the effects of He environment and possible rapid depressurization transients on the integrity and thermal conductivity of insulation materials. Finally, there are tasks to quantify environmental and operational effects on prototypic piping section performance. It is noted that the technology roadmap and maturation plans will need to be adjusted as new/different DDNs evolve as part of the conceptual and detail designs.

6 HTS PIPING

6.1 Description, Functions, and Operating Requirements

The HTS involves pipes of varying temperature capabilities in both the PHTS and SHTS. High-temperature piping and insulation are utilized within the PHTS to direct He flow from the reactor to IHX A and from IHX A to IHX B. Lower temperature portions of the PHTS piping circuit transport the He flow from the exit of IHX B to the circulator and further from the circulator to the reactor.

High-temperature piping and insulation are utilized within the SHTS to direct He flow from the high-temperature exit of IHX A to the mixing chamber and the PCHX and from the mixing chamber to the SG. Medium-temperature portions of the SHTS piping circuit transport the He from IHX B to IHX A and from the PCHX to the mixing chamber. Low-temperature sections of the SHTS piping direct He from the SG to the circulator and from the circulator to IHX B.

The nominal temperatures in each of the HTS piping sections are shown in Table 6-1 (see also Figure 6.1). The outer He pressure boundary (HPB) of the PHTS piping will be designed to meet ASME Section III Class 1 requirements; the SHTS HPB piping will be designed to meet either ASME Section III Class 2 or 3 requirements or ASME VIII (preferred).

Piping Location	Temperature
	(°C)
PHTS	
RPV to IHX A	950
IHX A to IHX B	760
IHX B to Circulator	337
Circulator to RPV	350
SHTS	
IHX A to PCHX	900
IHX A to mixing chamber	900
Mixing chamber to SG	840
IHX B to IHX A	700
PCHX to mixing chamber	659
SG to circulator	273
Circulator to IHX B	287

Table 6-1: Helium Temperatures in HTS Piping Sections

Figure 6-1: Nominal Temperatures of HTS Piping (950 °C)

The primary functions and operating requirements of the HTS piping are to:

- In the PHTS, channel the He from the reactor to the IHX units and onward to the circulator and back to the reactor.
- In the SHTS, channel the He from the high-temperature exit of IHX A to the mixing chamber and the PCHX, from the PCHX to the mixing chamber, from the mixing chamber to the SG, and onward to the circulator and IHX B.
- Limit heat losses from the HTS to the remainder of the system in order to maintain the highest possible thermal efficiency. The goal here is to have the temperature of the external surface of the HTS piping (or its insulation if provided) at <100°C.
- Prevent high-temperature He from making direct contact with the HPB and limit the temperature of the HPB piping material to no greater than that approved under ASME Section III (or ASME VIII where applicable), less adequate margin. The most desirable option for a pressure boundary piping material is SA 533 steel. It is approved for continuous service only to 371°C but for short-term (1000 h) service to as high as 537°C under ASME Code Case N-499-2.
- Resist a primary system pressure of ~9 MPa.
- Operate without preventive maintenance for 60 years.

6.1.1 PHTS Piping

The basic design currently assumed (NGNP PCDR Section 6, May 2007, [6-1]) for theRPV to IHX A and IHX A to IHX B portions of the PHTS Piping is based on the DPP designNGNP-CTF MTECH-TDRM-006_Rev1-final.doc9/30/2008

(*NGNP Metallic Component Schedule Risk and Cost Uncertainty Assessment Report*, [6-3]). Both the DPP and NGNP designs incorporate an internal hot gas duct (HGD) consisting of internal concentric ducts separated by layers of insulation (see Figure 6-2). Active cooling is provided in the outer annulus between the HGD and the HPB. The 1000 mm ID innermost duct (the HGD liner) for the NGNP design provides only for directing the He flow and, as with the DPP, is not pressure retaining. The liner and insulation package is surrounded by an inner pressure-retaining pipe and this package is surrounded by a larger pipe that is part of the primary system HPB. The annulus between the HPB and the HGD is cooled by a flow of 350°C He bypassed from the PHTS circulator exit.

Figure 6-2: Example of Active Cooling Configuration

However, there are two significant differences between conditions applicable to the DPP versus the NGNP and both of these are temperature related. First, the temperature of the He from the DPP reactor is 50°C lower than that from the NGNP (900°C versus 950°C). Second, the coolant gas available for supply to the piping annulus in the DPP case is at nominally 110°C from the high-pressure compressor (HPC); for the NGNP the annulus is cooled by 350°C He bypassed from the circulator. Both of these points challenge the piping design.

Materials selected for the DPP design include SB 409 Alloy 800H for the liner and SA 335 Grade P1 for the concentric metal pipes. Because the reactor exit He temperature is higher for the NGNP, it is likely desirable to substitute a material of higher temperature capability for the liner. Such higher temperature capability materials would include metallic materials (Hastelloy X, Alloy 230, and Alloy 617) and composite materials (e.g., CFRC). The DPP is now also considering a Core Outlet Connection (COC) Transition (transition section between the core outlet plenum and the HGD) that has a combined liner of CFRC and Alloy 800H. The insulation material currently proposed for the DPP is fibrous Al₂0₃; the insulation type for the NGNP has not yet been specified. The HPB and inner pressure pipe of the HGD for the NGNP designs are of SA 533B. These design options are shown in Figure 6-3 and Figure 6-4 for the various temperature sections in the PHTS piping.

As indicated earlier, goals for the NGNP piping between the reactor and IHX A and between IHX A and IHX B are to maintain the temperatures of the HPB pipes to below 371° C and to maintain the outer surface of the HPB pipes to $<100^{\circ}$ C. Similar considerations apply to the lower temperature PHTS piping downstream from IHX B, but the current design assumption (*NGNP PCDR Section 6, May 2007*, [6-1]) is that these sections would be of a passively cooled (insulated internally and perhaps externally) single pressure wall configuration. For normal operation, this appears to be a reasonable design solution. However, the insulation type and thickness necessary to accomplish these temperature goals has not been adequately addressed for transients where SHTS circulation might be lost.

Whether a passively cooled design can be developed and used for the high-temperature PHTS piping (at or greater than 760°C He has not been considered in detail at this point. Implementation of such a design would simplify manufacture and operation of the PHTS piping and be of lower cost. There are some early indications that, because of advancements in microporous insulation materials, a single wall design may be able to achieve the stated temperature goals while fitting within the size-envelope of the current concentric piping design. However, other tradeoff issues such as the influence of certain factors on reliability of the HPB remain to be assessed.

DECISION TREE ON VARIOUS DESIGN CONFIGURATIONS: PHTS PIPING - 950°C CASE (METALLIC/COMPOSITE) & 760°C CASE

NGNP-CTF MTECH-TDRM-006_Rev1-final.doc

Page 14 of 54

NGNP-CTF MTECH-TDRM-006_Rev1-final.doc

Page 15 of 54

6.1.2 SHTS Piping

According to NGNP PCDR Section 6 [6-1], all sections of the SHTS piping are assumed to be of an insulated single-wall HPB (i.e., passively cooled) design (see Figure 6-5). Further, it is assumed that there are no feasible transients that can result in He temperatures higher than those seen during normal operations.

As with the PHTS piping described in Section 6.1.1, it is assumed that the internal diameter for gas flow for the high-temperature (840°C and 900°C) carrying sections of the SHTS piping is nominally 1000 mm and that the liner provides only for directing the He flow and is not pressure retaining. Also, the liner and the HPB pipes will have nominal thicknesses of 10 mm and 50 mm, respectively. The HPB pipe material is to be SA 533B steel; liner material choices include Alloy 800H, Hastelloy X, Alloy 230, and Alloy 617. Insulation will be required internally to the HPB pipe but insulation could, in addition, be used externally. As with the high-temperature PHTS piping described above, there is no existing proven design for a 900°C passively cooled SHTS pipe. (See Figure 6-6 for design options.)

Figure 6-5: Example of Passive Cooling Configuration

The insulation requirements for the medium temperature (659°C and 700°C) carrying HPB sections of the PHTS piping will be quite similar to those for the high-temperature pipes described. However, the thicknesses of insulation required will obviously be less. Also, a less costly liner material (e.g., 316 SS or a Cr-Mo steel) of lower temperature capability will likely be appropriate. (See Figure 6-6 for design options.)

In the case of the low-temperature (<300°C) piping (see Figure 6-7), it may be possible to use a design with no internal insulation and no liner. All insulation would simply be applied externally to the HPB pipes.

Figure 6-6: Design Options for High Temperature SHTS Piping Sections (900°C /840°C and 700°C/659°C)

NGNP-CTF MTECH-TDRM-006_Rev1-final.doc

Page 18 of 54

Figure 6-7 – Design Options for Low Temperature SHTS Piping Sections (300°C)

NGNP-CTF MTECH-TDRM-006_Rev1-final.doc

Page 19 of 54

6.2 TRL Status

An evaluation of the status of technology for the high-temperature section HTS piping was made and resulted in the determination of a level of TRL 4. The underlying basis for this selection is described in the TRL rating sheet (refer to Appendix A).

6.3 Technology Development Road Map

6.3.1 Overview

The TDRM for HTS piping provides a listing of the Maturation Tasks that are necessary to advance the status of technology to succeedingly higher levels from a Validated TRL 4 to a Validated TRL 8. Selected designs for the HTS piping sections will be achieved through trade studies performed to advance technology to TRL 5.

The TDRM for the HTS piping is attached in Appendix B; Maturations Tasks are described in Section 6.4.

6.4 Technology Maturation Plan Summary

This section describes the maturation tasks needed to advance the technology of all portions of the HTS piping from a validated TRL 4 to a validated TRL 8. Technology progress from a level of TRL 4 to TRL 5 involves Trade Studies to evaluate cooling (active and passive), liner material, and insulation options for the high, medium and low temperature piping sections. Additionally, it is necessary to determine the effects of He infiltration (pure and impure) and moisture infiltration on the thermal conductivity of the insulation material selected for the piping options. Further, the results of the Trade Studies may provide insights that necessitate the development and conduct of additional maturation tasks.

Advancement of the technology for the HTS piping from TRL 5 to TRL 6 and from TRL 6 to TRL 7 will require performance and environmental testing of representative piping sections, including the response of insulation materials to sudden depressurization. Moving from TRL 7 to TRL 8 will require the testing of full sized piping systems in the NGNP.

The maturation tasks involved in advancing the technology of the HTS piping from TRL 4 to TRL 8 are in general agreement with DDN HTS-04-01 presented in Section 6 of the PCDR. This DDN (High Temperature Ducts and Insulation) addresses, in very general terms:

- Insulation systems
- *Hot duct liner characterization*
- Metallic materials selection

NGNP-CTF MTECH-TDRM-006_Rev1-final.doc

• Qualification and performance verification

The DDN applies both to PHTS piping and SHTS piping.

Costs and schedules associated with the completion of development activities for HTS piping were identified in Section 16 of the PCDR. These will be addressed further in connection with the Maturation Plans.

The detailed Technology Maturation Plans required to mature the technology of the HTS piping to a level of TRL 8 are provided in Appendix C.

6.5 Core Outlet Connection Technology Development

The Core Outlet Connection (COC) is an element of the HTS piping and its functions and design has been discussed in detail in the NGNP Conceptual Design Study on Composites R&D (NGNP-NHS-RPT-TI002).

The DPP COC will be tested as part of the DPP testing programme in a facility commissioned specifically for that purpose. This testing will be unique to the DPP configuration and operational conditions.

Currently the anticipated technology development testing requirements for the NGNP COC are covered by the DDNs identified in the NGNP Conceptual Design Study on Composites R&D (NGNP-NHS-RPT-TI002). These are focused on materials and are thus covered by the TDRM as described in this document and consequently the COC will not be uniquely discussed further.

6.6 Inputs to CTF

Representative mass flows might have to be utilized in the testing of prototypical piping sections, and might require a testing facility in addition to the CTF.

6.7 References

[6-1] PCDR Section 6: Heat Transport Systems, NGNP-06-RPT-003, Rev 0, April 2007

[6-2] NGNP Conceptual Design Study: IHX and Heat Transport System, NGNP-HTS-RPT-

TI001,

Rev 0, April 2008

[6-3] Metallic Component Schedule Risk and Cost Uncertainty Assessment report

APPENDIX A: TRL RATING SHEETS

TRL Rating Sheet					
Vendor Name: Document Number: Revision:					
□ Island □ System □ Subsystem/Structure □ Component □ Technology					
Title: HTS Piping					
Description:					
The Technology Readiness Level for high-temperature and low-temperature PHTS piping and high-temperature, medium-temperature, and low-temperature SHTS piping operating in the NGNP for 60 years has been assessed as TRL 4 based on studies shown below; actions needed to advance the level to TRL 5 are also given below.					
Island(s): ISland(s): ISland(s):	☑ HTS	□ HPS		S 🗆 BOP	
ISSCTBS: N/A	Parent: N/A		WBS: 1	N/A	
	Technology Read	iness Leve	l		
	Next Lower Rating Level	(Ra	Calculated ating	Next Higher Rating Level	
Generic Definitions (abbreviated)	Application formulated	P concept	roof of	Bench scale testing	
TRL	3		4	5	
Basis for Rating (Attach add	itional sheets as needed)			
Designs and materials for PHTS piping operating at up to 950°C were proposed and evaluated in recent studies reported in:					
 Special Study 20.3: High-Temperature Process Heat Transfer and Transport, NGNP-20-RPT-003, Rev 0, January 2007 					
• PCDR Section 6: Heat Transp	oort System, NGNP-06-	RPT-003, 1	Rev 0, April 2	2007	
 NGNP Conceptual Design Study: IHX and Heat Transport System, NGNP-HTS-RPT-TI001, Rev 0, April 2008. 					
• Successful long-term service	experience with large g	as carrying	pipes.		
TRL has been re-evaluated from the TRL set out in "NGNP-TRL & DRL Report, Rev 0, September 2007" (which stated the TRL as a TRL 5), to be a TRL 4 due to temperature differences between the DPP design and the proposed NGNP design (cooling gas and reactor outlet temperatures)					
Outline of a plan to get from current level to next level (Attach additional sheets as needed)					
Actions (list all) Schedule Cost (KS			Cost (K\$)		
• High-Temperature [760°C and 950°C] PHTS piping cooling, liner, and insulation options trade study 20			2009 -	Refer to Section C4	
NGNP-CTF MTECH-TDRM-006_Rev1-final.doc 9/30/2008					

Table A-2: Technology Readiness Levels for the HTS Piping

• Low-Temperature [and insulation optio	350°C] PHTS piping liner ns trade study			
• High-temperature [840°C and 900°C] SHTS piping liner and insulation options trade study				
 Medium-temperaturn piping liner and insu 	re [659°C and 700°C] SHTS llation options trade study			
• Low-temperature [<300°C] SHTS piping liner and insulation options trade study				
•				
DDN(s) supported:	HTS-04-01	Technology C	Case File: N/A	
Subject Matter Expert Making Determination: Phil Rittenhouse				
Date: 12 September 2008	Originating Organization: Technology Insights			

APPENDIX B: TECHNOLOGY DEVELOPMENT ROAD MAP

NGNP-CTF MTECH-TDRM-006

NGNP Technology Development Road Mapping Report Section 6: HTS Piping

Page 26 of 54

9/30/2008

APPENDIX C: TECHNOLOGY MATURATION PLAN – HTS PIPING

TABLE OF CONTENTS

Section	Title	Page
TECHNOLOGY MA	FURATION PLAN FOR HTS PIPING	- TRL 4 TO TRL 5 30
C1.1 TECHNOLO	GY MATURATION PLAN SUMMARY	Y
C1.1.1 Object	ives	
C1.1.2 Scope.		
C1.1.3 Antici	bated Schedule	
C1.1.4 Overal	l Cost	
C1.2 TEST SPECIFI	CATIONS	
C1.2.1 PHTS	High-temperature [760°C and 950°C] Pipi	ing Cooling, Liner, and
	Insulation Options Trade Study	
C1.2.2 PHTS	Low-temperature [350°C] Piping Liner an	d Insulation Options Trade
	Study	
C1.2.3 SHTS	High-temperature [840°C and 900°C] Pipi	ing Liner and Insulation
	Options Trade Study	
C1.2.4 SHTS	Medium-Temperature [659°C and 700°C]	Piping Liner and Insulation
	Options Trade Study	
C1.2.5 SHTS	Low-Temperature [<300°C] Piping Liner	and Insulation Options Trade
	Study	

C3 TECHNOLOGY MATURATION PLAN FOR HTS PIPING - TRL 6 TO TRL 7 46 C2.2.1 Performance and environmental testing of prototypical high-temperature and C3 TECHNOLOGY MATURATION PLAN FOR HTS PIPING - TRL 7 TO TRL 8 53

REQUIRED SPECIFICATIONS/TEST TO ACHIEVE NEXT TRL

TRL 4 to TRL 5:

- Specification 1: PHTS high-temperature [760°C and 950°C] piping cooling, liner, and insulation options trade study
- Specification 2: PHTS low-temperature [350°C] piping liner and insulation options trade study
- Specification 3: SHTS high-temperature [840° and 900°C] piping liner and insulation trade study
- Specification 4: SHTS medium-temperature [659°C and 700°C] piping liner and insulation trade study
- Specification 5: SHTS low-temperature [<300°C] piping liner and insulation trade study

TRL 5 to TRL 6

- Specification 1: Effects of He infiltration on thermal conductivity of insulation material
- Specification 2: The effect of fluid impurities (C) on insulation properties
- Specification 3: Re-evaluation of needed maturation tasks based on Trade Study results

TRL 6 to TRL 7:

• Specification 1: Performance and environmental testing of prototypical high-temperature and low-temperature piping/insulation system

TRL 7 to TRL 8:

• Specification 1: Testing of full size PHTS piping in NGNP

TECHNOLOGY MATURATION PLAN FOR HTS PIPING - TRL 4 TO TRL 5

C1.1 TECHNOLOGY MATURATION PLAN SUMMARY

C1.1.1 Objectives

The purpose of this Technology Maturation Plan is to describe the activities required to advance the technology of the HTS piping from a TRL level of 4 to a TRL level of 5. Each of the five tasks involve conducting trade studies on cooling, liner, and insulation options for the high- [760°C and 950°C] and low-temperature [350°C] PHTS piping sections and the high-[840°C and 900°C], medium- [659°C and 700°C], and low-temperature [<300°C] SHTS piping sections.

C1.1.2 Scope

The maturations tasks and associated studies and testing necessary for advancement of the maturity of the technology for the HTS piping from TRL 4 to TRL 5 are as shown below.

- PHTS high-temperature [760°C and 950°C] piping cooling, liner, and insulation options trade study
- PHTS low-temperature [350°C] liner and insulation options trade study
- SHTS high-temperature [840° and 900°C] piping liner and insulation trade study
- SHTS medium-temperature [659°C and 700°C] piping liner and insulation trade study
- SHTS low-temperature [<300°C] piping liner and insulation trade study.

C1.1.3 Anticipated Schedule

The trade studies indicated by the bullets in C1.1.2 should be able to be completed within a 6-month period (in FY2009 if possible), after system operating conditions (steady state & transients) have been defined.

C1.1.4 Overall Cost

Cost and schedule for the overall maturation plan with associated specifications are addressed in Section 17 of this document.

C1.2 Test Specifications

C1.2.1 PHTS High-temperature [760 ℃ and 950 ℃] Piping Cooling, Liner, and Insulation Options Trade Study

C1.2.1.1 Objectives

This Test Specification provides for trade studies to assess cooling, liner, and insulation options for the PHTS piping sections operating at 950°C (reactor to IHX A) and 760°C (IHX A to IHX B). Both active and passive cooling designs are included. Preferred designs will be recommended based on these studies. No actual physical testing is involved. This Test Specification responds in general terms to DDN HTS-04-01.

C1.2.1.2 Test Conditions

C1.2.1.2.1 Test Configuration/Set-up

Not applicable

C1.2.1.2.2 Test Duration

The duration of this activity should require no more than 6 months.

C1.2.1.2.3 Proposed Test Location

The piping system designer should lead these studies. Refer to Section 17 of the document.

C1.2.1.3 Measured Parameters

Parameters to be considered in this study are as follows.

- Maximum PHTS He temperatures achieved during loss of secondary circuit cooling capability.
- Liner and pressure boundary temperatures for each liner/cooling/insulation combination during normal operation and under transient conditions.
- Estimated relative cost and reliability of each liner/cooling/insulation combination.

C1.2.1.4 Data Requirements

Industry-accepted transient and heat transport codes and models shall be employed for all calculations.

C1.2.1.5 Test Evaluation Criteria

Liner/cooling/insulation combinations will be evaluated on the basis of the following.

- Ability to maintain prescribed temperature limits (see bullet 3 in C1.2.1.6).
- Relative cost of each combination.
- Relative operational reliability estimate for each combination.

C1.2.1.6 Test Deliverables

Task deliverables are as follows.

- He temperatures in reactor-to-IHX A and IHX A-to IHX B piping sections during loss of secondary cooling capability transients.
- Decision trees describing liner, cooling, and insulation options for reactor-to IHX A and IHX A-to-IHX B piping sections.
- Analyses of the ability of liner/cooling/insulation combinations to achieve the temperature limits (nominally 350°C for pressure retaining pipes and <100°C at the external surface of these pipes) described in Section 6.1.
- Cost and reliability assessment of each liner/cooling/insulation combination.
- Recommendation as to preferred design for each piping section.

C1.2.1.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing the technology of HTS piping from TRL 4 to TRL 5 are addressed in Sections C1.1.3 and C1.1.4. The risk that satisfactory design options for high-temperature PHTS piping cannot be achieved is minimal.

C1.2.2 PHTS Low-temperature [350 °C] Piping Liner and Insulation Options Trade Study

C1.2.2.1 Objectives

This Test Specification provides for trade studies and supporting transient analyses to assess liner and insulation options for passively-cooled PHTS piping sections operating at ~350°C (IHX B to circulator and circulator to reactor). Preferred designs will be recommended based on these

studies. No actual physical testing is involved. This Test Specification responds in general terms to DDN HTS-04-01.

C1.2.2.2 Test Conditions

C1.2.2.2.1 Test Configuration/Set-up

Not applicable

C1.2.2.2.2 Test Duration

The trade study should require no more than 6 months.

C1.2.2.2.3 Proposed Test Location

The piping system designer should lead these studies. Refer to Section 17 of the document.

C1.2.2.3 Measured Parameters

Parameters to be considered in this study are as follows.

- Maximum He temperatures achieved during loss of secondary circuit cooling capability.
- Liner and pressure boundary temperatures for each liner/insulation combination during normal operation and under transient conditions.
- Estimated relative cost and reliability of each liner/insulation combination.

C1.2.2.4 Data Requirements

Industry-accepted transient and heat transport codes and models shall be employed for all calculations.

C1.2.2.5 Test Evaluation Criteria

Liner/insulation combinations will be evaluated on the basis of the following.

- Ability to maintain prescribed temperature limits (see bullet 3 in C1.2.2.6).
- Relative cost of each combination.
- Relative reliability estimate for each combination.

C1.2.2.6 Test Deliverables

Task deliverables are as follows. *NGNP-CTF MTECH-TDRM-006_Rev1-final.doc*

- He temperatures in IHX B-to circulator and circulator-to-reactor piping sections during loss of secondary cooling capability transients.
- Decision trees describing liner and insulation options for IHX B-to-circulator and circulator-to-reactor piping sections.
- Analyses of the ability of liner/insulation combinations to achieve the temperature limits (nominally 350°C for pressure retaining pipes and <100°C at the external surface of these pipes) described in Section 6.1.
- Cost and reliability assessment of each liner/insulation combination.
- Recommendation as to preferred design for the low-temperature piping sections.

C1.2.2.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing the technology of HTS piping from TRL 4 to TRL 5 are addressed in Sections C1.1.3 and C1.1.4. The risk that satisfactory design options for low-temperature PHTS piping cannot be achieved is minimal.

C1.2.3 SHTS High-temperature [840 ℃ and 900 ℃] Piping Liner and Insulation Options Trade Study

C1.2.3.1 Objectives

This Test Specification provides for trade studies to assess liner and insulation options for the SHTS piping sections operating at 840°C (mixing chamber to SG) and 900°C (IHX A to both PCHX and mixing chamber). Only passive cooling designs are included. Preferred designs will be recommended based on these studies. No actual physical testing is involved. This Test Specification responds in general terms to DDN HTS-04-01.

C1.2.3.2 Test Conditions

C1.2.3.2.1 Test Configuration/Set-up

Not applicable

C1.2.3.2.2 Test Duration

The trade study should require no more than 6 months.

C1.2.3.2.3 Proposed Test Location

The piping system designer should lead these studies. Refer to Section 17 of the document.

NGNP-CTF MTECH-TDRM-006_Rev1-final.doc

C1.2.3.3 Measured Parameters

Parameters to be considered in this study are as follows.

- Liner and pressure boundary (HPB) temperatures for each liner/insulation combination during normal operation.
- Estimated relative cost and reliability of each liner/ insulation combination.

C1.2.3.4 Data Requirements

Industry-accepted transient and heat transport codes and models shall be employed for all calculations.

C1.2.3.5 Test Evaluation Criteria

Liner/cooling/insulation combinations will be evaluated on the basis of the following.

- Ability to maintain prescribed temperature limits (see bullet #2 in C1.2.3.6).
- Relative cost of each combination.
- Relative operational reliability estimate for each combination.

C1.2.3.6 Test Deliverables

Task deliverables are as follows.

- Decision trees describing liner and insulation options for mixing chamber to SG piping sections and IHX A to mixing chamber and SG sections.
- Analyses of the ability of liner/insulation combinations to achieve the temperature limits (maximum of 371°C for pressure retaining pipes and <100°C at the external surface of these pipes) described in Section 6.1.
- Cost and reliability assessment of each liner/insulation combination.
- Recommendation as to preferred design for each piping section.

C1.2.3.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing the technology of HTS piping from TRL 4 to TRL 5 are addressed in Sections C1.1.3 and C1.1.4. The risk that satisfactory design options for high-temperature SHTS piping cannot be achieved is minimal.
C1.2.4 SHTS Medium-Temperature [659 ℃ and 700 ℃] Piping Liner and Insulation Options Trade Study

C1.2.4.1 Objectives

This Test Specification provides for trade studies to assess liner and insulation options for the SHTS piping sections operating at 659°C (PCHX to mixing chamber) and 700°C (IHX B to IHX A). Only passive cooling designs are included. Preferred designs will be recommended based on these studies. No actual physical testing is involved. This Test Specification responds in general terms to DDN HTS-04-01.

C1.2.4.2 Test Conditions

C1.2.4.2.1 Test Configuration/Set-up

Not applicable

C1.2.4.2.2 Test Duration

The trade study should require no more than 6 months.

C1.2.4.2.3 Proposed Test Location

The piping system designer should lead these studies. Refer to Section 17 of the document.

C1.2.4.3 Measured Parameters

Parameters to be considered in this study are as follows.

- Liner and pressure boundary (HPB) temperatures for each liner/insulation combination during normal operation.
- Estimated relative cost and reliability of each liner/ insulation combination.

C1.2.4.4 Data Requirements

Industry-accepted transient and heat transport codes and models shall be employed for all calculations.

C1.2.4.5 Test Evaluation Criteria

Liner/cooling/insulation combinations will be evaluated on the basis of the following.

- Ability to maintain prescribed temperature limits (see bullet #2 in C1.2.4.6).
- Relative cost of each combination.
- Relative reliability estimate for each combination.

C1.2.4.6 Test Deliverables

Task deliverables are as follows.

- Decision trees describing liner and insulation options for PCHX to Mixing Chamber piping sections and for the IHX B to IHX A sections.
- Analyses of the ability of liner/insulation combinations to achieve the temperature limits (maximum of 371°C for pressure retaining pipes and <100°C at the external surface of these pipes) described in Section 6.1.
- Cost and reliability assessment of each liner/insulation combination.
- Recommendation as to preferred design for each piping section.

C1.2.4.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing the technology of HTS piping from TRL 4 to TRL 5 are addressed in Sections C1.1.3 and C1.1.4. The risk that satisfactory design options for medium-temperature SHTS piping cannot be achieved is minimal.

C1.2.5 SHTS Low-Temperature [<300 ℃] Piping Liner and Insulation Options Trade Study

C1.2.4.1 Objectives

This Test Specification provides for trade studies to assess liner and insulation options for the SHTS piping sections operating at 273°C (SG to circulator) and 287°C (circulator to IHX B). Only passive cooling designs are included. Preferred designs will be recommended based on these studies. No actual physical testing is involved. This Test Specification responds in general terms to DDN HTS-04-01.

NGNP-CTF MTECH-TDRM-006_Rev1-final.doc

C1.2.5.2 Test Conditions

C1.2.5.2.1 Test Configuration/Set-up Not applicable

C1.2.5.2.2 Test Duration

The trade study should require no more than 6 months.

C1.2.5.2.3 Proposed Test Location

The piping system designer should lead these studies. Refer to Section 17 of the document.

C1.2.5.3 Measured Parameters

Parameters to be considered in this study are as follows.

- Liner and pressure boundary (HPB) temperatures for each liner/insulation combination during normal operation.
- Estimated relative cost and reliability of each liner/ insulation combination.

C1.2.5.4 Data Requirements

Industry-accepted transient and heat transport codes and models shall be employed for all calculations.

C1.2.5.5 Test Evaluation Criteria

Liner/cooling/insulation combinations will be evaluated on the basis of the following.

- Ability to maintain prescribed temperature limits (see bullet #2 in C1.2.5.6).
- Relative cost of each combination.
- Relative reliability estimate for each combination.

C1.2.5.6 Test Deliverables

Task deliverables are as follows.

• Decision trees describing liner and insulation options for SG to circulator and circulator to IHX B piping sections.

NGNP-CTF MTECH-TDRM-006_Rev1-final.doc

- Analyses of the ability of liner/insulation combinations to achieve the temperature limits (maximum of 371°C for pressure retaining pipes and <100°C at the external surface of these pipes) described in Section 6.1.
- Cost and reliability assessment of each liner/insulation combination.
- Recommendation as to preferred design for each piping section.

C1.2.5.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing the technology of HTS piping from TRL 4 to TRL 5 are addressed in Sections C1.1.3 and C1.1.4. The risk that satisfactory design options for low-temperature SHTS piping cannot be achieved is minimal.

TECHNOLOGY MATURATION PLAN FOR HTS PIPING - TRL 5 TO TRL 6

C2.1 TECHNOLOGY MATURATION PLAN SUMMARY

C2.1.1 Objectives

The purpose of this Technology Maturation Plan is to describe the activities required to advance the technology of the HTS piping from a TRL level of 5 to a TRL level of 6. It involves assessment of the effects of infiltration of He (pure He and He with controlled impurities such as moisture) and impurities such as carbon dust on the thermal conductivity of insulation options and such tasks are provided. Additionally, the trade studies noted above may result in requirements for additional maturation tasks and a Test Specification is included to cover the development of such tasks if necessary.

C2.1.2 Scope

The maturations tasks and associated studies and testing necessary for advancement of the maturity of the technology for the HTS piping from TRL 5 to TRL 6 are as shown below.

- Effects of He infiltration on thermal conductivity of insulation material
- The effect of fluid impurities (C) on insulation properties
- Re-evaluation of needed maturation tasks based on trade study results

C2.1.3 Anticipated Schedule

The He-infiltration work and the re-evaluations of maturation tasks based on the trade studies will likely not be initiated until the trade study work is complete or well along. Although the work relating thermal conductivity to He-infiltration and contaminants should require no more than 18 months, there is considerable schedule uncertainty related to what additional tasks the re-evaluations of technology based on the trade studies might dictate. An estimate here would be an overall total of 30 months. As a final note, the *NGNP Metallic Component Schedule Risk and Cost Uncertainty Assessment Report*, [6-3] recommended a mean value for the completion of HTS piping development of 34 months. This would have been for TRL 4 to TRL 7.

C2.1.4 Overall Cost

Cost and schedule for the overall maturation plan with associated specifications are addressed in Section 17 of this document.

C2.2 Test Specifications

C2.2.1 Effects of He Infiltration on Thermal Conductivity of Insulation Material

C2.2.1.1 Objectives

Work conducted under this Test Specification will provide data on the effects of Heinfiltration on the thermal conductivity of insulation materials. The Test Specification responds to DDN HTS-04-01.

C2.2.1.2 Test Conditions

C2.2.1.2.1 Test Configuration/Set-up

These activities require the following.

- Equipment/facilities for exposing insulation materials (both fibrous and microporous) in He at pressures to 9 MPa and temperatures to 950°C
- Provisions for temperature and pressure control and measurement
- Equipment for measurement of thermal conductivity of insulation materials at pressures to 9 MPa and temperatures to 950°C

C2.2.1.2.2 Test Duration NGNP-CTF MTECH-TDRM-006_Rev1-final.doc Test equipment set-up and testing of the insulation should require no more than 18 months.

C2.2.1.2.3 Proposed Test Location

Insulation manufacturers, universities, and National Laboratories are candidates. Refer to Section 17 of the document.

C2.2.1.3 Measured Parameters

Parameters to be measured and controlled in this study are as follows.

- He temperature
- He pressure
- He impurity levels
- Duration of exposure
- Thermal conductivity.

C2.2.1.4 Data Requirements

Data shall be required employing industry accepted techniques and standards and appropriate QA.

C2.2.1.5 Test Evaluation Criteria

Evaluation criteria include reproducibility of results in multiple tests and agreement of results with existing data.

C2.2.1.6 Test Deliverables

Task deliverables are as follows for each insulation material tested (if more than one is suggested by the trade studies previously described).

- Report on thermal conductivity as function of temperature
- Report on thermal conductivity as function of pressure at temperature
- Report on thermal conductivity as function of time at pressure and temperature
- Report on thermal conductivity as function of impurity levels
- Abovementioned must all be in a He environment

C2.2.1.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing the technology of HTS piping from TRL 5 to TRL 6 are addressed in Sections C2.1.3 and C2.1.4. The risk that insulation of satisfactory thermal conductivity for HTS piping insulation will not be available is minimal.

C2.2.2 The effect of fluid impurities (C) on insulation properties

C2.2.2.1 Objectives

Work conducted under this Test Specification will provide data on the effects of impurities in the testing fluid (graphite dust) on the thermal conductivity of insulation materials. The Test Specification responds to DDN HTS-04-01.

C2.2.2.2 Test Conditions

C2.2.2.1 Test Configuration/Set-up

These activities require the following.

- Equipment/facilities for exposing insulation materials (both fibrous and microporous) to He with controlled percentages of impurities at pressures to 9 MPa and temperatures to 950°C
- Provisions for temperature and pressure control and measurement
- Equipment for measurement of thermal conductivity of insulation materials at pressures to 9 MPa and temperatures to 950°C

C2.2.2.2.2 Test Duration

Test equipment set-up and testing of the insulation should require 18-to 24 months.

C2.2.2.3 Proposed Test Location

Insulation manufacturers, universities, and National Laboratories are candidates. Refer to Section 17 of the document.

C2.2.2.3 Measured Parameters

Parameters to be measured and controlled in this study are as follows.

- He temperature
- He composition
- He pressure
- Duration of exposure
- Thermal conductivity (determined from measurements of heat flux driven by a temperature gradient dt/dx).

C2.2.4 Data Requirements

Data shall be required employing industry accepted techniques and standards and appropriate QA.

C2.2.2.5 Test Evaluation Criteria

• Satisfactory limits of change in thermal conductivity of insulation material over a predetermined time of testing in Helium with controlled percentages of (C) impurities.

C2.2.2.6 Test Deliverables

Task deliverables are as follows for each insulation material tested (if more than one is suggested by the trade studies previously described).

- Report on thermal conductivity as function of temperature for selected material/s.
- Report on thermal conductivity as function of pressure at temperature for selected material/s.
- Report on thermal conductivity as function of time at pressure and temperature for selected material/s.
- Abovementioned must all be in a He environment with controlled percentages of (C) impurities

C2.2.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing the technology of HTS piping from TRL 5 to TRL 6 are addressed in Sections C2.1.3 and C2.1.4. The risk that insulation of satisfactory thermal conductivity for HTS piping will not be available is minimal.

C2.2.3 Re-evaluation of Needed Maturation Tasks Based on Trade Study Results

C2.2.3.1 Objectives

Work conducted under this Test Specification will provide for re-evaluation of maturation task needs based on the results of the trade studies described by Test Specifications C1.2.1 to C1.2.5.

C2.2.3.2 Test Conditions

C2.2.3.2.1 Test Configuration/Set-up

Not applicable

C2.2.3.2.2 Test Duration

Re-evaluation of needs based on the results of Test Specifications C1.2.1 through C1.2.5 should require no more than three months.

C2.2.3.2.3 Proposed Test Location

The piping system designer should lead the re-evaluation. Refer to Section 17 of the document.

C2.2.3.3 Measured Parameters

N/A

C2.2.3.4 Data Requirements

N/A

C2.2.3.5 Test Evaluation Criteria

N/A

C2.2.3.6 Test Deliverables

NGNP-CTF MTECH-TDRM-006_Rev1-final.doc

The task deliverable is to provide recommendation for additional maturation tasks, as needed, for advancing the technology of HTS piping from TRL 5 to TRL 6.

C2.2.3.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing the technology of HTS piping from TRL 5 to TRL 6 are addressed in Sections C2.1.3 and C2.1.4. There is no risk associated with Test Specification C1.2.3.

C3 TECHNOLOGY MATURATION PLAN FOR HTS PIPING - TRL 6 TO TRL 7

C3.1 TECHNOLOGY MATURATION PLAN SUMMARY

C3.1.1 Objectives

The purpose of this Technology Maturation Plan is to describe the activities required to advance the maturity of the technology for the HTS piping from a TRL level of 5 to a validated TRL 7. The maturation tasks required to achieve this goal involve the performance and environmental testing of prototypical high-temperature and low-temperature piping/insulation systems in a representative testing environment. Test Specifications are provided to cover these maturation tasks (given in Section C3.2).

C3.1.2 Scope

The maturation task necessary to advance the maturity of the technology of the HTS piping from TRL 5 to TRL 7 are as shown below.

• Specification 1: Performance and environmental testing of prototypical high-temperature and low-temperature piping/insulation system

The task above will be described in the test specification provided hereafter.

C3.1.3 Anticipated Schedule

The work described by the Test Specification in this Technology Maturation Plan will be accomplished during the period FY 2011 through FY 2013.

C3.1.4 Overall Cost

Cost and schedule for the overall maturation plan with associated specifications are addressed in Section 17 of this document.

C3.2 Test Specifications

NGNP-CTF MTECH-TDRM-006_Rev1-final.doc

C3.2.1 Performance and environmental testing of prototypical high-temperature and low-temperature piping/insulation system

C3.2.1.1 Objectives

The objectives of testing the HTS prototypical piping system are:

- To demonstrate the performance of the HTS piping system, i.e.
 - Limited heat losses at enveloping conditions
 - Required surface temperatures of the Hot Gas Duct and Helium Pressure Boundary
 - Pressure drop through piping system
 - Possible flow induced vibrations and the effect of such events on the insulation configuration integrity.
- To demonstrate the environmental behavior of HTS insulation/liner material in NGNP typical conditions
 - Response of insulation material subsystem to sudden depressurization
 - Effect of certain fluid impurities on insulation material (with special reference made to reduction reactions that may take place over time, thereby increasing the insulation thermal conductivity and effectively that of the system)
 - o Thermal fatigue of liner material in subsystem in NGNP relevant environment

The applicability of the above mentioned objectives to the various HTS piping sections vary since the threshold conditions of each piping section differ throughout the PHTS and SHTS loops. Table C-1 summarizes in short the applicability of these objectives to the various piping sections. For the purpose of the HTS piping, only one maturation plan detailing all piping tasks is given and should be evaluated against Table C-1.

Objectives	P	PHTS		SHTS	
	950 ℃/760 ℃	350 °C	900 °C/840 °C	700 °C/659 °C	290 ℃
TMP (TRL5-TRL7)					
a) Performance					
 Limited heat losses 	$\mathbf{\nabla}$	\checkmark	\square	Σ	$\mathbf{\Sigma}$
 Required surface temperatures 		\checkmark			N
- Pressure drop	\square	\checkmark	\square	\square	V
- Flow induced	\square	\checkmark	\square	\square	V
vibrations					
b) Environmental behavior					
- Depressurization (insulation subsystem)		N		N	N
- Fluid Impurities (reduction reactions on insulation)				n/a	n/a
- Thermal fatigue (liner in subsystem)		n/a			n/a

 Table C-1: Applicability of maturation plan objectives to HTS piping sections

NGNP-CTF MTECH-TDRM-006_Rev1-final.doc

9/30/2008

C3.2.1.2 Test Conditions

C3.2.1.2.1 System Requirements

Subsystem and system requirements include the following:

- Size limitation: TBD •
- Certain interface design requirements: TBD •
- Testing fluid Helium with controlled impurities •
- Temperature threshold see test requirements •
- Pressure threshold see test requirements
- Mass flow threshold see test requirements •

C3.2.1.2.2 Measurement Requirements

- Measurement of pressures •
 - o internal and external pressures (inner and outer annuli) for active cooling
 - internal pressure for passive cooling
- Measurement of surface and fluid temperatures •
 - HGD, HPB, insulation, testing fluid temperatures for active cooling
 - o Insulation, HPB, testing fluid temperatures for passive cooling
- Measurement of mass flows •
- Measurement of fluid compositional changes (controlled impurities) over time

C3.2.1.2.3 Test Requirements

Test requirements for the HTS piping tests (integrated) are as follows:

1) Test environmental behavior and performance of HTS piping in typical steady state pressure and temperature environment (Helium)

tbd

- $950^{\circ}C^{1}$ i. Temperature =
- ii. Pressure 9MPa =
- iii. Pressure Δ^2 = A_0 pressure > A_I pressure (magnitude tbd)
- iv. Mass flow
- v. He environment with varied composition
- vi. Duration of tests tbd =

2) Test HTS piping behavior in typical pressure transient environment:

=

- Expose HTS piping to a high frequency, normal operating pressure i. transient
 - 1. De-pressurizing transient (9MPa to ambient in certain time frame)
 - 2. Number of cycles and temperature level TBD

3) Test HTS piping behavior in typical temperature transient environment:

Expose piping to a high frequency, normal operating temperature i. transient (ambient to $950^{\circ}C^{3}$)

Subject to change for all PHTS/SHTS piping sections according to threshold conditions

² Applicable only to active cooling configuration

³ See footnote #1

NGNP-CTF MTECH-TDRM-006_Rev1-final.doc

- 1. Heat up transient
- 2. Cool down transient
- 3. Number of cycles and pressure level TBD
- ii. Tests should include performance testing of the HGD in the event of loss of secondary cooling for all active cooling piping configurations.

Proposed setup and important parameters (see following page).

- 1. Thermal fatigue of liner material
- 2. Creep of liner material & liner material joints
- 3. Thermal efficiency of insulation in integrated system
 - a. Effect of various impurities on insulation properties if liner joint integrity is compromised
 - i. Thermal Conductivity
- 4. Required surface temperatures vs. actual surface temperatures (HPB & HGD surfaces)
- 5. Percentage of specific elements (determined by fluid composition) as added over time to internal insulation or liner at a certain depth
- 6. HGD Interfacing to be addressed as a separate SSC at a later stage

Figure C-1: Proposed setup and relevant parameters in testing the prototypical HTS piping (active and passive cooling configurations noted pending the down selection of design options)

C3.2.1.2.4 Tests Duration

The duration of this activity will be a minimum of **24** months.

C3.2.1.2.5 Facility Requirements

The following facilities will be required:

- 1. Prototypical piping testing facility (TBD)
- 2. Facilities for testing sampled fluid composition
- 3. Facilities required for metallographic analysis (or other analysis means) of insulation material and liner material & joints after testing

C3.2.1.2.6 Proposed Test Location

Proposed tests will take place at a testing facility providing for/representing the performance envelope conditions of the prototypical piping sections (Envelope Temperature, Pressure, Pressure Drop and Mass flow). Refer to Section 17 of the document.

C3.2.1.3 Measured Parameters

The following parameters will be measured:

- Temperatures
- Pressures
- Fluid composition
- Thermal fatigue observations of liner material through SEM and other analyses techniques
- Post test analysis of insulation material condition (visual inspection and other tests/procedures)
- Post test analysis of structural integrity of liner material joints, inferred from SEM and metallographic/microscopic evaluations and tests.
- 0

C3.2.1.4 Data Requirements

It is assumed that the prototypical piping sections (HPB, HGD and Liner) will be produced by a vendor of high temperature piping sections. The fabricated prototype piping system will require the following before progressing with testing:

- Materials certificates
- Weld certificates (where applicable)
- Inspection certificates
- All other quality assurance documents

The candidate insulation materials to be used should be accompanied with the appropriate materials certificates and quality assurance documents.

Procedures for taking fluid samples for analyses purposes shall be conducted according to specification to eliminate or reduce possibility of contamination of samples, especially if expressed in ppm.

All new data shall be acquired using recognized techniques, codes, standards, and QA

C3.2.1.5 Test Evaluation Criteria

- Satisfactory structural integrity and condition of the integrated piping components, joints (liner material) and insulation material as evidenced by
 - Visual inspection
 - metallographic procedures and tests
 - analyses inclusive of remaining life assessments (if applicable)
 - o comparison of data with assessment models, FEM's or other calculations
- Satisfactory surface temperature values for the HGD and HPB respectively at enveloping conditions.
- Satisfactory change in thermal conductivity properties for insulation material (local) after exposure to certain impurities for a predetermined time.

C3.2.1.6 Test Deliverables

Deliverables are as follows.

- Test Data for all areas as indicated in section C3.2.1.3
- Documentation containing test requirements, performance verification criteria and test results verified against stress/strain models of the HTS piping and material properties.

C3.2.1.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing technology for HTS piping from TRL 5 to TRL 7 is addressed in Sections C3.1.3 and C3.1.4.

Depending on the failure modes of the HTS prototypical piping sections, new liner material candidates will have to be evaluated or slight modifications to the selected piping/insulation configuration will have to be implemented.

C4 TECHNOLOGY MATURATION PLAN FOR HTS PIPING - TRL 7 TO TRL 8

C4.1 TECHNOLOGY MATURATION PLAN SUMMARY

C4.1.1 Objectives

The purpose of this Technology Maturation Plan is to describe the activities required to advance the maturity of the technology for the HTS piping from a TRL level of 7 to a TRL level of 8. The maturation task required to achieve this goal involves the testing of the full size HTS piping in the NGNP. A Test Specification is provided to cover the maturation task (given in section C4.2).

C4.1.2 Scope

The maturation task necessary to advance the maturity of the technology of the HTS piping from TRL 7 to TRL 8 is as shown below.

• Specification 1: Testing of full sized HTS piping in the NGNP

This task will be described in the following test specification.

C4.1.3 Anticipated Schedule

The work described by the Test Specification in this Technology Maturation Plan could be accomplished during the period FY 2019 through FY 2020.

C4.1.4 Overall Cost

Cost and schedule for the overall maturation plan with associated specifications are addressed in Section 17 of this document.

C4.2 Test Specifications

C4.2.1 Specification of testing of full sized HTS Piping in the NGNP

C4.2.1.1 Objectives

The objective of testing the full sized HTS Piping is:

• To determine the effectiveness of the HTS piping utilized in the NGNP regarding heat losses encountered and required surface temperatures achieved and maintained.

The HTS piping will be fully tested and commissioned in the NGNP. Details of the testing and commissioning of the HTS piping will be finalized at later stage.

November 2008

NGNP and Hydrogen Production Conceptual Design Study

NGNP Technology Development Road Mapping Report

Section 7: SHTS Flow Mixing Chamber

APPROVALS

Function		Printed Name and	Signature	Date
Author	Name: Company:	Guido Baccaglini Technology Insights	Gurt any lini	November 18, 2008
Reviewer	Name: Company:	Roger Young Pebble Bed Modular Reactor	(Pty) Ltd a lot	November 19, 2008
Approval	Name: Company:	Jan van Ravenswaay M-Tech Industrial	VEON	November 19, 2008

Westinghouse Electric Company LLC Nuclear Power Plants Post Office Box 355 Pittsburgh, PA 15230-0355

©2008 Westinghouse Electric Company LLC All Rights Reserved

LIST OF CONTRIBUTORS

Name and Company	Date
Guido Baccaglini (Technology Insights)	October 17, 2008
Phil Rittenhouse (Technology Insights)	October 17, 2008
Marius Fox (Westinghouse Electric South Africa)	October 17, 2008
Chris Koch (Westinghouse Electric South Africa)	October 17, 2008
Ken Craig (Westinghouse Electric South Africa)	October 17, 2008
Roger Young (Pebble Bed Modular Reactor (Pty) Ltd)	October 17, 2008

BACKGROUND INTELLECTUAL PROPERTY CONTENT

Section	Title	Description
N/A		

REVISION HISTORY

RECORD OF CHANGES

Revision No.	Revision Made by	Description	Date
А	Guido Baccaglini	Initial Release	October 10, 2008
В	Guido Baccaglini	Update after Reviewer Comments	October 28, 2008
0	Guido Baccaglini	Document for approval	October 30, 2008
0A	Louisa Venter	Editorial changes	November 28, 2008
1	Guido Baccaglini	Document for release to WEC	November 29, 2008

DOCUMENT TRACEABILITY

Created to Support the Following Document(s)	Document Number	Revision

TABLE OF CONTENTS

Sect	tion	Title	Page
7 \$	SHT	S FLOW MIXING CHAMBER	
•	7.1	SHTS FLOW MIXING CHAMBER DESCRIPTION	
•	7.2	TECHNOLOGY SELECTIONS STATUS	
		7.2.1 Candidates SHTS Flow Coupling and Mixer	
		7.2.2 Decision Discriminators	
		7.2.3 Reference Design	
		7.2.4 Alternatives for Further Evaluation	
		7.2.5 Down Selection Task	
,	7.3	TRL STATUS OF SHTS FLOW MIXING CHAMBER	
	7.4	TECHNOLOGY DEVELOPMENT ROAD MAP SUMMARY	
		7.4.1 Overview	
	7.5	TECHNOLOGY MATURATION PLAN SUMMARY	
	7.6	INPUTS INTO CTF	
	7.7	APPENDIX A: TRL RATING SHEETS	
	7.8	APPENDIX B: TECHNOLOGY DEVELOPMENT ROAD MAP	
	7.9	APPENDIX C: TECHNOLOGY MATURATION PLAN	

LIST OF TABLES

Table 7-1:	SHTS Flow Mixing Chamber Design Operating Requirements	11
Table 7-2:	Trade Studies Recommended for the SHTS Helium Flow Coupling and Mixer	15
Table A-1:	TRL for the SHTS Flow Mixing Chamber Subsystem	20
Table A-2:	TRL for the SHTS Flow mixing chamber components	22

LIST OF FIGURES

Figure 7-1:	Design Options for the SHTS Flow Mixing Chamber	12
Figure 7-2:	SHTS Mixing Chamber Development Logic	18
Figure B-1:	Technology Development Road Map for SHTS Flow Mixing Chamber	25

ACRONYMS & ABBREVIATIONS

Acronym	Definition
AI	Inner Annulus (active cooling piping)
AMS	Activity Measurement System
AO	Outer Annulus (active cooling piping)
AOO	Anticipated Operational Occurrence
AS	Automation System
ASME	American Society of Mechanical Engineers
AVR	Arbeitsgemeinschaft Versuchs-Reaktor
BOP	Balance of Plant
BUMS	Burn-up Measurement System
СВ	Core Barrel
CCS	Core Conditioning System
CEA	Commissariat à l'Énergie Atomique
CFD	Computational Fluid Dynamics
CHE	Compact Heat Exchanger
CIP	Core Inlet Pipe
CO2	Carbon Dioxide
COC	Core Outlet Connection
COP	Core Outlet Pipe
COTS	Commercial Off The Shelf
CRADA	Co-operative Research and Development Agreement
CRD	Control Rod Drive
CSC	Core Structure Ceramics
CTF	Component Test Facility
CTF	Component Test Facility
CUD	Core Unloading Devices
DAU	Data Acquisition Unit
DBA	Design Base Accident
DBE	Design Base Event
DDN	Design Data Need
DFC	Depressurized Forced Cooling
DLOFC	De-pressurized Loss of Forced Cooling
DOE	Department of Energy
DPP	Demonstration Power Plant
DRL	Design Readiness Level
DWS	Demineralized Water System
ELE	Elecrolyser System
EM	Evaluation Model
EMB	Electomagnetic Bearing
EOFY	End of Fiscal Year
EPCC	Equipment Protection Cooling Circuit

Acronym	Definition
EPCT	Equipment Protection Cooling Tower
F&OR	Functional and Operational Requirements
FHS	Fuel Handling System
FHSS	Fuel Handling and Storage System
FIMA	Fissions per Initial Metal Atoms
FMECA	Failure Modes, Effects and Criticality Analysis
FS	Fuel Spheres
FTA	Fault Tree Analysis
FUS	Feed and Utility System
H2	Hydrogen
H2SO4	Sulfuric Acid
HC	Helium Circulator
Не	Helium
HETP	Height Equivalent of the theoretical Plate
HGD	Hot Gas Duct
HI	Hydro-Iodic
HLW	High Level Waste
HPB	Helium Pressure Boundary
HPC	High Pressure Compressor
HPS	Helium Purification System
HPS	Hydrogen Production System
HPT	High Pressure Turbine
HPU	Hydrogen Production Unit
HRS	Heat Removal System
HTF	Helium Test Facility
HTGR	High Temperature Gas-Cooled Reactor
HTR	High Temperature Reactor
HTS	Heat Transport System
HTSE	High Temperature Steam Electrolysis
HTTR	High Temperature Test Reactor
HVAC	Heating Ventilation and Air Conditioning
HX	Heat Exchanger
HyS	Hybrid Sulfur
I&C	Instrumentation and Control
12	lodine
ID	Inner Diameter
IHX	Intermediate Heat Exchanger
ILS	Integrated Laboratory Scale
I-NERI	International Nuclear Energy Research Initiative
INL	Idaho National Laboratory
INL	Idaho National Laboratory
IPT	Intermediate Pressure Turbine
ISR	Inner Side Reflector
K-T	Kepner-Tregoe

Acronym	Definition
KTA	German nuclear technical committee
LEU	Low Enriched Uranium
LOFC	Loss of Forced Cooling
LPT	Low Pressure Turbine
MES	Membrane-electrode assembly
MTR	Material Test Reactor
NAA	Neutron Activation Analysis
NCS	Nuclear Control System
NGNP	Next Generation Nuclear Plant
NHI	Nuclear Hydrogen Initiative
NHS	Nuclear Heat Supply
NHSS	Nuclear Heat Supply System
NNR	National Nuclear Regulator
NRG	Nuclear Research and consultancy Group
NRV	Non-Return Valve
O2	Oxygen
OD	Outer Diameter
PBMR	Pebble Bed Modular Reactor
PCC	Power Conversion System
PCDR	Pre-Conceptual Design Report
PCHE	Printed Circuit Heat Exchanger
PCHX	Process Coupling Heat Exchanger
PCS	Power Conversion System
PFHE	Plate Fin Heat Exchanger
PHTS	Primary Heat Transport System
PIE	Post-irradiation Examination
PLOFC	Pressurized Loss of Forced Cooling
POC	Power Conversion System
PPM	Parts per million
PPU	Product Purification Unit
PPWC	Primary Pressurized Water Cooler
QA	Quality Assurance
RAMI	Reliability, Availability, Maintainability and Inspectability
RC	Reactor Cavity
RCCS	Reactor Cavity Cooling System
RCS	Reactivity Control System
RCSS	Reactivity Control and Shutdown System
RDM	Rod Drive Mechanism
RIM	Reliability and Integrity Management
RIT	Reactor Inlet Temperature
RM	Road Map
ROT	Reactor Outlet Temperature
RPS	Reactor Protection System
RPT	Report

Acronym	Definition
RPV	Reactor Pressure Vessel
RS	Reactor System
RSS	Reserve Shutdown System
RUS	Reactor Unit System
SAD	Acid Decomposition System
SAR	Safety Analysis Report
SAS	Small Absorber Spheres
SG	Steam Generator
SHTS	Secondary Heat Transport System
S-I	Sulfur lodine
SiC	Silicon Carbide
SNL	Sandia National Laboratory
SO2	Sulfur Dioxide
SOE	Sulfuric Oxide Electrolyzers
SOEC	Sulfuric Oxide Electrolyzers Cells
SR	Side Reflector
SSC	System Structure Component
SSCs	Systems, Structures and Components
SSE	Safe Shutdown Earthquake
SUD	Software Under Development
TBC	To Be Confirmed
TBD	To Be Determined
TDL	Technology Development Loop (As incorporated in Concept 1)
TDRM	Technology Development Road Map
TER	Test Execution Report
THTR	Thorium High Temperature Reactor
TRISO	Triple Coated Isotropic
TRL	Technology Readiness Level
TRM	Technology Road Map
UCO	Uranium Oxycarbide
UO2	Uranium Dioxide
USA.	United States of America
V&V	Verification and Validation
V&Ved	Verified and Validated
VLE	Vapor-Liquid Equilibrium
WBS	Work Breakdown Structure
WEC	Westinghouse Electric Company

SUMMARY AND CONCLUSIONS

The secondary heat transport system (SHTS) flow mixing chamber is a critical component of the NGNP with its main function being to minimize the thermal effects associated with the mixing of two helium streams that are joined together at significantly different temperatures. At 100% nominal steady-state operation the higher temperature stream enters the chamber at 900 $^{\circ}$ C, while the other lower temperature stream enters at 659 $^{\circ}$ C. At this stage of the Next Generation Nuclear Plant (NGNP) design, only a very high level concept of the SHTS flow mixing chamber is available.

Discriminators have been identified to assist in the selection of an optimum design for the SHTS flow mixing chamber. These discriminators address the required technology development, the availability of a manufacturing base, the SHTS flow mixing chamber operation and maintenance, the safety and investment implications and the lifecycle costs.

Several arrangements and design options are available for the SHTS flow mixing chamber that satisfy the preconceptual functions and design requirements. The simplest SHTS flow mixing chamber design option comprises of a single chamber (plenum) with two inlets (one for the hotter helium and one for the colder helium) and one outlet. Additionally, mixing and acoustic or/and flow induced vibration damping devices can be added within the SHTS flow mixing chambers' plenum to enhance the mixing process, reduce size of the chamber and prevent fatigue damages. The pressure drop added by the mixing devices should not compromise the total SHTS loop pressure drop allocation. Alternative designs of the SHTS flow mixing chamber could replace single inlets with multiple inlets to reduce the pressure drop and the streams inlet velocities.

Hence, several design selections remain to be made. It is not clear at this point how many inlets/outlets are required and the need for enhanced mixing/flow vibration damping devices. Trade studies that will use computational modeling and analysis, previous experience, similar designs and engineering judgment will determine the advantages and disadvantages of each option with the help of the decision discriminators specified in Section 7.2.2. The only key design selection provided by reference documentation [7-1] is the use of high temperature metallic alloy and other suitable materials for the walls of the SHTS flow mixing chamber.

All the SHTS flow mixing chamber components are at TRL 8, while the integrated assembly of these components as a subsystem is at TRL 6 because it has not been demonstrated in a loop similar to the SHTS within a relevant environment. Following the selection of a reference SHTS flow mixing chamber design, the components that require technology development will be validated with supporting single effect tests. After that, the SHTS flow mixing chamber subsystem will be validated with a partial scale or full-scale integrated test, subsequently qualifying the subsystem at TRL 7. Advancement to a validated TRL 8 will comprise the final integrated tests of the SHTS flow mixing chamber to take place in the first NGNP nuclear power plant.

7 SHTS FLOW MIXING CHAMBER

7.1 SHTS Flow mixing Chamber Description

A SHTS flow mixing chamber fabricated from a high temperature metallic alloy or other suitable material is required in the secondary heat transport system (SHTS) of the NGNP [7-1]. The function of this flow mixing chamber is to minimize the thermal effects associated with the mixing of two helium streams that are joined together at significantly different temperatures.

At this stage of the NGNP design, only a very high level concept of the SHTS helium flow mixing chamber is available. This concept will be revisited and further developed during the plant conceptual design phase. The technology development required for the flow mixing chamber will follow two paths: (1) development and verification of the flow mixing chamber design and (2) selection of the insulation and the high temperature materials for the chamber walls.

The first path addresses design development/verification of the flow mixing chamber as it relates to some key design requirements. One of these requirements is the extent of the mixing of the two secondary coolant streams before entering the duct leading to the steam generator (SG). If perfect mixing occurs inside the chamber, the temperature of the helium entering the duct leading to the SG would be 852 °C, at nominal operating conditions. On the other hand, perfect mixing being very difficult to achieve, local hot streaks at temperatures higher than 852 °C will be present in the stream leading to the SG. The allowed temperature deviations from the mean for these hot streaks has a major affect on the scope of the flow mixing chamber design and development and has to be analyzed first with computational fluid dynamics (CFD) modeling and then verified with an integrated partial or full scale test. The same applies for a requirement of suppressing the excitation of the natural frequencies of the flow mixing chamber from acoustic and/or flow induced vibrations. The flow mixing chamber design will be affected by how stringent these requirements are and the complexity of the design will dictate the scope of an integrated partial or full scale model of the flow mixing chamber to verify its compliance with the requirements. The second path of the SHTS flow mixing chamber technology development addresses the selection of the insulation and the high temperature materials for the chamber walls.

Table 7.1 summarizes the design operating requirements for the flow mixing chamber under full power steady state operation. During plant raise to power and design transients care must be taken to contain the magnitude of the hot/cold streaks in the flow leading to the SG and not to excite the cavity natural frequencies from acoustic loads generated by the helium streams entering the flow mixing chamber or by flow induced vibrations generated by the interaction of the two streams inside the chamber.

Flow Conditions	SHTS Loop
High Temperature Stream at Nominal Operating Conditions	
He temperature, °C	900
He pressure, MPa	8.345
He flow rate, kg/s	159.6
Low Temperature Stream at Nominal Operating Conditions	
He temperature, [°] C	659
He pressure, MPa	8.145
He flow rate, kg/s	39.9
Mixing Requirements	
Maximum temperature deviation from average at SG duct inlet during steady	±TBD
state operations, C	
Maximum temperature deviation from average at SG duct inlet during key	± TBD
AOOs & DBAs, C	
Acoustic/Flow Induced Loads Requirements	
Maximum acoustic power at each mixing chamber natural frequencies during	TBD
steady state operations, Db	
Maximum acoustic power at each mixing chamber natural frequencies during	TBD
key AOOs & DBAs, Db	
Maximum flow induced load at each mixing chamber natural frequencies	TBD
during steady state operations, kPa	
Maximum flow induced load at each mixing chamber natural frequencies	TBD
during key AOOs & DBAs, kPa	

Table 7-1: SHTS Flow Mixing Chamber Design Operating Requirements

7.2 Technology Selections Status

7.2.1 Candidates SHTS Flow Coupling and Mixer

There are several arrangements and design options for the SHTS flow mixing chamber that could satisfy the preliminary requirements identified during the preconceptual design of the NGNP. The simplest design option comprises of a single plenum (flow mixing chamber) with two inlets, one for the hotter and one for the colder helium and one outlet. Additionally, mixing devices can be added within the plenum to enhance the mixing process and reduce size of the chamber. The pressure drop added by the mixing devices should not compromise the total SHTS loop pressure drop allocation. Alternative designs of the flow mixing chamber could replace single inlets with multiple inlets to reduce the pressure drop and the inlet stream velocities. Figure 7-1 shows a schematic illustration of all these design options.

NGNP-CTF MTECH-TDRM-007_Rev1-final.doc

These designs will be evaluated by trade studies that will use computational modeling and analysis, previous experience, similar designs and engineering judgment to determine the advantages and disadvantages of each option with the help of the decision discriminators specified in Section 7.2.2.

7.2.2 Decision Discriminators

7.2.2.1 Introduction

Discriminators have been identified to help in the selection of an optimum design for the SHTS flow mixing chamber. These discriminators address the required technology development, the availability of a manufacturing base, the SHTS flow mixing chamber operation and maintenance, the safety and investment implications and the lifecycle costs.

A Kepner-Tregoe (K-T)-based comparative analysis will be used to facilitate the selection of the reference SHTS flow mixing chamber design. The discriminating factors will be rated based on the relative success with which each design meets them. Each discriminating factor will be further weighted proportionally to its perceived importance

7.2.2.2 Design / Technology Development

Mixing two or more streams of gasses at different temperatures is a common practice in industrial applications. Previous experiences with high temperature gas cooled reactors include the mixing of gas streams of different temperatures in the plenum below a prismatic core. Although the NGNP SHTS flow mixing chamber can certainly take advantage of these previous experiences, additional technology development is required because of the high temperature of

one of the streams (900 $^{\circ}$ C), the large flow rates of gasses that need to be processed and the limited tolerance of the downstream structures (e.g. SG) to hot streaks of the SHTS flow mixing chamber output.

The following discriminating factors will inter alia assist in selecting an optimal design for the SHTS flow mixing chamber:

- Can the selected technology be validated from similar proven technologies using only computational modeling and analysis?
- Are additional ad hoc structures required to enhance the mixing process inside the SHTS flow mixing chamber and can the performance of these structures be validated using computational modeling and analysis and single effects bench scale tests?
- Can the performance of the SHTS flow mixing chamber be validated in air at room temperature in a scale model?
- Will the SHTS flow mixing chamber require a full-scale test in helium to be validated?

7.2.2.3 Manufacturing and Transportability

This type of flow mixing chamber for high temperatures steams of helium has not been built for several years for a nuclear environment. There are several companies capable of developing the design, validating the required technology and building the flow mixing chamber for a nuclear application, but they have lost a lot of the specialized manufacturing experience and experienced personnel.

The discriminating factors that could be used in this case are:

- Have flow mixing chambers with similar requirements been built recently?
- What type of enhance mixing structures have been recently used in a similar environment?
- Does the manufacturing process require integration among several suppliers?
- Is the specific technology to be used for the SHTS flow mixing chamber available from several suppliers or can it only be provided by a few specialized suppliers?
- Can the SHTS flow mixing chamber be assembled at the supplier site and transported to the NGNP site for mounting in the SHTS loop or must it be assembled at the NGNP site?

7.2.2.4 Operation and Maintenance

The operation of the NGNP SHTS flow mixing chamber is strongly affected by its design. For example, if there are only two inlet ducts, instead of several, the chance of interferences among the inlet streams that could excite the SHTS flow mixing chamber natural frequencies is decreased. On the other hand, multiple inlets will decrease the inlet helium streams velocity and consequently the loop pressure drop, thus enhancing the SHTS performance. On the other hand, maintenance should not play a big role in the selection of the flow mixing chamber design. Each option should not require maintenance during the plant operating life, except for access to inspect the insulation on the mixing chamber walls.

The discriminating factors that could be used in this case are as follows:

- Does the design require the development of specialized instrumentation to monitor the effectiveness of the mixing process?
- Does the design require additional access for inspection?
- How often does the flow mixing chamber need to be inspected?

7.2.2.5 Safety and Investment Protection

The key safety and investment protection concern for the SHTS flow mixing chamber is related to the formation of excessive hot streaking that could damage the SG structure causing water ingress into the SHTS loop and the opening of the pressure relieve valve(s). A further concern is the damaging of the flow mixing chamber walls because of a combination of high temperatures and stresses with consequent depressurization of the SHTS loop. Plant level analyses will be done to determine design basis transients that cover all these scenarios and evaluate their probability of occurrence and their consequences to the plant personnel and the public and the impact on the plant investment. Once verified, the CFD models of the flow mixing chamber could be used to provide thermal and pressure loadings for the nominal full power and part load steady-state operational conditions, as well as for abnormal and fault transients. If necessary, the SHTS flow mixing chamber design will be modified to satisfy the plant safety and investment goals.

7.2.2.6 Lifecycle Cost

Cost and impact on the plant schedule will be evaluated for each of the SHTS flow mixing chamber designs. The discriminating factors that could be used in this case are:

- Design development cost (not recurring)
- Capital cost (recurring)
- Operating costs (including effect on capacity factor)
- Impact on the plant delivery schedule.

7.2.3 Reference Design

The present reference design for the SHTS flow mixing chamber is described in Section 6 of the PCDR [7-1]. No real design selections were made during the preconceptual design. The only decision addresses the use of high temperature metallic alloy and/or other suitable materials for the walls of the flow mixing chamber.

7.2.4 Alternatives for Further Evaluation

During the NGNP conceptual design the performance of the flow mixing chamber will be established. The conceptual layout (shape and number of inlet and outlet nozzles) will be determined and the requirements for mixing enhancing devices will be included in the design, if needed. Several design options will be analyzed and compared with each other on the basis of computational modeling and analysis, similar design and operating experience, recent applicable reactor designs, and engineering judgment. Decision discriminators will be used to facilitate this selection. The proposed trade studies will form a basis for the selection of a mature reference design for the flow mixing chamber. These studies will be done with the support of qualified suppliers.

Down Selection Task

Some of the trade studies required for the flow mixing chamber design selection will be done at a system level in order to provide clear requirements to the designers while other trade studies will be done at the subsystem level to select a flow mixing chamber design that best satisfies the requirements. A third type of trade study requires the close collaboration and interfacing between the system and subsystem designers in order to ensure that the selected design can be adequately integrated in to the System. Table 7.2 lists the recommended trade studies.

Trade studies identified as "System Level" are presumed to be done by the SHTS systems designers, trade studies identified as "Subsystem Level" are presumed to be done by the flow mixing chamber suppliers and trade studies identified as "System/Subsystem Level" are presumed to be done in close collaboration between the system and subsystem designers.

Recommended Trade Studies	System Level	Subsystem Level	System/Subsystem Level
a) Allowed pressure drops and hot streaks magnitude	х		Х
b) Number of inlets and outlets for the flow mixing chamber		х	
c) Type of mixing enhancing devices		х	

Table 7-2: Trade Studies Recommended for t	ne SHTS Helium Flow Coupling and Mixer
--	--

Each of these trade studies will evaluate the technical maturity of each design, establish the availability of the suppliers, perform a Reliability, Availability, Maintainability and Inspectability (RAMI) analysis and supporting plant level analyses to develop a mature reference flow mixing chamber design with the best relative costs and impact on the plant schedule.

7.3 TRL Status of SHTS Flow Mixing Chamber

The NGNP and Hydrogen Production Report on Design Readiness Levels and Technology Readiness Levels [7-2] assessed the SHTS flow mixing chamber as TRL 6. This assessment was based on the fact that similar helium flow mixing plena have been successfully used in a nuclear environment for other relevant applications. For example, the Fort St. Vrain HTGR reactor had a plenum under the reactor core where streams of helium coming from the core at different temperatures were mixed before going to the SG. Similar application can be found in other gas cooled reactors. On the other hand, none of the previous applications had the large flow rates and the high temperatures that are present in the NGNP application. Tables A-1 and A-2 in Appendix A provide a detailed explanation of the technology readiness levels of the SHTS flow mixing chamber subsystem and its components. The Tables show that although some of the SHTS flow mixing chamber components are at TRL 8, the integrated assembly of these components as a subsystem is at TRL 6, only because it has not been demonstrated in a loop similar to the SHTS in a relevant environment.

7.4 Technology Development Road Map Summary

7.4.1 Overview

The design of the SHTS flow mixing chamber design is only at a preconceptual level. The TDRM identifies several design options that will be addressed during the plant conceptual design phase. From these options a mature reference design will be selected with the support of trade studies and selection criteria.

Once a mature reference design is selected, a partial or full scale model of the flow mixing chamber will be tested to validate its performance as an integrated subsystem in a relevant environment. This validation will verify that each component of the SHTS flow mixing chamber subsystem performs within its specifications. Successful completion of this test will advance the SHTS flow mixing chamber from TRL 6 to TRL 7.

Following successful demonstration of a partial or full-scale SHTS flow mixing chamber model, a prototype of the SHTS flow mixing chamber will be built and shipped to the NGNP site where further testing will take place in an environment integrated with the rest of the primary and secondary loop Systems, Structures and Components (SSCs). These tests will be done during the NGNP cold commissioning phase. As a result of these integrated tests, small modifications on the SHTS flow mixing chamber design could be performed if necessary, before declaring the SHTS flow mixing chamber TRL 8.

7.5 Technology Maturation Plan Summary

The Technology Maturation Plans required to mature the SHTS flow mixing chamber to TRL 8 are attached in Appendix C.

The section below describes the maturation tasks needed to advance the technology of the Mixing Chamber from TRL 6 to TRL 8.

Advancement from TRL 6 to TRL 7 will require the following:

- Conducting of trade studies during the conceptual design phase, to support the down selection from various design options to a single mature reference design.
- Performing tests on components of the subsystem during the preliminary design phase, to validate the selected technologies.

- Design and fabrication of the SHTS flow mixing chamber system (partial or full-scale) and facilities alike during the final design phase.
- Validation testing of the Mixing Chamber engineering scale model to be done at the CTF or at the supplier facilities.

Advancement from TRL 7 to TRL 8 will require the following:

- Manufacturing of a full scale SHTS flow mixing chamber.
- Integration of the SHTS flow mixing chamber into the SHTS within the NGNP.
- Testing of the SHTS flow mixing chamber within the integrated SHTS at the maximum temperatures, pressures and flow rates achievable during the cold commissioning of the NGNP.

7.6 Inputs into CTF

The Mixing Chamber will be tested in the CTF for qualification of a TRL 7. This will require the provision of 2 different streams of pressurized Helium at different (and variable) temperatures, pressures and flow rates along with the necessary instrumentation to measure the performance of the SHTS flow mixing chamber.

7.7 References

- [7-1] NGNP-06-RPT-001, Rev 0, NGNP and Hydrogen Production Pre-Conceptual Design Report, Section 6, Heat Transport Systems; Westinghouse Electric Company, May 2007.
- [7-2] NGNP-TRL & DRL Report, Rev 0, NGNP and Hydrogen Production Report on Design Readiness Levels and Design Technology Readiness Levels, Westinghouse Electric Company, 27 September 2007

Figure 7-2: SHTS Mixing Chamber Development Logic

12/9/2008

Appendix A: TRL Rating Sheets

Table A-3: TRL for the SHTS Flow Mixing Chamber Subsystem

TRL Rating Sheet				
Vendor Name: Document Number: Revision: 0				
□ Island □ System □ Subsystem/Structure □ Component □ Technology				
Title: SHTS Flow Mixing Cha	mber Subsystem			
Description:				
The SHTS flow mixing chamber combines helium flows of different temperatures before they reach the SG. For the purpose of defining its readiness level, the SHTS flow mixing chamber identified during the NGNP preconceptual design is classified as a <u>subsystem</u> within the SHTS. The flow mixing chamber subsystem comprises of two <u>components</u> : the mixing plenum with enhanced mixing devices and the devices required to control flow and acoustic induced vibrations.				
Island(s): □ NHSS ☑	HTS 🗆 HPS	\square PCS \square B	OP	
ISSCTBS: N/A	Parent: N/A	WBS: N/A		
	Technology Readiness	Level		
	Next Lower Rating Level	Calculated Rating	Next Higher Rating Level	
Generic Definitions (abbreviated)	Component Verified at Experimental Scale	Subsystem Verified at Pilot scale	System demonstration at Engineering Scale	
TRL	5	6	7	
Basis for Rating (Attach addition	nal sheets as needed)		_	
There is relevant operating experience with gas flow mixing chambers in several gas- cooled reactors that have been built and tested. There is experience with similar helium flow mixing chamber in the Fort St. Vrain reactor.				
Outline of a plan to get from current level to next level (Attach additional sheets as needed)				
Following the selection of a mature reference design, the components of the SHTS flow mixing chamber that require technology development will be validated with supporting single effect tests. After that, the SHTS flow mixing chamber subsystem will be validated with a partial scale or full-scale integrated test.				
Actions (list all)		Schedule	Cost (K\$)	

٠	Validation of enhanced f are included in the design	low mixing devices, if they n.	August 2010	Refer to Section 17
•	Validation of vibrations	damping devices, if they are	August 2010	
	included in the design.			
•	Integrated test of a partia	l or full-scale model of the	August 2012	
	SHTS flow mixing cham	ber subsystem.		
DDN(s) supported: None		Technology Case	File: N/A	
Subject Matter Expert Making Determination: G. Baccaglini				
Date: 5 September 08Originating Organization: Technology Insights				

Table A-4: TRL for the SHTS Flow mixing chamber components

TRL Rating Sheet					
Vendor Name: Do	ocument Number:		Revisio	on: 0	
□ Island □ System ■	2Subsystem/Structure		Component	□ Technology	
Title: SHTS Flow Mixin Devices and Vibrations I	Title: SHTS Flow Mixing Chamber Components – Mixing Plenum, Enhanced Mixing Devices and Vibrations Damping Devices				
Description:					
The mixing plenum and its enhan part of the subsystem in which th	nced mixing devices (ne actual mixing of th	if present e helium	in the design) comprises of the S.	
The other components of the SH damp (eliminate or dump) acoust modes of the SHTS flow mixing	TS flow mixing cham tic and/or flow induce chamber	ber subsy d vibratio	ons that could	levices required to excite the natural	
Island(s): □ NHSS	⊠HTS □ HP	S	D PCS	□ BOP	
ISSCTBS: N/A	Parent: N/A		WBS: N/A		
	Technology Readin	ess Leve	l		
	Next Lower Rating Level	(Calculated Rating	Next Higher Rating Level	
Generic Definitions (abbreviated	l) Component Verifie at Experimental Scale	d Subs at Pi	ystem Verified ot scale	System demonstration at Engineering Scale	
TRL	7		8	9	
Basis for Rating (Attach addition	al sheets as needed)				
There is operating experience with gas flow mixing chambers with similar components in several industrial applications and in gas-cooled reactors. There is experience with similar helium flow mixing chamber in the Fort St. Vrain reactor,					
Outline of a plan to get from current level to next level (Attach additional sheets as needed)					
The SHTS flow mixing chamber components, integrated in the flow mixing chamber prototype, will be verified in the NGNP when the performance of the flow mixing chamber in its final configuration is verified during NGNP cold commissioning testing in hot operational environment.					
Actions (list all)		Sch	edule	Cost (K\$)	

•	Test the flow mixing cha mounted in the SHTS loc with the other loop subsy that will still allow acces	mber prototype while op, to verify its interaction ystems in an environment s for inspection and	August 2016	Refer to Section 17
•	adjustments. It is noted that the mixing	g chamber will likely be	August 2017	
Tested in air and helium.			T 1 1 C	
DDN(s) supported: None			Technology Case	File: N/A
Subject Matter Expert Making Determination: G. Baccaglini				
Da	Date:5 September 08Originating Organization: Technology Insights			

Appendix B: Technology Development Road Map

NGNP-CTF MTECH-TDRM-007_Rev1-final.doc

12/9/2008

Appendix C: Technology Maturation Plan

TABLE OF CONTENTS

Section	Title	Page
C1 TECHNO	LOGY MATURATION PLAN FOR SHTS FLOW MIXING CHAMBE	R:
TRL	6 TO TRL 7	29
C1.1 TEC	INOLOGY MATURATION PLAN SUMMARY	29
C1.1	1 Objectives	29
C1.1	2 Anticipated Schedule	29
C1.1	3 Overall Cost	30
C1.2 TEST	[•] SPECIFICATIONS	30
C1.2	1 Enhance Mixing Devices Test Specification	30
C1.2	2 Vibrations Dumping Devices Test Specification	31
C1.2	3 Partial or Full Scale Flow Mixing Chamber Model Test Specification	33
C2 TECHNO	LOGY MATURATION PLAN FOR SHTS FLOW MIXING CHAMBE	R:
TRL	7 TO TRL 8	35
C2.1 TEC	INOLOGY MATURATION PLAN SUMMARY	35
C2.1	1 Objectives	35
C2.2 TES [*]	SPECIFICATIONS	36
C2.2	2 Prototype Flow Mixing Chamber Test Specification	36

REQUIRED SPECIFICATIONS/TEST TO ACHIEVE NEXT TRL

TRL 6 to TRL 7:

- Specification 1: Enhanced Mixing Devices Test Specification
- Specification 2: Vibration Damping Devices Test Specification
- Partial or Full Scale Flow Mixing Chamber Model Test Specification

TRL 7 to TRL 8:

• Prototype Flow Mixing Chamber Test Specification

C1 TECHNOLOGY MATURATION PLAN FOR SHTS FLOW MIXING CHAMBER: TRL 6 TO TRL 7

C1.1 Technology Maturation Plan Summary

C1.1.1 Objectives

The purpose of this Technology Maturation Plan is to describe the activities required to advance the maturity of the technology for the SHTS flow mixing chamber from TRL 6 to TRL 7. The SHTS flow mixing chamber design is currently only at a preconceptual level. The TDRM identifies several design options that will be addressed during the plant conceptual design phase. From these options a mature reference design will be selected, with the support of trade studies that will use computational modeling and analysis, previous experience, similar designs and engineering judgment, selection criteria, and validation from components tests. This will be followed by testing of a partial or full scale model of the SHTS flow mixing chamber to validate its performance as an integrated subsystem in a relevant environment. This validation will verify that each component of the SHTS flow mixing chamber subsystem performs within its specifications. Successful completion of this test will advance the SHTS flow mixing chamber from TRL 6 to TRL 7. This integrated test is required because some of the operating conditions and design features (depending on which SHTS flow mixing chamber design will be selected) to be used in the NGNP do not match the experience with similar flow mixing chambers used in previous gas cooled reactors.

A Test Specification is provided to cover the maturation tasks as shown in Section C1.2.

C1.1.2 Scope

The maturation tasks and associated testing and other activities necessary to advance the maturity of the technology of the SHTS flow mixing chamber from TRL 6 to TRL 7 are as shown below.

- Validation of the performance of the enhanced mixing devices, if included in the design.
- Validation of the performance of the vibrations damping devices, if included in the design.
- Integrated test of a partial or full-scale model of the SHTS flow mixing chamber subsystem.

The tasks above will be described fully in individual Test Specifications provided in sections to follow.

C1.1.3 Anticipated Schedule

The work described by the Test Specification in this Technology Maturation Plan could be accomplished during the period FY2009 through FY2012. Work described in the Test Specifications to validate the performance of the mixing and vibration damping devices can be done in parallel

C1.1.4 Overall Cost

Cost and schedule for the overall maturation plan with associated specifications are addressed in Section 17 of this document.

C1.2 Test Specifications

C1.2.1 Enhanced Mixing Devices Test Specification

C1.2.1.1 Objectives

If enhanced mixing devices are included in the SHTS flow mixing chamber, some technology development may be required depending the requirements for the suppression of hot/cold streaks. Several configurations may be tested using partial or full scale models to verify their performance.

The technical issues to be addressed by the enhanced mixing devices validation tests are:

- Mixing effectiveness under full and partial loads plant operating conditions
- Pressure drop under full and partial loads plant operating conditions
- Validation of the CFD models used to predict the performance of the enhanced mixing devices
- Validation of techniques for fabrication of mixing devices using high temperature metal alloys.

C1.2.1.2 Test Conditions

C1.2.1.2.1 Test Configuration/Set-Up

A full or partial scale model of several configurations of enhanced mixing devices will be tested in an air (or helium) loop.

C1.2.1.2.2 Test Duration

The duration of this activity could be up to 6 months.

C1.2.1.2.3 Proposed Test Location

The enhanced flow mixing tests will be done at the supplier site.

C1.2.1.3 Measured Parameters

The supplier is to determine the measured parameters, which may include the following:

- Gas pressure at inlet and outlet
- Gas flow rates at inlet and outlet
- Average gas temperatures at the inlets and outlet, and

• Local streaks temperature deviation from the mean at the mixing chamber walls and at the outlet.

C1.2.1.4 Data Requirements

Measured parameters will be determined using recognized techniques, codes, standards, and QA.

C1.2.1.5 Test Evaluation Criteria

The enhanced flow mixing devices tests must be performed according to specifications during simulated steady state plant operation, Anticipated Operational Occurrences (AOO) and Design Basis Accidents (DBA). CFD analyses will support the selection of the testing environment for the simulation of transient operations.

C1.2.1.6 Test Deliverables

Deliverables are as follows.

- Validated enhanced flow mixing devices performance specifications
- Report confirming that the enhanced flow mixing devices meets all specifications and requirements

C1.2.1.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing the SHTS flow enhanced mixing devices technology for TRL 6 to TRL 7 is addressed in Sections C1.1.3 and C1.1.4. There is only minimal risk associated with this task.

C1.2.2 Vibration Damping Devices Test Specification

C1.2.2.1 Objectives

If vibrations damping devices are included in the SHTS flow mixing chamber, some technology development may be required depending the requirements for the suppression of the excitation of the chamber natural frequencies. Several configurations may be tested using partial or full scale models to verify their performance.

The technical issues to be addressed by the vibrations damping devices validation tests are:

- Damping effectiveness under full and partial loads plant operating conditions
- Pressure drop under full and partial loads plant operating conditions
- Validation of the CFD models used to predict acoustic or/and flow induced vibrations and the performance of the damping devices.
- Validation of techniques for fabrication of damping devices using high temperature metal alloys.

C1.2.2.2 Test Conditions

C1.2.2.2.1 Test Configuration/Set-Up

A full or partial scale model of several configurations of vibrations damping devices will be tested in an air (or helium) loop.

C1.2.2.2.2 Test Duration

The duration of this activity could be up to 6 months.

C1.2.2.2.3 Proposed Test Location

The vibration damping devices tests will be done at the supplier site.

C1.2.2.3 Measured Parameters

The supplier is to determine the measured parameters, which may include the following:

- Average gas temperatures, pressures and flow rates at the inlets and outlet, and
- Acoustic and flow induced spectra
- Loads and temperatures along the chamber walls.

C1.2.2.4 Data Requirements

Measured parameters will be determined using recognized techniques, codes, standards, and QA.

C1.2.2.5 Test Evaluation Criteria

The vibrations damping devices tests must be performed according to specifications during simulated steady state plant operation, Anticipated Operational Occurrences (AOO) and Design Basis Accidents (DBA). CFD analyses will support the selection of the testing environment for the simulation of transient operations.

Test Deliverables

Deliverables are as follows.

- Validated vibrations damping devices performance specifications
- Report confirming that the vibrations damping devices meets all specifications and requirements.

C1.2.2.6 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing the SHTS flow vibrations damping devices technology for TRL 6 to TRL 7 is addressed in Sections C1.1.3 and C1.1.4. There is only minimal risk associated with this task.

C1.2.3 Partial or Full Scale SHTS Flow Mixing Chamber Model Test Specification

C1.2.3.1 Objectives

The SHTS flow mixing chamber comprises of a mixing plenum with the possibility of enhanced flow mixing devices and vibrations damping devices, if required.

The objective of this task is to test a partial or full-scale model of the SHTS flow mixing chamber assembly to verify the performance of each of its components in an integrated representative environment. This integrated test is required because some of the operating conditions and design features (depending on which reference design will be selected) of the SHTS flow mixing chamber in the NGNP do not match the previous experience with in gas cooled reactors.

At this early stage of the design, a full-scale model of the SHTS flow mixing chamber is recommended because of the different scaling requirements of its various components and their complex interaction. The test environment and the scale of the SHTS flow mixing chamber model will be better defined when a mature reference design is selected.

The technical issues to be addressed by the partial or full-scale SHTS flow mixing chamber model test are:

- Performance of the SHTS flow mixing chamber with single (one for the hotter and one for the cooler gas) or multiple inlets without enhance mixing devices.
- Performance of the SHTS flow mixing chamber with enhanced mixings devices versus increased pressure drop.
- Magnitude of hot streaks leaving the mixing chamber.
- Measurement of the amplitude and frequency of acoustic and flow induce vibrations.
- Validation of the CFD models used to predict the performance of the enhanced mixing devices and of the acoustic or/and flow induced vibrations damping devices.
- Verification of access and inspection techniques.

C1.2.3.2 Test Conditions

C1.2.3.2.1 Test Configuration/Set-Up

A full or partial scale model of the SHTS flow mixing chamber will be tested in an air (or helium) loop.

C1.2.3.2.2 Test Duration

The duration of this activity could be up to 12 months.

C1.2.3.2.3 Proposed Test Location

The SHTS flow mixing chamber integrated tests will be done at the CTF or at the supplier site.

C1.2.3.3 Measured Parameters

The supplier is to determine the measured parameters, which may include the following:

- Average gas temperatures, pressures and flow rates at the inlets and outlet, and
- Local streaks temperature deviation from the mean at the mixing chamber walls and at the outlet.
- Frequency and amplitudes of loads caused by flow or acoustic induced vibrations
- Loads and temperatures along the chamber walls.
- •

C1.2.3.4 Data Requirements

Measured parameters will be determined using recognized techniques, codes, standards, and QA.

C1.2.3.5 Test Evaluation Criteria

The full or partial scale SHTS flow mixing chamber must perform according to specifications during simulated steady state plant operation, Anticipated Operational Occurrences (AOO) and Design Basis Accidents (DBA). CFD analyses will support the selection of the testing environment for the simulation of transient operations.

C1.2.3.6 Test Deliverables

Deliverables are as follows.

- Validated SHTS flow mixing chamber model performance specifications
- Report confirming that the SHTS flow mixing chamber model meets all specifications and requirements.

C1.2.3.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing the SHTS flow mixing chamber technology for TRL 6 to TRL 7 is addressed in Sections C1.1.3 and C1.1.4. There is only minimal risk associated with this task.

C2 TECHNOLOGY MATURATION PLAN FOR SHTS FLOW MIXING CHAMBER: TRL 7 TO TRL 8

C2.1 Technology Maturation Plan Summary

C2.1.1 Objectives

The purpose of this Technology Maturation Plan is to describe the activities required to advance the maturity of the technology for the SHTS flow mixing chamber from TRL 7 to TRL 8. The final integrated tests of the prototype SHTS flow mixing chamber will take place in the first NGNP nuclear power plant.

In the first phase, the testing will take place without a nuclear heat source and the PHTS and SHTS circulators will be used to move the coolant around the primary and secondary loops and provide heat of compression. The main objective of these tests is to verify the integrated performance of all the PHTS and SHTS subsystems operating as a system in the first NGNP plant. More specifically, the purpose for the prototype SHTS flow mixing chamber tests will be similar to that of the integrated partial or full-scale model test done to progress from TRL 6 to TRL 7, with the difference that the remaining PHTS and SHTS subsystems will also be involved. There will still be access during and after these tests for inspection and possible design improvements of the SHTS flow mixing chamber, if necessary.

C2.1.2 Scope

The maturation tasks and associated testing and other activities necessary to advance the maturity of the technology of the SHTS flow mixing chamber from TRL 7 to TRL 8 involves the non-nuclear testing of the mixing chamber in the SHTS loop.

C2.1.3 Anticipated Schedule

The work described by the Test Specification in this Technology Maturation Plan could be accomplished during the period FY2016 through FY2018.

C2.1.4 Overall Cost

Cost and schedule for the overall maturation plan with associated specifications are addressed in Section 17 of this document.

C2.2 Test Specifications

C2.2.1 Prototype SHTS Flow Mixing Chamber Test Specification

C2.2.1.1 Objectives

The SHTS flow mixing chamber comprises of a mixing plenum with the possibility of enhanced flow mixing devices and vibrations damping devices, if required.

The objective of testing the SHTS flow mixing chamber prototype in helium without nuclear heat, while mounted in the SHTS loop, is too verify its interaction with the other loop subsystems in an environment that is as close as possible with the NGNP operating conditions. The heat to bring the helium to temperatures representative of the NGNP nuclear operation is provided by the circulator compression. The PCHX and the SG will be acting as heat sinks.

The technical issues to be addressed by the prototype SHTS flow mixing chamber test in helium are:

- Performance of the SHTS flow mixing chamber prototype for the point of view of pressure drops and magnitude of hot streaks at the mixing chamber outlet.
- Measurement of the amplitude and frequency of acoustic and flow induce vibrations.
- Verification of access and inspection techniques.

It is anticipated that initial testing will be also conducted while the SHTS is filled with another medium such as helium or air. This will be specified at a later stage.

C2.2.1.2 Test Conditions

C2.2.1.2.1 Test Configuration/Set-up

The SHTS flow mixing chamber prototype will be tested in the SHTS loop mounted with all the other subsystems in helium under pressures and temperatures selected to represent as close as possible the NGNP operating environment.

C2.2.1.2.2 Test Duration

The duration of this activity could be up to 12 months.

C2.2.1.2.3 Proposed Test Location

The prototype SHTS flow mixing chamber integrated tests in helium will be done at the NGNP site.

C2.2.1.3 Measured Parameters

The supplier is to determine the measured parameters, which may include the following:

NGNP-CTF MTECH-TDRM-007_Rev1-final.doc

- Average gas temperatures and pressures at the inlets and outlet
- Local streaks temperature deviation from the mean at the mixing chamber walls and at the outlet
- Frequency and amplitudes of loads caused by flow or acoustic induced vibrations.

C2.2.1.4 Data Requirements

Measured parameters will be determined using recognized techniques, codes, standards, and QA.

C2.2.1.5 Test Evaluation Criteria

The prototype SHTS flow mixing chamber must perform according to specifications during simulated steady state plant operating conditions, Anticipated Operational Occurrences (AOO) and Design Basis Accidents (DBA).

C2.2.1.6 Test Deliverables

Deliverables are as follows.

- Validated SHTS flow mixing chamber prototype performance specifications in helium
- Report confirming that the SHTS flow mixing chamber prototype meets all specifications and requirements
- Report on maintainability and inspectability.

C2.2.1.7 Cost, Schedule, and Risk

Cost and schedule for the overall Technology Maturation Plan for advancing the SHTS flow mixing chamber technology from TRL 7 to TRL 8 is addressed in Sections C2.1.3 and C2.1.4. There is only minimal risk associated with Section C2.2.1.

December 2008

NGNP and Hydrogen Production Conceptual Design Study

NGNP Technology Development Road Mapping Report

Section 8: Hydrogen Production System

Function		Printed Name and Signature		
Author	Name: Company:	Dan Allen Technology Insights	Samiel D. aller	December 3, 2008
Reviewer	Name: Company:	Tom St Louis Shaw Group	Michauin	December 3, 2008
Reviewer	Name: Company:	Frikkie van der Merwe M-Tech Industrial	Mallum	December 3, 2008
Approval	Name: Company:	Jan van Ravenswaay M-Tech Industrial	avuea	December 3, 2008

APPROVALS

Westinghouse Electric Company LLC Nuclear Power Plants Post Office Box 355 Pittsburgh, PA 15230-0355

©2008 Westinghouse Electric Company LLC All Rights Reserved

LIST OF CONTRIBUTORS

Name and Company	Date
Dixon Brandt	November 2009
Shaw Environmental & Infrastructure	November 2006
Lloyd Brown	November 2008
General Atomic	
Bob Buckingham	November 2008
General Atomic	
Sten Casperson	November 2008
Westinghouse Electric	
Karl Goff	November 2008
Shaw Environmental & Infrastructure	
Jeffrey Gratz	November 2008
MPR Associates	
Kristin Harper	November 2008
MPR Associates	
Stephen Herring	November 2008
Idaho National Laboratory	
Edward Lahoda	November 2008
Westinghouse Electric	
Robert Moore	November 2008
Sandia National Laboratory	November 2006
Paul Pickard	November 2008
Sandia National Laboratory	November 2000
Demetrius Siachames	November 2008
MPR Associates	
William Summers	November 2008
Savannah River National Laboratory	

BACKGROUND INTELLECTUAL PROPERTY CONTENT

Section	Title	Description
N/A		

REVISION HISTORY

RECORD OF CHANGES

Revision No.	Revision Made by	Description	Date
А	Daniel Allen	Initial release	October 20, 2008
В	Daniel Allen	Second release – Detailed review in progress.	October 28, 2008
С	Daniel Allen	Interim reviewer response	October 31, 2008
D	Daniel Allen	Third release – Final reviewer response	November 7, 2008
E	Daniel Allen	Fourth release – Incorporate comments from NHI and NGNP	November 28, 2008
0	Daniel Allen	Document for release to WEC	December 3, 2008

DOCUMENT TRACEABILITY

Created to Support the Following Document(s)	Document Number	Revision
N/A		

TABLE OF CONTENTS

Sec	tion	Title	Page
8	HYDROGE	N PRODUCTION SYSTEM	13
	8.1 SULFU	RIC ACID DECOMPOSITION TECHNOLOGY AREA	16
	8.1.1 SSC D	ESCRIPTION/ FUNCTION AND OPERATING REQUIREMENTS	16
	8.1.2 TECHN	OLOGY/DESIGN SELECTION STATUS	17
	8.1.2.1	Candidate Technologies	17
	8.1.2.2	Decision Discriminators	17
	8.1.2.3	Reference Design	18
	8.1.2.4	Alternative for Further Evaluation	18
	8.1.2.5	Down-Selection Tasks	18
	8.1.2.6	Design Data Needs (DDNs)	18
	8.1.3 TRL S	TATUS	19
	8.1.4 TECHN	OLOGY DEVELOPMENT ROAD MAP SUMMARY	20
	8.1.5 TECHN	OLOGY MATURATION PLAN SUMMARY (CURRENT TRL TO TRL 8)	20
	8.1.6 INPUTS	5 TO CTF	25
	8.2 SULFU	R DIOXIDE ELECTROLYSIS TECHNOLOGY AREA	26
	8.2.1 SSC D	ESCRIPTION/ FUNCTION AND OPERATING REQUIREMENTS	26
	8.2.2 TECHN	OLOGY/DESIGN SELECTION STATUS	27
	8.2.2.1	Candidate Designs	27
	8.2.2.2	Decision Discriminators	27
	8.2.2.3	Reference Design	28
	8.2.2.4	Design Data Needs (DDNs)	28
	8.2.3 TRL S	TATUS	29
	8.2.4 TECHN	OLOGY DEVELOPMENT ROAD MAP SUMMARY	29
	8.2.5 TECHN	OLOGY MATURATION PLAN SUMMARY (CURRENT TRL TO TRL 8)	30
	8.2.6 INPUTS	5 TO CTF	33
	8.3 BUNSE	N REACTION AND HI DECOMPOSITION TECHNOLOGY AREA	35
	8.3.1 SSC D	ESCRIPTION/ FUNCTION AND OPERATING REQUIREMENTS	35
	8.3.2 TECHN	OLOGY/DESIGN SELECTION STATUS	36
	8.3.2.1	Candidate Designs	37
	8.3.2.2	Decision Discriminators	37
	8.3.2.3	Reference Design	37
	8.3.2.4	Design Data Needs (DDNs)	37
	8.3.3 TRL S	TATUS	39
	8.3.4 TECHN	OLOGY DEVELOPMENT ROAD MAP SUMMARY	40
	8.3.5 TECHN	IOLOGY MATURATION PLAN SUMMARY (CURRENT TRL TO TRL 8)	40
	8.3.6 INPUTS	5 TO CTF	43
	8.4 HIGH	CEMPERATURE STEAM ELECTROLYSIS	44
	8.4.1 SSC D	ESCRIPTION/ FUNCTION AND OPERATING REQUIREMENTS	44
	8.4.2 TECHN	OLOGY/DESIGN SELECTION STATUS	46
	8.4.2.1	Candidate Technologies	48
	8.4.2.2	Decision Discriminators	49
	8.4.2.3	Reference Design	49

8.4.2.4 Alternative for Further Evaluation	
8.4.2.5 Down Selection Task	
8.4.2.6 Design Data Needs (DDNs)	
8.4.3 TRL STATUS	50
8.4.4 TECHNOLOGY DEVELOPMENT ROAD MAP SUMMARY	51
8.4.5 TECHNOLOGY MATURATION PLAN SUMMARY (CURRENT TRL TO TRL 8)	53
8.4.6 INPUTS TO CTF	57
8.5 SCHEDULE AND BUDGET FOR MATURATION PLANS	58
REFERENCES	
APPENDIX A: TRL RATING SHEETS	63
A2 SULFUR DIOXIDE ELECTROLYSIS	
A3 BUNSEN REACTION AND HI DECOMPOSITION	
A4 HIGH TEMPERATURE STEAM ELECTROLYSIS	
APPENDIX B: TECHNOLOGY DEVELOPMENT ROAD MAP	113
B1 SULFURIC ACID DECOMPOSITION	113
B2 SULFUR DIOXIDE ELECTROLYSIS	116
B3 BUNSEN REACTION AND HI DECOMPOSITION	119
B4 HIGH TEMPERATURE STEAM ELECTROLYSIS	122
APPENDIX C: TECHNOLOGY MATURATION PLANS	126

LIST OF TABLES

Table 8-1: TRL Generic Definition	. 14
Table 8-2: Sulfuric Acid Decomposition Section DDNs	. 18
Table 8-3: Sulfuric Acid Decomposition Section TRLs.	. 19
Table 8-4: Sulfur Dioxide Electrolysis DDNs	. 28
Table 8-5: Sulfur Dioxide Electrolysis TRLs	. 29
Table 8-6: Duration and Maximum Rates Degradation for Cell Tests	. 33
Table 8-6: Bunsen Reaction and HI Decomposition Section DDNs	. 37
Table 8-7: Bunsen Reaction and HI Decomposition Section TRLs	. 39
Table 8-8: HTSE HPS DDNs	. 49
Table 8-9: HTSE HPS TRLs	. 50
Table 8-10: Cost and Schedule for the Sulfuric Acid Decomposition Technology Area	. 58
Table 8-11: Cost and Schedule for the Sulfur Dioxide Electrolysis Technology Area	. 58
Table 8-12: Cost and Schedule for the Bunsen Reaction and HI Decomposition Technology	
Area	. 60
Table 8-13: Cost and Schedule for the High Temperature Steam Electrolysis Technology Are	a
	. 61
Table A1-1: TRL Rating Sheet for Sulfuric Acid Decomposition	. 64
Table A1-2: TRL Rating Sheet for Sulfuric Acid Decomposition	. 65
Table A1-3: TRL Rating Sheet for Sulfuric Acid Decomposition	. 66
Table A1-4: TRL Rating Sheet for Sulfuric Acid Decomposition	. 67
Table A1-5: TRL Rating Sheet for Sulfuric Acid Decomposition	. 69
Table A1-6: TRL Rating Sheet for Sulfuric Acid Decomposition	. 70
Table A1-7: TRL Rating Sheet for Sulfuric Acid Decomposition	. 71
Table A1-8: TRL Rating Sheet for Sulfuric Acid Decomposition	. 72
Table A1-9: TRL Rating Sheet for Sulfuric Acid Decomposition	. 73
Table A1-10: TRL Rating Sheet for Sulfuric Acid Decomposition	. 74
Table A2-1: Sulfur Dioxide Electrolysis	. 76
Table A2-2: Sulfur Dioxide Electrolysis	. 78
Table A2-3: Sulfur Dioxide Electrolysis	. 80
Table A2-4: Sulfur Dioxide Electrolysis	. 81
Table A2-5: Sulfur Dioxide Electrolysis	. 83
Table A2-6: Sulfur Dioxide Electrolysis	. 84
Table A3-1: Bunsen Reaction and HI Decomposition	. 86
Table A3-2: Bunsen Reaction and HI Decomposition	. 87
Table A3-3: Bunsen Reaction and HI Decomposition	. 88
Table A3-4: Bunsen Reaction and HI Decomposition	. 89
Table A3-5: Bunsen Reaction and HI Decomposition	. 90
Table A3-6: Bunsen Reaction and HI Decomposition	. 91
Table A3-7: Bunsen Reaction and HI Decomposition	. 92
Table A3-9: Bunsen Reaction and HI Decomposition	. 94
Table A4-1: High Temperature Steam Electrolysis	. 96
Table A4-2: High Temperature Steam Electrolysis	. 98
Table A4-3: High Temperature Steam Electrolysis	100

Table A4-4:	High Temperature	Steam Electrolysis	
Table A4-5:	High Temperature	Steam Electrolysis	103
Table A4-6:	High Temperature	Steam Electrolysis	105
Table A4-7:	High Temperature	Steam Electrolysis	107
Table A4-8:	High Temperature	Steam Electrolysis	109
Table A4-9:	High Temperature	Steam Electrolysis	
Table A4-10	: High Temperature	e Steam Electrolysis	
Table A4-11	: High Temperature	e Steam Electrolysis	

LIST OF FIGURES

Figure 8-1:	Sulfuric Acid Decomposition Section in S-I	. 16
Figure 8-2:	Sulfuric Acid Decomposition Section in HyS	. 17
Figure 8-3:	Hybrid Sulfur Cycle	. 27
Figure 8-4:	Bunsen Section	. 36
Figure 8-5:	HI Decomposition Section	. 36
Figure 8-6:	HTSE HPS	. 45
Figure B1-1	: Technology Development Road Map of Sulfuric Acid Decomposition 1	115
Figure B2-1	: Technology Development Road Map of Sulfur Dioxide Electrolysis 1	118
Figure B3-1	: Technology Development Road Map of Bunsen Reaction and HI Decomposition	n
		121
Figure B4-1	: Technology Development Road Map of High Temperature Steam Electrolysis. 1	125

ACRONYMS

Acronym	Definition
AI	Inner Annulus (active cooling piping)
AMS	Activity Measurement System
AO	Outer Annulus (active cooling piping)
AOO	Anticipated Operational Occurrence
AS	Automation System
ASME	American Society of Mechanical Engineers
AVR	Arbeitsgemeinschaft Versuchs-Reaktor
BOP	Balance of Plant
BUMS	Burn-up Measurement System
СВ	Core Barrel
CCS	Core Conditioning System
CEA	Commissariat à l'Énergie Atomique
CFD	Computational Fluid Dynamics
CHE	Compact Heat Exchanger
CIP	Core Inlet Pipe
CO2	Carbon Dioxide
COC	Core Outlet Connection
COP	Core Outlet Pipe
COTS	Commercial Off The Shelf
CRADA	Co-operative Research and Development Agreement
CRD	Control Rod Drive
CSC	Core Structure Ceramics
CTF	Component Test Facility
CTF	Component Test Facility
CUD	Core Unloading Devices
DAU	Data Acquisition Unit
DBA	Design Base Accident
DBE	Design Base Event
DDN	Design Data Need
DFC	Depressurized Forced Cooling
DLOFC	De-pressurized Loss of Forced Cooling
DOE	Department of Energy
DPP	Demonstration Power Plant
DRL	Design Readiness Level
DWS	Demineralized Water System
ELE	Elecrolyser System
EM	Evaluation Model
EMB	Electomagnetic Bearing
EOFY	End of Fiscal Year
EPCC	Equipment Protection Cooling Circuit
EPCT	Equipment Protection Cooling Tower
F&OR	Functional and Operational Requirements
FHS	Fuel Handling System
FHSS	Fuel Handling and Storage System

FIMA	Fissions per Initial Metal Atoms
FMECA	Failure Modes, Effects and Criticality Analysis
FS	Fuel Spheres
FTA	Fault Tree Analysis
FUS	Feed and Utility System
H2	Hydrogen
H2SO4	Sulfuric Acid
HC	Helium Circulator
He	Helium
HETP	Height Equivalent of the theoretical Plate
HGD	Hot Gas Duct
HI	Hydro-lodic
HLW	High Level Waste
HPB	Helium Pressure Boundary
HPC	High Pressure Compressor
HPS	Helium Purification System
HPS	Hydrogen Production System
HPT	High Pressure Turbine
HPU	Hydrogen Production Unit
HRS	Heat Removal System
HTF	Helium Test Facility
HTGR	High Temperature Gas-Cooled Reactor
HTR	High Temperature Reactor
HTS	Heat Transport System
HTSE	High Temperature Steam Electrolysis
HTTR	High Temperature Test Reactor
HVAC	Heating Ventilation and Air Conditioning
HX	Heat Exchanger
HyS	Hybrid Sulfur
I&C	Instrumentation and Control
12	lodine
ID	Inner Diameter
IHX	Intermediate Heat Exchanger
ILS	Integrated Laboratory Scale
I-NERI	International Nuclear Energy Research Initiative
INL	Idaho National Laboratory
INL	Idaho National Laboratory
IPT	Intermediate Pressure Turbine
ISR	Inner Side Reflector
K-T	Kepner-Tregoe
KTA	German nuclear technical committee
LEU	Low Enriched Uranium
LOFC	Loss of Forced Cooling
LPT	Low Pressure Turbine
MES	Membrane-electrode assembly
MTR	Material Test Reactor
NAA	Neutron Activation Analysis

NCS	Nuclear Control System
NGNP	Next Generation Nuclear Plant
NHI	Nuclear Hydrogen Initiative
NHS	Nuclear Heat Supply
NHSS	Nuclear Heat Supply System
NNR	National Nuclear Regulator
NRG	Nuclear Research and consultancy Group
NRV	Non-Return Valve
O2	Oxygen
OD	Outer Diameter
PBMR	Pebble Bed Modular Reactor
PCC	Power Conversion System
PCDR	Pre-Conceptual Design Report
PCHE	Printed Circuit Heat Exchanger
PCHX	Process Coupling Heat Exchanger
PCS	Power Conversion System
PFHE	Plate Fin Heat Exchanger
PHTS	Primary Heat Transport System
PIE	Post-irradiation Examination
PLOFC	Pressurized Loss of Forced Cooling
POC	Power Conversion System
PPM	Parts per million
PPU	Product Purification Unit
PPWC	Primary Pressurized Water Cooler
QA	Quality Assurance
RAMI	Reliability, Availability, Maintainability and Inspectability
RC	Reactor Cavity
RCCS	Reactor Cavity Cooling System
RCS	Reactivity Control System
RCSS	Reactivity Control and Shutdown System
RDM	Rod Drive Mechanism
RIM	Reliability and Integrity Management
RIT	Reactor Inlet Temperature
RM	Road Map
ROT	Reactor Outlet Temperature
RPS	Reactor Protection System
RPT	Report
RPV	Reactor Pressure Vessel
RS	Reactor System
RSS	Reserve Shutdown System
RUS	Reactor Unit System
SAD	Acid Decomposition System
SAR	Safety Analysis Report
SAS	Small Absorber Spheres
SG	Steam Generator
SHTS	Secondary Heat Transport System
S-I	Sulfur lodine

SiC	Silicon Carbide
SNL	Sandia National Laboratory
SO2	Sulfur Dioxide
SOE	Sulfuric Oxide Electrolyzers
SOEC	Sulfuric Oxide Electrolyzers Cells
SR	Side Reflector
SSC	System Structure Component
SSCs	Systems, Structures and Components
SSE	Safe Shutdown Earthquake
SUD	Software Under Development
TBC	To Be Confirmed
TBD	To Be Determined
TDL	Technology Development Loop (As incorporated in Concept 1)
TDRM	Technology Development Road Map
TER	Test Execution Report
THTR	Thorium High Temperature Reactor
TRISO	Triple Coated Isotropic
TRL	Technology Readiness Level
TRM	Technology Road Map
UCO	Uranium Oxycarbide
UO2	Uranium Dioxide
USA.	United States of America
V&V	Verification and Validation
V&Ved	Verified and Validated
VLE	Vapor-Liquid Equilibrium
WBS	Work Breakdown Structure
WEC	Westinghouse Electric Company

SUMMARY AND CONCLUSIONS

The report documents the technology readiness evaluation of the prospective Hydrogen Production Systems (HPSs) for the NGNP with hydrogen production. The readiness evaluation consists of a look at the present Technology Readiness Levels (TRLs) and the plans to move forward to readiness for application to the NGNP Demonstration.

Included with the specific Technology Development Road Maps (TDRMs) are summaries of the plans for technology maturation.

In association with the general development plan and steps to maturation of the technology, the report identifies where the Component Test Facility can be used for the HPS technology advancement.

Test Plans for the Hybrid Sulfur thermo- electro-chemical water splitting technology are appended.

8 HYDROGEN PRODUCTION SYSTEM

Hydrogen production development is organized into four separate process technology areas. These are the following, and for each the Technology Development status, needs and plans are covered in a separate section following (Sections 8.1through 8.4):

- 1. Sulfuric Acid Decomposition (common to both Sulfur-Iodine and Hybrid Sulfur hydrogen production systems)
- 2. Sulfur Dioxide Electrolysis (principal step in Hybrid Sulfur thermoelectro-chemical water splitting)
- 3. Bunsen Reaction and HI Decomposition (steps in Sulfur-Iodine thermo-chemical water splitting)
- 4. High Temperature Steam Electrolysis

For each area the technology development needs and plans are addressed in two parts. First the design of the each technology area, as progressed to this point, is presented from the perspective of the functions, requirement of the process steps and in context of present design status and Design Data Needs (DDNs). Design status includes discussion of candidate designs, decisions already made, design options yet to be resolved and how they will be decided.

The second part of Technology Development is the path forward. This consists of the assessment of present Technology Readiness Level (TRL), the Technology Development Road Map (TDRM), which is a graphic format outline showing present status and plans to advance the TRL rank and the Technology Maturation Plans. For each of the four process technology areas, the TRLs, TDRMs and summary Maturation Plans are organized by subsystems in each of the technology areas. Within each subsystem only the Critical Systems, Structures and Components (SSCs) are evaluated for TRL.

Critical Systems, Structures and Components are those identified aspects or portions of the systems which must be developed prior to commercialization and are not commercially available or do not have proven industry experience.

Technology Readiness Level (TRLs)

TRL ranks for the Critical SSCs of the hydrogen generation process are assigned according to the definitions in Table 8-1, which is revised from Ref. 0. Note the addition of a rating "U" for the situations where requirements are undefined and technology readiness is unclear. This categorization is necessary for a few of the SSCs of the HPSs.

Rating Level	
U	Uncertain at this phase in design and development.
1	Basic principles observed and reported in white papers, industry literature, lab reports, etc. Scientific research without well-defined application.
2	Technology concept and application formulated. Issues related to performance identified. Issues related to technology concept have been identified. Paper studies indicate potentially viable system operation
3	Proof-of concept: Analytical and experimental critical function and/or characteristic proven in laboratory. Technology or component tested at laboratory scale to identify/screen potential viability in anticipated service.
4	Technology or Component is tested at bench scale to demonstrate technical feasibility and functionality. For analytical modeling, use generally recognized benchmarked computational methods and traceable material properties.
5	SSC demonstrated at experimental scale in relevant environment . Components have been defined, acceptable technologies identified and technology issues quantified for the relevant environment. Demonstration methods include analyses, verification, tests, and inspection.
6	SSCs have been demonstrated at a pilot scale in a relevant environment.
7	SSCs integrated engineering scale demonstration in a relevant environment.
8	Integrated prototype of the SSC is demonstrated in its operational environment with the appropriate number and duration of tests and at the required levels of test rigor and quality assurance. Analyses, if used support extension of demonstration to all design conditions. Analysis methods verified and validated. Technology issues resolved pending qualification (for nuclear application, if required). Demonstrated readiness for applicatrion.
9	The project is in final configuration tested and demonstrated in operational environment.
10	Commercial-scale demonstration is achieved. Technological risks minimized by multiple units built and running through several years of service cycles – Multiple Units

Table 8-1:	TRL Generic Definition	ì
------------	-------------------------------	---

Distinctions between TRLs are generally a function of three factors. These are 1) the scale of the technology demonstration, 2) the closeness of the design to prototype and 3) the extent to which test conditions match the operating conditions in application. Note also that,

NGNP-CTF MTECH-TDRM-008-Rev0-final.doc

while not listed or quantified in the table, the duration and stability of demonstration tests is in most cases the test to pass to the next level.

In the listings following of present TRL ranking, a large number of supporting SSCs (in contrast to the systems that are the focus of hydrogen process development) can be seen to be TRL-6. This is the assignment where there will be no new technology required for the hydrogen process, only extension of present technology to more extreme operational environments and maybe new materials of construction. These technologies are clearly beyond experimental demonstration of feasibility (TRL-4) but no prototype has been tested in the operational environment (TRL-8). TRL-5, -6 and -7 are all demonstrations in relevant environments, and the gradation is on scale and closeness to prototype. Striking the middle value of TRL-6 seems logical.

Several places in this report specific hydrogen outputs, heat or power inputs, scale factors and scale-up steps are quantified. These are all estimates based the TDRMs developed here and on the present plans of the technology developers in the US DOE Nuclear Hydrogen Initiative (NHI) who have been consulted. Far more progress in development and work on specific designs is required before these numbers can be confirmed. They should be used only for general planning purposes and not as bases for design.

Where scale relative to the NGNP Demonstration or the NGNP commercial application is expressed, the reference plants are single nuclear reactor-powered units of 550MWt rating, and the sizes of the Hydrogen Production Facility in the NGNP Demonstration is based on thermal input of 50 MWt for the Sulfur-Iodine and Hybrid Sulfur technologies and 5 MWt for High Temperature Steam Electrolysis. The 50, 50 and 5 MWt numbers were preliminarily judged to correspond to the scale of the minimum commercially viable hydrogen production train for each of the three technologies [Ref. 0].

For each process concept the Hydrogen Production Facility is made up of the Hydrogen Production System and the Hydrogen Production Buildings and Structures. For discussion of technology development, the buildings and structures are assumed to be entirely commercially available or having proven industry experience. Therefore, the technology assessment following relates only to the Hydrogen Production Systems.

Test Plans

For the Hybrid Sulfur thermo- electro-chemical water splitting HPS, the Test Plans to accomplish the Maturation Plan are in Appendix C.

8.1 SULFURIC ACID DECOMPOSITION TECHNOLOGY AREA

8.1.1 SSC DESCRIPTION/ FUNCTION AND OPERATING REQUIREMENTS

This section is shared with the Sulfur-Iodine (S-I) thermo-chemical water splitting process and the Hybrid Sulfur (HyS) thermo- electro-chemical process. These are described in detail in the NGNP and Hydrogen Production Hydrogen Plant Alternatives Study [Ref. 0]. The common subsection of the two process concepts that is addressed here are shown in Figures 8.1-1 and 8.1-2.

Figure 8-1: Sulfuric Acid Decomposition Section in S-I

Figure 8-2: Sulfuric Acid Decomposition Section in HyS

The sulfuric acid decomposition subsection is made up of the Sulfuric Acid Decomposer, the Reactor Product and Recycle Flash System and the Vacuum Stripper System.

Functions and Operating Requirements

The Sulfuric Acid Decomposition section receives aqueous sulfuric acid at a concentration of 59% (weight percent). First the acid is concentrated to 75% and then thermally decomposed into oxygen, sulfur dioxide (SO₂) and water. The water is separated from the SO₂ and oxygen. The products are delivered to the subsequent sections of the respective HPS overall system (S-I or HyS). The water is delivered as liquid and the SO₂ and oxygen in the gas phase.

The system is further described in the NGNP and Hydrogen Production Hydrogen Plant Alternatives Study [Ref. 0].

8.1.2 TECHNOLOGY/DESIGN SELECTION STATUS

8.1.2.1 Candidate Technologies

There are several preconceptual designs that have been proposed for the Acid Decomposer. In the most straight-forward design, the heat source is flowing helium, which would flow across or along the outside of tubes containing the process fluids in a shell-in-tube configuration.

Another concept that is under study in the DOE Nuclear Hydrogen Initiative has the features of a compact heat exchanger of the plate-fin or "printed circuit" construction [Refs. 0 & 0]. A novel feature of one embodiment of this concept is the inclusion of platinum catalyst in the material of a "printed circuit" heat exchanger [Ref. 0].

Two similar designs consider a bayonet tube configuration with the process flow in the tube and helium on the shell side. One has the tubesheet at the top and one at the bottom. These are the Westinghouse Electric Company (WEC) decomposer design [Ref. 0] and the Sandia National Laboratory (SNL) design [Ref. 0].

Also there are optional conventional technologies for acid concentration, such as using mechanically pumped vacuum or vapor compression, but since they are conceptually well developed, there is no justification for further discussion of the choice of vacuum flash with the vacuum provided by steam air ejectors. All of the alternatives are TRL 7.

8.1.2.2 Decision Discriminators

A tentative choice was made for the SNL decomposer design for the S-I ILS Experiment. The WEC design was proposed after that test was defined. In the TDRM the final decision is in sequence after a number of experimental and analytical tasks. The decision on designs and materials for the Acid Decomposer will consider these factors:

- Corrosion resistance
- High temperature operation, especially thermal expansion
- Sealing and transition from ceramics to metals
- Thermal performance: (longitudinal and transverse temperature profiles in each tube and among tubes, recuperation, heat transfer rate)
- Ease of catalyst replacement
- Hydraulic performance: (need for gravity flow, even flow distribution between tubes, pressure drop, *etc.*)

8.1.2.3 Reference Design

The Sulfur-Iodine (S-I) and the Hybrid Sulfur (HyS) processes and chosen designs are discussed in the NGNP and Hydrogen Production Hydrogen Plant Alternatives Study [Ref. 0].

8.1.2.4 Alternative for Further Evaluation

Alternatives already considered were mentioned in Section 8.1.2.1.

8.1.2.5 Down-Selection Tasks

Decisions will be made on the alternatives at the Conceptual Design stage. Note in the TDRM that considerable additional testing and experimental development is charted ahead of Conceptual Design. (Considerable design work is also required before final selections can be considered.) Testing in full thermal and hydraulic similitude will be needed to establish a basis for performance going into the Conceptual Design.

Additional decision discriminators will be the performance in testing and anticipated operational features, such as fill and drain procedure, leak detectability, access for catalyst removal, *etc*.

8.1.2.6 Design Data Needs (DDNs)

The Design Data Needs (DDNs) for the Sulfuric Acid Decomposition section are itemized in Table 8-2.

DDN	Title	
HPS-SAD-01	Confirm Thermodynamic Data for the Sulfuric Acid Decomposition Process	
HPS-SAD-02	Develop a Commercial Sulfuric Acid Decomposition Catalyst	
HPS-SAD-03	Gather Decomposition Reaction Kinetics Data	
HPS-SAD-04	Test Silicon Carbide and other Ceramic Material in Decomposition Service	
HPS-SAD-05	Test Alloy 230 and Alloy 617 in a High Temperature Sulfuric Acid, Sulfur Dioxide, and Oxygen Atmosphere.	

 Table 8-2:
 Sulfuric Acid Decomposition Section DDNs

	-
HPS-SAD-06	Develop a Method to Bond Alloy 230 or Alloy 617 or Similar Materials to Silicon Carbide and other Ceramics.
HPS-SAD-07	Develop Materials to Seal the Joints between Ceramic Decomposer Elements and the Metallic Tube Sheet or Vessel.
HPS-SAD-08	Test a Pilot-Scale Decomposer.
HPS-SAD-09	Provide Data Supporting a Design Code Case
HPS-SAD-10	Develop Gasket Materials and Design
HPS-SAD-11	Develop Seal Materials and Design
HPS-SAD-12	Develop Welding Materials
HPS-SAD-13	Develop Cladding and Coating Materials
HPS-SAD-14	Develop Piping Materials and Design Methods
HPS-SAD-15	Measure the Height Equivalent to a Theoretical Plate (HETP) for the Concentrator (Vacuum Tower)
HPS-SAD-16	Measure the Height Equivalent to a Theoretical Plate (HETP) for the SO2 Absorber

8.1.3 TRL STATUS

In summary, the current TRLs for the critical SSCs of the Sulfuric Acid Decomposition section are evaluated as in Table 8-3. The critical SSCs other than the Acid Decomposer and the Helium Control Valves are generally established technology lacking only design definition and/or the choice of and verification of materials compatibility for the operational environment.

	TRL
Sulfuric Acid Decomposition Section	3
Acid Decomposer (decomposition reactor) $[H_2SO_4 \rightarrow \frac{1}{2}O_2 + SO_2 + H_2O]$ – including tubes, seals, manifolds and vessel	3
Tube Array	4
Manifolds and Seals	4
Vessel	4
Decomposer Catalyst	3
Decomposer product handling equipment	6
Acid concentration vacuum column	6
Feed acid handling and concentrating equipment	6
Steam ejectors and vacuum pump	6
Helium Control Valves	4

 Table 8-3:
 Sulfuric Acid Decomposition Section TRLs

Sensors and Instruments

6

In Appendix A1 are the detailed rating sheets of the TRLs for the five SSCs in Table 8.1-1 that make up the Sulfuric Acid Decomposition Section.

8.1.4 TECHNOLOGY DEVELOPMENT ROAD MAP SUMMARY

The Technology Development Road Map (TDRM) for the Sulfuric Acid Decomposition section, which is generally common to both the S-I and HyS HPSs, is in Appendix B1.

The S-I ILS Experiment is in progress and successful operation of the Acid Decomposer in the S-I ILS provides feasibility and functional demonstration and supports the computational modeling that has gone into the S-I and HyS flow sheets. The S-I ILS brings the Acid Decomposer to TRL 4.

Before a Pilot Test, further maturation of the technology will move along parallel tracks. One is for materials compatibility verification and another concerns the decomposition: verification of the equilibrium thermodynamic model and characterization of reaction kinetics. The third track is determination of a workable Decomposer Catalyst. These tests are essential to prove the technology is feasible and functional and to support analytical modeling. Thus, TRL 5 can be accomplished.

The Pilot test and balance of system tests are in sequence ahead of Conceptual Design. The Pilot test will be the first test in a fully relevant environment (*e.g.*- convective tube heating). Because it is also to be a full-scale test of one tube, the step to test at experimental-scale is skipped. The two alternative decomposer designs can be tested at this stage. With the Pilot test the technology goes to TRL 6.

The balance of the Sulfuric Acid Decomposition section consists of the feed and recycle concentration equipment and the effluent handling, for which tests are needed to advance their TRLs.

TRL 8 can be reached in two steps from the Conceptual Design: Engineering and Prototype Tests, both of which are multi-tube sections of a full-scale Acid Decomposer.

8.1.5 TECHNOLOGY MATURATION PLAN SUMMARY (CURRENT TRL TO TRL 8)

Following are brief descriptions of the objectives of the nineteen tests shown with numbered ovals on the TDRM. More detailed Test Plans for these steps are in Appendix C.

S-I Integrated Laboratory Scale (ILS) Experiment (#1)

The S-I ILS, which is in progress, is a test of the SNL Acid Decomposer on a small scale and with heating from an electric furnace rather convective heating with helium. However, it is a significant test that will demonstrate feasibility and functionality. Test results will provide data to support further analytical modeling of the S-I and HyS cycles. Particular results anticipated are effects of catalyst and process side flow distribution. For the S-I process, but not HyS, this ILS will give initial data on time effects of iodine impurities on the decomposition process and on materials compatibility when operated for an extended period.

The completion of this test advanced the Acid Decomposer to TRL 4, skipping TRL 3, because operation in the S-I ILS accomplishes both proof of concept and demonstration of technical functionality.

Materials Testing (#2)

The S-I ILS Experiment will validate the compatibility of the SiC tubes with the process fluids, which is to be expected from initial decomposer demonstration tests. Separate tests are needed for materials other than the SiC tubes. In particular, the seals between the SiC tubes and their manifolds or tubesheets need to be tested in anticipated pulse and cycle conditions. For the S-I process the tests need to determine effects of iodine impurities on corrosion and seal life.

Thermal-Hydraulic Analysis (#3)

The alternative decomposer designs that are the most advanced (SNL and WEC, as described in Section 8.1.2.1) have significantly different fluid follow patterns, and this thermal-hydraulic analysis may be a discriminator in the choice of which design to carry forward to the Pilot Test. This task will require iteration with the Bench-scale Tests for Decomposer Catalyst Development to account for the effects of flow and temperature on the catalyst and the decomposition reaction.

Acid Decomposer Data Verification (#4)

Experimental confirmation of the equilibrium and kinetic model implicit in the simulations generated thus far are essential. Much of the modeling has involved extrapolations of data that need confirmation. Results will provide data to support further analytical modeling of the S-I and HyS cycles.

Bench-scale Tests for Decomposer Catalyst Development (#5)

The Decomposer Catalyst requires development testing to assure reasonable performance stability and lifetime, since periodic replacement is expected. Chemical industry practice would dictate a lifetime of 20,000 hours, which often can be established by accelerated testing.

The characteristic of the Decomposer Catalyst, combined with thermodynamic analyses, determines whether the Decomposer design is set by limits on heat transfer or by the Decomposer Catalyst performance, and this is essential input to the Conceptual Design. This task

will require iteration with the Thermal-Hydraulic Analysis to account for the effects of flow and temperature on the Decomposer Catalyst and the decomposition reaction.

Catalyst bench testing will reveal the mechanisms and parameters of catalyst poisoning and degradation, and from those results one can initiate meaningful accelerated testing to support the overall HPS design.

The completion of this test will advance the Decomposer Catalyst to TRL 5, skipping TRL 4, because operation in the S-I ILS demonstrates technical functionality and in a relevant environment.

HyS Integrated Laboratory Scale (ILS) Experiment (#6)

An Integrated Laboratory Scale test is in the program plan for the HyS process development. The HyS ILS is to use the same or an improved Acid Decomposer based on the design of the S-I ILS, according to present plans. The alternative WEC decomposer design needs to be considered for the Acid Decomposer in the HyS ILS, in which case the Conceptual Design would have the test results from each decomposer design to choose from.

Note that the HyS ILS will not advance the Decomposer technology to a higher level.

Technology Decision Point (#7)

The two alternative designs for the Decomposer (WEC and SNL) may need to be carried to this stage in development to discriminate sufficiently to make a final choice. The principal factors in the choice will be the feasibility and buildability as determined by the testing of the materials of construction and the catalyst and by the verified thermodynamic data. Other discriminators will be the relative technology readiness, economics of the cycle in application and schedule and risk in the context of the overall programmatics.

Pilot Test (#8)

The combined tests and analyses following the ILS Experiment will bring the Acid Decomposer to TRL 5. At this point in development a decision can be made on the preferred concept (SNL or WEC, as described in Section 8.1.2.1) to carry forward.

In the Pilot Test a full-scale-length, single-tube, convection-heated bayonet tube assembly will be tested at design conditions. The test assembly will also include a reference sealing configuration and replaceable catalyst to verify the function of these features. This will be the first test with helium convective heating, rather than furnace heating, of the Decomposer. Only in this configuration are the catalyst bed and wall temperature profiles correct in detail. Helium flow in this test can be in one end and out the other, in contrast to the Engineering Test for which the flow return to the same end as entry will be required.

Possibly this test (and the later Engineering and Prototype Tests) could be conducted at a sulfuric acid plant, since sulfuric acid decomposition is nothing more than undoing what a sulfuric acid

plant does. It would draw a continuous feed from the plant and put its effluent product back into their feed.

A nominal goal of 1000 hours of steady operation without degradation of performance exceeding 5% per 1000 hours would constitute success. Ideally, the testing would also include startup, shutdown and accident transients to the degree confirmed at that design phase.

The test provides the thermal and hydraulic data needed for integration of the decomposer into the HPS, either S-I or HyS. The single full-length tube will have been tested at relevant conditions and so this will advance the TRL of the Acid Decomposer to TRL 6.

Integration of this test with the HyS ILS should be considered for program efficiency.

VLE Data Verification (#9)

The design of the reactor product and recycle concentration system requires verification and refinement of the vapor-liquid equilibrium data.

Vacuum Stripper Tower Design Data (#10)

Determinations of mass transfer coefficients or Heights Equivalent to the Theoretical Plate (HETPs) are needed along with good VLE data in order to confidently design this tower and, for the HyS system, the SO₂ absorber.

A vendor would supply a suitable packing that will be tested to measure an HETP or mass transfer coefficient. It may be useful also to do small bench scale tests to determine whether and how much the mass transfer in this system of components and conditions deviates from that of similar known systems.

Decomposer Product Materials Test (#11)

The materials of construction of the decomposer product handling equipment need to be tested for compatibility. Because of the effects of material transport, simple immersion of material coupons will not be sufficient. A circulating test loop should be considered.

Feed Handling Materials Test (#12)

Testing of the materials of construction feed acid handling and concentrating equipment and the verified VLE data completes development to the TRL 8 level for prototype application.

Valve Test (#13)

The valves that control the flow of high-temperature helium in the NHSS Secondary Heat Transport System (SHTS) between series and parallel PCHXs (the number of which is dependent on the process - S-I or HyS - and on the scale of eventual application) are part of the HPS. These valves are not anticipated to be new technology, but they are critical SSCs because there is no recent industrial experience with such valves. The valves will need verification testing. These do not need to be full-scale valve tests, but they should be prototypic in form to the

ultimate application, and therefore experience with smaller valves will not apply. Once the technology is validated at the pressures and temperatures of the NGNP application, the TRL will advance from 4 to 8.

Sensor Tests (#14)

Thermocouples, pressure sensors and other instruments need to be qualified for the operational environment they will experience. New technology is not expected to be required, and so prior to such tests the sensors would have been operated in relevant environments. Scale does not particularly apply to sensors, and so prior to testing they could be TRL-5, TRL-6 or TRL-7. The middle value is chosen arbitrarily. After successful testing the sensors are TRL-8.

Decomposer Model (#15)

A computational model of the Conceptual Design unit in a system will be based on data from the Pilot-scale Test testing. This computer model will provide a basis for design of the Engineering Test unit and confidence that the results of the Engineering Test will work in the NGNP Demonstration.

Engineering Test (#16)

In order to reach TRL 7 there needs to be a further scale-up and approach to prototype configuration. The test proposed is for a hexagonal matrix of 19 full-length tubes with helium heating. In such a configuration the central 5 tubes would be tested in full-scale thermohydraulic conditions on the outside, and likewise for the process flow in the tubes.

Note that this test precedes the Final Design and so will not necessarily include the prototypical tube seals, process side valves or instrumentation sensors. The test will provide design verification for these components.

The goal is 1500 hours of steady operation without degradation of performance exceeding 2% per 1000 hours

System Model (#17)

The input from the Acid Decomposer calculational model will be used in the S-I and HyS HPS models.

Prototype Test (#18)

This final test in the sequence of technology maturation would be the same configuration as the Engineering Test but with the final design features including the prototype seals, valves and instruments. The testing would cover the full operational environment and through the design cycles as determined by final system design. In addition, stable operation (less than 1% decline per 1000 hours) for a time period, 2000 hours, would be expected. This is full prototypic testing of a full-scale section of the Decomposer and constitutes advancement to TRL 8.

Sulfuric Acid Decomposition Section for S-I or HyS Development (#19)

The Sulfur Dioxide Electrolysis and the Bunsen Reaction and HI Decomposition TDRMs show system tests which would require a Sulfuric Acid Decomposition Section. These are discussed in Sections 8.2.5 and 8.3.5.

A S-I Systems Engineering Testis in the Bunsen Reaction and HI Decomposition TDRM is an optional step before the NGNP, and that will have integrated an Sulfuric Acid Decomposition Section approximately 1/20 of the NGNP size. This would be a design derived from the Acid Decomposer Engineering Test.

An optional HyS Systems Engineering Tests is shown in the Sulfur Dioxide Electrolysis TDRM before the NGNP, and that would have an Sulfuric Acid Decomposition Section of as yet undetermined size. This could be also a design derived from the Acid Decomposer Engineering Test.

Neither of these tests or test articles is essential to the Sulfuric Acid Decomposition technology development, but their execution would support the other steps and as a minimum reduce risk in the final application. In addition, use of the Acid Decomposer developmental test article might be cost effective for the SO_2 supply needed for these other tests.

8.1.6 INPUTS TO CTF

The TDRM for the Acid Decomposer has two scale-up steps after the S-I ILS. The first is to the Pilot Test, which is one full-length Decomposer tube. The thermal power for the convective helium heat input to one tube depends on the number of tubes and the total Decomposer heat duty. For planning purposes one can calculate from the WEC decomposer design [Ref. 0] that one tube has a heat duty that would require several hundred kWt for the test facility. This might not require a special facility for testing, if local electric heating can be provided. The Helium Testing Facility (HTF) of PBMR in South Africa, for example, might be modified for this test.

The next step is a 19-tube assembly that would, if calculated on the same basis require helium heating of several MWt. The CTF would be used for this level of heating.

8.2 SULFUR DIOXIDE ELECTROLYSIS TECHNOLOGY AREA

8.2.1 SSC DESCRIPTION/ FUNCTION AND OPERATING REQUIREMENTS

The Hybrid Sulfur (HyS) thermo- electro-chemical water splitting HPS is made up of the following systems. There are three major systems and of these, the Sulfuric Acid Decomposition System is partially the same as the Sulfuric Acid Decomposition System addressed in Section 8.1. The three systems marked with asterisks are those that are covered in Section 8.1 and are not discussed further here.

Sulfuric Acid Decomposition System (SAD) Acid Concentration System * Acid Steam Preheater and Vacuum Stripping * H₂SO₄ Decomposition and Acid Separation * Anolyte Processing SO₂ Recovery System SO₂ Compression Electrolyzer System (ELE) SO₂ Electrolysis Cells **Electrolyzer Internal Components** Electrolyzer Module Pressure Boundary Feed and Utility System (FUS) Acid and Caustic Storage Water Treatment Product Purification System (PPU) H₂ Compression and Drying H₂ Purification System O₂ Purification System Instrumentation and Control (I&C) System

A schematic flow diagram of the HyS process is shown in Figure 8-3.

Figure 8-3: Hybrid Sulfur Cycle

Functions and Operating Requirements

The Sulfur Dioxide Electrolysis section of the HyS HPS accepts the output of the Acid Decomposer. It separates the sulfuric acid (H_2SO_4) and water for concentration and recycle from the sulfur dioxide (SO_2) and oxygen (O_2) , and then in multi-cell Sulfur Dioxide Electrolyzers converts water and the SO₂ into H₂SO₄ and the hydrogen product.

The system is further described in the NGNP and Hydrogen Production Hydrogen Plant Alternatives Study [Ref. 0].

8.2.2 TECHNOLOGY/DESIGN SELECTION STATUS

8.2.2.1 Candidate Designs

The focus of the HyS technology development is the SO_2 Electrolyzer cell. Alternate configurations and materials have been proposed for the cells. The membrane-electrode assembly (MEA) consists of one of several choices of proton exchange membranes coated with alternative electrode layers.

8.2.2.2 Decision Discriminators

The early phase of HyS electrolysis cell development has consisted of experimental testing of various MEAs in different configurations within a systematic approach. The process

going forward will be successive interaction between design and experimental functions to iteratively arrive at an optimum electrolyzer sized for practical and economical application to the HyS HPS.

8.2.2.3 Reference Design

The HyS process and design used as a reference for this Technology Development analysis are presented in the NGNP and Hydrogen Production Hydrogen Plant Alternatives Study [Ref. 0].

8.2.2.4 Design Data Needs (DDNs)

The Design Data Needs (DDNs) for the Sulfur Dioxide Electrolysis technology area are itemized in Table 8-4.

DDN	Title	
Design Data Needs for Feed Purification (FUS)		
HPS-FUS-01	Identify Critical Impurities and Determine Critical Component Tolerance	
HPS-FUS-02	Develop Feed Water Purification Methods	
HPS-FUS-03	Develop Process Fluid Purification Methods	
	Design Data Needs for the Electrolyzers (ELE)	
HPS-ELE-01A	Develop a Cell Membrane	
HPS-ELE-02	Optimize Catalyst Loading in the Electrodes	
HPS-ELE-03	Develop a Cell Configuration and Materials	
HPS-ELE-04	Build and Test a Laboratory-scale Cell	
HPS-ELE-05	Build and Test Pilot-scale Cells	
HPS-ELE-06	Build and Test a Stack of Cells at Engineering Scale	
	Design Data Needs for Product Purification (PPU)	
HPS-PPU-01	Identify Product Impurities	
HPS-PPU-02	Test Product Purification Methods	
Design Data Needs for Instrument and Controls (PCN)		
HPS-PCN-01	Test Sensors in the Pilot Plant	
HPS-PCN-02	Develop Valves for High-Temperature Acid and/or Helium Service	
HPS-PCN-03	Test Valves in the Pilot Plant	

Table 8-4: Sulfur Dioxide Electrolysis DDNs

8.2.3 TRL STATUS

In summary, the current TRLs for the critical SSCs of the Sulfur Dioxide Electrolysis technology area are evaluated as in Table 8-5.

	TRL
Electrolyzer System (ELE)	2
SO ₂ Electrolysis Cells	3
Electrolyzer Internals	2
Electrolyzer Module Pressure Boundarys	5
SO ₂ portions of the Sulfuric Acid Decomposition System (SAD)	6
SO ₂ Absorber	6
Feed and Utility System (FUS)	
Water Treatment System	U
Instrumentation and Control (I&C) System – including sensors	6

Table 8-5: Sulfur Dioxide Electrolysis TRLs

In Appendix A2 are the detailed rating sheets of the TRLs for the seven bottom-tier SSCs in Table 8.2-1 that are not rated TRL 8.

8.2.4 TECHNOLOGY DEVELOPMENT ROAD MAP SUMMARY

The Technology Development Road Map (TDRM) for Sulfur Dioxide Electrolysis is in Appendix B2. TRL 8 for the technology requires the design and development of an SO₂ Electrolyzer Module that is scaled appropriately such that a reasonable number of the units can be combined with the Sulfuric Acid Decomposition section to make up the HyS HPS for an NGNP heat source.

From the individual SO₂ cells being tested today there will be scale up in three steps: from the present 160 cm² of cell demonstration to 400 cm², then to 1000 cm² and finally to one square meter. Cells would be assembled in to SO₂ Electrolyzer Modules of progressively larger power input and hydrogen output. Although subject to further definition in the design process, the final SO₂ Electrolyzer Module for the NGNP Demonstration would be sized so that about 20 modules would comprise the HyS HPS. Since the NGNP commercial plant is to have ten such trains of the HPS, the eventual NGNP commercial application would have about 200 of the finally developed SO₂ Electrolyzer Modules.

Scale-up proposed for planning purposes and shown in the TDRM is approximately as follows:

	Module	System
	Basis	Basis
ILS to Pilot	x 140	
Pilot to Engineering	x 10	
Engineering to System Prototype	x 1.5	
System Prototype to NGNP Demonstration Plant	x 1	x 20
NGNP Demonstration Plant to NGNP Commercial Plant		x 10

In addition, demonstrations will be done on the SO₂ Recovery System, the Feed Purification System and the Instrumentation and Control system. These are conventional systems that can be assembled in prototype at sub-scale to bring them to TRL 8 in one step.

8.2.5 TECHNOLOGY MATURATION PLAN SUMMARY (CURRENT TRL TO TRL 8)

Following are brief descriptions of the objectives of the sixteen tests shown with numbered ovals on the TDRM. More detailed Test Plans for these steps are in Appendix C.

Cell Stability Demonstration (#1)

Basic issues of cell degradation, due for example to migration of constituents across cell membranes, will be resolved through interaction of design and experiment.

Single Cell testing at 100°C, 10 atm (#2)

Tests up to this point are in laboratory environment. This test is at elevated temperature and at pressure, as is the application. The stability demonstration and this test at relevant conditions accomplish TRL 4.

Integrated Lab Scale Experiment (#3)

This test will combine a small-scale Decomposition section to demonstrate the HyS cycle. As noted in the Sulfuric Acid Decomposition TDRM (Section 8.1.5), this could be combined with the Pilot Test of the Acid Decomposer.

Optimized Cell Assembly Demonstration (#4)

In parallel with the ILS and Preconceptual Design, the electrolysis cell design and materials will be reoptimized. This is an additional step in iteration of design and experiment.

Cell Scale-up to 400 cm² (#5)

The plan has Electrolyzer Cells scaled-up from the ILS size in two steps – these correspondingly after Preconceptual and Conceptual Design. Cell scale-up to 400 cm² plus the ILS operation constitute experimental demonstration and advance Sulfur Dioxide Electrolysis to TRL 5. Note that this scale-up follows a step of Fabrication Development, which will transition the overall R&D from laboratory orientation to manufacturing orientation. The Fabrication Development envisions significant participation by a commercial entity with some relevant experience.

Electrolyzer Module Internals Test (#6)

Following Preconceptual Design of the Electrolyzer Module Pressure Boundary, the Module Internal design will be tested. At this stage all components of the Electrolyzer Module (sells, internals and vessel) are TRL 5, because they are defined and demonstrated on experimental scale.

Structural Test (#7)

The design requierements of the vessel or pressure retaining exterior boundary for the SO_2 Electrolysis Cell is not finally determined. However, there is a preferred concept of a pressurized module which qualifies for TRL-5 because it is defined and has been modeled analytically. It would be tested separately for pressure retention and material compatibility and then used in the Electrolyzer Pilot-scale Test.

Electrolyzer Pilot-scale Test (#8)

This is the first test of an electrolyzer with 400 cm² cells and the first test of the Module Pressure Boundary and module internals. For this test the nominal goals, which are subject to change as the R&D program proceeds along the Road Map, are as follows:

Electrolyzer	
Avg. cell voltage, mV	700
Current Density, mA/cm ²	500
Cell Active Area, cm ²	400
HyS System	
Hydrogen output, l/h	28,000
Hydrogen output, kW (HHV)	70
Process heat input, kWt	200
Process electrical input, kWe	100
Time on line, hours	1000

Electrolyzer Engineering-scale Test (#9)

This is a test of one electrolyzer with full-scale cells (1000 cm^2) following Conceptual Design. It will suffice as an engineering scale test since this is the final electrolyzer scale-up,

although not yet prototypical. Testing will not necessarily be to the full range of transients, and so the test will advance the TRL from 6 to 7.

The nominal goals of this test are as follows:

Electrolyzer	
Avg. cell voltage, mV	650
Current Density, mA/cm ²	500
Cell Active Area, cm ²	1000
HyS System	
Hydrogen output, ℓ/h	280,000
Hydrogen output, kW (HHV)	1000
Process heat input, kWt	2000
Process electrical input, kWe	1000
Time on line, hours	1500

Prototype Electrolyzer Test (#10)

This test will also be of one electrolyzer. It will be the full-scale prototype resulting from Final Design with the cell scaled up in area from 1000 cm^2 to 1 m^2 . The heat and power input and the hydrogen output in this test will be only 1.5 times that of the Electrolyzer Engineering-scale Test.

It is anticipated that this test would be performed in the same facility as the Engineering Test. Tests will be in the operational environment and cover the appropriate number and duration of tests. This will accomplish TRL 8 for the Electrolyzer Module.

The goal of this test is 2000 hours of operation with production on the order of 420 Nm³ of hydrogen per hour and stability of less than 1% decline per 1000 hours.

SO₂ Absorber Demonstration Test (#11)

System feasibility and functionality for the system can be assured from general industry experience, but design data is needed in the operating environment. Specifically for mass transfer in the SO_2 absorber column, the Heights Equivalent to the Theoretical Plate (HETPs) need to be experimentally determined. In order to be applied to the NGNP, sub-scale demonstration testing of the SO_2 Recovery System in the operational environment is expected. This is a jump from TRL 6 to TRL 8.

Feed Purification System Demonstration Test (#12)

There are a number of proven water purification processes that can provide ultra-pure water, but without requirements the scope of development of this SSC is uncertain.

System Modeling (#13)

Demonstration of integrated operation can be done by computer simulation given input of the performance of the discrete components in prototype or pilot testing in their operational environments. Results will be input to the final System Design.

Sensor Tests (#14)

Thermocouples, pressure sensors and other instruments need to be qualified for the operational environment they will experience. New technology is not expected to be required, and so prior to such tests the sensors would have been operated in relevant environments. Scale does not particularly apply to sensors, and so prior to testing they could be TRL-5, TRL-6 or TRL-7. The middle value is chosen arbitrarily. After successful testing the sensors are TRL-8.

Prototype HPS Test (#15)

This test is intended to be an assembly of one or more of the Prototype Electrolyzers from the previous test with a scaled-down Acid Decomposer section. It is not clear that this test is needed, because separate testing of the Acid Decomposer and one Prototype Electrolyzers with transfer of feed and products between them could be sufficient to assure TRL 8. Integrated operation would be demonstrated by analysis.

Continuing Cell Testing (#16)

As cell stack and system tests proceed, there is a need to accumulate lifetime data and quantify long-term degradation. One or more cell tests should continue after the cell scale-up to one square meter. The attainment of TRL levels elsewhere on the Road Map would be supported by the Continuing Cell Testing according to the criteria in Table 8-6.

TRL	Max. rate of degradation	Minimum test duration
4	20%/1000 hours	500 hours
5	10%/1000 hours	1000 hours
6	5%/1000 hours	2000 hours
7	2%/1000 hours	5000 hours
8	1%/1000 hours	10,000 hours

Table 8-6:	Duration	and Maximu	m Rates l	Degradation	for Cell Tests
------------	----------	------------	-----------	-------------	----------------

8.2.6 INPUTS TO CTF

The specific tests in the TDRM for Sulfur Dioxide Electrolysis do not particularly require the CTF. The optional Prototype HPS Test would incorporate an Acid Decomposer section and require some helium heating. If one prototype electrolyzer module it tested and that is on the

order of 1/20 of the NGNP Demonstration plant output, several MWt of helium heating would be needed. The CTF would likely be used for this test.

8.3 BUNSEN REACTION AND HI DECOMPOSITION TECHNOLOGY AREA

8.3.1 SSC DESCRIPTION/ FUNCTION AND OPERATING REQUIREMENTS

The Bunsen Reaction and HI Decomposition technology area is part of the Sulfur-Iodine (S-I) thermochemical water splitting process. Combined with the Sulfuric Acid Decomposition section this makes up the S-I HPS. The S-I HPS has been discussed in the NGNP and Hydrogen Production Hydrogen Plant Alternatives Study [Ref. 0]. The Bunsen and HI Decomposition sectionss are comprised of the following systems and major components:

- 1. Bunsen Reaction Section (Section 1 reference version: Co-Current Reactor)
 - a. Bunsen Reactor [$I_2 + SO_2 + 2 H_2O \rightarrow H_2SO_4 + 2 HI$]
 - b. Three-Phase Separator
- 2. HI Distillation Section (Section 3 reference version: Reactive HI Distillation)
 - a. Reactive Still [$2 \text{ HI} \rightarrow \text{I}_2 + \text{H}_2$]
 - b. Recuperators
 - c. Process Coupling Heat Exchanger
 - d. Power Recovery System
- 3. Balance of S-I Plant
 - a. Feed Purification
 - b. Product Purification
 - c. Instrumentation and Controls

A schematic flow diagram of the Bunsen and HI Decomposition sections of the S-I HPS are shown in Figure 8-4 and Figure 8-5.

Figure 8-5: HI Decomposition Section

Functions and Operating Requirements

The Bunsen Reaction section of the S-I cycle ideally receives feed water (H₂O), sulfur dioxide (SO₂) from the Acid Decomposer section and iodine (I₂) from the HI Decomposition section and produces sulfuric acid (H₂SO₄) and hydro-iodic acid (HI). This is an exothermic reaction requiring cooling that is run at about 100°C. In actuality the cycle flowsheets balance with significant water, H₂SO₄ and HI recirculation.

In the HI Decomposition section HI is decomposed into I_2 and H_2 and these two separated. The reaction is endothermic, and so heat is added from the nuclear heat supply secondary helium circuit through a Process Coupling Heat Exchanger (PCHX) in order to maintain at from 300 to 400°C. The I_2 is recycled to the Bunsen Reaction section and the H_2 is delivered as product after purification.

The two systems are further described in the NGNP and Hydrogen Production Hydrogen Plant Alternatives Study [Ref. 0].

8.3.2 TECHNOLOGY/DESIGN SELECTION STATUS

The three sections of the S-I cycle have been demonstrated separately in the laboratory and in small-scale glass apparatus. In addition, although there has been no final selection of the

optimum alternatives from among various approaches, integrated systems have been assembled and tested. Testing of a complete system was reported in Japan several years ago [Ref. 0] and the S-I Integrated Laboratory Scale (ILS) Experiment is in work under an International Nuclear Energy Research Initiative (I-NERI) as part of the US DOE Nuclear Hydrogen Initiative (NHI).

These experiments are running ahead of S-I system design, which is only reaching Preconceptual Design phase. This Hydrogen Plant Alternatives Study is an initial step in that Preconceptual Design.

8.3.2.1 Candidate Designs

Each of the three sections of the S-I cycle has two or more alternative candidate designs. The Sulfuric Acid Decomposer alternates are addressed in Section 8.1.2.1. The Bunsen Reaction section has the alternatives of a co-current reactor with separate phase separation and counter current reactor with integral phase separation. The former has been conceptually considered and used in flowsheets developed in the U.S. The latter is the design of the Commissariat à l'Énergie Atomique (CEA) which was developed under a US DOE International Nuclear Engineering Research Initiative (I-NERI) and has been selected for the S-I ILS.

There are two HI Decomposition section designs proposed. Distillation by extraction with phosphoric acid is the method chosen for the S-I ILS based upon the recommendation of the CEA. Reactive distillation is proposed for the NGNP and eventual commercial application.

8.3.2.2 Decision Discriminators

In all cases of choices made thus far the discrimination has been a trade-off of the minimum critical path to demonstration *versus* the estimated cycle efficiency and anticipated cost to commercially produce hydrogen.

8.3.2.3 Reference Design

The S-I process and design used as a reference for this Technology Development analysis are presented in the NGNP and Hydrogen Production Hydrogen Plant Alternatives Study [Ref. 0].

8.3.2.4 Design Data Needs (DDNs)

The Design Data Needs (DDNs) for the Bunsen Reaction and HI Decomposition Section are itemized in Table 8-7.

DDN	Title	
Design Data Needs for Feed Purification (FUS)		
HPS-FUS-01	Identify Critical Impurities and Determine Critical Component Tolerance	
HPS-FUS-02	Develop Feed Water Purification Methods	
HPS-FUS-03	Develop Process Fluid Purification Methods	

 Table 8-7: Bunsen Reaction and HI Decomposition Section DDNs

	Design Data Needs for Bunsen Reaction (BUN)
HPS-BUN-01	Confirm Thermodynamic Data for the Bunsen Reaction Process including Phase Equilibria
HPS-BUN-02	Gather Kinetic and Mass Transfer Data for the Bunsen Reaction in the proposed reactor configuration
HPS-BUN-03	Develop Gasket Materials and Design for Bunsen Reaction Environment
HPS-BUN-04	Develop Seal Materials and Design for Bunsen Reaction Environment
HPS-BUN-05	Develop Welding Materials for Bunsen Reaction Environment
HPS-BUN-06	Develop Cladding and Coating Materials for Bunsen Reaction Environment
HPS-BUN-07	Develop Piping Materials and Design Methods for Bunsen Reaction Environment
	Design Data Needs for Hydroiodic Acid Decomposition (HID)
HPS-HID-01	Demonstrate Hydroiodic Acid Reactive Distillation Decomposition in Principle
HPS-HID-02	Confirm Thermodynamic Data for the Hydroiodic Acid Decomposition Process including Phase Equilibria
HPS-HID-03	Develop commercial HI Decomposition Catalyst
HPS-HID-04	Gather Kinetic and Mass Transfer Data for the Hydroiodic Acid Decomposition in the proposed reactor configuration based on the commercial catalyst
HPS-HID-05	Develop Gasket Materials and Design for Hydroiodic Acid Decomposition Environment
HPS-HID -06	Develop Seal Materials and Design for Hydroiodic Acid Decomposition Environment
HPS-HID -07	Develop Welding Materials for Hydroiodic Acid Decomposition Environment
HPS-HID -08	Develop Cladding and Coating Materials for Hydroiodic Acid Decomposition Environment
HPS-HID-09	Develop Piping Materials and Design Methods for Hydroiodic Acid Decomposition Environment
	Design Data Needs for Product Purification (PPU)
HPS-PPU-01	Identify Product Impurities
HPS-PPU-02	Test Product Purification Methods
	Design Data Needs for Instrument and Controls (PCN)
HPS-PCN-01	Test Sensors in the Pilot Plant
HPS-PCN-02	Develop Valves for High-Temperature Acid Service
HPS-PCN-03	Test Valves in the Pilot Plant

8.3.3 TRL STATUS

The three sections of the S-I cycle have been demonstrated separately in the laboratory and in small-scale glass apparatus. However, the three sections tested do not have the same flow sheets as the reference designs for nuclear hydrogen production with the NGNP. The useful results from these tests are the basis for the S-I ILS Experiment. For the Bunsen section the concepts have been formulated and issues related to performance are identified. General proof of principle was demonstrated and critical functions proven. These put the Bunsen section at TRL 3.

The HI Decomposition section of the ILS, however, was a solvent extraction cycle not the reference concept, which is reactive distillation, and so that section remains TRL 2.

In summary, the current TRLs for the Bunsen Reaction and HI Decomposition sections are evaluated as in Table 8-8.

	TRL
Bunsen Reaction System	3
Bunsen Reactor including seals and vessel	3
Three-Phase Separator	3
HI Decomposition Systems	2
Reactive Still including catalyst, seals and vessel	2
Process Coupling Heat Exchanger	5
Power Recovery System	6
Balance of S-I Plant	6
Reactor Product Handling Equipment	6
Feed Purification	U
Product Purification	U
Helium Control Valves	4
Instrumentation and Controls including sensors	6

Table 8-8: Bunsen Reaction and HI Decomposition Section TRLs

In Appendix A3 are the detailed rating sheets of the TRLs for the ten SSCs in Table 8.3-3 that make up the Bunsen Reaction and HI Decomposition sections.

8.3.4 TECHNOLOGY DEVELOPMENT ROAD MAP SUMMARY

The Technology Development Road Map (TDRM) for Bunsen Reaction and HI Decomposition is in Appendix B3. From today's status, the next step is for the reactive HI distillation concept to be brought up to the same level of proof of concept that the Bunsen Reaction Section design will have reached at the end of the S-I ILS Experiment. Following that will be the Preconceptual Design of a flowsheet and components that will meet the performance goals of the NGNP. Then the steps to TRL 8 are successive tests of scaled-up assemblies.

The Preconceptual Design will lead to Experimental-scale tests of the Bunsen Reaction Section and the HI Decomposition Section separately to demonstrate progress in basic unit operations and to confirm the design. The two sections will then be combined for integrated operation into a Pilot-scale Test, the results of which will support Conceptual Design.

The next juncture on the Road Map is a Bunsen & HI Sections Engineering Scale Test. This should bring these sections of the S-I HPS to readiness for the NGNP Demonstration where they would be combined with the Sulfuric Acid Decomposition section. However, if necessary could be a S-I System Engineering Prototype Test including the Sulfuric Acid Decomposition Section.

Scale-up proposed for planning purposes and shown in the TDRM is approximately as follows:

ILS to Pilot	x 100
Pilot to Engineering	x 20
Engineering to NGNP Demonstration Plant	x 20
NGNP Demonstration Plant to NGNP Commercial Plant	x 10

8.3.5 TECHNOLOGY MATURATION PLAN SUMMARY (CURRENT TRL TO TRL 8)

Following are brief descriptions of the objectives of the thirteen steps shown with numbered ovals on the TDRM.

S-I ILS Experiment (#1)

This is a presently ongoing system test. The apparatus has advanced from glass laboratory assembly to metal and SiC in contact with the process fluids. A major distinction is that the HI Distillation section is not of a design that appears to be feasible in a commercial application, because of the low overall system efficiency. Therefore, this system test advances only the Bunsen section to TRL 4. The development skips TRL 3, because operation in the S-I ILS accomplishes both proof of concept and demonstration of technical functionality.

Kinetic and Thermodynamic Data (#2)

In order to design the HI reactive distillation section the reaction kinetic and thermodynamic data is required. At this point in development of the reactive distillation option, thermodynamic and mass transfer data have been approximated and/or extrapolated. The cycle requires work (electric power) input, and the calculation of this is indeterminate without more reliable data. Gathering this data fulfills the TRL 3 criterion to prove analytical and experimental critical function and/or characteristic in the laboratory.

HI Section Experimental Test (#3)

Following Preconceptual Design an experimental scale design verification test of the HI Decomposition section will advance it to TRL 4. (It falls short of TRL 5 because without the Bunsen section the test is not in a relevant environment.)

Bunsen & HI Sections Pilot Test (#4)

Before Preconceptual Design the results of the S-I ILS will be reviewed. Following Preconceptual Design further maturation requires a test of the Bunsen section combined with the reactive distillation HI section. Separate tests would not be adequate because of the high interchange of I_2 and HI between the sections in operation. This test assembly would be equivalent in scale to an HPS producing about one half gram/second of hydrogen. This test will provide the data for S-I HPS Conceptual Design, and the test size is the minimum that would provide confidence to proceed with the system design.

The goal of this test is 1000 hours of operation with production on the order of 20 Nm^3 of hydrogen per hour and stability of less than 10% decline per 1000 hours.

Bunsen & HI Sections Engineering Test (#5)

The design and experimental iterative process will continue according to the design resulting from the Conceptual Design. This test assembly would be equivalent in scale to an HPS producing about ten gram/second of hydrogen. The assembly will be tested in the full operating conditions (temperatures, pressures) and for dynamics, startup, shutdown, emergencies, *etc.* The test assembly would include designed seals, valves and instrumentation sensors, and the testing would provide design verification for the Final Design exercise.

The goal of this test is 2000 hours of operation with production on the order of 420 Nm³ of hydrogen per hour and stability of less than 1% decline per 1000 hours.

This completes the maturation of the Bunsen Reaction and HI Decomposition sections to TRL 8.

Process Coupling Heat Exchanger Tests (#6)

This heat exchangers is and conventional will require materials compatibility testing at the temperatures and pressures at which it will operate. If necessary, a pilot assembly of the PCHX would be tested at sub-scale but with appropriate similitude at its high temperature operational environment. Further definition of these tests requires the completion of design.

Reactor Products Handling Equipment (#7)

Basic fluid data and materials compatibility data are needed for the various compositions of iodine and HI. No specific handling equipment technology development is intended. Materials testing after the designs are established advances this technology to TRL 8.

Feed Purification System Demonstration Test (#8)

Design of the water purification system of the Feed and Utility System (FUS) need to mitigate the effects of various contaminants on the Bunsen and HI decomposition reactions. Concern is with impurities dissolved in iodine that build up in the system or precipitate out at the liquid/liquid interface. Without requirements the scope of development of this SSC is uncertain.

Product Purification System Demonstration Test (#9)

The overall system design must assure that the hydrogen product purity requirements are realized. The concern is iodine presence in the hydrogen. In theory it could be removed, but this would have to be demonstrated convincingly before the hydrogen could be put into any pipeline. Without requirements the scope of development of this SSC is uncertain.

Valve Test (#10)

The valves that control the flow of high-temperature helium in the NHSS Secondary Heat Transport System (SHTS) between series and parallel PCHXs (the number of which is dependent on the process – S-I or HyS – and on the scale of eventual application) are part of the HPS. These valves are not anticipated to be new technology, but they are critical SSCs because there is no recent industrial experience with such valves. The valves will need verification testing. These do not need to be full-scale valve tests, but they should be prototypic in form to the ultimate application, and therefore experience with smaller valves will not apply. Once the technology is validated at the pressures and temperatures of the NGNP application, the TRL will advance from 4 to 8.

System Modeling (#11)

The Instrumentation and Control (I&C) requires design verification that can be accomplished by analysis. The model will use data from the Bunsen & HI Sections Pilot Scale Test. Since the HPS is made of discrete thermal-hydraulic components connected by piping, the demonstration of integrated operation can be done by computer simulation given input of the performance of the discrete components in prototype or pilot testing in their operational environments. Results will be input to the final System Design.

Specific I&C concern is interface measurement and control of the liquid/liquid interface in the 3-phase separator and elsewhere in the system. There is a need to test available methods of interface determination and assess their effectiveness. If none were suitable, a new technology might have to be developed. Completion of system modeling will constitute demonstration of the I&C System, and so the I&C System advances to TRL 8.

Sensor Tests (#12)

Thermocouples, pressure sensors and other instruments need to be qualified for the operational environment they will experience. New technology is not expected to be required, and so prior to such tests the sensors would have been operated in relevant environments. Scale does not particularly apply to sensors, and so prior to testing they could be TRL-5, TRL-6 or TRL-7. The middle value is chosen arbitrarily. After successful testing the sensors are TRL-8.

S-I System Engineering Prototype Test (#13)

This test is not considered useful to advance the technology, because the separate testing of the Acid Decomposer and the combined Bunsen & HI Sections in the engineering scale could assure TRL 8. It is included as an option in the case that an integrated S-I system HPS assembly is required. Depending on design work yet to be done, the test will be built for input power of about 2.5 MWt, which is 1/20 of the minimum commercial scale and 1/200 of the ultimate commercial plant scale. This test assembly would be producing about 10 grams/second of hydrogen.

8.3.6 INPUTS TO CTF

Test steps in the Bunsen Reaction and HI Decomposition TDRM will not require significant heating. The Bunsen reaction is exothermic and the HI Decomposition as conceptualized has a Process Coupling Heat Exchanger with a maximum temperature of 300 to 400°C. This would not require a dedicated heating system such as the CTF.

There is in the Bunsen Reaction and HI Decomposition TDRM an optional S-I System Engineering Test that will require an Acid Decomposer section. If scaled as shown in the TDRM, the S-I System Engineering Test would require helium heating of several MWt. This test would be most likely use the CTF.

8.4 HIGH TEMPERATURE STEAM ELECTROLYSIS

8.4.1 SSC DESCRIPTION/ FUNCTION AND OPERATING REQUIREMENTS

The High Temperature Steam Electrolysis (HTSE) overall system is divided into the four major systems, and itemized below each are the principal systems and major components

- 1. ELE System (Electrolyzer System)
 - a. Electrolyzer Modules
 - i. Solid Oxide Electrolysis (SOE) Cells
 - ii. Other Electrolyzer Module Internals
 - b. Process Coupling Heat Exchangers
 - c. Piping, Manifolds & Insulation
- 2. HRS System (Heat Recovery System)
 - a. Heat Exchangers
 - b. Recirculator
- 3. FUS System (Feed & Utility System)
 - a. Feed Purification Systems
 - b. Sweep Gas Turbine
- 4. PPU System (Product Purification Unit)

A schematic flow diagram of the HTSE HPS is shown in Figure 8-6.

Figure 8-6: HTSE HPS

Functions and Operating Requirements

The HTSE Hydrogen Production System (HPS) accepts heat from the plant Nuclear Heat Supply System (NHSS). Heat is provided to the Process Coupling Heat Exchangers of the HTS ELE system by the NHSS Secondary Heat Transport System (SHTS) which is a circuit of flowing helium.

The HPS also takes electric power from the plant Power Conversion System (PCS) and imports additional electric power from the offsite electric grid through the plant Balance of Plant (BOP).

The HPS gets process feed water and certain other consumables from the BOP, and the water is further purified for use in the HPS. The heat and electric energy converts the feed water into hydrogen and oxygen gas. The hydrogen is directly provided to a pipeline for export after drying, and the oxygen is vented to the atmosphere in the form of oxygen enriched air after drying. Wastewater streams are released to the environment after treatment.

Hydrogen production occurs in the Electrolyzer System (ELE). Functions of the other major systems that comprise the HTSE HPS are implied from their names: Heat Recovery System (HRS), Feed & Utility System (FUS) and Product Purification System (PPU).

Operating requirements are to meet project requirements with respect to safety, availability, product output and environmental impact in accordance with the overall plant

design. Therefore, cell and stack performance must be safe and meet the economic target of the project. Minimum requirements to accomplish this are:

- 1) Oxygen-rich and hydrogen-rich environments must not communicate with one another.
- 2) Cell area-specific resistance should be minimized
- 3) Cell current density should be maximized
- 4) Electrical potential between contiguous stack sections must be minimized.
- 5) Flow distribution among cells, stacks of cells and modules must be equalized
- 6) Sweep gas requirements should be minimized
- 7) Transfer adequate heat to the operating cells and maintain them at the required operating temperature
- 8) Maximize energy recuperation within practical engineering limits
- 9) Purify the feed water and sweep gas to the extent required by economical cell operation
- 10) Purify the products to the extent required by the customer
- 11) Treat waste streams to the extent required by applicable environmental regulations
- 12) Design the plant so that it can be operated in a safe manner and operate the plant in a safe manner in accordance with the design

Further specific statements of functions and requirements of the HTSE HPS will result from the Conceptual Design.

The system is further described in the NGNP and Hydrogen Production Hydrogen Plant Alternatives Study [Ref. 0].

8.4.2 TECHNOLOGY/DESIGN SELECTION STATUS

The most advance design of the HTSE HPS is the design as described in the NGNP and Hydrogen Production Hydrogen Plant Alternatives Study [Ref. 0]. This is a Preconceptual Design for the overall system. Although much work has been carried out in the design of benchscale cells and stacks, significant work has yet to be done in the design of commercial scale cells, stacks and modules. Future technology development must work in tandem with design work to arrive at a practical initial design concept. There are four levels at which electrolyzer design issues must be addressed:

1) Individual SOECs:

- a. Maximize current density and minimize area specific resistance.
- b. Seal the cells such that the hydrogen-rich side does not communicate with the oxygen-rich side in spite of differences in thermal expansion coefficient between cell components.
- c. Avoid cell de-lamination in spite of differences in thermal expansion coefficient between cell components.
- d. Optimize resistance to flow of the feed and sweep gases.
- e. Minimize or eliminate the need for sweep gas.
- 2) Stacks of cells:
 - a. Equalize the resistance to flow through the cells such that individual cells are neither flooded with nor starved of feed steam. This may be an issue of control of variability in the manufacture of cells.
 - b. Minimze the electric potential between contiguous sections of the stack.

Seal the edges of the stacks to the manifolds such that hydrogen-rich and oxygen-rich environments do not communicate.

Mantain electrical connectivity between the power supply and the cell stacks and between cells within the enclosure environment.

- c. Maintain adequate pressure on the stack to hold the inter-cell seals within the enclosure environment.
- 3) Enclosure of the stacks:
 - a. Optimize the operating pressure of the stacks. The higher the operating pressure, the lower product and sweep gas compression requirements. On the other hand, high operating pressures pose difficult sealing and safety issues.
 - b. Maintain the required operating temperature of the stacks while minimizing heat losses and maintaining a safe environment for plant operators
 - c. Allow electrical connectivity to the enclosed stacks while sealing the stack environment from the ambient environment.
- 4) System design
 - a. Low current density in the cells requires that very large cell area is required for a commercial installation. This, in turn, requires a large number of modules (76 in the pre-conceptual design) each of which is a high pressure vessel operating at very high temperatures.
 - b. Plant layout must be carried out so as to minimize piping run length and pipe growth due to thermal expansion. A 1½% to 2% (2m/100m) growth from ambient to operating temperature is expected. Moreover, adequate access for repair and replacement of modules must also be provided.

c. Pressure drop in the feed lines must be limited to ensure adequate distribution among the modules.

The Solid Oxide Electrolysis Cells (SOECs) have been developed to a "laboratory" or "bench scale" level and electrolyzer stacks have been designed and tested to the degree necessary to demonstrate feasibility and functionality at low pressure. Commercial scale cell and stack design has received only very preliminary attention and enclosure and system design has received little. These levels of design interact with one another and with the technology development effort. Sealing requirements may be different for one stack or enclosure design than for another. One set of requirements may necessitate a new sealing technology whereas an alternative design may not.

In addition to the electrolyzers, heat recovery, heat transmission and feed require design attention:

Heat recovery and heat transmission from the NHSS requires operation at elevated temperature. Selection of materials of construction and design of the higher temperature heat exchangers, piping and valving require attention.

Adequate heat transmission to the cells now requires that the PCHX heating the feed steam and that heating the sweep gas operate in parallel.

8.4.2.1 Candidate Technologies

The SOEC design progressed in the early stages of conceptual development to the choice of stacked individual planar cells with peripheral feed supply and product removal. An alternative is tubular cells [Ref. 0]. The tubular configuration appears to have inferior current and flow access and an inherently lower packing density. However, the tubular design would be considered as a back-up to be revisited in the conceptual design phase in the event difficulties with planar cells in manufacturing, sealing, accommodating thermal stress or assembling cells into modules make the tubular option appear more practical.

Electrode materials and electrolyte materials have been chosen, but alternative materials continue to be considered.

Sealing techniques have been designed and tested in the partial stack tests. They will be further tested in the HTSE ILS. Sealing problems are connected with cell size and issues surrounding assembling cells into modules. Design refinements are expected in the course of development.

The most significant design issue is the size of the planar cell. The cells are now sized based upon a rectangular electrolyte 100 mm on a side. If physical limits – particularly differential thermal expansion – permit, the cells need to be scaled up to 500 mm on a side to approach commercial economic viability. This size has been selected for the design in the NGNP and Hydrogen Production Hydrogen Plant Alternatives Study [Ref. 0].

8.4.2.2 Decision Discriminators

Decisions regarding the size and configuration of the cells include individual cell performance, primarily current density, area specific resistance and resistance to flow.

8.4.2.3 Reference Design

The High Temperature Steam Electrolysis (HTSE) process and design corresponding to this technology evaluation is documented in the NGNP and Hydrogen Production Hydrogen Plant Alternatives Study [Ref. 0].

8.4.2.4 Alternative for Further Evaluation

Alternatives already considered were mentioned in Section 8.4.2.1. At this point in the development phase no alternatives are being considered.

8.4.2.5 Down Selection Task

While one electrolyzer concept has been chosen for development, the conceptual design phase of the NGNP is still ahead. When that design phase is entered, it is recommended that alternatives be reviewed. In practical terms that will be the down-selection for going forward to full-scale cell tests and then to Pilot Test.

8.4.2.6 Design Data Needs (DDNs)

The Design Data Needs (DDNs) for High Temperature Steam Electrolysis are itemized in Table 8-9.

DDN	Title		
Design Data Needs for Feed Purification (FUS)			
HPS-FUS-01	Identify Critical Impurities and Determine Critical Component Tolerance		
HPS-FUS-02	Develop Feed Water Purification Methods		
HPS-FUS-03	Develop Process Fluid Purification Methods		
Design Data Needs for the Electrolyzers (including PCHX) (ELE)			
HPS-ELE-01B	Develop a Cell with a commercially acceptable activity and life		
HPS-ELE-02	Optimize Catalyst Loading in the Electrodes		
HPS-ELE-03	Develop a Cell Configuration and Materials		
HPS-ELE-04	Build and Test a Prototype Cell		
HPS-ELE-05	Build and Test a Pilot-scale Cell		
HPS-ELE-06	Build and Test a Stack of Cells in a Pilot Plant		

Table 8-9:HTSE HPS DDNs

HPS-ELE-07	Test Alloy 230 and Alloy 617 in High Temperature Helium and Air/Oxygen and Steam/Hydrogen Mixtures
HPS-ELE-08	Test a Pilot-Scale PCHX
HPS-ELE-09	Provide Data Supporting a Design Code Case
HPS-ELE-10	Develop Gasket Materials and Design
HPS-ELE-11	Develop Seal Materials and Design
HPS-ELE-12	Develop Welding Materials
HPS-ELE-13	Develop Piping Materials and Design Methods
	Design Data Needs for Instrument and Controls (PCN)
HPS-PCN-04	Develop and Test High Temperature Helium Control Valves

8.4.3 TRL STATUS

The current TRLs for the HTSE HPS and its constituent systems are evaluated as in Table 8.4-3. In summary, the Solid Oxide Electrolysis (SOE) Cells are furthest advanced with the other systems lagging in development because of the low degree of design definition at this phase.

	TRL
Overall HTSE HPS	
ELE System (Electrolysis System)	3
Electrolyzer Module	3
SOE Cells	3
Internal Manifolds	5
Seals	4
Sweep Gas Coupling Heat Exchanger	5
Process Coupling Heat Exchanger	5
Piping, Manifolds	U
HRS System (Heat Recovery System)	5
Heat Exchangers	5
FUS System (Feed & Utility System)	7
Feed Purification System	U
Sweep Gas Turbine	7
Helium Control Valves	4

Table 8-10: HTSE HPS TRLs

Instrumentation & Controls -- including sensors

6

The HRS System Recirculator and the PPU System are ranked TRL 8. This is an indication that the technology is ready for the demonstration of the overall system, and therefore these SSCs are "critical" but do not need testing, and only need vendor confirmation as the design is detailed.

In Appendix A4 are the detailed rating sheets of the TRLs for the eight SSCs in Table 8-10 shown with asterisks. The other SSCs in the listing are either TRL 8 or have the lowest TRL rating of their constituent parts, and so separate sheets for them are not necessary. Each sheet includes the summary basis for the rating and for each SSC an outline of a plan to get from current level to next level.

8.4.4 TECHNOLOGY DEVELOPMENT ROAD MAP SUMMARY

The Technology Development Road Map (TDRM) for the HTSE HPS is in Appendix B4. The critical path through the TDRM toward maturation of the technologies pertaining to the HTSE HPS follows the following course.

The maturation plan can not be more precise because of the early stage of design and of the low levels of technology readiness (TRLs) today. The present phase is between preconceptual and conceptual design with supporting development at laboratory or bench scale. In those circumstances, design and development are in a chicken-or-the-egg relationship. Although we identify steps (mainly experiments and tests) to advance the technology, these can not be more definitely specified until the designs advance further. In some cases whether the test is really necessary or if the technology is already nearly ready (TRL 6, -7 or -8) cannot be decided until after the design details are done.

The above describes the appropriate cycle of design and development, where initial concepts frame technical issues and produce data needs (DDNs). The technology is then developed to answer the need, the design moves to further detail. The further design raises more technical uncertainties. More DDNs are written and through development testing technology moves ahead. This circuit is repeated numerous times maturing as it goes. In the current case of HTSE technology the processes is between preconceptual and conceptual design and at a low degree of technical maturity.

Note that the TDRM and maturation plans will need to be adjusted as new DDNs evolve as part of the conceptual and detail designs.

Advance the Electrolyzer Module

The Materials Test Facility is in operation, and the ILS Experiment is running. Electrolyzers are presently TRL 4, their feasibility and functionality having been proved in earlier partial cell stack tests, but the specific issue of stable operation needs to be resolved in the ILS test.

The successful completion of the ILS Experiment will support the overall system conceptual design, which will include SOE cell and Electrolyzer Module re-design. A this point the cell production will be re-engineered to meet the requirements of cell area scale-up, and a round of fabrication development tasks can be anticipated.

Scale-up proposed for planning purposes and shown in the TDRM is approximately as follows:

ILS to Pilot	x 13
Pilot to NGNP Demonstration Plant	x 200
NGNP Demonstration Plant to NGNP Commercial Plant	x 10

This conceptual design will be followed by electrolyzer internal component (internal manifolds and connectors) tests and cell stack tests of the new cell design. With completion of these tests the Electrolyzer Module will attain TRL 5.

The next task is final design and testing of a prototypical Electrolyzer Module in operational conditions. In the Pilot Test of the unit the TRL will advance to -6, -7 and -8 as tasks identified are accomplished. Because in the ultimate application they are highly modular, testing one full-scale Electrolyzer Module satisfies the scale requirement to reach TRL 8.

Advance the ELE HXs

Two heat exchangers interface with the Nuclear Heat Supply System (NHSS). These are the Process Coupling Heat Exchanger and the Sweep Gas Coupling Heat Exchanger. The former transfers heat from the SHTS helium to the HPS sweep gas (electrolyzer anode input flow) and the latter transfers heat from the SHTS helium to HPS process feed (electrolyzer cathode input flow).

As designed thus far, these heat exchangers are not novel technology, although there is no significant similar experience at the temperatures and pressures of the superheating sections. Materials testing will advance these heat exchangers to TRL 6 or -8. The latter will be achieved if tested at operational conditions and at suitable scale. If only the former, then a separate pilot test is an alternative to assure TRL 8.

These heat exchangers have requirements for valves on the process side at inlet and outlet. In addition there is a requirement for valves or other flow balancing components on the colder helium side to assure proper division of helium flow to the heat exchangers. These valves are not considered items requiring technology development based on the definition of the design at this stage. As system functional requirements are clarified and design proceeds there could be DDNs for these valves that lead to development tasks on the TDRM.
Advance the ELE Piping and Manifolds

Piping and manifolds have a severe duty to accommodate significant differential thermal expansion, because of the very high fluid temperatures. Piping very high temperature gas to several dozen cell modules will be an extremely difficult problem. Thermal expansion of the pipe is expected to be from $1\frac{1}{2}$ to 2%. Pipe runs will be on the order of 100+ meters. The growth that must be accommodated is therefore about 2m. Absorbing this amount of expansion in very high temperature piping has not been done commercially and a design for this requirement is not at hand. It is not possible to say the technology has reached "proof-of-principle".

Piping and manifolds on the process circuit will require thermal insulation to assure the efficiency of the overall system. The concept for this insulation needs to be determined, particularly when the insulation is integrated with the thermal expansion features. There would clearly be a trade-off between efficiency, internal insulation, external insulation, operating temperature of the external surface and pipe material. If internal insulation is used, a concern is fact that the lines carry steam and are subject to condensation as the vapor cools in the insulation. This is a design problem that needs to be addressed before the degree of technology development can be fully assessed.

When designed there is an insulation test for design verification of the resulting configuration and move it to TRL 8.

Advance the HRS System

The recuperative heat exchangers of the HRS System will, like the ELE HXs, be operating at higher temperature and pressure that current-state-of-the-art. A materials test can advance these to TRL 8 directly, or a pilot test may be needed.

Advance the FUS System

The FUS System has two main parts. The Feed Purification System is likely to be critical to the stable operation of the cells. Results from the ILS Experiment will clarify the design requirements for this system.

The Sweep Gas Turbine is a standard turbomachine. Vendor design verification of compatibility of the materials of construction with air/oxygen mixture will give it TRL 8.

8.4.5 TECHNOLOGY MATURATION PLAN SUMMARY (CURRENT TRL TO TRL 8)

Following are brief descriptions of the objectives of the fifteen tests shown with numbered ovals on the TDRM.

ILS Experiment (#1)

The ILS is a first assembly intended to demonstrate performance of the HTSE process in realistic conditions at or near temperatures needed for system feasibility [Ref. 0]. Test objectives are closed-loop operation with good flow distribution and heat transport performance, stable operation for extended periods of operation or, if not, identification of degradation and/or failure mechanisms and results on materials compatibility testing.

Alternate Cell Testing (#2)

Following the HTSE ILS there will be a new development activity in the main "Road". It will entail testing of all ceramic, electrode-supported cells, which being metal-free may resolve some "poisoning" issues, such as the suspected effect of chromium displaced from the show promise of being scaled-up to larger area. Cell designs to be considered are being developed for Solid Oxide Fuel Cells by Saint-Gobain (originally by Forschungszentrum Jülich) an NASA-Glenn Research Center. Accomplishment of this step will result in TRL-4.

Full-scale Cell Demonstration (#3)

Cells will be scaled-up in crossection in the Conceptual Design. Following that the re-designed cells will be tested. Long-term, stable operation will be the test objective.

Full-scale Stack Demonstration (#4)

A stack of the scaled-up cells will be tested. The goal of this test is 1000 hours of operation stability of less than 10% degradation per 1000 hours.

Combined with the demonstration of an Electrolyzer Module in the ILS, this will advance the technology to TRL 5.

Pilot Test (#5)

The Pilot Test is to generate data needed to confirm or fine tune the design and to provide confidence to go on to the first application. The currently planned INL pilot test [Ref. 0] may be this test, although the scope and scale of the test as presently planned appears to be less than what is proposed in the TDRM.

The HTSE Electrolyzer Pilot Test in reality would be most likely a series of tests with more-orless the same test article design. The Pilot Test is intended to move the technology on from TRL 5. It begins with the completion of the cell and cell stack tests of the SOEC re-designed for full sized cells, which are assumed for the purpose of the TDRM to be 500 mm x 500 mm in nominal area (actual active cell surface area of approximately $2,300 \text{ cm}^2$).

To reach TRL 8 an SSC must a prototype, meaning as close as possible to the form, fit and function for final application. It also must be close to full scale (no less than approximately ¹/₄ scale) and rigorously tested in its operational environments. Because feed purity is anticipated to be an issue influencing cell performance stability, the testing includes an appropriately sized

water purification and deaeration system configured in the design for the NGNP Demonstration plant. It should also test variability of gas distribution by varying the flow of sweep gas and steam/hydrogen to this module.

The test article is to be a prototypical of the Electrolyzer design progression to that stage (based on the Conceptual Design of the system). It would ultimately be a complete modular unit of the form and size intended for final application, although the initial tests in the series might use fewer than the design number of cells in the stacks or fewer stacks than the final arrangement. Therefore, the scale of the Pilot Test is 100%.

What then needs to be demonstrated in order to reach TRL 8 is sufficient performance in operational environments. Testing in the ILS will be testing of the 100 mm cells at temperature and flows but not at pressure. The Pilot Test article, since prototypical, includes the pressure vessel. Basic operation in the Pilot Test in full normal operating temperature, flows and *pressure* will accomplish TRL 6, because that will pass the "gate" of test at scale and in the relevant environment.

The goal of this test is 2000 hours of operation with production on the order of 50 Nm³ of hydrogen per hour and stability of less than 1% decline per 1000 hours.

ELE HX Tests (#6)

The preheaters, boilers and superheaters of the HRS are anticipated to be multiple modular units of conventional configuration. Particularly the boilers and superheaters are being used at temperatures, pressures and differential pressures that may challenge the present state-of-the-art. Therefore, in accord with chemical engineering industry practice, pilot tests will be done with actual fluids and at operational conditions.

If necessary, pilot assemblies would be tested at sub-scale. The issues are with the heat transfer equipment are material selections and thermal/mechanical properties.

Piping Thermal Design and Insulation Test (#7)

Accommodating differential thermal expansion is expected to be a significant design issue. Mechanical analysis, possibly supported by experiment, will be needed ahead of Conceptual Design. It is possible that technology development could be required for the expansion design, but this requirement is not demonstrated and is left off the TDRM at this phase until a specific DDN is prepared. Demonstration by analysis will suffice for TRL 5.

A section of the ELE Piping & Manifolds will be tested with flows at temperature to confirm the calculational bases for pressure drop and thermal losses through the insulation in finally designed material and configuration.

Valve Test (#8)

The valves that control the flow of high-temperature helium in the NHSS Secondary Heat Transport System (SHTS) between series and parallel PCHXs (the number of which is dependent on the process – S-I or HyS – and on the scale of eventual application) are part of the HPS. These valves are not anticipated to be new technology, but they are critical SSCs because there is no recent industrial experience with such valves. The valves will need verification testing. These do not need to be full-scale valve tests, but they should be prototypic in form to the ultimate application, and therefore experience with smaller valves will not apply. Once the technology is validated at the pressures and temperatures of the NGNP application, the TRL will advance from 4 to 8.

HRS HX Tests (#9)

These heat exchangers are conventional will require materials compatibility testing at the high temperatures and pressures and differential pressures at which they will operate. If necessary, pilot assemblies would be tested at sub-scale. Further definition of these tests requires the completion of design.

FUS System Demonstration Test (#10)

Without requirements for feed water purity the scope of development of this SSC is uncertain.

If necessary, air sweep gas pre-treatment requirements may be specified and subject to operational verification tests.

Sweep Gas Turbine Materials Test (#11)

This will be a vendor test to verify the compatibility with the application.

Sensor Tests (#12)

Thermocouples, pressure sensors and other instruments need to be qualified for the operational environment they will experience. New technology is not expected to be required, and so prior to such tests the sensors would have been operated in relevant environments. Scale does not particularly apply to sensors, and so prior to testing they could be TRL-5, TRL-6 or TRL-7. The middle value is chosen arbitrarily. After successful testing the sensors are TRL-8.

System Modeling (#13)

Since the HTSE HPS is made of discrete thermal-hydraulic components connected by piping, the demonstration of integrated operation can be done by computer simulation given input of the performance of the discrete components in prototype or pilot testing in their operational environments.

ELE System Demonstration Test (#14)

If separate, lower Level (subsystem) tests together with system computational modeling are not sufficient, this hardware assembly and test series will demonstrate the integrated operation of the ELE and HRS systems.

Continuing Cell Testing (#15)

As cell stack and system tests proceed, there is a need to accumulate lifetime data and quantify long-term degradation. One or more cell tests should continue after the Full Scale Cell Demonstration (#3). The attainment of TRL levels elsewhere on the Road Map would be supported by the Continuing Cell Testing according to the criteria in Table 8-6.

8.4.6 INPUTS TO CTF

The tests in the HTSE TDRM will use electric power mainly. The smaller amount of direct heat required can be provided electrically to the process flows in all tests except the optional System Engineering Prototype Test. The Road Map study does not propose a power level for the test. Only that test, if included, would be likely to use the CTF for convective helium heat input.

8.5 SCHEDULE AND BUDGET FOR MATURATION PLANS

Summary Maturation Plans were included as Sections 8.1.5, 8.2.5, 8.3.5 and 8.4.5 of this report. Test Plans for the Hybrid Sulfur hydrogen production (Sulfuric Acid Decomposition and Sulfur Dioxide Electrolysis technologies) are given in Appendix C to the extent that these can be detailed at this stage of R&D.

The cost and schedule for the four TDRMs that are developed in this study are summarized in Table 8-11 through Table 8-14 following. The cost and completion years are keyed to stages along the Road Maps as indicated by the step number from TDRMs (numbers in red ovals).

TRL Achievement	Step Numbers from TDRM	Cost Completion
Up to completion of S-I ILS – TRL- 2→3	#1	
Complete analysis, supporting data, materials testing and catalyst choice & tests – TRL-4→5	#2, #3, #4, #5, #6	1.5 \$M 2011
Pilot test of Decomposer – TRL- 5→6	#7, #8, #14	10.3 \$M 2014
Engineering test of Decomposer – TRL- 6≁7	#15, #16	22.0 \$M 2016
Prototype test of Decomposer – TRL- 7→8	#17, #18	27.0 \$M 2018
Balance of system design verification – TRL-x→8	#9, #10, #11, #12, #13	4.9 \$M

Table 8-11: Cost and Schedule for the Sulfuric Acid Decomposition Technology Area

 Table 8-12:
 Cost and Schedule for the Sulfur Dioxide Electrolysis Technology Area

TRL Achievement	Step Numbers from TDRM	Cost Completion
Up to completion of cell demonstration at temperature and pressure – cells: TRL-3→4	#1, #2, #3, #4	3.0 \$M 2009
HyS ILS and optimized cell demonstration – cells: TRL-4→5	#5, #6	4.8 \$M 2010
Scale-up cells to 400 cm2 – TRL- 4→5, and Electrolyzer Pilot Test – module: TRL-2→6	#7, #8	36.5 \$M 2013
Scale-up cells to 1000 cm2 and Engineering test of Electrolyzer – TRL-6≁7	#9	59.0 \$M 2016
Scale-up cells to 1 m2 and Prototype test of Electrolyzer – TRL-7→8	#10	22.0 \$M 2018
(Prototype HPS Test)	(#15)	
Balance of system design verification – TRL-x→8	#11, #12, #13, #14	2.9 \$M

TRL Achievement	Step Numbers from TDRM	Cost Completion
Up to completion of S-I ILS – Bunsen: TRL-2→4	#1	
HI Section Experimental Test – HI: TRL-1≁4	#2, #3	3.0 \$M 2010
Bunsen and HI Systems Pilot Test – TRL-4→5	#4	43.0 \$M 2013
Bunsen and HI Systems Engineering Test – TRL-5→8	#5, #6	58.0 \$M 2017
	(#13) Test is not needed, but	
(Prototype HPS Test: Sulfuric Acid, Bunsen & HI Sections -	if done at scale of NGNP Demo	(140.0 \$M)
optional)	if done using duplicate of previous Engineering Test (or actual hardware)	(15.0 \$M) 2018
Balance of system design verification – TRL-x → 8	#7, #8, #9, #10, #11, #12	8.1 \$M

Table 8-13:	Cost and Schedule for the Bunsen Reaction and
HI	Decomposition Technology Area

Table 8-14:	Cost and Schedule for the High	Temperature Steam	Electrolysis Technology
		Area	

TRL Achievement	Step Numbers from TDRM	Cost Completion
Up to completion of ILS – TRL- $3 \rightarrow 4$	#1, #2	
Full-scale stack demonstration – TRL-4→5	#3, #4	35.0 \$M 201
Pilot Test – TRL-5 → 8	#5	30.0 \$M 201
(Prototype HPS Test)	(#14)	(50.0 \$M) 201
Balance of system design verification – TRL-x → 8	#6, #7, #8, #9, #10, #11, #12, #13	13.8 \$M

REFERENCES

- [8-1] "Technical Readiness Level Plan, Next Generation Nuclear Plant", report INL/EXT-08-14251, draft, May 12, 2008.
- [8-2] "NGNP and Hydrogen Production Preconceptual Design Report, Special Study 20.7: NGNP By-Products and Effluents Study", NGNP-20-RPT-006, January 2007.
- [8-3] "NGNP and Hydrogen Production Conceptual Design Study, Hydrogen Plant Alternatives Study", in work.
- [8-4] Peterson, Per F., *et al.*, "Development of C-SiC Ceramic Compact Plate Heat Exchangers for High Temperature Heat Transfer Applications", AIChE Winter Meeting, San Francisco, November 16, 2006.
- [8-5] Mylavarapu, Sai K., *et al.*, "Investigation of Printed Circuit Heat Exchanger for VHTRs", 4th International Topical Meeting on High Temperature Reactor Technology, HTR2008-58097, September 28-October 1, 2008, Washington, DC.
- [8-6] Miu, K. K., *et al.*, "The Development of Autocatalytic Structural Materials for Use in the Sulfur-Iodine Process for the Production of Hydrogen", Transactions of the American Nuclear Society, 2006, vol. 94, pp. 613-614.
- [8-7] Hu, Tzu-Yu, *et al.*, "Design and Cost of the Sulfuric Acid Decomposition Reactor for the Sulfur Based Hydrogen Processes", 4th International Topical Meeting on High Temperature Reactor Technology, HTR2008-58009, September 28-October 1, 2008, Washington, DC.
- [8-8] Moore, R.C., *et al.*, "H₂SO₄ Section Performance Assessment and the Next Generation Design" Sandia National Laboratories, September 15, 2007.
- [8-9] Terada, Atsuhiko, *et al.*, "Research and Development on Hydrogen Production By Thermochemical Water-Splitting I-S Process", 4th International Topical Meeting on High Temperature Reactor Technology, HTR2008-58088, September 28-October 1, 2008, Washington, DC.
- [8-10] "NGNP and Hydrogen Production Preconceptual Design Report", Westinghouse Electric Company LLC, May 2007.
- [8-11] "Preconceptual Engineering Services for the Next Generation Nuclear Plant (NGNP) with Hydrogen Production, NGNP and Hydrogen Production Preconceptual Design Studies Report", General Atomics, 911107, 10JUL07, Sec. 3.8.1.1.
- [8-12] Herring, J.S., et al., "Test Plan for Three-Module Operation of the High Temperature Electrolysis Integrated Laboratory Scale Experiment", INL/EXT-08-14303 rev 1, November 17, 2008.
- [8-13] Stoots, C.M., et al., "Conceptual Design Documentation for High-Temperature Electrolysis Pilot-Scale Experiment at 200 kW", Idaho National Laboratory, August 15, 2005.
- [8-14] Parma, E., *et al.*, "Modeling the Sulfuric Acid Decomposition Section for Hydrogen Production," ANS Topical Meeting, June 24-28, 2007, Boston.
- [8-15] O'Brien, J.E., "Documentation of Short Stack and Button Cell Experiments Performed at INL and Ceramatec during FY-07", September 2007.

APPENDIX A: TRL RATING SHEETS

Table A1-1: TRL Rating Sheet for Sulfuric Acid Decomposition

TRL Rating Sheet					
		Document Nur	nber:	009	Revision:
□ Facility ☑ System □ Subsystem □ Structure □ Component					
Title: H ₂ SO ₄ Decomposer T	ubes a	nd Tube Array			
Description: an SSE of the H and HyS HPS	H₂SO₄ [Decomposer of the Sul	furic A	Acid Decompositi	on Section of the S-I
Facility: 🗆 NHSS		S 🗹 HPS		S 🗆 BOP	
		Technology Readine	ess Le	vel	
		Next Lower Rating Level		Rating	Next Higher Rating Level
Generic Definitions (abbreviated)		Proof-of concept	Technology or component is tested at bench scale.		SSC demonstrated at experimental scale in relevant environment.
TRL 3			4 5		5
Basis for Rating (Attach additional sheets as needed) The silicon carbide bayonet tube H ₂ SO ₄ Decomposer has been demonstrated as a separate component, as documented in reports by Sandia Laboratories [Ref. Parma, E., <i>et al.</i> "Modeling the Sulfuric Acid Decomposition Section for Hydrogen Production," ANS Topical Meeting, June 24-28, 2007, Boston] and					
Outline of a plan to get from a	current	level to next level (Atta	ach ado	ditional sheets as n	eeded)
Actions (list all)				Schedule	Cost (k\$)
DDN(s) supported: HPS-SAD-01 through HPS-SAD-13					
Subject Matter Expert Making Determination: meeting, Denver, 20NOV08					
Date: 20NOV08	Origina	ting Organization:			

Table A1-2: TRL Rating Sheet for Sulfuric Acid Decomposition

TRL Rating Sheet						
		Document Nur	nber:	031	Revision:	
□ Facility ☑ System	□ Facility ☑ System □ Subsystem □ Structure □ Component					
Title: H ₂ SO ₄ Decomposer Ir	iternal I	Manifolds and Seals				
Description: an SSE of the H and HyS HPS	H₂SO₄ [Decomposer of the Sul	furic /	Acid Decompositi	on Section of the S-I	
Facility: 🗆 NHSS		S 🗹 HPS	D PC	S 🗆 BOP		
		Technology Readine	ess Le	evel		
		Next Lower Rating Level		Rating	Next Higher Rating Level	
Generic Definitions (abbreviated)		Proof-of concept	Technology or component is tested at bench scale.		SSC demonstrated at experimental scale in relevant environment.	
TRL 3			4		5	
Basis for Rating (Attach addition	onal she	ets as needed)				
The silicon carbide bayonet to as documented in reports by Decomposition Section for Hy has functioned in the S-I ILS.	ube H ₂ S Sandia rdrogen	SO₄ Decomposer has b Laboratories [Ref. Par Production," ANS Top	been o ma, E bical N	demonstrated as E., <i>et al.</i> "Modelin Meeting, June 24	a separate component, g the Sulfuric Acid -28, 2007, Boston] and	
Outline of a plan to get from a	current	level to next level (Atta	ach ad	ditional sheets as n	eeded)	
Actions (list all)				Schedule	Cost (k\$)	
DDN(s) supported: HPS-SAD-01 through HPS-SAD-13						
Subject Matter Expert Making	Subject Matter Expert Making Determination: meeting, Denver, 20NOV08					
Date: 20NOV08	Origina	ting Organization:				

Table A1-3: TRL Rating Sheet for Sulfuric Acid Decomposition

TRL Rating Sheet						
		Document Nu	mber:	032	Revision:	
□ Facility ☑ System		ubsystem 🛛 Stru	cture		ent	
Title: H ₂ SO ₄ Decomposer Vessel						
Description: an SSE of the and HyS HPS	H ₂ SO ₄ [Decomposer of the Sul	furic A	Acid Decompositi	on Section of the S-I	
Facility: 🗆 NHSS		S 🗹 HPS	D PC	S 🗆 BOP		
		Technology Reading	ess Le	vel		
		Next Lower Rating Level	Rating		Next Higher Rating Level	
Generic Definitions (abbreviated)		Proof-of concept	Technology or component is tested at bench scale.		SSC demonstrated at experimental scale in relevant environment.	
TRL		3	4		5	
Basis for Rating (Attach addit	tional she	ets as needed)				
The silicon carbide bayonet tube H ₂ SO ₄ Decomposer has been demonstrated as a separate component, as documented in reports by Sandia Laboratories [Ref. Parma, E., <i>et al.</i> "Modeling the Sulfuric Acid Decomposition Section for Hydrogen Production," ANS Topical Meeting, June 24-28, 2007, Boston] and has functioned in the S-LILS						
Outline of a plan to get from	current	level to next level (Atta	ach ado	ditional sheets as n	eeded)	
Actions (list all)				Schedule	Cost (k\$)	
DDN(s) supported: HPS-SAD-01 through HPS-SAD-13						
Subject Matter Expert Making Determination: meeting, Denver, 20NOV08						
Date: 20NOV08	Origina	ting Organization:				
Rev. AUG08, DTA						

Table A1-4: TRL Rating Sheet for Sulfuric Acid Decomposition

TRL Rating Sheet					
		Document Nur	nber:	030	Revision:
□ Facility ☑ System		ubsystem 🛛 Strue	cture	Compone	ent
Title: Decomposer Catalys	t				
Description: an SSE of the and HyS HPS	H ₂ SO ₄ [Decomposer of the Sulf	furic Acio	d Decompositi	on Section of the S-I
Facility: □ NHSS	□ HTS	S 🗹 HPS	D PCS	□ BOP	
		Technology Readine	ess Level		
		Next Lower Rating Level	F	Rating	Next Higher Rating Level
Generic Definitions (abbreviated)		Technology concept and application formulated		concept	Technology or component is tested at bench scale.
TRL		2		3	4
Basis for Rating (Attach addit	tional she	ets as needed)			
Performance and candidate catalytic materials have been identified, but not fully defined. Lab tests (SNL) have been performed, but one of the critical performance issues, catalyst life, has not been proven. Therefore all critical functions have not been proven in the laboratory. Candidate catalytic materials that have a reasonable operating life must be identified before the catalyst can be properly designed.					
Outline of a plan to get from	current	level to next level (Atta	ch additio	onal sheets as n	eeded)
Actions (list all)			Sc	hedule	Cost (k\$)
DDN(s) supported: HPS-SAD-2					
Subject Matter Expert Makir	ng Deterr	nination: Charles	s O. Boltł	hrunis	
Date: 08AUG07 Originating Organization: Shaw Stone & Webster				r	
Modified: Daniel Allen Changed TRL 1 to TRL 3, consequence of review meeting in Denver, 07NOV08.				eeting in Denver,	

Date:	07NOV08	Originating Organization:	Technology Insights	
		1		

Table A1-5: TRL Rating Sheet for Sulfuric Acid Decomposition

TRL Rating Sheet					
		Document Nur	nber:	010	Revision:
□ Facility ☑ System	□ Su	ibsystem 🗆 Strue	cture		ent
Title: Decomposer Product Ha	Indling	g Equipment			
Description: an SSE of the Sul	furic	Acid Decomposition S	ectio	n of the S-I and H	IyS HPS
Facility: □ NHSS □] HTS	☑ HPS	D PC	S 🗆 BOP	
		Technology Readine	ess Le	evel	
		Next Lower Rating Level		Rating	Next Higher Rating Level
Generic Definitions (abbreviated))	SSC demonstrated at experimental scale in relevant environment	SSC demonstrated at pilot scale in relevant environment		SSC demonstrated at engineering scale in relevant environment
TRL		5	6		7
Basis for Rating (Attach additiona	al shee	ets as needed)			
The design will be typical of standard technology. However, there need to be testing of compatibility with materials of construction. TRL 6 assigned because technology is definitely beyond demonstration of feasibility and functionality and has operated in relevant environments, but adequate scale of demonstration is unclear. Could be TRL 7 but needs demonstration in the operational environment to get to TRL 8.					
Outline of a plan to get from cur	rent l	evel to next level (Atta	ach ad	ditional sheets as n	eeded)
Actions (list all)				Schedule	Cost (k\$)
DDN(s) supported: HPS-SAD-1, HPS-SAD-12, HPS-SAD-13, HPS-SAD-14					
Subject Matter Expert Making D	Detern	nination: Daniel	Allen		
Date: 29OCT08 Or	iginat	ting Organization:	Tech	nology Insights	

Rev. AUG08, DTA

Table A1-6: TRL Rating Sheet for Sulfuric Acid Decomposition

TRL Rating Sheet					
		Document Nur	nber:	011	Revision:
□ Facility ☑ System	□ Subsyster	n 🗆 Strue	cture	Compone	ent
Title: H ₂ SO ₄ Concentrator Vac	cuum Columr	1			
Description: an SSE of the Su	lfuric Acid De	composition S	ection of	the S-I and H	yS HPS
Facility: 🗆 NHSS 🛛	☐ HTS	☑ HPS	D PCS	D BOP	
Technology Readiness Level					
	Next I	Lower Rating Level		Rating	Next Higher Rating Level
Generic Definitions (abbreviated	() SSC de experin relevan	emonstrated at nental scale in t environment	SSC demonstrated at pilot scale in relevant environment		SSC demonstrated at engineering scale in relevant environment
TRL		5		6	7
Basis for Rating (Attach additional sheets as needed) Vapor-liquid equilibrium data is needed as well as adequate mass and heat transfer data. TRL 6 assigned because technology is definitely beyond demonstration of feasibility and functionality. Once the design concept has been defined, sub-scale testing will confirm readiness for the prototype system test (TRL 8).					
Outline of a plan to get from cur	rrent level to	next level (Atta	ch additi	onal sheets as n	eeded)
Actions (list all)			Sc	hedule	Cost (k\$)
DDN(s) supported: HPS-SAD-15					
Subject Matter Expert Making I	Determination	: Daniel	Allen		
Date: 29OCT08 Or	riginating Org	ganization:	Technol	ogy Insights	

Table A1-7: TRL Rating Sheet for Sulfuric Acid Decomposition

	TRL Rating Sheet				
		Document Nur	nber:	012	Revision:
□ Facility ☑ System		ubsystem 🗆 Stru	cture	Compone	ent
Title: Feed Acid Handling a	and Con	centrating Equipment			
Description: an SSE of the	Sulfuric	Acid Decomposition S	ection o	of the S-I and H	yS HPS
Facility: □ NHSS		S ☑ HPS	D PCS	□ BOP	
Technology Readiness Level					
		Next Lower Rating Level		Rating	Next Higher Rating Level
Generic Definitions (abbreviated)		SSC demonstrated at experimental scale in relevant environment	SSC demonstrated at pilot scale in relevant environment		SSC demonstrated at engineering scale in relevant environment
TRL 5		5	6		7
Basis for Rating (Attach addit	ional she	ets as needed)			
Vapor-liquid equilibrium data is needed as well as compatibility testing of materials. TRL 6 assigned because technology is definitely beyond demonstration of feasibility and functionality. Then once the design concept has been defined, sub-scale testing will confirm readiness for the prototype system test (TRL 8).					
Outline of a plan to get from	current	level to next level (Atta	ach addi	tional sheets as n	eeded)
Actions (list all)			S	chedule	Cost (k\$)
DDN(s) supported:					
Subject Matter Expert Makir	ng Detern	mination: Daniel	Allen		
Date: 29OCT08	Origina	ting Organization:	Techno	ology Insights	
Rev. AUG08, DTA					

Kev. A0000, D1A

Table A1-8: TRL Rating Sheet for Sulfuric Acid Decomposition

TRL Rating Sheet					
		Document Nur	nber:	013	Revision:
□ Facility ☑ System	🗆 Sı	ubsystem 🛛 Strue	cture	Compone	nt
Title: Steam Ejectors and V	acuum	Pump			
Description: an SSE of the S	Sulfuric	Acid Decomposition S	ection o	of the S-I and H	yS HPS
Facility: □ NHSS	□ HTS	S 🗹 HPS	D PCS	□ BOP	
Technology Readiness Level					
		Next Lower Rating Level		Rating	Next Higher Rating Level
Generic Definitions (abbreviated)		SSC demonstrated at experimental scale in relevant environment	SSC demonstrated at pilot scale in relevant environment		SSC demonstrated at engineering scale in relevant environment
TRL		5		6	7
Basis for Rating (Attach additional sheets as needed) The design will be typical of standard technology. However, there need to be testing of compatibility with materials of construction. TRL 6 assigned because technology is definitely beyond demonstration of feasibility and functionality.					
Outline of a plan to get from	current l	level to next level (Atta	ich addit	tional sheets as n	eeded)
Actions (list all)			S	chedule	Cost (k\$)
DDN(s) supported: HPS-SAD-1, HPS-SAD-10 through HPS-SAD-14					
Subject Matter Expert Making	g Deterr	nination: Daniel	Allen		
Date: 29OCT08	Origina	ting Organization:	Techno	ology Insights	

Rev. AUG08, DTA

Table A1-9: TRL Rating Sheet for Sulfuric Acid Decomposition

TRL Rating Sheet				
	Document Nu	umber: 033	Revision:	
□ Facility ☑ System	□ Subsystem □ Str	ucture Compone	ent	
Title: Helium Control Valves				
Description: an SSE of Sulfuric	Acid Decomposition Sec	tion of the S-I and HyS	HPS	
Facility: □ NHSS □	HTS 🗹 HPS	D PCS D BOP		
Technology Readiness Level				
	Next Lower Rating Level	Rating	Next Higher Rating Level	
Generic Definitions (abbreviated)	Proof-of concept	Technology or component is tested at bench scale.	SSC demonstrated at experimental scale in relevant environment.	
TRL	3	4	5	
Basis for Rating (Attach additional sheets as needed)				
The feasibility of a valve is not in question but qualification testing will be required. Valves of this size in the high-temperature helium environment may require development.				
Outline of a plan to get from curr	rent level to next level (At	tach additional sheets as r	needed)	
Actions (list all)		Schedule	Cost (k\$)	
Subject Matter Expert Making De	etermination: Danie	I Allen		
Date: 28NOV07 Ori	ginating Organization:	Technology Insights		

Table A1-10: TRL Rating Sheet for Sulfuric Acid Decomposition

TRL Rating Sheet					
		Document Nur	nber:	034	Revision:
□ Facility ☑ System		ubsystem 🗆 Stru	cture	Compone	ent
Title: Sensors and Instrum	ents				
Description: an SSE of the	Sulfuric	Acid Decomposition S	ection	of the S-I and H	yS HPS
Facility: 🗆 NHSS	□ HTS	S ☑ HPS		S 🗆 BOP	
		Technology Readine	ess Lev	vel	
		Next Lower Rating Level		Rating	Next Higher Rating Level
Generic Definitions (abbreviated)		SSC demonstrated at experimental scale in relevant environment SSC demonstrated pilot scale in re environment		demonstrated at scale in relevant onment	SSC demonstrated at engineering scale in relevant environment
TRL		5		6	7
Basis for Rating (Attach addit	tional she	ets as needed)			
Chief concerns in this sub-sy contact with aggressive envi because technology is beyon	Chief concerns in this sub-system are control valves (process side), sensors and other instruments in contact with aggressive environments. Previous experience applicable but not sufficient. TRL 6 assigned because technology is beyond demonstration of feasibility and functionality.				
Outline of a plan to get from	current	level to next level (Atta	ach add	litional sheets as n	eeded)
Actions (list all)			Actio	ns (list all)	Actions (list all)
			•		
DDN(s) supported: HPS-PCN-01, HPS-PCN-02, HPS- PCN-03					
Subject Matter Expert Making Determination: Charles O. Bolthrunis					
Date: 08AUG07	Date: 08AUG07 Date: 08AUG07				
Modified: Daniel Allen	Modifie	ed: Daniel Allen			
Date: 28NOV08	Origina	ting Organization:	Techr	nology Insights	

Rev. AUG08, DTA

A2 SULFUR DIOXIDE ELECTROLYSIS

Table A2-1: Sulfur Dioxide Electrolysis

TRL Rating Sheet				
	Document Nur	nber: 023	Revision:	
□ Facility □ System □ S	ubsystem 🛛 Strue	cture Compone	ent	
Title: SO2 Electrolysis Cells				
Description: an SSE of the Electrolyzer System (ELE) of the HyS HPS				
Facility: NHSS HTS	S 🗹 HPS	□ PCS □ BOP		
	Technology Readine	ess Level		
	Next Lower Rating Level	Rating	Next Higher Rating Level	
Generic Definitions (abbreviated)	Technology concept and application formulated	Proof-of concept	Technology or component is tested at bench scale.	
TRL	2	3	4	
Basis for Rating (Attach additional she	ets as needed)			
Tests completed at SRNL constitute proof-of-principle. Testing at expected pressures has not been accomplished. All acceptable materials have not been identified and materials issues have not been quantified. A multicell stack has been demonstrated at bench-scale (3 cell stack, 160 sq. cm per cell) but suitable catalyst and membrane materials have not been determined to allow the individual components to work with suitable performance at the laboratory scale. Based on information available from the labs, Westinghouse and industry, a basic cell configuration selection must be made shortly.				
Outline of a plan to get from current level to next level (Attach additional sheets as needed)				
Actions (list all)		Schedule	Cost (k\$)	
A number of membranes tested show sulfur-rich layer that degrades cell per of membrane materials, fabrication moperating conditions on transport of s membranes have been hypothesized understood at this time. Development candidate membranes must continue membrane can be demonstrated.	v formation of a erformance. Effects nethods, and SO2 through the I but are not fully t and testing of e until a suitable ing to-date is not			

sufficient for target operating 0.6 V at 50 wt% sulfuric acid of candidate catalysts must activity can be achieved.	g conditions: 0.5 A/cm2 at I. Development and testing continue until suitable					
Define operating conditions and conduct electrolyzer testing using the final selected Membrane-Electrode Assembly (MEA) at true process conditions (temperature, pressure, reactant concentration). This can only be completed after membrane selection and catalyst development are complete. Complete longevity tests using final selected MEA at true process conditions. This can only be completed						
after membrane selection ar complete.	ter membrane selection and catalyst development are implete.					
DDN(s) supported: HPS-EL	E-01A through HPS-ELE-06					
Subject Matter Expert Makin	ect Matter Expert Making Determination: Kathleen McHugh					
Date: 10/20/08	Originating Organization: MPR					
Modified: Daniel Allen	aniel Allen Changed TRL 2 to TRL 3, basis discussion modified; DDNs added					
Date: 29OCT08	Originating Organization: Technology Insights					

Table A2-2: Sulfur Dioxide Electrolysis

TRL Rating Sheet				
	Document Nur	nber: 024	Revision:	
□ Facility ☑ System □ S	ubsystem 🗆 Stru	cture Compone	ent	
Title: Electrolyzer Module Internals	3			
Description: an SSE of the Electrol	yzer System (ELE) of t	he HyS HPS		
Facility: NHSS HT	S 🗹 HPS	□ PCS □ BOP		
Technology Readiness Level				
	Next Lower Rating Level	Rating	Next Higher Rating Level	
Generic Definitions (abbreviated)	Basic principles observed	Technology concept and application formulated	Proof-of concept	
TRL	1	2	3	
Basis for Rating (Attach additional she	eets as needed)			
An intermediate scale multicell stack will be needed before going to larger scale. R&D is needed to fabricate larger area cells and refine the design of electrical distribution within the multicell stack. Further advancement beyond concept requires design.				
Outline of a plan to get from current	level to next level (Atta	ach additional sheets as n	eeded)	
Actions (list all)		Schedule	Cost (k\$)	
An intermediate scale multicell stack module demonstrations will be need sq. meter cell size for NGNP. R&D fabricate larger area cells and refine electrical distribution within the multi be completed only after selecting fin Electrode Assembly (MEA) and dem performance and longevity in true pr DDN(s) supported:	as and electrolyzer ed before going to 1 is needed to the design of cell stack. This can al Membrane- nonstrating rocess conditions.			
Subject Matter Expert Making Determination: Kathleen McHugh				

Date: 10/20/08	Originating Organization: MPR
Modified: Daniel Allen	Changed TRL 3 to TRL 2, basis discussion and actions list modified
Date: 29OCT08	Originating Organization: Technology Insights

Table A2-3: Sulfur Dioxide Electrolysis

TRL Rating Sheet					
		Document Nur	nber:	025	Revision:
□ Facility	Facility \square System \square Subsystem \square S			Compone	ent
Title: Electrolyzer Module P	ressure	Boundary			
Description: an SSE of the E	lectrol	vzer System (ELE) of t	he HyS	S HPS	
Facility: 🗆 NHSS		S ☑ HPS	D PCS	□ BOP	
Technology Readiness Level					
		Next Lower Rating Level		Rating	Next Higher Rating Level
Generic Definitions (abbreviated)		Technology or component is tested at bench scale.	SSC demonstrated at experimental scale in relevant environment.		SSC demonstrated at pilot scale in relevant environment
TRL 4		4	5		6
Basis for Rating (Attach additional sheets as needed) Once the requirement for an electrolyzer container is established, no further testing is required. A commercial vessel can be designed. Selection of the configuration of the Electrolyzer will determine the need for a container.					
Outline of a plan to get from c	urrent	level to next level (Atta	ach addi	itional sheets as n	eeded)
Actions (list all)			S	Schedule	Cost (k\$)
DDN(s) supported:					
Subject Matter Expert Making	g Deteri	mination: Charles	s O. Bo	olthrunis	
Date: 08AUG07	Origina	ting Organization:	Shaw S	Stone & Webste	er

Rev. AUG08, DTA

Table A2-4: Sulfur Dioxide Electrolysis

TRL Rating Sheet					
		Document Nur	nber:	026	Revision:
□ Facility ☑ System	Facility \square System \square Subsystem \square Structure \square Component			ent	
Title: SO ₂ Absorber					
Description: an SSE of the Su	Ilfuric	Acid Decomposition S	ystem	n (SAD) of the Hy	S HPS
Facility: □ NHSS	□ HTS	S 🗹 HPS	D PC	S 🗆 BOP	
		Technology Readine	ess Le	vel	
		Next Lower Rating Level		Rating	Next Higher Rating Level
Generic Definitions (abbreviated)		SSC demonstrated at experimental scale in relevant environment environment		demonstrated at scale in relevant onment	SSC demonstrated at engineering scale in relevant environment
TRL 5		5		6	7
Basis for Rating (Attach additional sheets as needed)					
Absorption operations are used commonly throughout industry. Packed columns are available for use at all scales. Preliminary process parameters for the HyS process have been defined in a conceptual design flowsheet. Further flowsheet optimization for pilot scale is expected, which may impact key process parameters for separation equipment. This absorption column accepts streams containing SO2, H2O, H2SO4, and trace amounts of O2; a corrosion-resistant material will be needed. Pressure in the current flow sheet is too high for use of a glass-lined column; fabrication from a corrosion resistant metal (<i>e.g.</i> , Hastelloy B3) may be needed. Equipment scaling and manufacturing processes for packed columns are well understood in industry, but the selected material will need to be tested in the operating environment for corrosion resistance.					
Outline of a plan to get from current level to next level (Attach additional sheets as needed)					
Actions (list all)				Schedule	Cost (k\$)
Identify suitable materials of co process conditions. Complete a design specification consider conditions for the column for pr scale.	Actions (list all) Identify suitable materials of construction and test in process conditions. Complete optimization and prepare a design specification considering final operating conditions for the column for procurement at the pilot scale.				

DDN(s) supported: HPS-SA	D-16			
Subject Matter Expert Making Determination: Kathleen McHugh				
Date: 10/20/08	Originating Organization: MPR			
Modified: Daniel Allen		Revised from TRL 4 to TRL 6, as per meeting, Denver, 20NOV08		
Date: 20NOV08 Originating Organization: Technology Insights				

Table A2-5: Sulfur Dioxide Electrolysis

TRL Rating Sheet							
		Document Nur	nber:	028	Revision:		
□ Facility ☑ System		ubsystem 🗆 Strue	cture	Compone	nt		
Title: Water Treatment Sys	tem						
Description: an SSE of the Feed and Utility System (FUS				HyS HPS			
Facility: □ NHSS	□ HTS	S 🗹 HPS	D PCS	□ BOP			
		Technology Readine	ess Leve	el			
		Next Lower Rating Level		Rating	Next Higher Rating Level		
Generic Definitions (abbrevia							
TRL			U				
Basis for Rating (Attach additi	ional she						
Feed purification is critical to all water splitting technologies. Preliminary work on critical component tolerance has not yet been done. Commercially available feed water purification may not be adequate; process fluid purification may be required. TRL for this cannot be assigned until the requirements are known.							
Outline of a plan to get from current level to next level (Attach additional sheets as needed)							
Actions (list all)			Schedule		Cost (k\$)		
DDN(s) supported: HPS-FUS-01, HPS-FUS-02, HPS-FUS-03							
Subject Matter Expert Makin	Allen						
Date: 270CT08	Origina	ting Organization:	Techno	ology Insights			

Rev. AUG08, DTA

Table A2-6: Sulfur Dioxide Electrolysis

TRL Rating Sheet						
	Document Number:			029	Revision:	
□ Facility ☑ System		ubsystem 🛛 Stru	cture	Compone	ent	
Title: Instrument and Controls System						
Description: an SSE of the HyS HPS						
Facility: 🗆 NHSS	□ HTS	S 🗹 HPS	D PCS	□ BOP		
		Technology Reading	ess Level			
		Next Lower Rating Level	Ratin	g	Next Higher Rating Level	
Generic Definitions (abbreviated)		SSC demonstrated at experimental scale in relevant environment	SSC demonstrated at pilot scale in relevant environment		SSC demonstrated at engineering scale in relevant environment	
TRL		5	6		7	
Basis for Rating (Attach addit	tional she	ets as needed)				
Chief concerns in this sub-system are control valves (process side), sensors and other instruments in contact with aggressive environments. Previous experience applicable but not sufficient. TRL 6 assigned because technology is beyond demonstration of feasibility and functionality.						
Outline of a plan to get from	current	level to next level (Att	ach additional s	heets as n	eeded)	
Actions (list all)			Schedu	le	Cost (k\$)	
DDN(s) supported: HPS-PC PCN-03						
Subject Matter Expert Making Determination: Charles O. Bolthrunis						
Date: 08AUG07	Originating Organization: Shaw Stone & Webster					
Modified: Daniel Allen	Revised from TRL 2 to TRL 6, basis discussion modified; DDNs added					
Date: 27OCT08	Originating Organization: Technology Insights					

Rev. AUG08, DTA

A3 BUNSEN REACTION AND HI DECOMPOSITION

Table A3-1: Bunsen Reaction and HI Decomposition

TRL Rating Sheet							
		Document Nu	mber:	014	Revision:		
□ Facility ☑ System	□ Subsystem □ Str		acture Compon		ent		
Title: Bunsen Reactor							
Description: an SSE of the	Bunsen	Reaction Section of th	ie S-I HF	PS			
Facility: □ NHSS		S ☑ HPS	D PCS	□ BOP			
		Technology Readine	ess Leve	1			
		Next Lower Rating Level	Rating		Next Higher Rating Level		
Generic Definitions (abbreviated)		Technology concept and application formulated.	Proof-of concept		Technology or component is tested at bench scale.		
TRL		2	3		4		
Basis for Rating (Attach additional sheets as needed)							
General feasibility is supported by laboratory bench-scale tests and the initial operation of the S-I ILS. Bunsen reactors were operated successfully at GA in the 1980s, in France and more recently in Japan (for a period of a week). These experiments meet the required proof-of-concept. The critical functions have been proven. To advance, Basic thermodynamic data is needed. Compatibility with materials of construction uncertain, particularly with seals. Hydraulic, kinetic, and thermal design and analyses are needed							
Outline of a plan to get from current level to next level (Attach additional sheets as needed)							
Actions (list all)			Sc	chedule	Cost (k\$)		
Successful completion of the ILS and its operation in integrated mode for X,XXX hours with no more than Y% degradation in output will advance the Bunsen Reactor to TRL 4.							
DDN(s) supported: HPS-BUN-01 through HPS-BUN-06							
Subject Matter Expert Making Determination: meeting, Denver, 20NOV08							
Date: 20NOV08	Originating Organization:						

Rev. AUG08, DTA

NGNP-CTF MTECH-TDRM-008-Rev0-final.doc

11/07/2008

Table A3-2: Bunsen Reaction and HI Decomposition

TRL Rating Sheet							
		Document Nu	mber:	015	Revision:		
□ Facility ☑ System		ubsystem 🛛 Stru	icture	Compone	ent		
Title: Three-phase Separator							
Description: an SSE of the	Description: an SSE of the Bunsen Reaction Section of the S-I HPS						
Facility: □ NHSS		S 🗹 HPS	D PCS	□ BOP			
Technology Readiness Level							
		Next Lower Rating Level		Rating	Next Higher Rating Level		
Generic Definitions (abbreviated)		Technology concept and application formulated.	Proof-c	of concept	Technology or component is tested at bench scale.		
TRL		2		3	4		
Basis for Rating (Attach additional sheets as needed) General feasibility is supported by laboratory bench-scale tests and the initial operation of the S-I ILS.							
Outline of a plan to get from current level to next level (Attach additional sheets as needed)							
Actions (list all)			Schedule		Cost (k\$)		
Successful completion of the ILS and its operation in integrated mode for X,XXX hours with no more than Y% degradation in output will advance the Three-phase Separator to TRL 4.							
DDN(s) supported:							
Subject Matter Expert Making Determination: Daniel Allen							
Date: 28NOV08	8NOV08 Originating Organization:			ology Insights			

Rev. AUG08, DTA

Table A3-3: Bunsen Reaction and HI Decomposition

TRL Rating Sheet							
		Document Nur	nber:	016	Revision:		
□ Facility		ubsystem 🛛 Strue	cture	Compone	ent		
Title: Reactive Still							
Description: an SSE of the H	II Deco	mposition Section of th	ne S-I HPS				
Facility: □ NHSS		S 🗹 HPS	D PCS	□ BOP			
Technology Readiness Level							
		Next Lower Rating Level	Rating		Next Higher Rating Level		
Generic Definitions (abbreviat	Basic principles observed	Technology concept and application formulated		Proof-of concept			
TRL	1	2		3			
Basis for Rating (Attach additional sheets as needed) Although results are unpublished, GA has done batch experiments in glass that produced relatively high H2 yield in I2-lean experiments. Independent ongoing experiments at ENEA (Italy) support this result. These experiments go beyond "Basic principles observed and reported in research without well- defined application." (TBL-1), but they are short of "critical function provon" (TBL-4)							
Outline of a plan to get from current level to next level (Attach additional sheets as needed)							
Actions (list all)			Schedule		Cost (k\$)		
Verification of kinetic and ther advance the Reactive Still to							
DDN(s) supported: HPS-HID-		I					
Subject Matter Expert Making Determination: meeting, Denver, 20NOV08							
Date: 20NOV08	e: 20NOV08 Originating Organization:						

Rev. AUG08, DTA
Table A3-4: Bunsen Reaction and HI Decomposition

TRL Rating Sheet					
		Document Nu	mber:	018	Revision:
□ Facility ☑ System		ubsystem 🛛 Stru	cture		ent
Title: Process Coupling He	at Excha	anger			
Description: an SSE of the	HI Deco	mposition Section of t	he S-I	HPS	
Facility: NHSS		S 🗹 HPS	D PCS	S 🗆 BOP	
		Technology Reading	ess Lev	vel	
		Next Lower Rating Level		Rating	Next Higher Rating Level
Generic Definitions (abbrevia	uted)	Technology or component is tested at bench scale.	SSC demonstrated at experimental scale in relevant environment.		SSC demonstrated at pilot scale in relevant environment
TRL 4			5		6
Basis for Rating (Attach addit	ional she	ets as needed)			
The extreme high temperature would require testing of potential heat exchanger materials of construction to validate their ability to operate in those conditions. Current compact heat exchangers are made of materials capable of process temperatures and pressures, but the compatibility of the material with the process fluids needs to be tested. RL-5 assigned because technology is beyond demonstration of feasibility and functionality but has not operated in relevant environments.					
Outline of a plan to get from	current	level to next level (Att	ach add	litional sheets as n	eeded)
Actions (list all)			Action	ns (list all)	Actions (list all)
The level can be increased to TRL 6 when materials are tested for the relevant environment, because at that point components will have been defined, acceptable technologies identified and technology issues quantified.					
DDN(s) supported:					
Subject Matter Expert Makin	g Deter	mination: Daniel	Allen		
Date: 270CT08	Origina	ting Organization:	Techn	ology Insights	

Rev. AUG08, DTA

Table A3-5: Bunsen Reaction and HI Decomposition

TRL Rating Sheet						
		Document Nu:	mber:	031	Revision:	
□ Facility ☑ System		ubsystem 🛛 Stru	cture		ent	
Title: Reactor Product Han	dling Eq	uipment				
Description: an SSE of the	Balance	of the S-I HPS				
Facility: 🗆 NHSS		S ☑ HPS	D PCS	S 🗆 BOP		
		Technology Reading	ess Lev	vel		
		Next Lower Rating Level		Rating	Next Higher Rating Level	
Generic Definitions (abbreviated)		SSC demonstrated at experimental scale in relevant environment	SSC demonstrated at pilot scale in relevant environment		SSC demonstrated at engineering scale in relevant environment	
TRL 5			6		7	
Basis for Rating (Attach additional sheets as needed) Reactor product handling equipment (both Bunsen and HI Decomposition reactors) are pumping and handling very large streams of iodine and hydroiodic acid is a problem that has not been dealt with commercially. The large flows required are beyond the experience of chemical plants. The possibility of						
Outline of a plan to get from	current	level to next level (Att	ach add	litional sheets as n	eeded)	
Actions (list all)				Schedule	Cost (k\$)	
DDN(s) supported: HPS-BUN-07, HPS-HID-09						
Subject Matter Expert Makin	g Deteri	mination: Daniel	Allen			
Date: 31OCT08	Origina	ting Organization:	Techn	ology Insights		

Rev. AUG08, DTA

Table A3-6: Bunsen Reaction and HI Decomposition

TRL Rating Sheet							
		Document N	umber:	020	Revision:		
□ Facility ☑ System		ubsystem 🗆 St	ructure	Compone	ent		
Title: Feed Purification Sys	stem						
Description: an SSE of the	Balance	of the S-I HPS					
Facility: □ NHSS	□ HTS	S 🗹 HPS		S 🗆 BOP			
		Technology Readi	ness Le	vel			
		Next Lower Rating Level	5	Rating	Next Higher Rating Level		
Generic Definitions (abbreviated)							
TRL				U			
Basis for Rating (Attach addi	tional she	ets as needed)					
The concept purification for Requirements are not resolv determined.	feed stre ved and r	ams (water and air) equire operation of t	and the est loop	application are es. Until then the	established. feasibility can't be		
Outline of a plan to get from	current	level to next level (A	ttach ado	ditional sheets as n	eeded)		
Actions (list all)				Schedule	Cost (k\$)		
DDN(s) supported: HPS-FU	S-01 thro	bugh HPS-FUS-03					
Subject Matter Expert Making	ng Deter	mination: Dani	el Allen				
Date: 16OCT08	Origina	ting Organization:	Techr	nology Insights			

Rev. AUG08, DTA

Table A3-7: Bunsen Reaction and HI Decomposition

TRL Rating Sheet							
		Document Nur	nber:	021	Revision:		
□ Facility ☑ System	□ Sı	ubsystem 🗆 Strue	cture	Compone	nt		
Title: Product Purification System							
Description: an SSE of the B	Balance	of the S-I HPS					
Facility: 🗆 NHSS	□ HTS	S ☑ HPS	D PCS	□ BOP			
		Technology Readine	ess Lev	el			
		Next Lower Rating Level		Rating	Next Higher Rating Level		
Generic Definitions (abbreviate	ed)						
TRL				U			
Basis for Rating (Attach addition	onal she	ets as needed)					
Can not rate without requirem	ents.						
Outline of a plan to get from c	urrent	evel to next level (Atta	ich addi	tional sheets as no	eeded)		
Actions (list all)			S	Schedule	Cost (k\$)		
DDN(s) supported: HPS-PPI 1-01 HPS-PPI 1-02							
	2.,						
Subject Matter Expert Making	g Deterr	nination: Daniel	Allen				
Date: 290CT08	Origina	ting Organization:	Techno	ology Insights			

TRL Rating Sheet								
		Document Nu	mber:	022	Revision:			
□ Facility ☑ System		ubsystem 🛛 Stru	cture		ent			
Title: Instrument and Controls System								
Description: an SSE of the Balance of the S-I HPS								
Facility: □ NHSS		S 🗹 HPS	D PCS	□ BOP				
		Technology Reading	ess Leve	el				
		Next Lower Rating Level		Rating	Next Higher Rating Level			
Generic Definitions (abbrevia	SSC demonstrated at experimental scale in relevant environment	SSC demonstrated at pilot scale in relevant environment		SSC demonstrated at engineering scale in relevant environment				
TRL 5			6		7			
Basis for Rating (Attach additi	onal she	ets as needed)						
Chief concerns in this sub-sy contact with aggressive envir because technology is beyon	stem ar onment d demo	e control valves (proce s. Previous experience nstration of feasibility	ess side) e applica and fund), sensors and able but not suf ctionality.	other instruments in ficient. TRL 6 assigned			
Outline of a plan to get from	current	level to next level (Atta	ach addit	ional sheets as n	eeded)			
Actions (list all)			Se	chedule	Cost (k\$)			
DDN(s) supported: HPS-PCN PCN-03	N-01, HF							
Subject Matter Expert Making Determination: Charles O. Bolthrunis								
Date: 08AUG07	Originating Organization: Shaw Stone & Webster							
Modified: Daniel Allen	Diffied: Daniel Allen Revised from TRL 2 to TRL 6, basis discussion modified; DDNs added							
Date: 27OCT08	Origina	ting Organization:	Techno	logy Insights				

Table A3-8: Bunsen Reaction and HI Decomposition

TRL Rating Sheet								
		Document Nu	mber:	035	Revision:			
□ Facility ☑ System		ubsystem 🗆 Stru	cture	Compone	ent			
Title: Helium Control Valves								
Description: an SSE of the	Balance	of the S-I HPS						
Facility: □ NHSS		S 🗹 HPS		S 🗆 BOP				
		Technology Reading	ess Le	vel				
		Next Lower Rating Level	Rating		Next Higher Rating Level			
Generic Definitions (abbreviated)		Proof-of concept Technology c component is at bench sca		nology or ponent is tested nch scale.	SSC demonstrated at experimental scale in relevant environment.			
TRL	3	4		5				
Basis for Rating (Attach addit	ional she	ets as needed)						
The feasibility of a valve is not in question but qualification testing will be required. Valves of this size in the high-temperature helium environment may require development.								
Outline of a plan to get from	current	level to next level (Atta	ach add	litional sheets as n	eeded)			
Actions (list all)				Schedule	Cost (k\$)			
Subject Matter Expert Makin	ng Detern	mination: Daniel	Allen					
Date: 28NOV07	Origina	ting Organization:	Techr	ology Insights				
Rev. AUG08, DTA								

A4 HIGH TEMPERATURE STEAM ELECTROLYSIS

Table A4-1: High Temperature Steam Electrolysis

TRL Rating Sheet							
	Document Nur	nber: 001	Revision:				
□ Facility ☑ System □ S	Subsystem 🛛 Strue	cture Compone	ent				
Title: Solid Oxide Electrolyzer (SO	Title: Solid Oxide Electrolyzer (SOE) Cells						
Description: an SSE of the Electrol	lyzer Modules of the H	SE Electrolyzer Syste	m (ELE)				
Facility: NHSS HT	rs 🗹 HPS	D PCS D BOP					
	Technology Readine	ess Level					
	Next Lower Rating Level	Rating	Next Higher Rating Level				
Generic Definitions (abbreviated)	Technology concept and application formulated.	Proof-of concept	Technology or component is tested at bench scale.				
TRL	2	3	4				
Basis for Rating (Attach additional she	eets as needed)						
The required environment requires the cells to operate under pressure and temperature. The cells have never been operated in a pressurized environment. The manufacturing process for the cells is still being identified. Currently the process is to hand-make each cell, which would not be effective for a pilot scale component which requires far more cells than are currently available. The cells currently have a high rate of degradation at operating temperature. This does not meet functionality requirements for this component. Reference: O'Brien, J.E., "Documentation of Short Stack and Button Cell Experiments Performed at INL and Ceramatec during FY-07", September 2007.							
Outline of a plan to get from current	level to next level (Atta	ch additional sheets as n	eeded)				
Actions (list all)		Schedule	Cost (k\$)				
More research must be accomplishe suitable manufacturing method for th	ed to determine a ne electrolyzer cells.						
More research must be accomplishe longevity.	ed to increase cell						
Testing of the cells concurrently at the	ne process						

temperature (800 ℃) and pre accomplished.	essure (50 b			
DDN(s) supported: HPS-ELI HPS-ELE-10, HPS-ELE-11	E-01B throu			
Subject Matter Expert Making Determination: Demetrius Siachames				
Date: 09SEP08	Originating	g Organization:	MPR Associates	
Modified: Daniel Allen	Re	vised from TRL 2	to TRL 3, as per meeti	ng, Denver, 20NOV08
Date: 20NOV08	Originating	g Organization:	Technology Insights	

Table A4-2: High Temperature Steam Electrolysis

TRL Rating Sheet								
		Document Nur	nber:	002	Revision:			
□ Facility ☑ System		ubsystem 🛛 Stru	cture		ent			
Title: Electrolyzer Manifolds								
Description: an SSE of the	Description: an SSE of the Electrolyzer Modules of the HTSE Electrolyzer System (ELE)							
Facility: □ NHSS	□ HTS	S 🗹 HPS	D PCS	G □ BOP				
		Technology Readine	ess Lev	vel				
		Next Lower Rating Level		Rating	Next Higher Rating Level			
Generic Definitions (abbreviated)		Technology or component is tested at bench scale.	SSC demonstrated at experimental scale in relevant environment.		SSC demonstrated at pilot scale in relevant environment			
TRL		4	5		6			
Basis for Rating (Attach addit	ional she	ets as needed)						
The basic design of the man supported by the CFD analysistack tests where operation	ifolds is ses done was satis	still being determined f at INL on flow distribus afactory over a wide ra	for the ution a inge of	pilot scale. Des nd tby he experi f flow conditions.	ign adequacy is mental results in cell			
Reference: O'Brien, J.E., "Do and Ceramatec during FY-07	ocument 7", Septe	ation of Short Stack ar ember 2007.	nd Butt	ton Cell Experim	ents Performed at INL			
Outline of a plan to get from	current	level to next level (Atta	ach add	litional sheets as n	eeded)			
Actions (list all)				Schedule	Cost (k\$)			
More research must be accomplished to determine a suitable solution for the electrolyzer manifold.								
A manifold system must be t pressure and temperature.	ested at							
DDN(s) supported:								
Subject Matter Expert Makin	g Deteri	nination: Demet	rius Sia	achames				
Date: 09SEP08	Origina	ting Organization:	MPR /	Associates				

Modified:	Daniel Allen		Revised from TRL 3 to TRL 5, per 20NOV08 meeting in Denver
Date: 28NOV	08	Origina	ating Organization: Technology Insights

Table A4-3: High Temperature Steam Electrolysis

TRL Rating Sheet							
		Document Nur	nber:	002	Revision:		
□ Facility ☑ System □ Subsystem □ Structure □ Component							
Title: Seals							
Description: an SSE of the Electrolyzer Modules of the HTSE Electrolyzer System (ELE)							
Facility: 🗆 NHSS	□ HTS	S 🗹 HPS	D PC	S 🗆 BOP			
		Technology Readine	ess Le	vel			
		Next Lower Rating Level		Rating	Next Higher Rating Level		
Generic Definitions (abbreviated)		Proof-of concept	Technology or component is tested at bench scale.		SSC demonstrated at experimental scale in relevant environment.		
TRL	3	4		5			
Basis for Rating (Attach addit	ional she	ets as needed)					
Basis is the stack demonstrations done at INL. Concern about the adequacy of the response to leaks and internal combustion were ameliorated in discussion.							
Outline of a plan to get from	current	level to next level (Atta	ich add	ditional sheets as n	eeded)		
Actions (list all)				Schedule	Cost (k\$)		
DDN(s) supported:							
Subject Matter Expert Making Determination: 20NOV08 meeting in Denver							
Date: 20NOV08	Origina	ting Organization:					

Rev. AUG08, DTA

Table A4-4: High Temperature Steam Electrolysis

TRL Rating Sheet					
	Document Nur	mber: 003	Revision:		
\Box Facility \Box System \Box S	ubsystem 🗆 Stru	cture Compone	ent		
Title: Sweep Gas Coupling Heat E	xchanger				
Description: an SSE of the HTSE E	Electrolyzer System (EL	-E)			
Facility: NHSS HT	S 🗹 HPS	DPCS DBOP			
	Technology Readine	ess Level			
	Next Lower Rating Level	Rating	Next Higher Rating Level		
Generic Definitions (abbreviated)	Technology or component is tested at bench scale.	SSC demonstrated at experimental scale in relevant environment.	SSC demonstrated at pilot scale in relevant environment		
TRL	4	5	6		
Basis for Rating (Attach additional she	eets as needed)				
The extreme high temperature would to validate their ability to operate in t materials capable of process temper process fluids needs to be tested.	d require testing of pote hose conditions. Curre ratures and pressures,	ential heat exchanger r nt compact heat excha but the compatibility of	naterials of construction angers are made of f the material with the		
Reference: UNLV, "Crack Growth Rate of Structural Materials for Heat Exchanger Applications", August 2007; UCB, "Composite Heat Exchanger Fabrication Methods and Test Results", February 2007; Ceramatec, "FY-07a Annual Report – Heat Exchanger Scale-up", July, 2007; Xiuqing Li, Meggit Ltd., "Heat Exchangers for the Next Generation of Nuclear Reactors", June, 2006.					
Outline of a plan to get from current	level to next level (Atta	ach additional sheets as n	eeded)		
Actions (list all)		Schedule	Cost (k\$)		
Determine industry available materia temperatures (800 ℃) and suitable f	als capable of high or fluids considered.				
Test heat exchanger materials to de feasibility for continuous operation.	termine their				
DDN(s) supported: HPS-ELE-07 three	ough HPS-ELE-09				

Subject Matter Expert Making Determination: Demetrius Siachames					
Date: 09SEP08 Originating Organization: MPR Associates					
Modified: Daniel Allen		Revised from TRL 2 to TRL 5; removed requirement to test complete heat exchanger and left testing materials.			
Date: 27OCT08	Origin	ating Organization: Technology Insights			

Table A4-5: High Temperature Steam Electrolysis

TRL Rating Sheet					
Document Number: 004 Revision:					
□ Facility ☑ System □ S	Subsystem 🗆 Stru	cture Compone	ent		
Title: Process Coupling Heat Exch	anger				
Description: an SSE of the HTSE	Electrolyzer System (EL	-E)			
Facility: INHSS HT	rs ☑ HPS	□ PCS □ BOP			
	Technology Readine	ess Level			
	Next Lower Rating Level	Rating	Next Higher Rating Level		
Generic Definitions (abbreviated)	Technology or component is tested at bench scale.	SSC demonstrated at experimental scale in relevant environment.	SSC demonstrated at pilot scale in relevant environment		
TRL	4	5	6		
Basis for Rating (Attach additional sh	eets as needed)				
The high temperature would require validate their ability to operate in the materials capable of process tempe process fluids needs to be tested.	t exchanger materials compact heat exchang but the compatibility of	of construction to Jers are made of If the material with the			
Reference: UNLV, "Crack Growth R 2007; UCB, "Composite Heat Excha Ceramatec, "FY-07a Annual Report "Heat Exchangers for the Next Gene	ate of Structural Materi anger Fabrication Metho – Heat Exchanger Sca eration of Nuclear Read	als for Heat Exchange ods and Test Results", le-up", July, 2007; Xiuo tors", June, 2006.	r Applications", August February 2007; qing Li, Meggit Ltd.,		
Outline of a plan to get from current	level to next level (Atta	ach additional sheets as n	eeded)		
Actions (list all)		Schedule	Cost (k\$)		
Determine industry available materiatemperatures (800 °C) and suitable f	als capable of high or fluids considered.				
Test heat exchanger materials to de feasibility for continuous operation.	termine their				
DDN(s) supported: HPS-ELE-07 thr	ough HPS-ELE-09				

Subject Matter Expert Making Determination: Demetrius Siachames					
Date: 09SEP08 Originating Organization: MPR Associates					
Modified: Daniel Allen		Revised from TRL 2 to TRL 5; removed requirement to test complete heat exchanger and left testing materials.			
Date: 27OCT08	Origin	ating Organization: Technology Insights			

Table A4-6: High Temperature Steam Electrolysis

TRL Rating Sheet					
	Document Nur	nber: 005	Revision:		
□ Facility ☑ System □ S	Subsystem 🗆 Strue	cture Compone	ent		
Title: Piping and Manifolds					
Description: an SSE of the HTSE	Electrolyzer System (EL	.E)			
Facility: NHSS HT	rs ☑ HPS	□ PCS □ BOP			
	Technology Readine	ess Level			
	Next Lower Rating Level	Rating	Next Higher Rating Level		
Generic Definitions (abbreviated)					
TRL		U			
Basis for Rating (Attach additional sh	eets as needed)				
Manufacturing of required piping is a laboratory setting to validate feasibi without further study and design wo expansion.	echnically possible, but lity for the temperatures rk whether new technol	t has not been manufact and pressures require ogy is needed to accon	ctured or tested in a ed. It is uncertain modate pipe thermal		
Reference: INEEL, "High Temperate	ure Electrolysis System	Configuration Study".			
Outline of a plan to get from current	level to next level (Atta	ch additional sheets as n	eeded)		
Actions (list all)		Schedule	Cost (k\$)		
An engineering solution requiring a will have to be developed and manu withstand 50 bar and 800 °C.	pipe-in-pipe design Ifactured which can				
The engineering solution for a pipe- be tested at the required conditions.	in-pipe will have to				
DDN(s) supported: HPS-ELE-10 thr	ough HPS-ELE-13				
Subject Matter Expert Making Determination: Demetrius Siachames					

Date: 09SEP08	Originating Organization: MPR Associates
Modified: Daniel Allen	Revised from TRL 2 to TRL U, as per 20NOV08 meeting in Denver
Date: 28NOV08	Originating Organization: Technology Insights

Table A4-7: High Temperature Steam Electrolysis

TRL Rating Sheet					
	Document Nur	nber: 006	Revision:		
□ Facility ☑ System □ Su	ubsystem 🗆 Strue	cture Compone	ent		
Title: Heat Exchangers					
Description: SSEs of the HTSE Hea	at Recovery System (H	IRS)			
Facility: NHSS HTS	S 🗹 HPS	\square PCS \square BOP			
	Technology Readine	ess Level			
	Next Lower Rating Level	Rating	Next Higher Rating Level		
Generic Definitions (abbreviated)	Technology or component is tested at bench scale.	SSC demonstrated at experimental scale in relevant environment.	SSC demonstrated at pilot scale in relevant environment		
TRL	4	5	6		
Basis for Rating (Attach additional she	ets as needed)				
The extreme high temperature would require testing of potential heat exchanger materials of construction to validate their ability to operate in those conditions. Current compact heat exchangers are made of materials capable of process temperatures and pressures, but the compatibility of the material with the process fluids needs to be tested.					
Reference: UNLV, "Crack Growth Rate of Structural Materials for Heat Exchanger Applications", Augus 2007; UCB, "Composite Heat Exchanger Fabrication Methods and Test Results", February 2007; Ceramatec, "FY-07a Annual Report – Heat Exchanger Scale-up", July, 2007; Xiuqing Li, Meggit Ltd., "Heat Exchangers for the Next Generation of Nuclear Reactors", June, 2006.					
Outline of a plan to get from current level to next level (Attach additional sheets as needed)					
Actions (list all)		Actions (list all)	Actions (list all)		
Determine industry available materia temperatures (800 ℃) and suitable for	ls capable of high or fluids considered.				
Test heat exchanger materials to det feasibility for continuous operation.	ermine their				

DDN(s) supported: HPS-ELE-07 through HPS-ELE-09				
Subject Matter Expert Making Determination: Demetrius Siachames				
Date: 09SEP08	Originating Organization: MPR Associates			
Modified: Daniel Allen	Revised from TRL 2 to TRL 5			
Date: 27OCT08	Originating Organization: Technology Insights			

Table A4-8: High Temperature Steam Electrolysis

TRL Rating Sheet						
		Document Number: 007				Revision:
□ Facility	☑ System	□ Subsystem □ Structure □ Compone			Compone	nt
Title: Feed	Purification Syst	tem				
Description:	an SSE of the I	HTSE F	eed and Utility Systen	า (FUS)	
Facility:	□ NHSS	□ HTS	S 🗹 HPS	D PCS	S 🗆 BOP	
			Technology Readin	ess Lev	vel	
			Next Lower Rating Level		Rating	Next Higher Rating Level
Generic Defin	nitions (abbrevia	ted)				
TRL					U	
Basis for Rating (Attach additional sheets as needed)Can not rate without requirements.					ts.	
Outline of a p	olan to get from	current l	level to next level (Att	ach add	litional sheets as no	eeded)
Actions (list a	all)				Schedule	Cost (k\$)
DDN(s) supported: HPS-FUS-01 through HPS-FUS-03						
Subject Matte	er Expert Makin	g Deterr	mination: Daniel	Allen		
Date: 270C	T08	Origina	ting Organization:	Techn	ology Insights	
Rev. AUG08, DTA						

Table A4-9: High Temperature Steam Electrolysis

TRL Rating Sheet					
Document Nu				008	Revision:
□ Facility ☑ System		ubsystem 🛛 Stru	cture	Compone	ent
Title: Sweep Gas Turbine					
Description: an SSE of the	HTSE F	eed and Utility System	า (FUS)		
Facility: □ NHSS	□ HTS	S 🗹 HPS	D PCS	□ BOP	
		Technology Reading	ess Leve	el	
		Next Lower Rating Level		Rating	Next Higher Rating Level
Generic Definitions (abbreviated)		SSC demonstrated at pilot scale in relevant environment	t SSC demonstrated at engineering scale in relevant environment		Integrated prototype demonstrated in operational environment.
TRL		6		7	8
Basis for Rating (Attach additional sheets as needed) Such as standard turbogenerator requires only design verification testing, presumably by the vendor to his standards in the design environment.					ably by the vendor to
Outline of a plan to get from	current	level to next level (Atta	ach addi	tional sheets as n	eeded)
Actions (list all)			Schedule		Cost (k\$)
DDN(s) supported:					
Subject Matter Expert Making Determination: Daniel Allen					
Date: 02OCT08	Origina	ting Organization:	Techno	ology Insights	

Rev. AUG08, DTA

Table A4-10: High Temperature Steam Electrolysis

TRL Rating Sheet					
	Document Nu	mber: 037	Revision:		
□ Facility ☑ System □	Subsystem 🗆 Stru	cture Compone	ent		
Title: Helium Control Valves					
Description: an SSE of the HTSE					
Facility: \Box NHSS \Box H	TS 🗹 HPS	\square PCS \square BOP			
	Technology Readine	ess Level			
	Next Lower Rating Level	Rating	Next Higher Rating Level		
Generic Definitions (abbreviated)	Proof-of concept	Technology or component is tested at bench scale.	SSC demonstrated at experimental scale in relevant environment.		
TRL	3	4	5		
Basis for Rating (Attach additional s	neets as needed)				
The feasibility of a valve is not in c the high-temperature helium enviro	uestion but qualification nment may require deve	testing will be require lopment.	d. Valves of this size in		
Outline of a plan to get from currer	t level to next level (Atta	ach additional sheets as n	eeded)		
Actions (list all)		Schedule	Cost (k\$)		
Subject Matter Expert Making Determination: Daniel Allen					
Date: 28NOV07 Origi	nating Organization:	Technology Insights			

Table A4-11: High Temperature Steam Electrolysis

TRL Rating Sheet						
		Document N	lum	nber:	038	Revision:
□ Facility ☑ System		ubsystem 🗆 St	ruci	ture		ent
Title: Instrumentation and	Control					
Description: an SSE of the	HTSE					
Facility: 🗆 NHSS	□ HTS	S ☑ HPS	Ľ	□ PCS	□ BOP	
		Technology Readi	ines	ss Level	l	
		Next Lower Rating Level	g	ł	Rating	Next Higher Rating Level
Generic Definitions (abbreviated)		SSC demonstrated a experimental scale in relevant environmen	at n t	SSC demonstrated at pilot scale in relevant environment		SSC demonstrated at engineering scale in relevant environment
TRL		5			6	7
Basis for Rating (Attach addit	tional she	ets as needed)				
Chief concerns in this sub-succentric contact with aggressive environments because technology is beyon	ystem ar ironment nd demo	e control valves (pro s. Previous experier nstration of feasibilit	ices ice iy ai	ss side), applica nd funct	, sensors and ble but not sut tionality.	other instruments in ficient. TRL 6 assigned
Outline of a plan to get from	current	level to next level (A	ttac	ch additi	onal sheets as n	eeded)
Actions (list all)				Sc	hedule	Cost (k\$)
DDN(s) supported: HPS-PCN-01, HPS-PCN-02, HPS-PCN-03						
Subject Matter Expert Making Determination: Charles O. Bolthrunis						
Date: 08AUG07 Originating Organization: Shaw Stone & Webster			r			
Modified: Daniel Allen	en Revised from TRL 2 to TRL 6, basis discussion modified; DDNs added				lified; DDNs added	
Date: 27OCT08	Originating Organization: Technology Insights					

Rev. AUG08, DTA

APPENDIX B: TECHNOLOGY DEVELOPMENT ROAD MAP

B1 SULFURIC ACID DECOMPOSITION

NGNP-CTF MTECH-TDRM-008

NGNP Technology Development Road Mapping Report Section 8: Hydrogen Production System

NGNP-CTF MTECH-TDRM-008-Rev0-final.doc

114 of 165

11/07/2008

NGNP Technology Development Road Mapping Report Section 8: Hydrogen Production System

NGNP-CTF MTECH-TDRM-008-Rev0-final.doc

11/07/2008

B2 SULFUR DIOXIDE ELECTROLYSIS

NGNP Technology Development Road Mapping Report Section 8: Hydrogen Production System

NGNP-CTF MTECH-TDRM-008

NGNP-CTF MTECH-TDRM-008-Rev0-final.doc

117 of 165

NGNP-CTF MTECH-TDRM-008

B3 BUNSEN REACTION AND HI DECOMPOSITION

NGNP-CTF MTECH-TDRM-008

NGNP Technology Development Road Mapping Report Section 8: Hydrogen Production System

NGNP-CTF MTECH-TDRM-008-Rev0-final.doc

11/07/2008

NGNP Technology Development Road Mapping Report Section 8: Hydrogen Production System

Figure B3-1: Technology Development Road Map of Bunsen Reaction and HI Decomposition

NGNP-CTF MTECH-TDRM-008-Rev0-final.doc

11/07/2008

B4 HIGH TEMPERATURE STEAM ELECTROLYSIS

I

11/07/2008

NGNP-CTF MTECH-TDRM-008

NGNP Technology Development Road Mapping Report Section 8: Hydrogen Production System

NGNP-CTF MTECH-TDRM-008-Rev0-final.doc

124 of 165

11/07/2008

NGNP Technology Development Road Mapping Report Section 8: Hydrogen Production System

Figure B4-1: Technology Development Road Map of High Temperature Steam Electrolysis

NGNP-CTF MTECH-TDRM-008-Rev0-final.doc

11/07/2008

APPENDIX C: TECHNOLOGY MATURATION PLANS

Sections 8.1.5, 8.2.5, 8.3.5 and 8.4.5 of the report summarize the steps on the Road Maps toward maturation of the technologies of the Critical SSCs for the four technology areas. Following are more detailed Test Plans for the Sulfuric Acid Decomposition technology (above Section 8.1) and the SO₂ Electrolysis technology (above Section 8.2). These two sections comprise the Hybrid Sulfur (HyS) hydrogen production system.

Some analyses appear on the TDRMs, and these are not included in the Test Plan details. Ongoing and complete steps in the TDRMs are also not included in the Plans.

TABLE OF CONTENTS

Section	Title	Page
C1 MATERIAI	S TESTING – DECOMPOSITION REACTOR	
C1.1 TEST O	BIECTIVE	
C1.2 TEST D	ESCRIPTION	
C1.3 MEASU	RED PARAMETERS	
С1.4 ДАТА Б	Requirements	
C1.5 TEST E	VALUATION CRITERIA	
C1.6 TEST D	ELIVERABLES	
C1.7 COST A	ND SCHEDULE	
C2 THERMOD	YNAMIC AND REACTION KINETICS VERRIFICATION	
C2.1 TEST O	BJECTIVE	
C2.2 TEST D	ESCRIPTION	
C2.3 MEASU	RED PARAMETERS	
С2.4 ДАТА Б	REQUIREMENTS	
C2.5 TEST E	VALUATION CRITERIA	
C2.6 TEST D	ELIVERABLES	
C2.7 COST A	ND SCHEDULE	
C3 CATYLIST	BENCH TEST	
C3.1 TEST O	BJECTIVE	
C3.2 TEST D	ESCRIPTION	
C3.3 MEASU	RED PARAMETERS	
C3.4 TEST E	VALUATION CRITERIA	
C3.5 TEST D	ELIVERABLES	
C3.6 COST A	ND SCHEDULE	
C4 DECOMPO	SER PILOT TEST	
C4.1 TEST O	BJECTIVE	
C4.2 TEST D	ESCRIPTION	
C4.2.1	Test Conditions	
C4.2.2	Test Configuration/Set-up	
C4.2.3	Test Duration	
C4.2.4	Proposed Test Location	
C4.3 MEASU	RED PARAMETERS	
C4.4 DATA F	REQUIREMENTS	
C4.5 TEST E	VALUATION CRITERIA	
C4.6 TEST D	ELIVERABLES	
C4.7 COST A	ND SCHEDULE	
C5 VLE DATA	VERIFICATION	
C5.1 TEST O	BJECTIVE	
C5.2 TEST D	ESCRIPTION	

C5.3 MEA	SURED PARAMETERS 13	38
С5.4 ДАТ	A REQUIREMENTS	38
C5.5 TES	г Evaluation Criteria13	38
C5.6 TES	г Deliverables 13	38
C5.7 Cos	Г AND SCHEDULE 13	38
C6 STRIPPE	R TOWER DESIGN DATA13	38
C6.1 TES	г Овјестіvе 13	39
C6.2 TES	r Description	39
C6.3 MEA	SURED PARAMETERS	39
С6.4 ДАТ	A REQUIREMENTS	39
C6.5 TES	r Evaluation Criteria13	39
C6.6 TES	г Deliverables13	39
C6.7 Cos	г and Schedule13	39
C7 MATERI	ALS TESTING- DECOMPOSER PRODUCT13	39
C7.1 TES	Г Овјестиче	40
C7.2 TES	Г DESCRIPTION 14	40
C7.3 ME	SURED PARAMETERS	40
С7.4 ДАТ	A REQUIREMENTS14	40
C7.5 TES	r Evaluation Criteria14	40
C7.6 TES	г Deliverables 14	40
C7.7 Cos	Г AND SCHEDULE 14	40
C8 THERM	DDYNAMIC AND REACTION KINETICS VERRIFICATION	41
C8 THERM C8.1 TES	DDYNAMIC AND REACTION KINETICS VERRIFICATION	41 41
C8 THERMO C8.1 TES C8.2 TES	DDYNAMIC AND REACTION KINETICS VERRIFICATION	41 41 41
C8 THERM C8.1 TES C8.2 TES C8.3 ME	DDYNAMIC AND REACTION KINETICS VERRIFICATION	41 41 41 41
C8 THERM C8.1 TES C8.2 TES C8.3 MEA C8.4 DAT	DDYNAMIC AND REACTION KINETICS VERRIFICATION	41 41 41 41 41 41
C8 THERM C8.1 TES C8.2 TES C8.3 MEA C8.4 DAT C8.5 TES	DDYNAMIC AND REACTION KINETICS VERRIFICATION	41 41 41 41 41 41
C8 THERM C8.1 TES C8.2 TES C8.3 ME C8.4 DAT C8.5 TES C8.6 TES	DDYNAMIC AND REACTION KINETICS VERRIFICATION	41 41 41 41 41 41 41
C8 THERM C8.1 TES C8.2 TES C8.3 ME C8.4 DAT C8.5 TES C8.6 TES C8.7 Cos	DDYNAMIC AND REACTION KINETICS VERRIFICATION 14 r Objective 14 r Description 14 sured Parameters 14 A Requirements 14 r Evaluation Criteria 14 r Deliverables 14 r And Schedule 14	41 41 41 41 41 41 41 41
C8 THERM C8.1 TES C8.2 TES C8.3 MEA C8.4 DAT C8.5 TES C8.6 TES C8.7 Cos C9 MATERI	DDYNAMIC AND REACTION KINETICS VERRIFICATION 14 r Objective 14 r Description 14 sured Parameters 14 A Requirements 14 r Evaluation Criteria 14 r Deliverables 14 r And Schedule 14 r Als TESTING FEED HANDLING 14	41 41 41 41 41 41 41 41 41
C8 THERM C8.1 TES C8.2 TES C8.3 ME/ C8.4 DAT C8.5 TES C8.6 TES C8.7 Cos C9 MATERI C9.1 TES	DDYNAMIC AND REACTION KINETICS VERRIFICATION14r Objective14r Description14sured Parameters14a Requirements14r Evaluation Criteria14r Deliverables14r And Schedule14a LS TESTING FEED HANDLING14r Objective14	 41 41 41 41 41 41 41 41 41 42 42 42
C8 THERM C8.1 TES C8.2 TES C8.3 MEA C8.4 DAT C8.5 TES C8.6 TES C8.7 Cos C9 MATERI C9.1 TES C9.2 TES	DOYNAMIC AND REACTION KINETICS VERRIFICATION 14 r Objective 14 r Description 14 sured Parameters 14 a Requirements 14 r Evaluation Criteria 14 r Deliverables 14 r And Schedule 14 a LS TESTING FEED HANDLING 14 r Objective 14 r Description 14	 41 41 41 41 41 41 41 42 42 42 42 42
C8 THERMO C8.1 TES C8.2 TES C8.3 ME/ C8.4 DAT C8.5 TES C8.6 TES C8.7 Cos C9 MATERI C9.1 TES C9.2 TES C9.3 ME/	DDYNAMIC AND REACTION KINETICS VERRIFICATION14r Objective14r Description14sured Parameters14a Requirements14r Evaluation Criteria14r Deliverables14r And Schedule14a LS TESTING FEED HANDLING14r Objective14sured Parameters14r Objective14r Objective14 <td> 41 41 41 41 41 41 41 41 41 42 42 42 42 42 42 42 </td>	 41 41 41 41 41 41 41 41 41 42 42 42 42 42 42 42
C8 THERM C8.1 TES C8.2 TES C8.2 TES C8.3 MEA C8.4 DAT C8.5 TES C8.6 TES C8.7 Cos C9 MATERI C9.1 TES C9.2 TES C9.3 MEA C9.4 DAT	DDYNAMIC AND REACTION KINETICS VERRIFICATION14r Objective14r Description14sured Parameters14a Requirements14r Evaluation Criteria14r Deliverables14r And Schedule14a LS TESTING FEED HANDLING14r Objective14r Als reaction14r Als reactive14r Objective14r Als reactive14r Als react	 41 41 41 41 41 41 41 41 42 43 44 <
C8 THERM C8.1 TES C8.2 TES C8.2 TES C8.3 ME/ C8.4 DAT C8.5 TES C8.6 TES C8.7 Cos C9 MATERI C9.1 TES C9.2 TES C9.3 ME/ C9.4 DAT C9.5 TES	DDYNAMIC AND REACTION KINETICS VERRIFICATION14r Objective14r Description14sured Parameters14a Requirements14r Evaluation Criteria14r Deliverables14r And Schedule14f Objective14sured Parameters14f And Schedule14f Als Testing Feed Handling14f Objective14f Objective14	41 41 41 41 41 41 41 41 41 42 42 42 42 42 42
C8 THERMO C8.1 TES C8.2 TES C8.3 ME/ C8.4 DAT C8.5 TES C8.6 TES C8.7 Cos C9 MATERI C9.1 TES C9.2 TES C9.3 ME/ C9.4 DAT C9.5 TES C9.6 TES	DDYNAMIC AND REACTION KINETICS VERRIFICATION14r Objective14r Description14sured Parameters14a Requirements14r Evaluation Criteria14r Deliverables14r And Schedule14a LS TESTING FEED HANDLING14r Objective14sured Parameters14r Objective14r Objective14r Deliverables14r Objective14r Description14sured Parameters14r Deliverables14r Deliverables14r Deliverables14r Deliverables14r Deliverables14r Evaluation Criteria14r Deliverables14r Deliverables14r Objective14r Evaluation Criteria14r Deliverables14r Deliverables14r Deliverables14r Deliverables14r Deliverables14r Deliverables14	41 41 41 41 41 41 41 41 42 42 42 42 42 42 42
C8 THERMO C8.1 TES C8.2 TES C8.3 ME/ C8.4 DAT C8.5 TES C8.6 TES C8.7 Cos C9 MATERI C9.1 TES C9.2 TES C9.3 ME/ C9.4 DAT C9.5 TES C9.6 TES C9.7 Cos	DDYNAMIC AND REACTION KINETICS VERRIFICATION14r Objective14r Description14sured Parameters14a Requirements14r Evaluation Criteria14r Deliverables14r And Schedule14c Objective14f AREQUIREMENTS14f Evaluation Criteria14f And Schedule14f And Schedule14f And Schedule14	41 41 41 41 41 41 41 41 42 42 42 42 42 42 42 42 42 43
C8 THERM C8.1 TES C8.2 TES C8.2 TES C8.3 ME/ C8.4 DAT C8.5 TES C8.6 TES C8.7 Cos C9 MATERI C9.1 TES C9.2 TES C9.3 ME/ C9.4 DAT C9.5 TES C9.6 TES C9.7 Cos C10 VAI	DDYNAMIC AND REACTION KINETICS VERRIFICATION14r Objective14r Description14sured Parameters14a Requirements14r Evaluation Criteria14r Deliverables14r And Schedule14c Objective14sured Parameters14r Als TESTING FEED HANDLING14r Objective14r Deliverables14r Objective14r Deliverables14r Objective14sured Parameters14r Deliverables14r Description14sured Parameters14r Deliverables14r ARequirements14r AREQUIREMENTS14r Deliverables14r AND Schedule14ve TeST14	41 41 41 41 41 41 41 41 42 42 42 42 42 42 42 43 43
C8 THERM C8.1 TES C8.2 TES C8.2 TES C8.3 ME/ C8.4 DAT C8.5 TES C8.6 TES C8.7 Cos C9 MATERI C9.1 TES C9.2 TES C9.3 ME/ C9.4 DAT C9.5 TES C9.6 TES C9.7 Cos C10 VAI C10.1	DDYNAMIC AND REACTION KINETICS VERRIFICATION14r Objective14r Description14sured Parameters14a Requirements14r Evaluation Criteria14r Deliverables14r And Schedule14r Objective14r Objective14r Objective14r Deliverables14r Objective14r Objective14r Objective14r Objective14sured Parameters14r Deliverables14r Evaluation Criteria14r Ve Test14r And Schedule14r Est Objective14r Est Objective14	41 41 41 41 41 41 41 41 41 42 42 42 42 42 42 42 43 43 43
C8 THERMO C8.1 TES C8.2 TES C8.2 TES C8.3 ME/ C8.4 DAT C8.5 TES C8.6 TES C8.7 Cos C9 MATERI C9.1 TES C9.2 TES C9.3 ME/ C9.4 DAT C9.5 TES C9.6 TES C9.7 Cos C10 VAI C10.1 C10.2	DDYNAMIC AND REACTION KINETICS VERRIFICATION14r Objective14r Description14sured Parameters14a Requirements14r Evaluation Criteria14r Deliverables14r Objective14r Objective14r Objective14r Description14r Objective14r Objective14r Objective14r Description14r Objective14r Objective14r Description14r Description14r Sured Parameters14r And Schedule14r And Schedule14r And Schedule14r And Schedule14r And Schedule14r Est Objective14r Est Objective14r Est Objective14r Test Description14	41 41 41 41 41 41 41 41 41 42 42 42 42 42 42 42 43 43 43 43

C10.2	2.2 Test Configuration/Set-up	143
C10.2	2.3 Test Duration	143
C10.2	2.4 Proposed Test Location	143
C10.3	MEASURED PARAMETERS	144
C10.4	DATA REQUIREMENTS	144
C10.5	TEST EVALUATION CRITERIA	144
C10.6	TEST DELIVERABLES	144
C10.7	COST AND SCHEDULE	144
C11 SENS	OR TESTS	144
C11.1	TEST OBJECTIVE	144
C11.2	TEST DESCRIPTION	145
C11.3	MEASURED PARAMETERS	145
C11.4	DATA REQUIREMENTS	145
C11.5	TEST EVALUATION CRITERIA	145
C11.6	TEST DELIVERABLES	145
C11.7	COST AND SCHEDULE	145
C12 DECO	OMPOSER ENGINEERING TEST	145
C12.1	TEST OBJECTIVE	146
C12.2	TEST DESCRIPTION	146
C12.2	2.1 Test Conditions	146
C12.2	2.2 Test Configuration/Set-up	146
C12.2	2.3 Test Duration	146
C12.2	2.4 Proposed Test Location	146
C12.3	MEASURED PARAMETERS	146
C12.4	DATA REQUIREMENTS	146
C12.5	TEST EVALUATION CRITERIA	147
C12.6	TEST DELIVERABLES	147
C12.7	COST AND SCHEDULE	147
C13 PROT	TOTYPE TEST	147
C13.1	TEST OBJECTIVE	147
C13.2	TEST DESCRIPTION	147
C13.2	2.1 Test Conditions	147
C13.2	2.2 Test Configuration/Set-up	147
C13.2	2.3 Proposed Test Location	148
C13.3	MEASURED PARAMETERS	148
C13.4	DATA REQUIREMENTS	148
C13.5	TEST EVALUATION CRITERIA	148
C13.6	TEST DELIVERABLES	148
C13.7	COST AND SCHEDULE	148
C14 SING	LE CELL TESTING	148
C14.1	TEST OBJECTIVE	149
C14.2	TEST DESCRIPTION	149

	C14.2.1 Test Conditions	149
	C14.2.2 Test Configuration/Set-up	149
	C14.2.3 Test Duration	149
	C14.2.4 Proposed Test Location	149
C14.	3 Measured Parameters	149
C14.4	4 DATA REQUIREMENTS	149
C14.	5 TEST EVALUATION CRITERIA	150
C14.	6 Test Deliverables	150
C14.'	7 Cost and Schedule	150
C15	HYS ILS TEST	150
C15.	1 TEST OBJECTIVE	150
C15.	2 TEST DESCRIPTION	150
	C15.2.1 Test Conditions	. 150
	C15.2.2 Test Configuration/Set-up	. 151
	C15.2.3 Test Duration	. 151
	C15.2.4 Proposed Test Location	151
C15.	3 MEASURED PARAMETERS	151
C15.4	4 DATA REQUIREMENTS	. 151
C15.	5 TEST EVALUATION CRITERIA	151
C15.	6 Test Deliverables	151
C15.	7 Cost and Schedule	152
01(1 50
C16	OPTIMIZED CELL TESTING	152
C16	OPTIMIZED CELL TESTING	152
C16 C16. C16.	OPTIMIZED CELL TESTING 1 Test Objective 2 Test Description	152 152 152
C16 C16. C16.	I TEST OBJECTIVE 2 TEST DESCRIPTION C16.2.1 Test Conditions.	152 152 152 152
C16 C16. C16.	1 TEST OBJECTIVE 2 TEST DESCRIPTION C16.2.1 Test Conditions. C16.2.2 Test Configuration/Set-up	152 152 152 152 152
C16 C16. C16.	I TEST OBJECTIVE 2 TEST DESCRIPTION C16.2.1 Test Conditions. C16.2.2 Test Configuration/Set-up C16.2.3 Test Duration C16.2.3 Test Duration	152 152 152 152 152 152 152
C16 C16. C16.	1 TEST OBJECTIVE 2 TEST DESCRIPTION C16.2.1 Test Conditions. C16.2.2 Test Configuration/Set-up C16.2.3 Test Duration C16.2.4 Proposed Test Location	152 152 152 152 152 152 152 152
C16 C16. C16. C16.	1 TEST OBJECTIVE 2 TEST DESCRIPTION C16.2.1 Test Conditions. C16.2.2 Test Configuration/Set-up C16.2.3 Test Duration C16.2.4 Proposed Test Location 3 MEASURED PARAMETERS	152 152 152 152 152 152 152 152 152
C16. C16. C16. C16.	1 TEST OBJECTIVE 2 TEST DESCRIPTION C16.2.1 Test Conditions. C16.2.2 Test Configuration/Set-up C16.2.3 Test Duration C16.2.4 Proposed Test Location 3 MEASURED PARAMETERS 4 DATA REQUIREMENTS	152 152 152 152 152 152 152 152 152 152
C16 C16. C16. C16. C16. C16.	1 TEST OBJECTIVE 2 TEST DESCRIPTION 2 TEST DESCRIPTION C16.2.1 Test Conditions. C16.2.2 Test Configuration/Set-up C16.2.2 Test Configuration/Set-up C16.2.3 Test Duration C16.2.3 Test Duration C16.2.4 Proposed Test Location 3 MEASURED PARAMETERS 4 DATA REQUIREMENTS 5 TEST EVALUATION CRITERIA	152 152 152 152 152 152 152 152 152 152 152 153
C16. C16. C16. C16. C16. C16.	1 TEST OBJECTIVE 2 TEST DESCRIPTION 2 TEST Conditions. C16.2.1 Test Conditions. C16.2.2 Test Configuration/Set-up C16.2.3 Test Duration C16.2.4 Proposed Test Location 3 MEASURED PARAMETERS 4 DATA REQUIREMENTS 5 TEST EVALUATION CRITERIA. 6 TEST DELIVERABLES	152 152 152 152 152 152 152 152 152 152 153 153
C16. C16. C16. C16. C16. C16. C16. C16.	1 TEST OBJECTIVE 2 TEST DESCRIPTION 2 TEST DESCRIPTION C16.2.1 Test Conditions. C16.2.2 Test Configuration/Set-up C16.2.2 Test Configuration/Set-up C16.2.3 Test Duration C16.2.3 Test Duration C16.2.4 Proposed Test Location 3 MEASURED PARAMETERS 4 DATA REQUIREMENTS 5 TEST EVALUATION CRITERIA 6 TEST DELIVERABLES 7 COST AND SCHEDULE	152 152 152 152 152 152 152 152 152 153 153 153
C16 C16. C16. C16. C16. C16. C16. C16. C	1 TEST OBJECTIVE 2 TEST DESCRIPTION 2 TEST DESCRIPTION C16.2.1 Test Conditions. C16.2.2 Test Configuration/Set-up C16.2.2 Test Configuration/Set-up C16.2.3 Test Duration C16.2.3 Test Duration C16.2.4 Proposed Test Location C16.2.4 Proposed Test Location MEASURED PARAMETERS 3 MEASURED PARAMETERS 4 DATA REQUIREMENTS 5 TEST EVALUATION CRITERIA 6 TEST DELIVERABLES 7 COST AND SCHEDULE CELL SCALE-UP TESTING	152 152 152 152 152 152 152 152 152 153 153 153 153
C16 C16. C16. C16. C16. C16. C16. C16. C	1 TEST OBJECTIVE 2 TEST DESCRIPTION 2 TEST DESCRIPTION 2 TEST DESCRIPTION C16.2.1 Test Conditions C16.2.2 Test Configuration/Set-up C16.2.2 Test Configuration/Set-up C16.2.3 Test Duration C16.2.3 Test Duration C16.2.4 Proposed Test Location C16.2.4 Proposed Test Location MEASURED PARAMETERS 3 MEASURED PARAMETERS 4 DATA REQUIREMENTS 5 TEST EVALUATION CRITERIA 6 TEST DELIVERABLES 7 COST AND SCHEDULE CELL SCALE-UP TESTING 1 TEST OBJECTIVE	152 152 152 152 152 152 152 152 152 153 153 153 153 153
C16. C16. C16. C16. C16. C16. C16. C16.	1 TEST OBJECTIVE 2 TEST DESCRIPTION 2 TEST DESCRIPTION 2 TEST DESCRIPTION 2 TEST DESCRIPTION 2 Test Conditions C16.2.1 Test Conditions C16.2.2 Test Configuration/Set-up C16.2.2 Test Configuration/Set-up C16.2.3 Test Duration C16.2.3 Test Duration C16.2.4 Proposed Test Location C16.2.4 Proposed Test Location Measured Parameters 3 MEASURED PARAMETERS 4 DATA REQUIREMENTS 5 TEST EVALUATION CRITERIA 6 TEST DELIVERABLES 7 COST AND SCHEDULE 2 TEST OBJECTIVE 2 TEST DESCRIPTION	152 152 152 152 152 152 152 152 152 153 153 153 153 153 153
C16 C16. C16. C16. C16. C16. C16. C16. C	1 TEST OBJECTIVE 2 TEST DESCRIPTION 2 TEST DESCRIPTION 2 TEST DESCRIPTION 2 Test Conditions. 2 Test Conditions. 2 Test Conditions. 2 Test Conditions. 2 Test Configuration/Set-up 2 Test Duration 2 Test Duration 2 Test Duration 3 MEASURED PARAMETERS 4 DATA REQUIREMENTS 5 TEST EVALUATION CRITERIA. 6 TEST DELIVERABLES 7 COST AND SCHEDULE. 2 TEST DESCRIPTION 2 TEST DESCRIPTION C17.2.1 Test Conditions.	152 152 152 152 152 152 152 152 153 153 153 153 153 153 153 153
C16 C16. C16. C16. C16. C16. C16. C16. C	I TEST OBJECTIVE 2 TEST DESCRIPTION 2 TEST DESCRIPTION 2 TEST DESCRIPTION 2 TEST Conditions. 2 Test Conditions. 2 Test Conditions. 2 Test Conditions. 2 Test Configuration/Set-up 2 Test Duration 3 MEASURED PARAMETERS 4 DATA REQUIREMENTS 5 TEST EVALUATION CRITERIA 6 TEST DELIVERABLES 7 COST AND SCHEDULE 6 TEST OBJECTIVE 2 TEST DESCRIPTION 2 TEST DESCRIPTION 2 Test Conditions. C17.2.1 Test Conditions. C17.2.2 Test Configuration/Set-up	152 152 152 152 152 152 152 152 152 153 153 153 153 153 153 153 153
C16. C16. C16. C16. C16. C16. C16. C16.	I TEST OBJECTIVE	152 152 152 152 152 152 152 152 152 153 153 153 153 153 153 153 153 153
C16 C16. C16. C16. C16. C16. C16. C16. C	I TEST OBJECTIVE	152 152 152 152 152 152 152 152 152 153 153 153 153 153 153 153 153 154 154
C16 C16. C16. C16. C16. C16. C16. C16. C	I TEST OBJECTIVE 2 TEST DESCRIPTION C16.2.1 Test Conditions. C16.2.2 Test Configuration/Set-up C16.2.3 Test Duration C16.2.3 Test Duration C16.2.4 Proposed Test Location C16.2.4 Proposed Test Location 3 MEASURED PARAMETERS 4 DATA REQUIREMENTS 5 TEST EVALUATION CRITERIA 6 TEST DELIVERABLES 7 COST AND SCHEDULE 2 TEST DESCRIPTION 2 TEST DESCRIPTION 2 TEST DESCRIPTION C17.2.1 Test Conditions. C17.2.2 Test Configuration/Set-up C17.2.3 Test Duration C17.2.4 Proposed Test Location 3 MEASURED PARAMETERS	152 152 152 152 152 152 152 152 152 153 153 153 153 153 153 153 154 154 154
C16 C16. C16. C16. C16. C16. C16. C16. C	I TEST OBJECTIVE 2 TEST DESCRIPTION 2 TEST DESCRIPTION 2 Test Conditions C16.2.1 Test Conditions C16.2.2 Test Configuration/Set-up C16.2.3 Test Duration C16.2.3 Test Duration C16.2.4 Proposed Test Location C16.2.4 Proposed Test Location 3 MEASURED PARAMETERS 4 DATA REQUIREMENTS 5 TEST EVALUATION CRITERIA 6 TEST DELIVERABLES 7 COST AND SCHEDULE CELL SCALE-UP TESTING 1 TEST OBJECTIVE 2 TEST DESCRIPTION C17.2.1 Test Conditions C17.2.2 Test Configuration/Set-up C17.2.3 Test Duration C17.2.4 Proposed Test Location 3 MEASURED PARAMETERS 4 DATA REQUIREMENTS	152 152 152 152 152 152 152 152 152 153 153 153 153 153 153 153 154 154 154 154

C17	7.6	TEST DELIVERABLES	154
C19	/./ ELEC	COSI AND SCHEDULE	154
C10	ELEC	IROLIZER INTERNALS IEST	154
C18	8.1	TEST OBJECTIVE	155
C18	8.2	TEST DESCRIPTION	155
	C18.2	.1 Test Conditions	155
	C18.2	.2 Test Configuration/Set-up	155
	C18.2	.3 Test Duration	155
	C18.2	.4 Proposed Test Location	155
C18	8.3	MEASURED PARAMETERS	155
C18	8.4	DATA REQUIREMENTS	155
C18	8.5	TEST EVALUATION CRITERIA	155
C18	8.6	TEST DELIVERABLES	156
C18	8.7	COST AND SCHEDULE	156
C19	PRES	SURE BOUNDARY STRUCTURE TEST	156
C19	9.1	TEST OBJECTIVE	156
C19	9.2	TEST DESCRIPTION	156
	C19.2	.1 Test Conditions	156
	C19.2	.2 Test Configuration/Set-up	156
	C19.2	.3 Test Duration	156
	C19.2	.4 Proposed Test Location	156
C19	9.3	MEASURED PARAMETERS	157
C19	9.4	DATA REQUIREMENTS	157
C19	9.5	TEST EVALUATION CRITERIA	157
C19	9.6	TEST DELIVERABLES	157
C19	9.7	COST AND SCHEDULE	157
C20	ELEC	TROLYZER PILOT TEST	157
C20	0.1	TEST OBJECTIVE	157
C20	0.2	TEST DESCRIPTION	158
	C20.2	.1 Test Conditions	158
	C20.2	.2 Test Configuration/Set-up	158
	C20.2	.3 Test Duration	158
	C20.2	.4 Proposed Test Location	158
C20	0.3	MEASURED PARAMETERS	158
C20	0.4	DATA REQUIREMENTS	158
C20	0.5	TEST EVALUATION CRITERIA	158
C20	0.6	TEST DELIVERABLES	159
C20	0.7	COST AND SCHEDULE	159
C21	ELEC	TROLYZER ENGINEERING TEST	159
C21	1.1	TEST OBJECTIVE	159
C21	1.2	TEST DESCRIPTION	159
	C21.2	.1 Test Conditions	159

(C21.2.2 Test Configuration/Set-up	160
	C21.2.3 Test Duration	160
COLO	C21.2.4 Proposed Test Location	160
C21.3	MEASURED PARAMETERS	160
C21.4	DATA REQUIREMENTS	160
C21.5	TEST EVALUATION CRITERIA	160
C21.6	TEST DELIVERABLES	160
C21.7	COST AND SCHEDULE	160
C22 I	PROTOTYPE ELECTROLYZER TEST	161
C22.1	TEST OBJECTIVE	161
C22.2	TEST DESCRIPTION	161
(C22.2.1 Test Conditions	161
(C22.2.2 Test Configuration/Set-up	161
(C22.2.3 Test Duration	161
(C22.2.4 Proposed Test Location	161
C22.3	MEASURED PARAMETERS	161
C22.4	DATA REQUIREMENTS	161
C22.5	TEST EVALUATION CRITERIA	162
C22.6	TEST DELIVERABLES	162
C22.7	Cost and Schedule	162
C23	ABSORBER TOWER DESIGN DATA	162
C23 A C23.1	ABSORBER TOWER DESIGN DATA Test Objective	162 162
C23 A C23.1 C23.2	ABSORBER TOWER DESIGN DATA Test Objective Test Description	162 162 162
C23 A C23.1 C23.2 C23.3	ABSORBER TOWER DESIGN DATA Test Objective Test Description Measured Parameters	162 162 162 163
C23 A C23.1 C23.2 C23.3 C23.4	ABSORBER TOWER DESIGN DATA Test Objective Test Description Measured Parameters Data Requirements	162 162 162 163 163
C23 A C23.1 C23.2 C23.3 C23.4 C23.5	ABSORBER TOWER DESIGN DATA Test Objective Test Description Measured Parameters Data Requirements Test Evaluation Criteria	 162 162 162 163 163 163
C23 A C23.1 C23.2 C23.3 C23.4 C23.5 C23.6	ABSORBER TOWER DESIGN DATA	 162 162 163 163 163 163
C23 A C23.1 C23.2 C23.3 C23.4 C23.5 C23.6 C23.6 C23.7	ABSORBER TOWER DESIGN DATA TEST OBJECTIVE TEST DESCRIPTION MEASURED PARAMETERS DATA REQUIREMENTS TEST EVALUATION CRITERIA TEST DELIVERABLES COST AND SCHEDULE	 162 162 163 163 163 163 163 163
C23 A C23.1 C23.2 C23.3 C23.4 C23.5 C23.6 C23.7 C24 S	ABSORBER TOWER DESIGN DATA TEST OBJECTIVE TEST DESCRIPTION MEASURED PARAMETERS DATA REQUIREMENTS TEST EVALUATION CRITERIA TEST DELIVERABLES COST AND SCHEDULE SENSOR TESTING	 162 162 163 163 163 163 163 163
C23 A C23.1 C23.2 C23.3 C23.4 C23.5 C23.6 C23.7 C24 S C24.1	ABSORBER TOWER DESIGN DATA TEST OBJECTIVE	 162 162 163 163 163 163 163 163 163 163
C23 A C23.1 C23.2 C23.3 C23.4 C23.5 C23.6 C23.7 C24 S C24.1 C24.2	ABSORBER TOWER DESIGN DATA TEST OBJECTIVE	 162 162 163 163 163 163 163 163 163 164
C23 A C23.1 C23.2 C23.3 C23.4 C23.5 C23.6 C23.7 C24 S C24.1 C24.2 C24.3	ABSORBER TOWER DESIGN DATA	 162 162 163 163 163 163 163 164 164
C23 A C23.1 C23.2 C23.3 C23.4 C23.5 C23.6 C23.7 C24 S C24.1 C24.2 C24.3 C24.4	ABSORBER TOWER DESIGN DATA	 162 162 163 163 163 163 163 164 164 164 164
C23 A C23.1 C23.2 C23.3 C23.4 C23.5 C23.6 C23.7 C24 S C24.1 C24.2 C24.3 C24.4 C24.5	ABSORBER TOWER DESIGN DATA	 162 162 163 163 163 163 163 164 164 164 164 164
C23 A C23.1 C23.2 C23.3 C23.4 C23.5 C23.6 C23.7 C24 S C24.1 C24.2 C24.3 C24.4 C24.5 C24.6	ABSORBER TOWER DESIGN DATA	 162 162 163 163 163 163 164 164 164 164 164 164 164 164
C23 A C23.1 C23.2 C23.3 C23.4 C23.5 C23.6 C23.7 C24 S C24.1 C24.2 C24.3 C24.4 C24.5 C24.6 C24.7	ABSORBER TOWER DESIGN DATA	 162 162 163 163 163 163 163 164
C23 A C23.1 C23.2 C23.3 C23.4 C23.5 C23.6 C23.7 C24 S C24.1 C24.2 C24.3 C24.3 C24.4 C24.5 C24.6 C24.7 C25 I	ABSORBER TOWER DESIGN DATA	 162 162 163 163 163 163 163 164

C1 MATERIALS TESTING – DECOMPOSITION REACTOR

(Test #2 on the Sulfuric Acid Decomposer Road Map)

The S-I ILS Experiment will validate the compatibility of the SiC tubes with the process fluids, which is to be expected from initial decomposer demonstration tests. Separate tests are needed for materials other than the SiC tubes.

C1.1 TEST OBJECTIVE

The materials of the Sulfuric Acid Decomposer, in particular, the seals between the SiC tubes and their manifolds or tubesheets need to be tested in anticipated steady state and transient conditions.

C1.2 TEST DESCRIPTION

Further test details will require design effort to, as a minimum, determine 1) the materials, 2) their configuration and 3) the static and cyclic environments they will see in service.

No location for these tests can be decided at this time.

C1.3 MEASURED PARAMETERS

In general, materials testing involves qualitative examination of test articles for corrosion or other damage and quantitative, generally destructive, measurement of dimensional and/or gravimetric change. Further testing would be comparison of mechanical strength and ductility with the unexposed duplicates.

C1.4 DATA REQUIREMENTS

Specific accuracy and other requirements can not be specified at this time. QA requirements are similarly unclear at this stage of development. It is anticipated that NQA-1 requirements will only apply to the HPS at its interface of with the NHSS, if at all. As such the requirements of NQA-1 would apply to structural and sealing components of the process coupling heat exchangers, which the Sulfuric Acid Decomposer is one.

C1.5 TEST EVALUATION CRITERIA

Indeterminate at this time.

C1.6 TEST DELIVERABLES

A test report and data package would be delivered to NGNP Project.

C1.7 COST AND SCHEDULE

Cost and Schedule for the Maturation Plans for the four hydrogen production technology areas are in Section 8.5.

C2 THERMODYNAMIC AND REACTION KINETICS VERRIFICATION

(Test #4 on the Sulfuric Acid Decomposer Road Map)

Experimental confirmation of the equilibrium and kinetic model implicit in the simulations generated thus far are essential. Much of the modeling has involved extrapolations of data that need confirmation.

C2.1 TEST OBJECTIVE

Provide data to support further analytical modeling of the HyS cycle.

C2.2 TEST DESCRIPTION

These are laboratory based tests. Further details are not specific at this time.

C2.3 MEASURED PARAMETERS

Indeterminate at this time.

C2.4 DATA REQUIREMENTS

Specific accuracy and other requirements can not be specified at this time. QA requirements are similarly unclear at this stage of development. It is anticipated that NQA-1 requirements will only apply to the HPS at its interface of with the NHSS, if at all. As such the requirements of NQA-1 would not apply to this data.

C2.5 TEST EVALUATION CRITERIA

Indeterminate at this time.

C2.6 TEST DELIVERABLES

A test report and data package would be delivered to NGNP Project.

C2.7 COST AND SCHEDULE

Cost and Schedule for the Maturation Plans for the four hydrogen production technology areas are in Section 8.5.

C3 CATYLIST BENCH TEST

(Test #5 on the Sulfuric Acid Decomposer Road Map)

The Decomposer Catalyst requires development testing to assure reasonable performance stability and lifetime, since periodic replacement is expected. Chemical industry practice would dictate a lifetime of 20,000 hours, which often can be established by accelerated testing.

The characteristic of the Decomposer Catalyst, combined with thermodynamic analyses, determines whether the Decomposer design is set by limits on heat transfer or by the Decomposer Catalyst performance, and this is essential input to the Conceptual Design. This task will require iteration with the Thermal-Hydraulic Analysis to account for the effects of flow and temperature on the Decomposer Catalyst and the decomposition reaction.

C3.1 TEST OBJECTIVE

Catalyst bench testing will reveal the mechanisms and parameters of catalyst poisoning and degradation, and from those results one can initiate meaningful accelerated testing to support the overall HPS design.

C3.2 TEST DESCRIPTION

These are laboratory based tests. Further details are not specific at this time.

C3.3 MEASURED PARAMETERS

Indeterminate at this time.

Specific accuracy and other requirements can not be specified at this time. QA requirements are similarly unclear at this stage of development. It is anticipated that NQA-1 requirements will only apply to the HPS at its interface of with the NHSS, if at all. As such the requirements of NQA-1 would not apply to this data.

C3.4 TEST EVALUATION CRITERIA

Indeterminate at this time.

C3.5 TEST DELIVERABLES

A test report and data package would be delivered to NGNP Project.

C3.6 COST AND SCHEDULE

Cost and Schedule for the Maturation Plans for the four hydrogen production technology areas are in Section 8.5.

C4 DECOMPOSER PILOT TEST

(Test #8 on the Sulfuric Acid Decomposer Road Map)

C4.1 TEST OBJECTIVE

The test provides the thermal and hydraulic data needed for integration of the decomposer into the HyS HPS.

C4.2 TEST DESCRIPTION

In the Pilot Test a full-scale-length, single-tube, convection-heated bayonet tube assembly will be tested at design conditions. The test assembly will also include a reference sealing configuration and replaceable catalyst to verify the function of these features. This will be the first test with helium convective heating, rather than furnace heating, of the Decomposer. Only in this configuration are the catalyst bed and wall temperature profiles correct in detail. Helium flow in this test can be in one end and out the other, in contrast to the Engineering Test for which the flow return to the same end as entry will be required.

C4.2.1 Test Conditions

Indeterminate at this time.

C4.2.2 Test Configuration/Set-up

Test a full-scale-length, single-tube, convection-heated bayonet tube. The test assembly will also include a reference sealing configuration and replaceable catalyst. Helium flow in this test can be in one end and out the other, in contrast to the Engineering Test for which the flow return to the same end as entry will be required.

C4.2.3 Test Duration

A nominal goal of 1000 hours of steady operation at less than 5% per 1000 hour degradation in output would constitute success. Ideally, the testing would also include startup, shutdown and accident transients to the degree confirmed at that design phase.

C4.2.4 Proposed Test Location

Possibly this test (and the later Engineering and Prototype Tests) could be conducted at a sulfuric acid plant, since sulfuric acid decomposition is nothing more than undoing what a sulfuric acid plant does. It would draw a continuous feed from the plant and put its effluent product back into their feed.

C4.3 MEASURED PARAMETERS

Input and output flow rates, conditions and compositions and input and output heat. Instrumentation for temperature measurement will also be included to compare to models.

C4.4 DATA REQUIREMENTS

Specific accuracy and other requirements can not be specified at this time. QA requirements are similarly unclear at this stage of development. It is anticipated that NQA-1 requirements will only apply to the HPS at its interface of with the NHSS, if at all. As such the requirements of NQA-1 would not apply to this data.

C4.5 TEST EVALUATION CRITERIA

The criterion is stable conversion of sulfuric acid to sulfur dioxide at the design flow rates for the inputs and outputs.

C4.6 TEST DELIVERABLES

A test report and data package would be delivered to NGNP Project.

C4.7 COST AND SCHEDULE

Cost and Schedule for the Maturation Plans for the four hydrogen production technology areas are in Section 8.5.

C5 VLE DATA VERIFICATION

(Test #9 on the Sulfuric Acid Decomposer Road Map)

The design of the reactor product and recycle concentration system requires verification and refinement of the vapor-liquid equilibrium data.

C5.1 TEST OBJECTIVE

Complete, accurate VLE data in the ranges needed.

C5.2 TEST DESCRIPTION

These are laboratory based tests. Further details are not specific at this time.

C5.3 MEASURED PARAMETERS

Indeterminate at this time.

C5.4 DATA REQUIREMENTS

Specific accuracy and other requirements can not be specified at this time. QA requirements are similarly unclear at this stage of development. It is anticipated that NQA-1 requirements will only apply to the HPS at its interface of with the NHSS, if at all. As such the requirements of NQA-1 would not apply to this data.

C5.5 TEST EVALUATION CRITERIA

Indeterminate at this time.

C5.6 TEST DELIVERABLES

A test report and data package would be delivered to NGNP Project.

C5.7 COST AND SCHEDULE

Cost and Schedule for the Maturation Plans for the four hydrogen production technology areas are in Section 8.5.

C6 STRIPPER TOWER DESIGN DATA

(Test #10 on the Sulfuric Acid Decomposer Road Map)

Determination of data in order to confidently design this tower and, for the HyS system, the SO_2 absorber.

C6.1 TEST OBJECTIVE

Determinations of mass transfer coefficients or Heights Equivalent to the Theoretical Plate (HETPs) are needed.

C6.2 TEST DESCRIPTION

A vendor would supply a suitable packing that will be tested to measure an HETP or mass transfer coefficient. It may be useful also to do small bench scale tests to determine whether and how much the mass transfer in this system of components and conditions deviates from that of similar known systems.

C6.3 MEASURED PARAMETERS

Determinations of mass transfer coefficients or Heights Equivalent to the Theoretical Plate (HETPs).

C6.4 DATA REQUIREMENTS

Specific accuracy and other requirements can not be specified at this time. QA requirements are similarly unclear at this stage of development. It is anticipated that NQA-1 requirements will only apply to the HPS at its interface of with the NHSS, if at all. As such the requirements of NQA-1 would not apply to this data.

C6.5 TEST EVALUATION CRITERIA

Indeterminate at this time.

C6.6 TEST DELIVERABLES

A test report and data package would be delivered to NGNP Project.

C6.7 COST AND SCHEDULE

Cost and Schedule for the Maturation Plans for the four hydrogen production technology areas are in Section 8.5.

C7 MATERIALS TESTING- DECOMPOSER PRODUCT

(Test #11 on the Sulfuric Acid Decomposer Road Map)

The materials of construction of the decomposer product handling equipment need to be tested for compatibility. Because of the effects of material transport, simple immersion of material coupons will not be sufficient. A circulating test loop should be considered.

C7.1 TEST OBJECTIVE

The materials of the decomposer product handling equipment need to be tested in anticipated steady state and cyclic conditions.

C7.2 TEST DESCRIPTION

Further test details will require design effort to, as a minimum, determine 1) the materials, 2) their configuration and 3) the static and cyclic environments they will see in service.

No location for these tests can be decided at this time.

C7.3 MEASURED PARAMETERS

In general, materials testing involves qualitative examination of test articles for corrosion or other damage and quantitative, generally destructive, measurement of dimensional and/or gravimetric change. Further testing would be comparison of mechanical strength and ductility with the unexposed duplicates.

C7.4 DATA REQUIREMENTS

Specific accuracy and other requirements can not be specified at this time. QA requirements are similarly unclear at this stage of development. It is anticipated that NQA-1 requirements will only apply to the HPS at its interface of with the NHSS, if at all. As such the requirements of NQA-1 would not apply to this data.

C7.5 TEST EVALUATION CRITERIA

Indeterminate at this time.

C7.6 TEST DELIVERABLES

A test report and data package would be delivered to NGNP Project.

C7.7 COST AND SCHEDULE

Cost and Schedule for the Maturation Plans for the four hydrogen production technology areas are in Section 8.5.

C8 THERMODYNAMIC AND REACTION KINETICS VERRIFICATION

(Test #4 on the Sulfuric Acid Decomposer Road Map)

Experimental confirmation of the equilibrium and kinetic model implicit in the simulations generated thus far are essential. Much of the modeling has involved extrapolations of data that need confirmation.

C8.1 TEST OBJECTIVE

Provide data to support further analytical modeling of the HyS cycle.

C8.2 TEST DESCRIPTION

These are laboratory based tests. Further details are not specific at this time.

C8.3 MEASURED PARAMETERS

Indeterminate at this time.

C8.4 DATA REQUIREMENTS

Specific accuracy and other requirements can not be specified at this time. QA requirements are similarly unclear at this stage of development. It is anticipated that NQA-1 requirements will only apply to the HPS at its interface of with the NHSS, if at all. As such the requirements of NQA-1 would not apply to this data.

C8.5 TEST EVALUATION CRITERIA

Indeterminate at this time.

C8.6 TEST DELIVERABLES

A test report and data package would be delivered to NGNP Project.

C8.7 COST AND SCHEDULE

Cost and Schedule for the Maturation Plans for the four hydrogen production technology areas are in Section 8.5.

C9 MATERIALS TESTING FEED HANDLING

(Test #12 on the Sulfuric Acid Decomposer Road Map)

Testing of the materials of construction feed acid handling and concentrating equipment and the verified VLE data completes development to the TRL 8 level for prototype application.

C9.1 TEST OBJECTIVE

The materials of the feed acid handling and concentrating equipment need to be tested in anticipated steady state and cyclic conditions.

C9.2 TEST DESCRIPTION

Further test details will require design effort to, as a minimum, determine 1) the materials, 2) their configuration and 3) the static and cyclic environments they will see in service.

No location for these tests can be decided at this time.

C9.3 MEASURED PARAMETERS

In general, materials testing involves qualitative examination of test articles for corrosion or other damage and quantitative, generally destructive, measurement of dimensional and/or gravimetric change. Further testing would be comparison of mechanical strength and ductility with the unexposed duplicates.

C9.4 DATA REQUIREMENTS

Specific accuracy and other requirements can not be specified at this time. QA requirements are similarly unclear at this stage of development. It is anticipated that NQA-1 requirements will only apply to the HPS at its interface of with the NHSS, if at all. As such the requirements of NQA-1 would not apply to this data.

C9.5 TEST EVALUATION CRITERIA

Indeterminate at this time.

C9.6 TEST DELIVERABLES

A test report and data package would be delivered to NGNP Project.

C9.7 COST AND SCHEDULE

Cost and Schedule for the Maturation Plans for the four hydrogen production technology areas are in Section 8.5.

C10 VALVE TEST

(Test #13 on the Sulfuric Acid Decomposer Road Map)

The valves that control the flow of high-temperature helium in the NHSS Secondary Heat Transport System (SHTS) between parallel Sulfuric Acid Decomposers are part of the HPS.

C10.1 TEST OBJECTIVE

First objective is the integrity of the valve exterior pressure boundary at the design temperature conditions. This can probably be proven by analysis, but any testing will confirm the calculations. Operability is the main objective of this testing. A final objective may be to test the internal pressure retaining capability (flow sealing) but this is not a definite requirement of the valve, as far as the requirements are known at this stage of overall design.

C10.2 TEST DESCRIPTION

Valve (and actuator) will be cycled under design flow and temperature conditions. This testing would be done at the vendor's facility.

C10.2.1 Test Conditions

To be determined in design phases not yet done.

C10.2.2 Test Configuration/Set-up

These do not need to be full-scale valve tests, but they should be prototypic in form to the ultimate application. Test articles should be large enough that flow similitude should be defensible.

C10.2.3 Test Duration

Indeterminate at this time.

C10.2.4 Proposed Test Location

This testing would be done at the vendor's facility. No vendor is yet identified.

C10.3 MEASURED PARAMETERS

Indeterminate at this time.

C10.4 DATA REQUIREMENTS

Specific accuracy and other requirements can not be specified at this time. QA requirements are similarly unclear at this stage of development. It is anticipated that NQA-1 requirements will only apply to the HPS at its interface of with the NHSS, if at all. As such the requirements of NQA-1 would apply to structural and sealing components of the process coupling heat exchangers, of which the HPS control valves are.

C10.5 TEST EVALUATION CRITERIA

Indeterminate at this time.

C10.6 TEST DELIVERABLES

A test report and data package would be delivered to NGNP Project.

C10.7 COST AND SCHEDULE

Cost and Schedule for the Maturation Plans for the four hydrogen production technology areas are in Section 8.5.

C11 SENSOR TESTS

(Test #14 on the Sulfuric Acid Decomposer Road Map)

Thermocouples, pressure sensors and other instruments need to be qualified for the operational environment they will experience. New technology is not expected to be required, and so prior to such tests the sensors would have been operated in relevant environments

C11.1 TEST OBJECTIVE

The materials of construction need to be tested in anticipated steady state and transient conditions.

C11.2 TEST DESCRIPTION

Further test details will require design effort to, as a minimum, determine 1) the materials, 2) their configuration and 3) the static and cyclic environments they will see in service.

No location for these tests can be decided at this time.

C11.3 MEASURED PARAMETERS

Sensed variable measurement would be compared to results from reference instruments. Operation would be of sufficient duration to validate the instrument reliability and lifetime requirements, but these requirements will not be available until further system design has progressed. In addition, materials testing involves qualitative examination of test articles for corrosion or other damage and quantitative, generally destructive, measurement of dimensional and/or gravimetric change.

C11.4 DATA REQUIREMENTS

Specific accuracy and other requirements can not be specified at this time. QA requirements are similarly unclear at this stage of development. It is anticipated that NQA-1 requirements will only apply to the HPS at its interface of with the NHSS, if at all. As such the requirements of NQA-1 would apply to any helium side instrumentation. Process side instrumentation would not be NQA-1.

C11.5 TEST EVALUATION CRITERIA

Indeterminate at this time.

C11.6 TEST DELIVERABLES

A test report and data package would be delivered to NGNP Project.

C11.7 COST AND SCHEDULE

Cost and Schedule for the Maturation Plans for the four hydrogen production technology areas are in Section 8.5.

C12 DECOMPOSER ENGINEERING TEST

(Test #16 on the Sulfuric Acid Decomposer Road Map)

A test of the Decomposer scaled-up and approaching prototype configuration.

C12.1 TEST OBJECTIVE

The test provides the thermal and hydraulic data needed for integration of the decomposer into the HyS HPS.

C12.2 TEST DESCRIPTION

The test proposed is for a matrix of full-length tubes with helium heating and prototypic flow configuration on helium and process sides.

C12.2.1 Test Conditions

Indeterminate at this time.

C12.2.2 Test Configuration/Set-up

The test proposed is for a hexagonal matrix of 19 full-length tubes with helium heating. In such a configuration the central 5 tubes would be tested in full-scale thermo-hydraulic conditions on the outside, and likewise for the process flow in the tubes.

Note that this test precedes the Final Design and so will not necessarily include the prototypical tube seals, process side valves or instrumentation sensors. The Prototype Test will provide design verification for these components.

C12.2.3 Test Duration

A nominal goal of 1500 hours of steady operation at less than 2% per 1000 hour degradation in output would constitute success. Ideally, the testing would also include startup, shutdown and accident transients to the degree confirmed at that design phase.

C12.2.4 Proposed Test Location

Possibly this test (and the later Prototype Test) could be conducted at a sulfuric acid plant, since sulfuric acid decomposition is nothing more than undoing what a sulfuric acid plant does. It would draw a continuous feed from the plant and put its effluent product back into their feed.

C12.3 MEASURED PARAMETERS

Input and output flow rates, conditions and compositions and input and output heat. Instrumentation for temperature measurement will also be included to compare to models.

C12.4 DATA REQUIREMENTS

Specific accuracy and other requirements can not be specified at this time. QA requirements are similarly unclear at this stage of development. It is anticipated that NQA-1 requirements will

only apply to the HPS at its interface of with the NHSS, if at all. As such the requirements of NQA-1 would not apply to this data.

C12.5 TEST EVALUATION CRITERIA

The criterion is stable conversion of sulfuric acid to sulfur dioxide at the design flow rates for the inputs and outputs.

C12.6 TEST DELIVERABLES

A test report and data package would be delivered to NGNP Project.

C12.7 COST AND SCHEDULE

Cost and Schedule for the Maturation Plans for the four hydrogen production technology areas are in Section 8.5.

C13 PROTOTYPE TEST

(Test #18 on the Sulfuric Acid Decomposer Road Map)

This final test in the sequence of technology maturation would be the same configuration as the Engineering Test but with the final design features including the prototype seals, valves and instruments.

C13.1 TEST OBJECTIVE

The test provides the thermal and hydraulic data needed for integration of the decomposer into the HyS HPS.

C13.2 TEST DESCRIPTION

The test proposed is for a matrix of full-length tubes with helium heating and prototypic flow configuration on helium and process sides.

C13.2.1 Test Conditions

Indeterminate at this time.

C13.2.2 Test Configuration/Set-up

The test proposed is for a hexagonal matrix of 19 full-length tubes with helium heating. In such a configuration the central 5 tubes would be tested in full-scale thermo-hydraulic conditions on the outside, and likewise for the process flow in the tubes.

This test precedes the Final Design and so will include the prototypical tube seals, process side valves or instrumentation sensors. Test Duration

The testing would cover the full operational environment and through the design cycles as determined by final system design. In addition, stable operation for a time period, nominally 2000 hours at less than 1% per 1000 hour degradation in output, would be expected.

C13.2.3 Proposed Test Location

Possibly this test could be conducted at a sulfuric acid plant, since sulfuric acid decomposition is nothing more than undoing what a sulfuric acid plant does. It would draw a continuous feed from the plant and put its effluent product back into their feed.

C13.3 MEASURED PARAMETERS

Input and output flow rates, conditions and compositions and input and output heat. Instrumentation for temperature measurement will also be included to compare to models.

C13.4 DATA REQUIREMENTS

Specific accuracy and other requirements can not be specified at this time. QA requirements are similarly unclear at this stage of development. It is anticipated that NQA-1 requirements will only apply to the HPS at its interface of with the NHSS, if at all. As such the requirements of NQA-1 would not apply to this data.

C13.5 TEST EVALUATION CRITERIA

The criterion is stable conversion of sulfuric acid to sulfur dioxide at the design flow rates for the inputs and outputs.

C13.6 TEST DELIVERABLES

A test report and data package would be delivered to NGNP Project.

C13.7 COST AND SCHEDULE

Cost and Schedule for the Maturation Plans for the four hydrogen production technology areas are in Section 8.5.

C14 SINGLE CELL TESTING

(Test #2 on the Sulfur Dioxide Electrolysis Road Map)

Cell testing at elevated temperature and at pressure, as is the application.

C14.1 TEST OBJECTIVE

Iterate with design function to determine an optimal configuration of cell assembly, including design of HyS ILS.

C14.2 TEST DESCRIPTION

The test will demonstrate the design choice MEA (Membrane-Electrode Assembly) in a single cell. The cell electrical and flow connections and sealing of the cell are to be features proof tested in this experiment.

C14.2.1 Test Conditions

This test would be performed in ambient laboratory conditions.

C14.2.2 Test Configuration/Set-up

Indeterminate at this time.

C14.2.3 Test Duration

This test would not have a specific duration for evaluation purposes. A nominal duration would be 500 hours.

C14.2.4 Proposed Test Location

At this point in the DOE NHI program the testing of the cells would be performed at Savannah River National Laboratory.

C14.3 MEASURED PARAMETERS

Power input and product output flows and conditions are data needed to compare with design values and prior tests.

Post-test destructive examination will provide data on electrode chemical and mechanical stability. The examination will also yield data for evaluation of material transport, particularly sulfur transport through the membrane to the cathode that has been observed in earlier tests.

C14.4 DATA REQUIREMENTS

Specific accuracy and other requirements can not be specified at this time. QA requirements are similarly unclear at this stage of development. It is anticipated that NQA-1 requirements will only apply to the HPS at its interface of with the NHSS, if at all. As such the requirements of NQA-1 would not apply to this data.

C14.5 TEST EVALUATION CRITERIA

The evaluation of the test will be based on the comparison of performance, as quantified by the above data, to design values.

The above-mentioned sulfur and other material transport will be qualitatively characterized and quantitatively compared to design allowable values.

Performance stability will be compared to system design factors that determine economic optimization, namely the reliability, service requirements, replacement frequencies and mean output of product. Target value for acceptable degradation is 20% per 1000 hours.

C14.6 TEST DELIVERABLES

A test report and data package would be delivered to NGNP Project.

C14.7 COST AND SCHEDULE

Cost and Schedule for the Maturation Plans for the four hydrogen production technology areas are in Section 8.5.

C15 HYS ILS TEST

(Test #3 on the Sulfur Dioxide Electrolysis Road Map)

This test will combine a small-scale Decomposition section to demonstrate the HyS cycle.

C15.1 TEST OBJECTIVE

Demonstrate a complete Hybrid Sulfur thermo- electro-chemical water splitting system.

C15.2 TEST DESCRIPTION

Operate an experimental assembly of the HyS system including the Sulfuric Acid Decomposer. Output goal is 200 ℓ /h of hydrogen.

C15.2.1 Test Conditions

The test will be conducted at steady-state temperature, gas flow, current density and voltage conditions typical of expected commercial operation.

C15.2.2 Test Configuration/Set-up

The Sulfur Dioxide Electrolyzer assembly will be comprised of cells of 160 cm^2 area and in the configuration of the Preconceptual Design. Sulfuric Acid Decomposer would be the unit or a duplicate of the Decomposer in the S-I ILS.

C15.2.3 Test Duration

The test would operate at least 1000 hours under the following ground rules:

- The tests will be operated for a minimum of 150 hours per week.
- No components of the cell can be replaced during the test.
- Between the beginning and end of the test up to 100 hours of operating data can be ignored to eliminate startup transients, interruptions in power and gas supplies and any final, rapid degradation in cell performance. The 100 hours would not be included in the minimum test duration.

C15.2.4 Proposed Test Location

At this point in the DOE NHI program the HyS ILS would be performed at Savannah River National Laboratory. As noted in the Sulfuric Acid Decomposition TDRM (Section 8.1.5), this could be combined with the Pilot Test of the Acid Decomposer, the location for which has not been specified.

C15.3 MEASURED PARAMETERS

Power input and product output flows and conditions are data needed to compare with design values and separate cell tests.

C15.4 DATA REQUIREMENTS

Specific accuracy and other requirements can not be specified at this time. QA requirements are similarly unclear at this stage of development. It is anticipated that NQA-1 requirements will only apply to the HPS at its interface of with the NHSS, if at all. As such the requirements of NQA-1 would not apply to this data.

C15.5 TEST EVALUATION CRITERIA

The evaluation of the test will be based on the comparison of performance, as quantified by the above data, to design values.

Acceptable performance degradation is 10% per 1000 hours. The degradation will be measured as the change in electrical energy input to the cells per kilogram of hydrogen produced.

C15.6 TEST DELIVERABLES

A test report and data package would be delivered to NGNP Project.

C15.7 COST AND SCHEDULE

Cost and Schedule for the Maturation Plans for the four hydrogen production technology areas are in Section 8.5.

C16 OPTIMIZED CELL TESTING

(Test #4 on the Sulfur Dioxide Electrolysis Road Map)

In parallel with the ILS and Preconceptual Design, the electrolysis cell design and materials will be reoptimized. This is an additional step in iteration of design and experiment.

C16.1 TEST OBJECTIVE

Test the result of cell redesign for optimum performance.

C16.2 TEST DESCRIPTION

C16.2.1 Test Conditions

This test would be performed in ambient laboratory conditions.

C16.2.2 Test Configuration/Set-up

Indeterminate at this time. SO₂ input would be laboratory grade.

C16.2.3 Test Duration

This test would not have a specific duration for evaluation purposes. A nominal duration would be 1000 hours.

C16.2.4 Proposed Test Location

At this point in the DOE NHI program the testing of the cells would be performed at Savannah River National Laboratory.

C16.3 MEASURED PARAMETERS

Power input and product output flows and conditions are data needed to compare with design values, prior cell tests and the ILS results.

C16.4 DATA REQUIREMENTS

Specific accuracy and other requirements can not be specified at this time. QA requirements are similarly unclear at this stage of development. It is anticipated that NQA-1 requirements will

only apply to the HPS at its interface of with the NHSS, if at all. As such the requirements of NQA-1 would not apply to this data.

C16.5 TEST EVALUATION CRITERIA

The evaluation of the test will be based on the comparison of performance, as quantified by the above data, to design values.

Acceptable performance degradation is 10% per 1000 hours. The degradation will be measured as the change in electrical energy input to the cells per kilogram of hydrogen produced.

C16.6 TEST DELIVERABLES

A test report and data package would be delivered to NGNP Project.

C16.7 COST AND SCHEDULE

Cost and Schedule for the Maturation Plans for the four hydrogen production technology areas are in Section 8.5.

C17 CELL SCALE-UP TESTING

(Test #5 on the Sulfur Dioxide Electrolysis Road Map)

The plan has Electrolyzer Cells scaled-up from the ILS size in two steps – these correspondingly after Preconceptual and Conceptual Design.

C17.1 TEST OBJECTIVE

Test the result of cell scale-up to 400 cm^2 .

C17.2 TEST DESCRIPTION

C17.2.1 Test Conditions

This test would be performed in ambient laboratory conditions.

C17.2.2 Test Configuration/Set-up

This is a single cell test. SO_2 input would be laboratory grade. Further set-up detail is indeterminate at this time.

C17.2.3 Test Duration

This test would not have a specific duration for evaluation purposes. A nominal duration would be 1000 hours.

C17.2.4 Proposed Test Location

At this point in the DOE NHI program the testing of the cells would be performed at Savannah River National Laboratory.

C17.3 MEASURED PARAMETERS

Power input and product output flows and conditions are data needed to compare with design values, prior cell tests and the ILS results.

C17.4 DATA REQUIREMENTS

Specific accuracy and other requirements can not be specified at this time. QA requirements are similarly unclear at this stage of development. It is anticipated that NQA-1 requirements will only apply to the HPS at its interface of with the NHSS, if at all. As such the requirements of NQA-1 would not apply to this data.

C17.5 TEST EVALUATION CRITERIA

The evaluation of the test will be based on the comparison of performance, as quantified by the above data, to design values.

Acceptable performance degradation is 10% per 1000 hours. The degradation will be measured as the change in electrical energy input to the cells per kilogram of hydrogen produced.

C17.6 TEST DELIVERABLES

A test report and data package would be delivered to NGNP Project.

C17.7 COST AND SCHEDULE

Cost and Schedule for the Maturation Plans for the four hydrogen production technology areas are in Section 8.5.

C18 ELECTROLYZER INTERNALS TEST

(Test #6 on the Sulfur Dioxide Electrolysis Road Map)

Following Preconceptual Design of the Electrolyzer Module Pressure Boundary, the Module Internal design will be tested.

C18.1 TEST OBJECTIVE

This is a design verification and support test.

C18.2 TEST DESCRIPTION

C18.2.1 Test Conditions

The test will be conducted at steady-state temperature and gas flow conditions typical of expected commercial operation.

C18.2.2 Test Configuration/Set-up

Indeterminate at this time.

C18.2.3 Test Duration

This test would not have a specific duration for evaluation purposes.

C18.2.4 Proposed Test Location

At this point in the DOE NHI program the testing of the cells would be performed at Savannah River National Laboratory.

C18.3 MEASURED PARAMETERS

Temperatures, flows and dimensional parameters are data needed to compare with design values.

C18.4 DATA REQUIREMENTS

Specific accuracy and other requirements can not be specified at this time. QA requirements are similarly unclear at this stage of development. It is anticipated that NQA-1 requirements will only apply to the HPS at its interface of with the NHSS, if at all. As such the requirements of NQA-1 would not apply to this data.

C18.5 TEST EVALUATION CRITERIA

The design must demonstrate acceptable cell-to-cell flow distribution and pressure retention Thermal performance data must support projected heat losses. The quantities of these criteria need to be developed in future design steps.

C18.6 TEST DELIVERABLES

A test report and data package would be delivered to NGNP Project.

C18.7 COST AND SCHEDULE

Cost and Schedule for the Maturation Plans for the four hydrogen production technology areas are in Section 8.5.

C19 PRESSURE BOUNDARY STRUCTURE TEST

(Test #7 on the Sulfur Dioxide Electrolysis Road Map)

The design requirements of the vessel or pressure retaining exterior boundary for the SO_2 Electrolysis Cell is not finally determined. However, there is a preferred concept which would be tested separately for pressure retention and material compatibility and then used in the Electrolyzer Pilot-scale Test.

C19.1 TEST OBJECTIVE

This is a design verification and support test.

C19.2 TEST DESCRIPTION

C19.2.1 Test Conditions

The test will be conducted at steady-state temperature and gas flow conditions typical of expected commercial operation.

C19.2.2 Test Configuration/Set-up

Indeterminate at this time.

C19.2.3 Test Duration

This test would not have a specific duration for evaluation purposes.

C19.2.4 Proposed Test Location

At this point in the DOE NHI program the testing of the cells would be performed at Savannah River National Laboratory.

C19.3 MEASURED PARAMETERS

Temperatures, flows, feedthrough currents and mechanical boundary conditions are parameters needed to compare with design values.

C19.4 DATA REQUIREMENTS

Specific accuracy and other requirements can not be specified at this time. QA requirements are similarly unclear at this stage of development. It is anticipated that NQA-1 requirements will only apply to the HPS at its interface of with the NHSS, if at all. As such the requirements of NQA-1 would not apply to this data.

C19.5 TEST EVALUATION CRITERIA

The design must demonstrate acceptable pressure retention and dimensional stability. The quantities of these criteria need to be developed in future design steps.

C19.6 TEST DELIVERABLES

A test report and data package would be delivered to NGNP Project.

C19.7 COST AND SCHEDULE

Cost and Schedule for the Maturation Plans for the four hydrogen production technology areas are in Section 8.5.

C20 ELECTROLYZER PILOT TEST

(Test #8 on the Sulfur Dioxide Electrolysis Road Map)

This is the first test of an electrolyzer with 400 cm^2 cells and the first test of the Module Pressure Boundary and module internals.

C20.1 TEST OBJECTIVE

For this test the nominal goals, which are subject to change as the R&D program proceeds along the Road Map, are as follows:

Electrolyzer	
Avg. cell voltage, mV	700
Current Density, mA/cm ²	500
Cell Active Area, cm ²	400

HyS System		
Hydrogen output, ℓ/h	28,000	
Hydrogen output, kW (HHV)	70	
Process heat input, kWt	200	
Process electrical input, kWe	100	
Time on line, hours	1000	

C20.2 TEST DESCRIPTION

C20.2.1 Test Conditions

The test will be conducted at steady-state temperature, gas flow, current density and voltage conditions typical of expected commercial operation.

C20.2.2 Test Configuration/Set-up

Indeterminate at this time. SO_2 input would reproduce the composition of the output of (or be actual product of) the Sulfuric Acid Decomposition section as being developed in parallel.

C20.2.3 Test Duration

The test would operate at least 1000 hours. (Refer to ground rules for measure in C15.2.3)

C20.2.4 Proposed Test Location

At this point in the DOE NHI program the testing of the cells would be performed at Savannah River National Laboratory.

C20.3 MEASURED PARAMETERS

Power input and product output flows and conditions are data needed to compare with design values, prior cell tests and the ILS results.

C20.4 DATA REQUIREMENTS

Specific accuracy and other requirements can not be specified at this time. QA requirements are similarly unclear at this stage of development. It is anticipated that NQA-1 requirements will only apply to the HPS at its interface of with the NHSS, if at all. As such the requirements of NQA-1 would not apply to this data.

C20.5 TEST EVALUATION CRITERIA

The evaluation of the test will be based on the comparison of performance, as quantified by the above data, to design values.

Acceptable performance degradation is 5% per 1000 hours. The degradation will be measured as the change in electrical energy input to the cells per kilogram of hydrogen produced.

C20.6 TEST DELIVERABLES

A test report and data package would be delivered to NGNP Project.

C20.7 COST AND SCHEDULE

Cost and Schedule for the Maturation Plans for the four hydrogen production technology areas are in Section 8.5.

C21 ELECTROLYZER ENGINEERING TEST

(Test #9 on the Sulfur Dioxide Electrolysis Road Map)

This is a test of one electrolyzer with full-scale cells (1000 cm^2) following Conceptual Design.

C21.1 TEST OBJECTIVE

The nominal goals of this test are as follows:

Electrolyzer	
Avg. cell voltage, mV	650
Current Density, mA/cm ²	500
Cell Active Area, cm ²	1000
HyS System	
Hydrogen output, ℓ/h	280,000
Hydrogen output, kW (HHV)	1000
Process heat input, kWt	2000
Process electrical input, kWe	1000
Time on line, hours	1500

C21.2 TEST DESCRIPTION

C21.2.1 Test Conditions

The test will be conducted at temperature, gas flow, current density and voltage conditions typical of expected commercial operation. Transient testing will not necessarily be to the full range of design transients.

C21.2.2 Test Configuration/Set-up

Indeterminate at this time. SO_2 input would reproduce the composition of the output of (or be actual product of) the Sulfuric Acid Decomposition section as being developed in parallel.

C21.2.3 Test Duration

The test would operate at least 1500 hours. (Refer to ground rules for measure in C15.2.3)

C21.2.4 Proposed Test Location

At this point in the DOE NHI program the testing of the cells would be performed at Savannah River National Laboratory.

C21.3 MEASURED PARAMETERS

Power input and product output flows and conditions are data needed to compare with design values, prior cell tests and the Pilot Test results.

C21.4 DATA REQUIREMENTS

Specific accuracy and other requirements can not be specified at this time. QA requirements are similarly unclear at this stage of development. It is anticipated that NQA-1 requirements will only apply to the HPS at its interface of with the NHSS, if at all. As such the requirements of NQA-1 would not apply to this data.

C21.5 TEST EVALUATION CRITERIA

The evaluation of the test will be based on the comparison of performance, as quantified by the above data, to design values.

Acceptable performance degradation is 2% per 1000 hours. The degradation will be measured as the change in electrical energy input to the cells per kilogram of hydrogen produced.

C21.6 TEST DELIVERABLES

A test report and data package would be delivered to NGNP Project.

C21.7 COST AND SCHEDULE

Cost and Schedule for the Maturation Plans for the four hydrogen production technology areas are in Section 8.5.
C22 PROTOTYPE ELECTROLYZER TEST

(Test #10 on the Sulfur Dioxide Electrolysis Road Map)

This test will be of one prototype electrolyzer of the full-scale with the number of cells resulting from Final Design with the cell scaled up in area from 1000 cm^2 to 1 m^2 .

C22.1 TEST OBJECTIVE

The goal of this test is electrolyzer performance corresponding to an HPS production on the order of 420 Nm³ of hydrogen per hour.

C22.2 TEST DESCRIPTION

C22.2.1 Test Conditions

The test will be conducted at temperature, gas flow, current density and voltage conditions typical of expected commercial operation. Transient testing will be to the full range of design transients.

C22.2.2 Test Configuration/Set-up

Indeterminate at this time. SO_2 input would reproduce the composition of the output of (or be actual product of) the Sulfuric Acid Decomposition section as being developed in parallel.

C22.2.3 Test Duration

The test would operate at least 2000 hours. (Refer to ground rules for measure in C15.2.3)

C22.2.4 Proposed Test Location

At this point in the DOE NHI program the testing of the cells would be performed at Savannah River National Laboratory.

C22.3 MEASURED PARAMETERS

Power input and product output flows and conditions are data needed to compare with design values, prior cell tests and the Pilot Test results.

C22.4 DATA REQUIREMENTS

Specific accuracy and other requirements can not be specified at this time. QA requirements are similarly unclear at this stage of development. It is anticipated that NQA-1 requirements will only apply to the HPS at its interface of with the NHSS, if at all. As such the requirements of NQA-1 would not apply to this data.

NGNP-CTF MTECH-TDRM-008-Rev0-final.doc

C22.5 TEST EVALUATION CRITERIA

The evaluation of the test will be based on the comparison of performance, as quantified by the above data, to design values.

Acceptable performance degradation is 1% per 1000 hours. The degradation will be measured as the change in electrical energy input to the cells per kilogram of hydrogen produced.

C22.6 TEST DELIVERABLES

A test report and data package would be delivered to NGNP Project.

C22.7 COST AND SCHEDULE

Cost and Schedule for the Maturation Plans for the four hydrogen production technology areas are in Section 8.5.

C23 ABSORBER TOWER DESIGN DATA

(Test #11 on the Sulfur Dioxide Electrolysis Road Map)

System feasibility and functionality for the system can be assured from general industry experience, but design data is needed in the operating environment. Specifically for mass transfer in the SO_2 absorber column, the Heights Equivalent to the Theoretical Plate (HETPs) need to be experimentally determined. In order to be applied to the NGNP, sub-scale demonstration testing of the SO_2 Recovery System in the operational environment is expected.

C23.1 TEST OBJECTIVE

Determinations of mass transfer coefficients or Heights Equivalent to the Theoretical Plate (HETPs) are needed.

C23.2 TEST DESCRIPTION

A vendor would supply a suitable packing that will be tested to measure an HETP or mass transfer coefficient. It may be useful also to do small bench scale tests to determine whether and how much the mass transfer in this system of components and conditions deviates from that of similar known systems.

C23.3 MEASURED PARAMETERS

Determinations of mass transfer coefficients or Heights Equivalent to the Theoretical Plate (HETPs).

C23.4 DATA REQUIREMENTS

Specific accuracy and other requirements can not be specified at this time. QA requirements are similarly unclear at this stage of development. It is anticipated that NQA-1 requirements will only apply to the HPS at its interface of with the NHSS, if at all. As such the requirements of NQA-1 would not apply to this data.

C23.5 TEST EVALUATION CRITERIA

Indeterminate at this time.

C23.6 TEST DELIVERABLES

A test report and data package would be delivered to NGNP Project.

C23.7 COST AND SCHEDULE

Cost and Schedule for the Maturation Plans for the four hydrogen production technology areas are in Section 8.5.

C24 SENSOR TESTING

(Test #14 on the Sulfur Dioxide Electrolysis Road Map)

Thermocouples, pressure sensors and other instruments need to be qualified for the operational environment they will experience. New technology is not expected to be required, and so prior to such tests the sensors would have been operated in relevant environments.

C24.1 TEST OBJECTIVE

The materials of construction need to be tested in anticipated steady state and transient conditions.

C24.2 TEST DESCRIPTION

Further test details will require design effort to, as a minimum, determine 1) the materials, 2) their configuration and 3) the static and cyclic environments they will see in service.

No location for these tests can be decided at this time.

C24.3 MEASURED PARAMETERS

Sensed variable measurement would be compared to results from reference instruments. Operation would be of sufficient duration to validate the instrument reliability and lifetime requirements, but these requirements will not be available until further system design has progressed. In addition, materials testing involves qualitative examination of test articles for corrosion or other damage and quantitative, generally destructive, measurement of dimensional and/or gravimetric change.

C24.4 DATA REQUIREMENTS

Specific accuracy and other requirements can not be specified at this time. QA requirements are similarly unclear at this stage of development. It is anticipated that NQA-1 requirements will only apply to the HPS at its interface of with the NHSS, if at all. As such the requirements of NQA-1 would not apply to this data.

C24.5 TEST EVALUATION CRITERIA

Indeterminate at this time.

C24.6 TEST DELIVERABLES

A test report and data package would be delivered to NGNP Project.

C24.7 COST AND SCHEDULE

Cost and Schedule for the Maturation Plans for the four hydrogen production technology areas are in Section 8.5.

C25 PROTOTYPE HPS TEST

(Test #19 on the Sulfuric Acid Decomposer Road Map and Test #15 on the Sulfur Dioxide Electrolysis Road Map)

NGNP-CTF MTECH-TDRM-008-Rev0-final.doc

This test would be an assembly of one or more of the Prototype Electrolyzers from the previous test with a scaled-down Acid Decomposer section. The Road Maps are composed with the assumption that such a test is not needed, because separate testing of the Acid Decomposer and one Prototype Electrolyzers with transfer of feed and products between them could be sufficient to assure TRL 8. Integrated operation would be demonstrated by analysis.

No Test Plan is provided for this optional test at this time.

C26 CONTINUING CELL TESTING

(Test #16 on the Sulfur Dioxide Electrolysis Road Map)

This would be a continuation of the cell scale-up to one square meter as described in C17. One or more cells would remain on test for up to 10,000 hours. The purpose of the testing is to develop lifetime experience on the prototype design cells and to quantify long-term performance trends.

Evaluation would be according to the criteria in Table 8-6.

The Test Plan is the same as in C17.

NGNP-CTF MTECH-TDRM-009 Revision 1 December 2008

NGNP and Hydrogen Production Conceptual Design Study

NGNP Technology Development Road Mapping Report

Section 9: Power Conversion System Steam Generator

APPROVALS

Function		Printed Name	and Signature	Date
Author	Name: Company:	Alan Spring Westinghouse US	alan M	December 3, 2008
Reviewer	Name: Company:	Scott Penfield Technology Insights	Scatt R Parfield }	December 3, 2008
Approval	Name: Company:	Jan van Ravenswaay M-Tech Industrial	lanna	December 3, 2008

Westinghouse Electric Company LLC Nuclear Power Plants Post Office Box 355 Pittsburgh, PA 15230-0355

©2008 Westinghouse Electric Company LLC All Rights Reserved

LIST OF CONTRIBUTORS

Name and Company	Date
Alan Spring - Westinghouse Electric Company	October 27, 2008
Scott Penfield – Technology Insights	October 27, 2008
Peter Wells – Shaw Group	October 27, 2008
Mit Basol - Westinghouse Electric Company	October 27, 2008

BACKGROUND INTELLECTUAL PROPERTY CONTENT

Section	Title	Description
N/A		

REVISION HISTORY

RECORD OF CHANGES

Revision No.	Revision Made by	Description	Date
А	Alan Spring	Comments Review	October 20, 2008
В	Alan Spring	Updated Comments	October 27, 2008
0	Alan Spring	Document for Approval	October 27, 2008
0A	Alan Spring	BEA comments incorporated	December 2, 2008
1	Alan Spring	Document for release to WEC	December 3, 2008

DOCUMENT TRACEABILITY

Created to Support the Following Document(s)	Document Number	Revision
N/A		

TABLE OF CONTENTS

Sec	tion		Title	Page
	ТОТ	F TABI F FICU	LES	
		F FIGU JVMS	JKES	
SUI		ARY A	ND CONCLUSIONS	
9	POV	VER C	ONVERSION SYSTEM STEAM GENERATOR	
	9.1	Funct	TONS AND OPERATING REQUIREMENTS	
	9.2	TECHN	NOLOGY/DESIGN SELECTION STATUS	11
		9.2.1	Candidate Technologies	11
		9.2.2	Decision Discriminators	12
		9.2.3	Reference Design	13
		9.2.4	Alternatives for Further Evaluation	15
		9.2.5	Down Selection Task	15
	9.3	TRL S	TATUS OF THE STEAM GENERATOR	16
	9.4	TECHN	NOLOGY DEVELOPMENT ROAD MAP SUMMARY	16
	9.5	TECHN	NOLOGY MATURATION PLAN SUMMARY	16
		9.5.1	Maturation Tasks from TRL 6 to TRL 7	17
		9.5.2	Maturation Tasks to Advance from TRL 7 to TRL 8	17
	9.6	INPUTS	S TO CTF	
	9.7	Refer	ENCES	
AP	PEN	DIX A:	TECHNOLOGY READINESS LEVEL RATING SHEETS	
AP	PEN	DIX B:	TECHNOLOGY DEVELOPMENT ROAD MAP	24
AP	PEN	DIX C:	TECHNOLOGY MATURATION PLAN	

LIST OF TABLES

Table 9-1:	Typical Steam Generator Performance Parameters	10
Table 9-2:	Design Data Needs	18
Table A-1:	TRL Rating Sheet of the PCS Steam Generator	23

LIST OF FIGURES

Figure 9-1:	Steam Generator (PCS-SG-001)	
Figure B-1:	Technology Development Road Map of t	he PCS Steam Generator 25

ACRONYMS

Acronym	Definition
AI	Inner Annulus (active cooling piping)
AMS	Activity Measurement System
AO	Outer Annulus (active cooling piping)
AOO	Anticipated Operational Occurrence
AS	Automation System
ASME	American Society of Mechanical Engineers
AVR	Arbeitsgemeinschaft Versuchs-Reaktor
BOP	Balance of Plant
BUMS	Burn-up Measurement System
СВ	Core Barrel
CCS	Core Conditioning System
CEA	Commissariat à l'Énergie Atomique
CFD	Computational Fluid Dynamics
CHE	Compact Heat Exchanger
CIP	Core Inlet Pipe
CO2	Carbon Dioxide
COC	Core Outlet Connection
COP	Core Outlet Pipe
COTS	Commercial Off The Shelf
CRADA	Co-operative Research and Development Agreement
CRD	Control Rod Drive
CSC	Core Structure Ceramics
CTF	Component Test Facility
CTF	Component Test Facility
CUD	Core Unloading Devices
DAU	Data Acquisition Unit
DBA	Design Base Accident
DBE	Design Base Event
DDN	Design Data Need
DFC	Depressurized Forced Cooling
DLOFC	De-pressurized Loss of Forced Cooling
DOE	Department of Energy
DPP	Demonstration Power Plant
DRL	Design Readiness Level
DWS	Demineralized Water System
ELE	Elecrolyser System
EM	Evaluation Model
EMB	Electomagnetic Bearing
EOFY	End of Fiscal Year
EPCC	Equipment Protection Cooling Circuit
EPCT	Equipment Protection Cooling Tower
F&OR	Functional and Operational Requirements
FHS	Fuel Handling System
FHSS	Fuel Handling and Storage System

FIMA	Fissions per Initial Metal Atoms
FMECA	Failure Modes, Effects and Criticality Analysis
FS	Fuel Spheres
FTA	Fault Tree Analysis
FUS	Feed and Utility System
H2	Hydrogen
H2SO4	Sulfuric Acid
HC	Helium Circulator
Не	Helium
HETP	Height Equivalent of the theoretical Plate
HGD	Hot Gas Duct
HI	Hydro-lodic
HLW	High Level Waste
HPB	Helium Pressure Boundary
HPC	High Pressure Compressor
HPS	Helium Purification System
HPS	Hydrogen Production System
HPT	High Pressure Turbine
HPU	Hydrogen Production Unit
HRS	Heat Removal System
HTF	Helium Test Facility
HTGR	High Temperature Gas-Cooled Reactor
HTR	High Temperature Reactor
HTS	Heat Transport System
HTSE	High Temperature Steam Electrolysis
HTTR	High Temperature Test Reactor
HVAC	Heating Ventilation and Air Conditioning
HX	Heat Exchanger
HyS	Hybrid Sulfur
1&C	Instrumentation and Control
12	lodine
ID	Inner Diameter
IHX	Intermediate Heat Exchanger
ILS	Integrated Laboratory Scale
I-NERI	International Nuclear Energy Research Initiative
INL	Idaho National Laboratory
INL	Idaho National Laboratory
IPT	Intermediate Pressure Turbine
ISR	Inner Side Reflector
K-T	Kepner-Tregoe
KTA	German nuclear technical committee
LEU	Low Enriched Uranium
LOFC	Loss of Forced Cooling
LPT	Low Pressure Turbine
MES	Membrane-electrode assembly
MTR	Material Test Reactor
NAA	Neutron Activation Analysis

NCS	Nuclear Control System
NGNP	Next Generation Nuclear Plant
NHI	Nuclear Hydrogen Initiative
NHS	Nuclear Heat Supply
NHSS	Nuclear Heat Supply System
NNR	National Nuclear Regulator
NRG	Nuclear Research and consultancy Group
NRV	Non-Return Valve
02	Oxygen
OD	Outer Diameter
PBMR	Pebble Bed Modular Reactor
PCC	Power Conversion System
PCDR	Pre-Conceptual Design Report
PCHE	Printed Circuit Heat Exchanger
PCHX	Process Coupling Heat Exchanger
PCS	Power Conversion System
PFHE	Plate Fin Heat Exchanger
PHTS	Primary Heat Transport System
PIE	Post-irradiation Examination
PLOFC	Pressurized Loss of Forced Cooling
POC	Power Conversion System
PPM	Parts per million
PPU	Product Purification Unit
PPWC	Primary Pressurized Water Cooler
QA	Quality Assurance
RAMI	Reliability, Availability, Maintainability and Inspectability
RC	Reactor Cavity
RCCS	Reactor Cavity Cooling System
RCS	Reactivity Control System
RCSS	Reactivity Control and Shutdown System
RDM	Rod Drive Mechanism
RIM	Reliability and Integrity Management
RIT	Reactor Inlet Temperature
RM	Road Map
ROT	Reactor Outlet Temperature
RPS	Reactor Protection System
RPT	Report
RPV	Reactor Pressure Vessel
RS	Reactor System
RSS	Reserve Shutdown System
RUS	Reactor Unit System
SAD	Acid Decomposition System
SAR	Safety Analysis Report
SAS	Small Absorber Spheres
SG	Steam Generator
SHTS	Secondary Heat Transport System
S-I	Sulfur lodine

SiC	Silicon Carbide
SNL	Sandia National Laboratory
SO2	Sulfur Dioxide
SOE	Sulfuric Oxide Electrolyzers
SOEC	Sulfuric Oxide Electrolyzers Cells
SR	Side Reflector
SSC	System Structure Component
SSCs	Systems, Structures and Components
SSE	Safe Shutdown Earthquake
SUD	Software Under Development
TBC	To Be Confirmed
TBD	To Be Determined
TDL	Technology Development Loop (As incorporated in Concept 1)
TDRM	Technology Development Road Map
TER	Test Execution Report
THTR	Thorium High Temperature Reactor
TRISO	Triple Coated Isotropic
TRL	Technology Readiness Level
TRM	Technology Road Map
UCO	Uranium Oxycarbide
UO2	Uranium Dioxide
USA.	United States of America
V&V	Verification and Validation
V&Ved	Verified and Validated
VLE	Vapor-Liquid Equilibrium
WBS	Work Breakdown Structure
WEC	Westinghouse Electric Company

SUMMARY AND CONCLUSIONS

The Steam Generator (SG) is a major component of the NGNP Power Conversion System (PCS) and interfaces with the Secondary Heat Transport System (SHTS). Location of the SG in the SHTS is based on maximizing the amount of high temperature thermal energy available for hydrogen production and is a significant departure from prior High-Temperature Gas-Cooled Reactor (HTGR) applications in which the SG was located in the Primary Heat Transport System (PHTS).

In the context of the NGNP Hydrogen Production System PCS, the Steam Generator is a developmental component that is based on proven technologies. These technologies must be reestablished, adapted and extrapolated for the NGNP. Based on prior applications such as Fort St. Vrain and the Thorium High-Temperature Reactor (THTR), the SG has been rated at a technology readiness level of TRL 6.

In the current context, the road map for TRL6 to TRL 8 requires two phases:

TRL 6 to TRL 7:

- Perform a down selection trade study to determine the preferred conceptual arrangement of the SG
- Define requirements and design details for the SG in the PCS system context
- Perform configuration development tests to substantiate the design
- Design and supply a scale prototype for testing in the CTF
- Conduct performance testing in the CTF.

TRL 7 to TRL 8:

- Complete final design of the prototype SG for the NGNP
- Fabricate and deliver to NGNP to the Site
- Install and operate.

The basic features of the reference preconceptual design of the SG are described along with an indication of the development testing needed.

To add detail to the roadmap in terms of technology maturation plans, it is important to first advance the SG to the conceptual design level.

9 POWER CONVERSION SYSTEM STEAM GENERATOR

9.1 Functions and Operating Requirements

The function of the Steam Generator (SG) is to produce superheated high pressure steam for conversion into mechanical work in the Steam Turbine of the Power Conversion System (PCS). In the Steam Generator, feedwater acquires heat from the higher temperature helium circulating in the Secondary Heat Transport System (SHTS). Feedwater enters as a sub-cooled liquid and exits as superheated steam. The Main Steam/Extraction System piping transports the steam to the Steam Turbine inlet.

Representative SG performance parameters are listed in Table 9-1.

Parameter	HPS in Operation	HPS not in Operation		
Thermal Power, MWt	470	520		
Hot Side				
Fluid	Hel	ium		
Inlet Press, MPa	8	.7		
Inlet Temp, °C	840	900		
Flow Rate, kg/s	160	160		
Outlet Temp, °C	27	73		
Outlet Press, MPa	8	.6		
Design Temp, °C	[TI]	3D]		
Design Press, MPa	> 13.2			
Cold Side				
Fluid	Wa	ater		
Superheater Outlet Press,	12	2.8		
MPa				
Superheater Outlet Temp, °C	54	40		
Main Steam Flow, kg/s	206	228		
Feedwater Temp, °C	2	19		
Feedwater Press, MPa	18	3.3		
Design Temp, °C	~3	00		
Design Press, MPa	>1	8.5		

 Table 9-1: Typical Steam Generator Performance Parameters

9.2 Technology/Design Selection Status

While the helical-coil once-through steam generator was identified as the reference SG design for developing the NGNP Preconceptual Design Report (PCDR), additional work in the form of conceptual design trade studies is required to confirm the PCDR selection or to identify an alternate concept.

Unlike prior HTGR steam cycles designed for electricity production, the SG in the PBMR NGNP design is located in the SHTS and serves as a bottoming process to the Hydrogen Production System's Process Coupling Heat Exchanger (PCHX). As described in the PBMR NGNP Preconceptual Design Report (PCDR), this configuration allows the maximum amount of high temperature thermal energy to be utilized for hydrogen production, particularly in the NGNP Commercial Plant. While lower temperature (e.g., 750°C reactor outlet) NGNP concepts are expected to be evaluated, specific applications, along with their functions and requirements have not been identified and the location of the SG in the PHTS or SHTS for such applications has not yet been assessed through appropriate trade studies. Hence, the discussion herein is limited to the 950°C application to hydrogen production, as documented in the PCDR.

In the PCDR arrangement, location of the steam generator in the power conversion area and its coupling to the SHTS provide a great deal of flexibility. This is not the case with earlier HTGRs in which the SG was integrated within the PHTS and located within the expensive real estate of the Reactor Building or, in some cases, the Reactor Pressure Vessel itself (e.g., Fort St. Vrain and THTR). In the present case, less compact designs and/or splitting the steam generator into multiple sections and/or vessels are options that may be considered. An example would be a recirculating economizer/evaporator in one vessel, plus a separate superheater in a second vessel.

Candidate SG technologies are identified in Section 9.2.1. Decision discriminators leading to a final design selection are discussed in Section 9.2.2. The PCDR reference SG used as a surrogate in the development of this report is described in Section 9.2.3. Note that establishing a reference conceptual design for the steam generator is presently expected to be based upon trade studies and analyses only. Given the relative maturity of the underlying technologies, testing is not presently expected to be required as a basis for establishing the reference SG design.

9.2.1 Candidate Technologies

Candidate technologies include the following:

Helical Coil Shell & Tube Heat Exchanger

The helical coil shell and tube heat exchanger has been the basis for prior High-Temperature Gas-Cooled Reactors (HTGRs), including Fort St. Vrain in the U.S. and the Thorium High-Temperature Reactor (THTR) in Germany.

Serpentine Tube Heat Exchanger

NGNP-CTF MTECH-TDRM-009-Rev1-final.doc

Designs of the serpentine tube type have been utilized in Advanced Gas-Cooled Reactors (AGRs) in the UK.

Other

The conceptual design trade study leading to the selection of a reference steam generator will consider other conventional steam generator technologies (e.g., designs based upon heat recovery steam generators, presently used in conjunction with combined cycle gas turbine plants).

9.2.2 Decision Discriminators

Design/Technology Development

The steam generator for the NGNP is largely based upon existing and/or previously utilized conventional technologies, including design features, materials and operating conditions. The advantages of prior experience are best realized by maximizing commonality with previously developed and demonstrated designs.

Manufacturing and Transportability

Key manufacturing considerations include:

- Manufacturing of the pressure vessel
- Coiling and/or bending of the tubes
- Installing the tubes within the heat transfer bundle
- Installing the heat transfer bundle within the pressure vessel
- Attaching the tubes to the tubesheets and/or internal headers that provide the interfaces with the feedwater and steam piping

Transportability is principally a function of the size (particularly diameter) and weight of the completed assembly. In this regard, the compactness of the heat exchanger is of particular importance.

Operation and Maintenance

Operation and maintenance considerations include:

- The use of steam in a closed circuit for electricity production. This arrangement facilitates stringent control of feedwater quality and is consistent with a once-through boiling configuration
- Cleaning requirements and provisions for tube cleaning
- Inspection requirements and provisions for detecting and isolating leaks

Safety and Investment Protection

There are no nuclear safety functions or requirements assigned to the SG.

In order to meet overall plant requirements, the SG must have a high reliability/availability.

NGNP-CTF MTECH-TDRM-009-Rev1-final.doc

Lifecycle Cost

Lifecycle costs include the initial capital cost and the costs associated with operation and maintenance. Features tending to reduce capital costs include effective utilization of the heat transfer surface (MWt/m²) and minimizing the size of the heat exchanger (MWt/m³). Operation and maintenance costs are reduced by high reliability and minimizing the need for maintenance functions, such as water-side cleaning.

9.2.3 Reference Design

The PCDR reference Steam Generator for the NGNP is an extrapolation of the design developed for the steam cycle version of the Modular HTGR (MHTGR-SC), as described in Reference

[9-1]. It represents a further extension of the evolutionary path from FSV to THTR to MHTGR. The resulting design provides the context for the technology development planning discussed in this section.

The SG is a vertically oriented, counter-flow, shell-and-tube, once-through, non-reheat tubular heat exchanger, with helium on the shell side and water/steam in the tubes. It incorporates an economizer, an evaporator and first-stage superheater in one helical tube bundle, followed by a finishing superheater in a second helical tube bundle. Helium flows downward across the helical tube bundles, between the inner and outer shrouds. Cooled helium flows out of the SG bundle, turns 180°, and flows upward through an annulus created by the SG outer shroud and the Steam Generator Vessel I.D. Feedwater is introduced at the bottom of the unit and flows counter current to the helium flow, with superheated steam exiting from the top. A single SG provides high pressure steam for the PCS.

Figure 9-1: Steam Generator (PCS-SG-001)

For the proposed NGNP application, the flow path of the helium is arranged so that the enclosing vessel operates at the cooler shell-side outlet helium conditions. Internal structure materials (tube supports, shrouds) are selected consistent with their respective operating temperatures. For the NGNP application (as with prior MHTGR designs), the steam generator is a scale-up in thermal rating relative to early experience. The impact of this scale-up is reflected in a previously recognized and documented set of design data needs:

- The enclosing vessel is designed and fabricated of low alloy steel and is generally within the current state-of-the-art of light water reactor and petrochemical vessel technology.
- The overall size and weight of the completed steam generator is consistent with the current technology basis of large pressure vessels and heat exchangers. As a frame of reference, the steam generator design for the MHTGR had an overall height and diameter of 60 feet and 17 feet and estimated weight of 650 US Tons. This configuration was considered transportable to the INL site via a carefully planned and executed transportation scheme. Similar envelopes are likely for the NGNP application.
- The feedwater tubesheet penetration requires special attention from a detailed design perspective and includes a removable/replaceable orifice at the inlet of each tube circuit.
- The superheated steam outlet tubesheet is an Alloy 800H forging of large size compared to typical practice with this material. This condition may lead to more than one shell penetration as detailed design proceeds.
- The relatively large thermal rating, compared to the operating experience base, is typically accommodated by adding tube circuits. This design introduces uncertainties in the performance characteristics on both the helium and water sides of the tubes and in the structural design of the tube bundle, as well as in fabrication and assembly techniques.
- Other configuration specific needs include consideration of wear protection of tube surfaces at support locations.

An alternate configuration is the serpentine arrangement of heat transfer surface which is typical of some AGR reactors.

9.2.4 Alternatives for Further Evaluation

The main alternative to the helical-coil design is the serpentine arrangement used in AGR applications; however, other conventional steam generator technologies will be evaluated. In addition, packaging of the SG into one or more vessels will be evaluated, as will once-through versus recirculating.

9.2.5 Down Selection Task

A trade study is required to further compare the helical-coil, serpentine-tube and other SG concepts in terms of the decision discriminators summarized in Section 9.2.2.

9.3 Technology Readiness Level Status of the Steam Generator

The TRL status of the Steam Generator has been assessed and it is concluded that the present status is TRL 6. The associated rating sheet is provided as Appendix A.

The steam generator proposed in the PCDR is clearly developmental from the perspective of being a new embodiment of a previously applied technology. As noted earlier, the design is based on technology developed for early gas-cooled reactors such as Peach Bottom, AVR, FSV and the THTR. The steam generators in these plants operated successfully and the essential supporting technology in terms of materials, design methods and fabrication methods was demonstrated. It is notable that the AVR steam generator operated for extended periods at 950°C reactor outlet temperature. Further design development of the steam generator for the MHTGR-SC application was accomplished under DOE sponsored programs in the 1980's and early 1990's. This development includes the compact helical arrangement of heat transfer surface and the once-through configuration. Tubing materials are based on conventional boiler materials, 2-1/4 Cr -1Mo for the lower temperature portions of the once-thru tube circuit and Alloy 800H for the higher temperature portions of the tube circuit.

9.4 Technology Development Road Map Summary

The Steam Generator Technology Development Road Map is provided as Appendix B. The associated maturation tasks are summarized in Section 9.5.

As already noted, a key prerequisite to advancing the SG from the present level of TRL 6 to TRL 7 and 8 is the conduct of the conceptual design trade study to establish the preferred conceptual design of the steam generator. Once that is done, a series of development activities and tests will be required to reestablish the technology basis for the SG and to validate its performance for the NGNP application. These activities and tests are based upon DDNs identified during preconceptual design and documented in the PCDR. A summary of these DDNs is provided in Table 9-2.

The activities required to advance the SG from TRL 6 to TRL 7 are generally associated with reestablishing the technology base for steam generators in HTGRs. The activities for advancing the steam generator from TRL 7 to TRL 8 are those associated with preparation for and fabrication of the NGNP steam generator.

9.5 Technology Maturation Plan Summary

The sections below summarize the maturation tasks needed to advance the technology of the Steam Generator from a validated TRL 6 to a validated TRL 8. The general basis and assumptions for advancing from a TRL level of 6 are:

• Completion of the SG conceptual design trade study, described above

- Apply FSV+THTR+ MHTGR development basis for helical steam generator
- Establish materials
- ASME Code basis available (ASME B&PV Code, Section VIII)
- Essential analysis tools available
- Need to reassemble/refresh the technology base for the NGNP application. Application of the technology is dormant.
- Confirmation of performance
- Demonstration of steam generator fabrication technology

The Steam Generator maturation tasks are summarized below and discussed in more detail in Appendix C.

9.5.1 Maturation Tasks from TRL 6 to TRL 7

The SG will be advanced from TRL 6 to TRL 7 via three groups of activities:

- SG Design Development When placed in the context of the NGNP, the SG becomes a first-of-a-kind application of an established technology in the PCS system context of operational parameters, as yet unspecific plant layout and other integrated system related requirements. In this regard, the first step is completion of a conceptual design trade study to establish the reference conceptual design of the SG.
- Reestablishment of SG Technology Basis Design Data Needs for the SG are described in Reference 9-1 and listed in Table 9-2. Some DDNs listed in Table 9-2 are sensitive to SG configuration while others are generic to the helium and water/steam operational environment. A majority of the DDNs in Table 9-2 that are identified as being associated with the transition between TRL 6 and TRL 7 are those necessary to reestablish the SG technology basis.
- SG Feature Tests in addition, certain tests identified in Table 9-2 are required to establish or confirm SG features.

9.5.2 Maturation Tasks to Advance from TRL 7 to TRL 8

Maturation tasks associated with the transition from TRL 7 to TRL 8 are those supporting final confirmation of the established SG design and fabrication of the prototype NGNP SG. These activities and tests correspond to those DDNs in Table 9-2 identified as being associated with the transition between TRL 7 and TRL 8.

Table 9-2:Design Data Needs

# NDD	Design Data Need	Category	TRL 6→7	TRL 7→8	Expected Outcome	Recommended Performer
PCS-01-18	Review and Reassemble Existing SG Development Data Base	All	×		Establish baseline for development tasks in the context of NGNP	Designer/fabricator
PCS-01-01	Secondary Side Corrosion Characteristics of 800H & 2-1/4Cr- 1Mo and Weldments	Materials	×		Confirmation of assumptions regarding corrosion performance of SG tube materials and welds	Material testing lab with support from designer
PCS-01-02	Helium Environment Effects on 2- 1/4 Cr-1Mo	Materials	×		Validation of assumptions regarding long time behavior of selected material in helium environment	Material testing lab
PCS-01-03	Helium Environment Effects on 800H	Materials	×		Validation of assumptions regarding long time behavior of selected material in helium environment	Material testing lab
PCS-01-04	Acoustic Response of Helical Bundle	Performance		×	Determine acoustic characteristics of the tube bundle in response to input noise and self generated noise. Provide acoustic loads on various internal structures	Designer/fabricator CTF?
PCS-01-05	Large Helical Coil Fabrication Test	Fabrication		×	Verification of design assumptions and assembly process for large diameter helical bundle	Designer/fabricator

NGNP-CTF MTECH-TDRM-009-Rev1-final.doc

Page 18 of 32

12/03/2008

# NQQ	Design Data Need	Category	TRL 6→7	TRL 7→8	Expected Outcome	Recommended Performer
PCS-01-06	Inlet Flow Distribution	Performance	×	×	Design configuration of inlet geometry to maintain acceptable velocity and temperature profile	Designer/fabricator CTF?
PCS-01-07	Insulation Verification Test	Design	×		Verify acceptable mechanical performance of thermal insulation and related structures.	Designer/fabricator
PCS-01-08	Fretting & Sliding Wear Protection Tests	Materials	×		Confirm acceptable mechanical performance of wear protection devices used at interface between tubes and supports.	Material testing lab
PCS-01-09	Tube Wear Protection Device Testing	Design	х		Confirm functional performance of wear protection devices	Designer/fabricator
PCS-01-10	Shroud Seal Test	Design	×	×	Confirm acceptable performance of seal features to control bypass flows	Designer/fabricator CTF?
PCS-01-11	Lead-in/Lead- out/Transition/Expansion Loop Mockups	Fabrication		×	Verify space envelope and assembly sequence for tube circuit transitions from tubesheet to helical bundle, etc.	Designer/fabricator
PCS-01-12	Flow Induced Vibration Testing of Helical Bundle	Performance		×	Establish FIV characteristics of tube bundle	Designer/fabricator CTF?
PCS-01-13	Orifice Qualification Test	Performance	×		Confirm acceptable performance of orifices in helical tube circuits	Designer/fabricator
PCS-01-14	Instrumentation Attachment Test	Design	×		Establish design features for final design	Designer/fabricator
PCS-01-15	Bi-Metallic Weld Structural Integrity	Materials	×		Confirm design criteria	Designer/Materials Lab

NGNP-CTF MTECH-TDRM-009-Rev 1-final.doc

12/03/2008

NGNP Technology Development Road Mapping Report Section 9: Power Conversion System Steam Generator

# NDD	Design Data Need	Category	TRL 6→7	TRL 7→8	Expected Outcome	Recommended Performer
PCS-01-16	Helical Bundle and Transition Region Heat Transfer Test	Performance	×		Confirm heat transfer coefficient assumptions	Designer/fabricator CTF?
PCS-01-17	Tubing Inspection Methods and Equipment	Design		×	Demonstrate acceptable methods and equipment	Designer/fabricator
PCS-01-19	Testing of Scale Prototype SG in CTF	Integrated system performance	×		Demonstrate acceptable performance of SG in a simulated PCS loop	Designer/fabricator/system designer CTF

NGNP-CTF MTECH-TDRM-009-Rev 1-final.doc

Page 20 of 32

12/03/2008

9.6 Inputs to CTF

As noted in Table 9-2 (DDN PCS-01-19), the testing which is suitable for CTF testing is a scale prototype test series. It is expected that both individual testing of the SG and integrated testing with other PCS loop components may be performed.

It may also be possible to address other DDNs via testing in the CTF. For example, PCS-01-04, PCS-01-06, PCS-01-10, and PCS-01-12 may be addressed by appropriate testing in the CTF.

9.7 References

[9-1] NGNP-08-RPT-001, Revision 0, NGNP and Hydrogen Production Preconceptual Design Report, "Section 8: Power Conversion System", May 2007.

APPENDIX A: TECHNOLOGY READINESS LEVEL RATING SHEETS

Table A-1: TRL Rating Sheet of the PCS Steam Generator

TRL Rating Sheet					
Vendor Name: Docu	iment Number:	R	evision:		
□ Island □ System ☑ Subs	system/Structure	Compoi	nent 🛛	Technology	
Title: Steam Generator					
Description: The Steam Generator transfers them power generation circuit. It is part system.	mal energy from the S of the Main Steam Sys	HTS he stem wi	lium to the F thin the Pow	Rankine cycle er Conversion	
Area(s):	□ HPS	☑ PCS		Р	
ISSCTBS: N/A Pa	rent: N/A		WBS: N/A		
,	Technology Readiness	Level			
Generic Definitions (abbreviated)	Next Lower Rating Level Component or system	Ca I Similar releva	Iculated Rating SSC in nt	Next Higher Rating Level Pilot/engineering scale	
breadboard in relevant environment			nment in er ation	demonstration in relevant environment.	
TRL 5 6 7				7	
Basis for Rating: Steam Generators have been demonstrated in numerous gas-cooled reactors and in other high temperature gas reactors, specifically Peach Bottom, AVR, Fort Saint Vrain, THTR, HTTR and HTR-10.					
Actions (list all)		Sche	dule	Cost (K\$)	
 <u>Development tests</u> <u>Scale prototype testing in C</u> <u>NGNP Prototype SG</u> 	TF	FY 2 2013 TBD	FY 2009 - FYRefer to Section2013TBDTBDTBD		
DDN(s) supported: PCS-01-01 to P	<u>CS-01-18</u>				
SME Making Determination: D. T.	Allen Revised by A. H	I. Sprin	g 10-18-08		
Date: 09AUG07 Origin	nating Organization: T	echnol	ogy Insights		

APPENDIX B: TECHNOLOGY DEVELOPMENT ROAD MAP

WEC NGNP Technology Development Road Mapping Report Section 9: Power Conversion System Steam Generator

Page 25 of 32

NGNP-CTF MTECH-TDRM-009-Rev1-final.doc

APPENDIX C: TECHNOLOGY MATURATION PLAN

TABLE OF CONTENTS

Section	Title	Page
C1 TECHNOL	OGY MATURATION PLAN FOR STEAM GENERATOR (TRL 6 TO	
TRL 7)		29
C1.1 TECH	NOLOGY MATURATION PLAN SUMMARY	29
C1.1.1	Objectives	29
C1.1.2	Scope	29
C1.1.3	Anticipated Schedule	31
C1.1.4	Overall Costs	31
C1.2 TEST S	SPECIFICATIONS	31
C2 TECHNOL	OGY MATURATION PLAN FOR STEAM GENERATOR (TRL 7 TO	
TRL 8)		32
C2.1 TECH	NOLOGY MATURATION PLAN SUMMARY	32
C2.1.1	Objectives	32
C2.1.2	Scope.	32
C2.1.3	Anticipated Schedule	32
C2.1.4	Overall Cost	32
C2.2 TEST	SPECIFICATIONS	32

REQUIRED SPECIFICATIONS/TESTS TO ACHIEVE NEXT TRL

TRL 6 to TRL 7

- Perform a down selection trade study to determine the preferred conceptual arrangement of the SG
- Define requirements and design details for the SG in the PCS system context
- Perform configuration development tests to substantiate the design
- Design and supply a scale prototype for testing in the CTF
- Conduct performance testing in CTF

TRL 6 to TRL 7

- Complete final design of the prototype SG for the NGNP
- Fabricate and deliver to NGNP to the Site
- Install and operate

C1 TECHNOLOGY MATURATION PLAN FOR STEAM GENERATOR (TRL 6 TO TRL 7)

C1.1 TECHNOLOGY MATURATION PLAN SUMMARY

C1.1.1 Objectives

The objectives of the plan to advance from TRL 6 to TRL 7 relate to the issues or uncertainties of the steam generator that generally revolve around concerns with fluid flow and temperature effects for the specific NGNP configuration and the lack of a significant long term operating experience base. The basic issues of flow distribution and limited operating experience may be divided into six areas of uncertainty which are addressed and quantified in the course of steam generator development. These areas are:

- 1. Level of Design Detail
- 2. Helium Flow and Temperature Effects in the Steam Generator Tube Bundle
- 3. Materials Response to Water/Steam and Helium Environment
- 4. Subcomponent Design and Performance
- 5. Development of Fabrication Methods
- 6. Operation, Maintenance and Inspection
- 7. Integrated system performance in the context of the NGNP plant

These uncertainties will be addressed in a concurrent program of design definition of the SG for the specific NGNP application and the definition of appropriate development tests to satisfy data needed to complete or verify a final design.

C1.1.2 Scope

The maturation tasks and associated testing to advance from TRL 6 to TRL 7 include:

- Develop steam generator conceptual design
 - Define functions and requirements of the SG in the context of the PCS
 - Steady state performance
 - Transient performance
 - Interfaces including geometry and loads
 - Helium ducts
 - Feedwater
 - Steam
 - Circulator
 - Vessel Supports
 - Codes and standards
 - Maintenance and inspection requirements
 - Evaluate alternative configuration(s)

- Reference design is helical arrangement of heat transfer surface
- Alternate is serpentine arrangement of heat transfer surface
- Perform trade study
- Define conceptual arrangement and perform analyses to support system and component definition:
 - Component layout and arrangement drawings including external interfaces, vessel design, tube bundle and internal features
 - Thermal sizing and performance analysis
 - Structural analysis to support basic sizing of pressure boundary and support components
 - Assessment of operating performance
 - Assessment of design versus requirements
 - Define scope, cost and schedule of supporting development tests.
- Do preliminary design and analysis of SG concurrent with NGNP system design
- Perform supporting tests per Design Data Needs (DDNs) for the SG:
 - Subcomponent and special feature development are based on the DDNs identified in the PCS pre-conceptual design phase.
 - All of these needs may be met through a combination of analysis and special purpose tests to establish and verify design features in the NGNP context.
 - Item PCS-01-18 is particularly important to complete early in the conceptual phase of the NGNP project since active application of the relevant steam generator technology has been dormant since about 1993.
 - Table 9-2 lists the DDN's expected outcome of work performed to satisfy the needs and recommended performer of work.
- Complete NGNP steam generator design
 - Develop documentation
 - Design reviews
 - Complete preliminary & final design of NGNP SG
- Design and fabricate prototype steam generator (TBD Scale) for CTF test facility
 - CTF specific functions and requirements for prototype SG
 - Develop documentation
 - Complete preliminary & final design
 - Select suppliers for the prototype fabrication
 - Complete fabrication
 - Deliver prototype steam generator to the CTF site
- Perform scale prototype steam generator tests, including Instrumentation demonstration tests, Tube In-Service Inspection Methods demonstration tests, Feedwater Orifice performance tests, Seals Performance demonstration tests

• Support integrated system testing.

Assumptions regarding CTF:

- The CTF will provide a source of high temperature helium consistent with the NGNP plant operating parameters.
- The CTF will provide a feedwater system to supply the steam generator and as a minimum a steam dump system such that continuous operation of the scale prototype of the SG can be cycled through a specified test series to demonstrate steady state and transient operation at NGNP plant conditions.
- It is also anticipated that integrated non-nuclear testing of prototype PHTS and SHTS components may be performed.

C1.1.3 Anticipated Schedule

The schedule for advancing from TRL 6 to TRL 7 is highly dependent on the pace and timing of the overall NGNP program. An approximate time frame for the TRL 6 to TRL 7 effort on the SG is about 4 years.

C1.1.4 Overall Costs

To be determined.

C1.2 TEST SPECIFICATIONS

Since most testing needs of the SG are dependent on the requirements and configuration of the PCS and SG design, test specifications should be developed in the course of the conceptual design of the SG.
C2 TECHNOLOGY MATURATION PLAN FOR STEAM GENERATOR (TRL 7 TO TRL 8)

C2.1 TECHNOLOGY MATURATION PLAN SUMMARY

C2.1.1 Objectives

- Incorporate results of TRL 6 to TRL 7 program into final design of SG
- Supply and deliver FOAK SG to NGNP site
- Installation and initial operation.

C2.1.2 Scope

- Confirm final steam generator design for NGNP
- Select suppliers for the steam generator
- Award fabrication
- Complete fabrication
- Deliver the instrumented steam generator(s) to the NGNP site
- Install instrumented steam generator(s) in the PCS loop
- Perform steam generator integrated tests

C2.1.3 Anticipated Schedule

Dependent on overall NGNP schedule. Typically this work would have a 40 to 50 month span.

C2.1.4 Overall Cost

To be determined.

C2.2 TEST SPECIFICATIONS

To be determined during conceptual design phase.

NGNP-CTF MTECH-TDRM-009-Rev1-final.doc

NGNP-CTF MTECH-TDRM-010 Revision 1 November 2008

NGNP and Hydrogen Production Conceptual Design Study

NGNP Technology Development Road Mapping Report

Section 10: Software Code Verification and Validation

APPROVALS

Function	Printed Name and Signature	Date
Author	Name: Peter Robinson Company: PBMR	November 19, 2008
Reviewer	Name: Heinrich Stander Ryreyvenstein Company: PBMR	November 19, 2008
Reviewer	Name: Frederik Reitsma Company: PBMR	November 19, 2008
Approval	Name: Jan van Ravenswaay Company: M-Tech Industrial	November 19, 2008

Westinghouse Electric Company LLC Nuclear Power Plants Post Office Box 355 Pittsburgh, PA 15230-0355

©2008 Westinghouse Electric Company LLC All Rights Reserved

LIST OF CONTRIBUTORS

Name and Company	Date
Renée Greyvenstein (PBMR)	November 15, 2008
Roger Young (PBMR)	November 15, 2008
Peter Robinson (PBMR)	November 15, 2008
Heinrich Stander (PBMR)	November 15, 2008
Frederik Reitsma (PBMR)	November 15, 2008

BACKGROUND INTELLECTUAL PROPERTY CONTENT

Section	Title	Description
N/A	N/A	N/A

REVISION HISTORY

RECORD OF CHANGES

Revision No.	Revision Made by	Description	Date
А	Peter Robinson	First Release	November 15, 2008
0	Peter Robinson	Document for approval	November 16, 2008
0A	Peter Robinson	Editorial changes	November 23, 2008
1	Peter Robinson	Document for release to WEC	November 25, 2008

DOCUMENT TRACEABILITY

Created to Support the Following Document(s)	Document Number	Revision
NGNP and Hydrogen Production Preconceptual Design Report	NGNP-01-RPT-001	0

LIST OF TABLES

Table 11-1:	DPP Safety Analysis Software Codes	14
Table 11-2:	Tests planned for development or validation of codes used in the DPP	15

LIST OF FIGURES

Figure 10-1:	PBMR Analysis Roadmap Schematic	12
Figure A-1:	Test Facilities	22
Figure B-1:	Software Code Description	27

ACRONYMS & ABBREVIATIONS

Acronym	Definition
AI	Inner Annulus (active cooling piping)
AMS	Activity Measurement System
AO	Outer Annulus (active cooling piping)
AOO	Anticipated Operational Occurrence
AS	Automation System
ASME	American Society of Mechanical Engineers
AVR	Arbeitsgemeinschaft Versuchs-Reaktor
BOP	Balance of Plant
BUMS	Burn-up Measurement System
СВ	Core Barrel
CCS	Core Conditioning System
CEA	Commissariat à l'Énergie Atomique
CFD	Computational Fluid Dynamics
CHE	Compact Heat Exchanger
CIP	Core Inlet Pipe
CO2	Carbon Dioxide
COC	Core Outlet Connection
COP	Core Outlet Pipe
COTS	Commercial Off The Shelf
CRADA	Co-operative Research and Development Agreement
CRD	Control Rod Drive
CSC	Core Structure Ceramics
CTF	Component Test Facility
CTF	Component Test Facility
CUD	Core Unloading Devices
DAU	Data Acquisition Unit
DBA	Design Base Accident
DBE	Design Base Event
DDN	Design Data Need
DFC	Depressurized Forced Cooling
DLOFC	De-pressurized Loss of Forced Cooling
DOE	Department of Energy
DPP	Demonstration Power Plant
DRL	Design Readiness Level
DWS	Demineralized Water System
ELE	Elecrolyser System
EM	Evaluation Model
EMB	Electomagnetic Bearing
EOFY	End of Fiscal Year

Acronym	Definition
EPCC	Equipment Protection Cooling Circuit
EPCT	Equipment Protection Cooling Tower
F&OR	Functional and Operational Requirements
FHS	Fuel Handling System
FHSS	Fuel Handling and Storage System
FIMA	Fissions per Initial Metal Atoms
FMECA	Failure Modes, Effects and Criticality Analysis
FS	Fuel Spheres
FTA	Fault Tree Analysis
FUS	Feed and Utility System
H2	Hydrogen
H2SO4	Sulfuric Acid
HC	Helium Circulator
He	Helium
HETP	Height Equivalent of the theoretical Plate
HGD	Hot Gas Duct
HI	Hydro-Iodic
HLW	High Level Waste
HPB	Helium Pressure Boundary
HPC	High Pressure Compressor
HPS	Helium Purification System
HPS	Hydrogen Production System
HPT	High Pressure Turbine
HPU	Hydrogen Production Unit
HRS	Heat Removal System
HTF	Helium Test Facility
HTGR	High Temperature Gas-Cooled Reactor
HTR	High Temperature Reactor
HTS	Heat Transport System
HTSE	High Temperature Steam Electrolysis
HTTR	High Temperature Test Reactor
HVAC	Heating Ventilation and Air Conditioning
НХ	Heat Exchanger
HyS	Hybrid Sulfur
1&C	Instrumentation and Control
12	lodine
ID	Inner Diameter
IHX	Intermediate Heat Exchanger
ILS	Integrated Laboratory Scale
I-NERI	International Nuclear Energy Research Initiative
INL	Idaho National Laboratory
INL	Idaho National Laboratory
IPT	Intermediate Pressure Turbine
ISR	Inner Side Reflector

12/9/2008

Acronym	Definition
K-T	Kepner-Tregoe
KTA	German nuclear technical committee
LEU	Low Enriched Uranium
LOFC	Loss of Forced Cooling
LPT	Low Pressure Turbine
MES	Membrane-electrode assembly
MTR	Material Test Reactor
NAA	Neutron Activation Analysis
NCS	Nuclear Control System
NGNP	Next Generation Nuclear Plant
NHI	Nuclear Hydrogen Initiative
NHS	Nuclear Heat Supply
NHSS	Nuclear Heat Supply System
NNR	National Nuclear Regulator
NRG	Nuclear Research and consultancy Group
NRV	Non-Return Valve
O2	Oxygen
OD	Outer Diameter
PBMR	Pebble Bed Modular Reactor
PCC	Power Conversion System
PCDR	Pre-Conceptual Design Report
PCHE	Printed Circuit Heat Exchanger
PCHX	Process Coupling Heat Exchanger
PCS	Power Conversion System
PFHE	Plate Fin Heat Exchanger
PHTS	Primary Heat Transport System
PIE	Post-irradiation Examination
PLOFC	Pressurized Loss of Forced Cooling
POC	Power Conversion System
PPM	Parts per million
PPU	Product Purification Unit
PPWC	Primary Pressurized Water Cooler
QA	Quality Assurance
RAMI	Reliability, Availability, Maintainability and Inspectability
RC	Reactor Cavity
RCCS	Reactor Cavity Cooling System
RCS	Reactivity Control System
RCSS	Reactivity Control and Shutdown System
RDM	Rod Drive Mechanism
RIM	Reliability and Integrity Management
RIT	Reactor Inlet Temperature
RM	Road Map
ROT	Reactor Outlet Temperature
RPS	Reactor Protection System

Acronym	Definition
RPT	Report
RPV	Reactor Pressure Vessel
RS	Reactor System
RSS	Reserve Shutdown System
RUS	Reactor Unit System
SAD	Acid Decomposition System
SAR	Safety Analysis Report
SAS	Small Absorber Spheres
SG	Steam Generator
SHTS	Secondary Heat Transport System
S-I	Sulfur Iodine
SiC	Silicon Carbide
SNL	Sandia National Laboratory
SO2	Sulfur Dioxide
SOE	Sulfuric Oxide Electrolyzers
SOEC	Sulfuric Oxide Electrolyzers Cells
SR	Side Reflector
SSC	System Structure Component
SSCs	Systems, Structures and Components
SSE	Safe Shutdown Earthquake
SUD	Software Under Development
TBC	To Be Confirmed
TBD	To Be Determined
TDL	Technology Development Loop (As incorporated in Concept 1)
TDRM	Technology Development Road Map
TER	Test Execution Report
THTR	Thorium High Temperature Reactor
TRISO	Triple Coated Isotropic
TRL	Technology Readiness Level
TRM	Technology Road Map
UCO	Uranium Oxycarbide
UO2	Uranium Dioxide
USA.	United States of America
V&V	Verification and Validation
V&Ved	Verified and Validated
VLE	Vapor-Liquid Equilibrium
WBS	Work Breakdown Structure
WEC	Westinghouse Electric Company

TABLE OF CONTENTS

Section	Section Title	
SUMMARY AN	ND CONCLUSIONS	
10 V&V ACTI	VITIES	
10.1 PBMR	V&V PROCESS	
10.2 TESTIN	IG FACILITIES	
10.3 Ongoi	NG DPP V&V TESTING	
10.3.1	Key Phenomena Verification	
10.3.2	Software Codes	
10.3.3	DPP V&V Status Overview	
10.4 Additi	IONAL NGNP V&V ACTIVITIES	
10.5 INPUTS	INTO CTF	
APPENDIX A	: TEST FACILITIES	
APPENDIX B	- SOFTWARE CODE DESCRIPTIONS	

SUMMARY AND CONCLUSIONS

The document presents a summary of the high level PBMR V&V process as applied for the PBMR Demonstration Power Plant (DPP). The key DPP phenomena being tested are listed together with the status of the software development and validation tests as well as a summary of the codes and facilities used for the tests.

The PBMR DPP software codes used is expected to envelope the NGNP Software Code Validation requirements for the Nuclear Heat Supply System (NHSS), recognizing that the DPP commissioning itself forms an integral part of the V&V program. However, only once the NGNP plant level conceptual design analyses have been done will it be possible to confirm this statement and quantify specific further testing needs. It is noted that all NGNP evaluation models, once established, will remain to be Verified and Validated.

The NGNP core design with its higher gas outlet temperatures and power densities may increase the risk that the best estimate analysis plus uncertainties are too close to the safety margins. In certain cases this may imply more advanced methods, software and models to be developed – see proposed tests in Table 10-2.

It is noted that the software V&V employed for the Rankine Power Conversion System (PCS) and Hydrogen Production System (HPS) remain to be considered as it has not been covered by the PBMR DPP V&V process. However, at this point no V&V is expected to be done in CTF for the Power Conversion System (PCS), Steam Generator (SG) nor the Hydrogen Production System (HPS).

In order to analyze various aspects of the integrated NGNP Plant, the software currently used for the PBMR DPP design is proposed to be further enhanced and extended to have an integrated core neutronic/thermal hydraulic analysis tool coupled to the Power Conversion and Hydrogen Production Systems models for simulating normal and off-design conditions. This tool will allow for steady-state and transient analyses of the integrated NGNP plant and will enable operational and control studies. Such a tool remains to be developed and V&Ved.

10 V&V ACTIVITIES

10.1 PBMR V&V Process

An analysis verification and validation (V&V) program is required to provide confidence in the design and safety analysis performed in support of the product development of the PBMR Demonstration Power Plant (DPP). This requirement is mandated by the South African National Nuclear Regulator (NNR) Regulatory Requirement RD0016 which is based on IAEA, US-NRC and ANSI best practice. The PBMR DPP V&V program is extensive and PBMR has a dedicated division committed to the fulfillment of V&V requirements.

PBMR verifies and validates all Evaluation Models (EMs) used in support of Chapter 15 (Accident Analysis) of the DPP Safety Analysis Report (SAR) - as well as the models, software and calculations used in design and safety analysis.

The software used in analysis is split into two categories: Commercial off the Shelf (COTS) software and Software under Development (SUD). A further category is "Legacy Software" which is defined as software that has been developed in the past for specific applications relevant to the PBMR design, but where current V&V and Quality Assurance processes were not sufficiently applied.

The purpose of COTS software V&V is to provide objective confirmation that the Software Product is fit for the purpose of analyzing the applicable physical model(s) for which it is applied in PBMR. Initially, the software developer's V&V and Quality Assurance are assessed to determine whether it meets the requirements of 10CFR50 Appendix B, 10CFR21, NQA-1 and RD-0016. If these requirements are met, PBMR will qualify the developer. However, if the developer of the COTS analysis software does not provide supporting evidence that confirms compliance with the requirements, or if PBMR cannot gather sufficient proof of compliance from the developer's applicable documentation, the Software Product shall be dedicated. Dedication of COTS analysis software is an acceptance process undertaken to provide reasonable assurance that the software will perform its intended function and can be validated against results obtained by other validation methods. This assurance is achieved by identifying the relevant functionalities of the software product which enables PBMR to assess the applicable software capabilities over the ranges that it requires. Validation tests are selected or developed that comprehensively test the applicable software capabilities by comparison with relevant analytical solutions, experimental data, plant data or other calculation methods. For both Qualification and Dedication approaches, a select set of installation tests is performed by PBMR to ensure the software is installed correctly and verify its accuracy on PBMR's platforms.

New software (i.e. SUD) by definition includes Software Products currently being developed or planned to be developed in future. V&V is implemented throughout the software project life cycle of acquisition, supply, development, operation and maintenance, similar to the approach followed by the Institute of Electrical and Electronics Engineers (IEEE). The V&V process includes theory and Software Product Verification activities, and the development and

performance of Validation tests to comprehensively assess the Software Product and its components.

In the case of Legacy Software, it is reverse engineered by PBMR where after their development is essentially the same as that for new software developed. Such Software Products may be verified and validated using an 'a posteriori' V&V review. The 'a posteriori' approach takes advantage of V&V documentation that is available, as well as user experience. It is a verification to determine if the Legacy Software Product produces valid responses when used for calculations within the specified application and to document the level of V&V and/or software testing that has been carried out by the original developers or by users. Depending on the specifications in the V&V Task Report, it may be required to repeat some of the developer and user tests, and to conduct additional tests if original test coverage is found to be inadequate. If required, 'a posteriori' baselines may also be established for development and V&V. The establishment of both development and V&V baselines enables the determination of the outstanding V&V activities are executed in order to ensure that the software is finally proven to meet all regulatory requirements.

V&V of models basically accounts for the demonstration of adequate nodalisation, dimensionality, local detailing, initial and boundary conditions and data processing. V&V of Evaluation Models (EMs) for Chapter 15 Accident Analysis consists of assessing the EM's adequacy to represent the complex scenario it is required to, and a top-down and bottom-up review of the EM's constituents.

The schematic presented in Figure 10-1 is a simplified and partially representative depiction of the analysis roadmap followed by PBMR which highlights the importance of software selection and model development.

NGNP-CTF MTECH-TDRM-010

Figure 10-1: PBMR Analysis Roadmap Schematic

10.2 Testing Facilities

Section 16.2.1 of the NGNP PCDR (NGNP-16-RPT-001) presented an overview of PBMR utilized test facilities. Find below a list of test facilities listed in this report:

- ASTRA
- AVR
- Heat Transfer Test Facility (HTTF)
- Helium Test Facility (HTF)
- HFR
- HTTU
- HPTU
- HTR-10 (High Temperature Gas-cooled reactor-test Module)
- JAEA reversed-U-shape tube
- NACOK (Natural Convection Oxidation Facility)
- Pebble Bed Micro Model (PBMM)
- SANA (Selbstatige Abfuhr der Nachwarme)
- STORM
- ThAI
- VELUNA

See Appendix A for a brief description of these facilities. Note that not all these facilities have Software V&V tests planned or underway.

10.3 Ongoing DPP V&V Testing

The PBMR V&V data acquisition program is progressing well. The current focus is the performance of software validation using the acquired data.

10.3.1 Key Phenomena Verification

The derivation of the phenomological groupings below are based on a number of requirements and expert knowledge. Aspects of the design modeling to be covered are prescribed by the NNR's design requirements given in document RD0019 which addresses also reactor design and the associated phenomena. The thermal hydraulic phenomena are standard for gas-cycle plants. The radionuclide release and transport phenomena are derived from experience from the German AVR and THTR reactors and fuel development programs. The source term, activation, transport and dispersion phenomena are derived in the accident analysis process using the US-NRC RG1.203 Evaluation Model Development and Assessment Process (EMDAP) which starts with the Phenomena Identification and Ranking Table (PIRT).

The following key phenomena are modeled:

- Annular vs. Cylindrical Bed Pressure Drop Characteristics
- Atmospheric Dispersion

- Core Thermal-Hydraulics
- Dust Generation And Transport
- Forced Convection
- Heat Transfer
- Heat Transfer Coefficients
- Natural Convection
- Near Wall Heat Transfer
- Neutronics
- Oxidation
- Pebble Flow In Pebble Bed
- Pressure Drop Through The Pebble Bed
- Radionuclide Release From Fuel
- Radionuclide Transport
- Reactor Cavity Cooling System (RCCS) Two Phase Flow
- Seismic Analysis
- System Thermal-Hydraulics
- Turbulent Mixing (Braiding)

10.3.2 Software Codes

The following software codes are used in design and safety analysis. Their classification is given as Commercial Off The Shelf (COTS) for codes that are purchased and used as is, Software Under Development (SUD) for codes that are developed by PBMR, and Legacy for codes that have been developed in the past for specific applications relevant to the PBMR design, where current V&V and Quality Assurance processes were not applied.

Classification
COTS
COTS
SUD
SUD
COTS
COTS
COTS
Legacy
COTS
Legacy
COTS

Table 10-1: DPP Safety Analysis Software Codes

Code	Classification
STAR-CD (CFD)	COTS
TINTE	Legacy
T-REX	SUD
VSOP99	Legacy
VSOP99 (THERMIX)	Legacy

Description on the various software codes are presented in Appendix B.

10.3.3 DPP V&V Status Overview

Table 10-2: Tests planned for development or validation of codes used in the DPP
--

Phenomenon	Code	Development and Validation (Qualification) tests planned or completed	Facility	Status	Applicable to NGNP
Annular Vs. Cylindrical Bed Characteristics	Code independent	Confirmation of KTA rule applicability for pressure drop	HTTF	Tests Completed	
Complex Flows With Combined Effects	CFD	Matched index of reflection test proposed at Idaho National Labs or Texas A&M	INL or Texas A&M	Keen To Explore Collaboration Opportunities	
Dust Characterization	DAMD	Validation of circulating products distribution, deposition, resuspension, plate-out and lift off.	AVR	Tests Completed	
Forced Convection Through The Pebble Bed Reactor	CFD	CFD development testing No validation tests planned	HTTF	Testing Underway	
Heat Transfer	TINTE	TINTE has been compared with SANA, VELUNA and NACOK experiments and AVR plant data. TINTE is considered reliable and adequate for HTR modeling.	AVR	Tests Completed	
Heat Transfer	TINTE	TINTE has been compared with SANA, VELUNA and NACOK experiments and AVR plant data. TINTE is considered reliable and adequate for HTR modeling. Heat production in a pebble bed in different gas media (illustrated with the SANA test facility).	SANA	Tests Completed	
Heat Transfer Coefficients	CFD	CFD validation testing	HTTF	Tests Completed	
Natural Convection	CFD	CFD validation testing	HTTF	Testing Underway	

Phenomenon	Code	Development and Validation (Qualification) tests planned or completed	Facility	Status	Applicable to NGNP
Natural Convection For Air Ingress	CFD	Benchmarking for oxidation	NACOK	Tests Completed	
Near Wall Heat Transfer	CFD	CFD Development Testing	HTTF	Tests Completed	
Neutronics	MCNP	Benchmarking against completed experiments: core reactivity, control rod worth and reaction rate profiles	ASTRA	Tests Completed	
Neutronics	MCNP	Benchmarking against completed experiments: core reactivity and control rod worth	HTR-10	Tests Completed	
Neutronics	VSOP99	The burn-up calculations in VSOP include the essential nuclides for both the U-Pu and the Th-U fuel cycles. Validation studies for the AVR, Thorium High-temperature Reactor (THTR), and the Fort St Vrain reactors have been performed for the thorium cycle, while studies on the HTR-Modul, Light Water Reactor (LWR), RBMK, and MAGNOX reactors describe the burn-up characteristics of the uranium cycle. VSOP has proven to be a suitable tool for analyzing both fuel cycles. Comparisons with output from other models such as MCNP and TINTE will be done, as well as independent comparison with other VSOP models (VSOP-NTC).	ASTRA	Tests Completed	
Oxidation	CFD	Experimental Benchmarking	JAEA reversed- U-shape tube	Tests Completed	
Oxidation	CFD	Experimental Benchmarking	NACOK	Tests Completed	
Oxidation	TINTE	TINTE has been compared with SANA, VELUNA and NACOK experiments and AVR plant data. TINTE is considered reliable and adequate for HTR modeling. Natural convection modeling (illustrated with the NACOK test facility).	NACOK	Tests Completed	

Phenomenon	Code	Development and	Facility	Status	Applicable
		Validation (Qualification)			to NGNP
Oxidation	TINTE	TINTE has been compared with SANA, VELUNA and NACOK experiments and AVR plant data. TINTE is considered reliable and adequate for HTR modeling. Small pebble bed with flow of air (illustrated with the VELUNA test facility).	VELUNA	Tests Completed	
Radionuclide	GETTER	Benchmark: EU fuel development	HFR	Testing	Ø
Release	CETTER	program	LIED	Underway	
Radionuclide	GEITER	Benchmark: German fuel	HFR, FR12 R2	Testing	
Radionuclide	NobleG	Benchmark: EU fuel development	HFR	Tests	<u></u>
Release	Nobled	program		Completed	
Radionuclide Release	NobleG	Benchmark: PBMR fuel qualification	HFR	Tests In Concept Definition Phase	
Radionuclide Transport	ASTEC	ASTEC has been developed jointly over a number of years by the IRSN and its German counterpart, the Gesellschaft für Anlagen und Reaktorsicherheit mbh (GRS). The main applications of the software package are safety analyses for nuclear reactors (e.g. The European Pressurized Reactor - EPR), source term evaluations (e.g. The re-evaluation of the S3 source term for the French Pressurized Water Reactors (PWRs)), and the development of severe accident management guidelines. ASTEC is widely used in IRSN level 2 probabilistic safety assessments (PSA2) for 900 MWe and 1 300 MWe PWR reactors. It is also used in the preparation and interpretation of experimental programs, in particular the Phébus PF integral test program and in the tests carried out as part of the International Source Term Program (ISTP).	Thai	Tests In Concept Definition Phase	
Radionuclide Transport	DAMD	Validation of circulating products distribution, deposition, resuspension, plate-out and lift off.	STORM	Tests In Concept Definition Phase.	

			I		1
Phenomenon	Code	Development and Validation (Qualification)	Facility	Status	Applicable to NGNP
		tests planned or completed			
Reactor Cavity Cooling System (RCCS) Two Phase Flow	RELAP5	Modeling of two phase flow.	TBD	Tests In Concept Definition Phase.	V
System Thermal Hydraulics	Flownex Nuclear	Cycle analysis demonstration	PBMM	Tests Completed	
Turbulent Mixing (Braiding)	CFD	CFD Development Testing	Heat Transfer Test Facility (HTTF)	Tests Completed	
Forced Convection Through The Pebble Bed Reactor	CFD / TINTE	Quantification of local effects in an unstructured pebble bed including wall channel effects, braiding effects, localized densification, etc.	TBD	Test Proposed	
Forced Convection Through The Pebble Bed Reactor	CFD / TINTE	Leak flow characterization tests may be required	TBD	Test Proposed	
Near Wall Heat Transfer	TINTE	A similar test facility to SANA is needed to study the heat transfer effects at the core/reflector interface in TINTE.	TBD	Test Proposed	
Neutronics	MCNP	Reactivity measurements, Control rod worth tests, Neutron flux measurements.	TBD	Test Proposed	
Pebble Flow In A Pebble Bed Reactor	PFC3D	Pebble bed structuredness, packing density and seismic response testing.	TBD	Test Proposed	
Radionuclide Transport	ASTEC	Suppression pool design testing and code comparison, confinement chemistry experiments, fission product transport and deposition experiments	TBD	Test Proposed	

10.4 Additional NGNP V&V Activities

The PBMR DPP software codes used is expected to envelope the NGNP Software Code Validation requirements for the Nuclear Heat Supply System (NHSS), recognizing that the DPP commissioning itself forms an integral part of the V&V program. However, only once the NGNP plant level conceptual design analyses have been done will it be possible to confirm this statement and quantify specific further testing needs. It is noted that all NGNP evaluation models, once established, will remain to be Verified and Validated.

NGNP-CTF MTECH-TDRM-010_Rev1-final.doc

The NGNP core design with its higher gas outlet temperatures and power densities higher than the PBMR DPP may increase the risk that the best estimate analysis plus uncertainties are too close to the safety margins. In certain cases this may imply more advanced methods, software and models to be developed. One such example could be basic cross section data at high temperatures. For more examples see the "Tests Proposed" in Table 10-2 above. The fuel qualification program is expected to contribute to the fission product release data needed at higher temperatures (see Section 11).

It is noted that the software V&V employed for the Rankine Power Conversion System (PCS) and Hydrogen Production System (HPS) remain to be considered as it has not been covered by the PBMR DPP V&V process.

- Power Conversion System (PCS) Thermoflex is the preferred software to be used for the Rankine NGNP PCS performance modeling. This is commercial software that is not yet V&Ved in accordance with nuclear procedures. The PEPSE code is already qualified and can be used as benchmark to qualify Thermoflex. It is not expected that testing is needed in the CTF to qualify Thermoflex. The software used to design the Steam Generator (SG) is unknown and will most likely be provided by the SG supplier. There may be other software used for detailed design. These are expected to be commercial packages (ANSYS, etc.) and will not generally require support from CTF for V&V.
- NHSS Coupling PBMR uses Flownex Nuclear software to model the NHSS. To date, no SG Flownex Nuclear model has been V&Ved. Since the NGNP PCS will employ two-phase flow, Flownex Nuclear will need to be V&Ved for SG modeling purposes.
- Hydrogen Production System (HPS) Currently, ChemCad and ASPEN are used to model the HPS. These are both commercial codes. At this point, no need is foreseen to validate these codes. The V&V of the hydrogen process models is expected to take place in the normal development of the technology. As engineering scale and pilot scale units are built and tested, the models will be validated against the results from those tests. It is noted that the choice of the platform (Aspen Plus, Hysys, ChemCAD or some other) may change as work progresses. The chief V&V step that is needed is the validation of the thermodynamic data being used in the models, not the software that does the calculations.

In order to analyze various aspects of the integrated NGNP, the software currently used for the PBMR–DPP design will be enhanced and extended to have an integrated core neutronic/thermal hydraulic analysis tool coupled to the Power Conversion and Hydrogen Production Systems models for simulating normal and off-design conditions. This tool will allow for steady-state and transient analyses of the integrated NGNP plant and will enable operational and control studies. Such a tool remains to be further developed and V&Ved. See also Section 16.9.4 of the PCDR (NGNP-16-RPT-001).

10.5 Inputs into CTF

At this point, no specific physical tests are foreseen to validate the NGNP software codes. As part of the conceptual design, the need for additional software V&V testing will be re-evaluated.

The CTF will however be instrumented to such an extent that software V&V could be achieved.

Appendix A: Test Facilities

Facility	Location	Description
ASTRA	Russian	The ASTRA critical facility represents a cylindrical side reflector
	Research	consisting of graphite blocks with an octagon shaped core in the
	Centre -	centre and a solid cylindrical centre column. The core is filled
	Kurchatov	with fuel spheres and absorber spheres. Control rods, shutdown
	Institute,	rods and a single regulating rod are situated in the first set of
	Russia	blocks closest to the core in the side reflector.
AVR	AVR GmbH,	A German operated pebble bed HTR with graphite reflectors and
	Juelich,	moderators.
	Germany	
Heat	North West	This test facility consists of two units: the High Pressure Test
Transfer	University,	Unit (HPTU) and the High Temperature Test Unit (HTTU). The
Test Facility	Potchefstroom,	HPTU has a maximum operating pressure of 50 Bar and
(HTTF)	South Africa	maximum operating temperature of 100°C. The HPTU
		comprises 12 modular test sections. These modular units allow
		for a variety of tests to be conducted on the HPTU, ranging from
		Pressure drop testing to Near wall effects testing. The HTTU is
		electrically heated and has a maximum operating temperature of
		1600°C (bed temperature). The facility is also capable of
		vacuum testing at 10KPa. The maximum operating pressure is
		100KPa. Both nitrogen and helium are used as working fluids.
		The HTTU can perform either forced flow or natural convection
		tests.
Helium Test	Pelindaba,	The HTF consists of blowers, valves, heaters, coolers,
Facility	South Africa	recuperator and other components that allow articles to be tested
(HTF)		at pressures up to 9 MPa and temperatures to 1100°C. The
		facility consists of a totally enclosed 40m high (8 levels) test
		tower with a 10m x 13m footprint and a 20 ton overhead crane
		with a passenger lift (ground - level 6). The facility is designed
		to accommodate 5 independent process streams, with each able
		to operate at up to 9MPa, 50°C - 580°C (1100°C local) and up to
		2kg/s.
HFR	Petten, the	High flux material test reactor.
	Netherlands	
HFR, FRJ2,	Europe	European material test reactors used for fuel testing.
R2		
HTR-10	Tsinghua	A 10-MW pebble bed high temperature gas-cooled reactor. The
(High	University,	reactor vessel is approx. 11.2 m in height and contains a 1.8 m
Temperature	Beijing, China	diameter core that is 1.97 m high with approximately 27000
Gas-cooled		pebbles. The reactor is designed to operate at 10 MWt. The
reactor-test		average power density is 2 MW/m ³ and the core inlet
Module)		temperature is 250 to 300 °C and the core outlet temperature
		range from 700 to 900 °C.

Figure A-2: Test Facilities

Facility	Location	Description
JAEA	Japan Atomic	The apparatus consists of a reverse U-Shape tube and a gas tank.
reversed-U-	Energy	A bent pipe connecting the two pipes is also heated. The inner
shape tube	Agency	diameter of the tube is 52.7mm. This experiment was designed
	(JAEA)	to test the first stage of air ingress – diffusion. The entire
		experiment was conducted at isothermal conditions at 18 C. [5]
		The two gases used were helium in the tube and nitrogen in the
		lower tank.
NACOK	FZJ, Juelich,	The main section of the facility is made up of a vertical channel
(Natural	Germany	of 300mmx300mm and 7.5m tall. The experimental channel is
Convection		composed of sections representing a bottom reflector, sphere
Oxidation		packing (pebble bed) and a top reflector. The experimental set-
Facility)		up was designed to be able to represent different breaks in pipes
		connecting to the reactor. Breaks that can be created includes the
		co-axial duct (reactor outlet pipe), the defueling chute at the
		bottom of the reactor and the fuelling line at the top of the
		reflector. By a sectional design, different core heights can also
		be realized. All sections of the experimental channel and of the
		return pipe can be heated to accident-relevant temperatures. At
		different positions, the local gas compositions can be measured.
PBMM	North West	The Pebble Bed Micro Model (PBMM) at North-West
	University,	University was used to gather data for separate and integrated
	Potchefstroom,	effects validation of Flownex Nuclear. This data was used for
	South Africa	the validation of both steady-state and transient phenomena.
SANA	FZJ, Juelich,	Consists of a bed of graphite spheres in a cylindrical
(Selbstatige	Germany	arrangement. This part of the core of a pebble bed reactor has a
Abfuhr der		diameter of 1.5 m as well as a height of 1 m. Approximately
Nachwarme)		9500 graphite pebbles of a diameter of 6 cm fit into the volume $\frac{1}{2}$
		of 1.77 m ³ , with a random arrangement. The heat production is
		effected in up to four electrical resistance elements which are
		inserted vertically into the bed. The installed maximum power of
		50 kW permits a maximum power density of 28 kW/m ³ . That
		means 0.93% of the full power is transferred to the MODUL
		reactor and corresponds to a time of 3 to 4 hours after the
		beginning of the depressurization accident. To endure a
		predominantly radial heat flux, insulation systems limit the bed
		at the top and the bottom.

Facility	Location	Description
STORM	Joint	The STORM test facility consists of 5m long test section which
	Research	is 63mm in diameter. Dust deposition and resuspension
	Centre, Europe	experiments can be carried out in this facility. In the deposition
		phase, the carrier gas and aerosols pass through a mixing 10
		cubic meter mixing vessel, a first straight pipe and into the test
		section and then straight to the wash and filtering system. In the
		resuspension phase, the clean gas is injected directly into the test
		section and the resuspended aerosols are collected in the main
		filter before the gas goes through the wash and filtering system.
		The aerosol concentration and size distribution is measured
		upstream of the test section in the resuspension phase. The test
		section is enclosed in an oven which was kept open during the
		deposition phase to maximize thermophoretic deposition and was
		closed and heated immediately after the deposition phase, to
		ensure a constant temperature between the two phases and avoid
	D 1	thermophoretic redeposition during the resuspension phase.
InAl	Becker	The ThAT facility is a unique technical scale experimental
	Technologies	facility for research in the area of nuclear reactor containment
		A group and Jodine. The facility analysis to simulate verious
		thermal hydroulic scenarios ranging from turbulant free
		approximation to stagnant stratified containment atmospheres. It is
		convection to stagnant strained containment atmospheres. It is
		equipped with innovative incastring, sampling and data
		radiotracer L123 in the experiments. It allows one to investigate
		safety relevant phenomena and component behavior under
		thermal hydraulics typical for severe accidents including
		hydrogen phenomena e.g. combustion and/or recombiner
		effects. ThAI is also equipped for aerosol investigation.

Facility	Location	Description
VELUNA	University of	The VELUNA experimental installation was erected to
	Duisburg in	investigate the corrosion of the fuel spheres and reflectors in the
	Germany	core of a pebble bed under natural convection conditions. It had a
		vertical square cylinder, 240 mm x 240 mm, made of heat
		resistant steel, 4 mm thick. There were fireproof bricks at the
		bottom. A graphite sphere pile, up to 3.6 m high, could be
		stacked on top of the fireproof bricks in the square cylinder. A
		bottom reflector made of graphite could also be installed on the
		fireproof bricks before a graphite sphere pile, up to 3.6 m high,
		was stacked on top of it. Heating elements were installed around
		the circular cylinder. These elements heated the contents of the
		square cylinder to a certain desired temperature, up to a
		maximum of 1 200 C. An air stream with a defined water vapor
		content and defined variable speed could then enter the square
		cylinder from below. Corrosion of the graphite spheres (and
		bottom reflector, if installed) occurred in the square cylinder, and
		waste gases were removed at the top. The installation essentially
		acted like an oven: air entered the square cylinder from below,
		combustion of graphite took place in it, and the waste gases left
		through a chimney at the top.

Appendix B – Software Code Descriptions

Code	Description
ACS SASSI	ACS SASSI (System for Analysis of Soil Structure Interaction) NOA is a highly
NOA	specialized, highly interactive, user-friendly finite element computer code for
	performing 3D seismic soil-structure analysis of complex geometry structures
	with shallow or embedded foundations subjected to spatially varying seismic
	coherent or incoherent waves.
ASTEC	The purpose of the ASTEC (Accident Source Term Evaluation Code) software
	package is to simulate all the phenomena that occur during a severe accident in An
	LWR, from the initiating event to the possible release of radioactive products (the
	'source term') outside the containment.
DAMD	The purpose of the code is to approach the source term calculation of an HTGR
	using a Top-to-Bottom approach. This means that the integrated effects of the
	phenomena are modeled in order to provide source term levels and distributions in
	systems and components of the HTGR. The code allows for the construction of a
	1D flow model (pipe model) of an HTGR plant which can be used for the
	modeling of production, migration and distribution of graphite and metallic dust
	in the coolant flow paths of the plant. The code is also able to calculate, as for
	dust, the migration, deposition and distribution of fission and activation products
	released from the fuel during operation, and activation products produced from
	impurities in the coolant. Furthermore, the reactor core is modeled in a simplified
	1D/1G (neutron group) fashion which allows for the neutronic removal/activation
	of isotopes.
FIPREX	FIPREX is a wrapper program around GETTER. FIPREX is a new Software
	Product that determines radionuclide releases, from spherical fuel elements, for
	the total core of an HTR, for both the expected and design cases under normal and
	accident conditions.
FISPACT/EASY	Fispact is an inventory code that has been developed for neutron-induced
	activation calculations.
FLOWNEX	Flownex Nuclear is an implicit thermal-fluid network analysis code used for the
NUCLEAR	analysis of temperatures, pressures and mass flows in the PBMR.
	(www.flownex.com)
FLUENT - CFD	FLUENT is a CFD code (solver and pre-post processor) for calculating fluid flow
	and heat transfer in the PBMR. FLUENT will in future be known as ANSYS
CETTER	
GETTER	GETTER is a diffusion code used to calculate the time-dependent release of
	long-lived metallic fission products such as caesium, silver and strontium, from
	the fuel elements of the PBMR equilibrium core under operational and
	experimental conditions.
MCNP	MCNP is a general-purpose, continuous-energy, generalized geometry, time-
	dependent, coupled neutron-photon-electron Monte Carlo transport code system
	for radiation shielding and nuclear criticality calculations

Figure B-3: Software Code Description

Code	Description
NobleG	NOBLEG calculates the steady state release of noble gases (Kr, Xe) and the
	halogens (Br, I) from the fuel spheres and equilibrium core of the PBMR in
	operational and experimental conditions: Release from the fuel elements from
	failed fuel particles, fuel particle failure under irradiation, release from the fuel
	elements from fuel contamination of the matrix material.
ORIGEN-	ORIGEN-SCALE is an isotope generation and depletion code used in nuclear
SCALE	safety-related analyses to calculate time-dependent isotopic inventories in
	irradiated nuclear reactor fuel and activated components, and associated quantities
	including decay heat, and neutron and gamma radiation spectra. The code also
	provides methods that integrate time-dependent quantities such as source terms
	and decay heat, and includes methods that model fuel reprocessing.
PC-Cosyma	PC-COSYMA is a probabilistic accident consequence assessment system used for
	calculating the potential radiological dose and risk to the public from a nuclear
	plant accident. This software models the atmospheric dispersion of released
	materials taking into account the range of conditions which may prevail should an
	accident occur.
PFC3D	PFC3D is a COTS product that is developed by the Itasca Consulting Group. It is
	an implementation of the Distinct Element Method (DEM), specifically for
	particulate systems, where the particles are separate spheres surrounded by rigid
	wall segments. The code simulates the mechanics of interacting particles by
	means of a rigid body, soft contact formulation. This is combined with an
	explicit, time marching solution scheme to solve both steady state and transient
	dynamic problems. PFC3D is used at PBMR as a simulation tool to examine
	systems of spherical particles, such as graphite and fuel spheres in the PBMR
	Reactor Core, or Small Absorber Spheres (SAS) in the SAS channels. Typically,
	the interaction, such as flow paths, particle positions and interaction forces,
	between spheres and structural components is observed.
RELAP5	RELAP5/MOD3 is a computer code used for the thermal-hydraulic analysis of
	transients and small-break type accidents. In this version of the code, a three-
	dimensional simulation of thermal-hydraulic and neutronic phenomena occurring
	in a reactor can be simulated. The code is used to validate the design of the
	Reactor Cavity Cooling System (RCCS) in both active and passive modes.
SPECTRA	SPECTRA (Sophisticated Plant Evaluation Code for Thermal-hydraulic Response
	Assessment) is a fully integrated system analysis code, that models thermal-
	hydraulic behavior of Nuclear Power Plants, including reactor cooling system,
	emergency and control systems, containment, reactor building, etc. of various
	reactor types, like BWR, PWR, HTR. Spectra is developed by NRG (Holland)
STAR-CD -	STAR-CD is a CFD code (solver and pre-post processor) for calculating fluid
CFD	flow and heat transfer in the PBMR.
TINTE	TINTE (Time dependent Neutronics and Temperatures) is a reactor dynamics
	program for computing the nuclear and thermal transient behavior of the primary
	circuit of an HTGR, taking into account mutual feedback effects in
	two-dimensional R-Z geometry.

Code	Description
T-REX	The flux solver used in VSOP, namely CITATION, solves the neutron diffusion
	equation by using finite element methods. Since the diffusion approximation
	becomes invalid in the presence of strong absorbers, a different method has to be
	employed to model the control rod regions in CITATION. For this, T-REX was
	developed, making use of the method of equivalent cross-sections to determine
	equivalent parameters for the control rod regions.
VSOP99	VSOP 99 is a suite of FORTRAN Software Products, interlinked as a collection of
	modules into a single executable. It is used to simulate the operational history of
	a nuclear reactor and to perform in-depth, quasi-steady state reactor core
	neutronics analysis. It comprises neutron cross-section libraries and processing
	routines for repeated neutron spectrum evaluation, two-dimensional diffusion
	calculation with depletion and shutdown features, in-core and out-of-core fuel
	management, fuel cycle cost analysis, and feedback from the thermal hydraulics
	(currently restricted to High Temperature Reactors (HTRs)).

NGNP-CTF MTECH-TDRM-011 Revision 1 November 2008

NGNP and Hydrogen Production Conceptual Design Study

NGNP Technology Development Road Mapping Report

Section 11: Fuel Elements

Function		Printed Name and Signature	Date
Author	Name: Company:	B Nel M-Tech Industrial Rumi	November 18, 2008
Reviewer	Name: Company:	D Geduld Pebble Bed Modular Reactor	November 19, 2008
Reviewer	Name: Company:	R Greyvenstein Pebble Bed Modular Reactor R Greyven	November 19, 2008
Reviewer	Name: Company:	RM Young Pebble Bed Modular Reactor	November 19, 2008
Approval	Name: Company:	J van Ravenswaay M-Tech Industrial	November 19, 2008

APPROVALS

Westinghouse Electric Company LLC Nuclear Power Plants Post Office Box 355 Pittsburgh, PA 15230-0355

Westinghouse Electric Company LLC All Rights Reserved

LIST OF CONTRIBUTORS

Name and Company	Date
D Geduld (Pebble Bed Modular Reactor (Pty) Ltd)	October 8, 2008
F Silady (Technology Insights)	October 8, 2008
D Mears (Technology Insights)	October 8, 2008

BACKGROUND INTELLECTUAL PROPERTY CONTENT

Section	Title	Description

REVISION HISTORY

RECORD OF CHANGES

Revision No.	Revision by	Description	Date
А	B Nel	Initial Release	September 16, 2008
В	B Nel	Update after Comments Review	September 17, 2008
С	B Nel	Incorporation of Reviewer Comments	September 30, 2008
D	B Nel	Incorporation of Additional Comments	October 8, 2008
E	B Nel	Update for Approval	October 20, 2008
0	B Nel	Approved Document	October 21, 2008
0A	B Nel	Editorial Changes	November 8, 2008
1	B Nel	Document for release to WEC	November 15, 2008

DOCUMENT TRACEABILITY

Created to Support the Following Document(s)	Document Number	Revision

ACRONYMS

Acronym	Definition
AI	Inner Annulus (active cooling piping)
AMS	Activity Measurement System
AO	Outer Annulus (active cooling piping)
AOO	Anticipated Operational Occurrence
AS	Automation System
ASME	American Society of Mechanical Engineers
AVR	Arbeitsgemeinschaft Versuchs-Reaktor
BOP	Balance of Plant
BUMS	Burn-up Measurement System
СВ	Core Barrel
CCS	Core Conditioning System
CEA	Commissariat à l'Énergie Atomique
CFD	Computational Fluid Dynamics
CHE	Compact Heat Exchanger
CIP	Core Inlet Pipe
CO2	Carbon Dioxide
COC	Core Outlet Connection
COP	Core Outlet Pipe
COTS	Commercial Off The Shelf
CRADA	Co-operative Research and Development Agreement
CRD	Control Rod Drive
CSC	Core Structure Ceramics
CTF	Component Test Facility
CTF	Component Test Facility
CUD	Core Unloading Devices
DAU	Data Acquisition Unit
DBA	Design Base Accident
DBE	Design Base Event
DDN	Design Data Need
DFC	Depressurized Forced Cooling
DLOFC	De-pressurized Loss of Forced Cooling
DOE	Department of Energy
DPP	Demonstration Power Plant
DRL	Design Readiness Level
DWS	Demineralized Water System
ELE	Elecrolyser System
EM	Evaluation Model
EMB	Electomagnetic Bearing
EOFY	End of Fiscal Year
EPCC	Equipment Protection Cooling Circuit
EPCT	Equipment Protection Cooling Tower
F&OR	Functional and Operational Requirements
FHS	Fuel Handling System

FUOD	
FHSS	Fuel Handling and Storage System
FIMA	Fissions per Initial Metal Atoms
FMECA	Failure Modes, Effects and Criticality Analysis
FS	Fuel Spheres
FTA	Fault Tree Analysis
FUS	Feed and Utility System
H2	Hydrogen
H2SO4	Sulfuric Acid
HC	Helium Circulator
He	Helium
HETP	Height Equivalent of the theoretical Plate
HGD	Hot Gas Duct
HI	Hydro-Iodic
HLW	High Level Waste
HPB	Helium Pressure Boundary
HPC	High Pressure Compressor
HPS	Helium Purification System
HPS	Hydrogen Production System
HPT	High Pressure Turbine
HPU	Hydrogen Production Unit
HRS	Heat Removal System
HTF	Helium Test Facility
HTGR	High Temperature Gas-Cooled Reactor
HTR	High Temperature Reactor
HTS	Heat Transport System
HTSE	High Temperature Steam Electrolysis
HTTR	High Temperature Test Reactor
HVAC	Heating Ventilation and Air Conditioning
HX	Heat Exchanger
HvS	Hybrid Sulfur
1&C	Instrumentation and Control
12	lodine
	Inner Diameter
ІНХ	Intermediate Heat Exchanger
II S	Integrated Laboratory Scale
I-NERI	International Nuclear Energy Research Initiative
	Idaho National Laboratory
INI	Idaho National Laboratory
IPT	Intermediate Pressure Turbine
ISB	Inner Side Beflector
K-T	Kenner-Tregge
KTA	German nuclear technical committee
MES	Mombrano-oloctrodo accombly
MTD	Material Test Depeter

NAA	Neutron Activation Analysis
NCS	Nuclear Control System
NGNP	Next Generation Nuclear Plant
NHI	Nuclear Hydrogen Initiative
NHS	Nuclear Heat Supply
NHSS	Nuclear Heat Supply System
NNR	National Nuclear Regulator
NRG	Nuclear Research and consultancy Group
NRV	Non-Return Valve
02	Oxygen
OD	Outer Diameter
PBMR	Pebble Bed Modular Reactor
PCC	Power Conversion System
PCDR	Pre-Conceptual Design Report
PCHE	Printed Circuit Heat Exchanger
PCHX	Process Coupling Heat Exchanger
PCS	Power Conversion System
PFHE	Plate Fin Heat Exchanger
PHTS	Primary Heat Transport System
PIE	Post-irradiation Examination
PLOFC	Pressurized Loss of Forced Cooling
POC	Power Conversion System
PPM	Parts per million
PPU	Product Purification Unit
PPWC	Primary Pressurized Water Cooler
QA	Quality Assurance
RAMI	Reliability, Availability, Maintainability and Inspectability
RC	Reactor Cavity
RCCS	Reactor Cavity Cooling System
RCS	Reactivity Control System
RCSS	Reactivity Control and Shutdown System
RDM	Rod Drive Mechanism
RIM	Reliability and Integrity Management
RIT	Reactor Inlet Temperature
RM	Road Map
ROT	Reactor Outlet Temperature
RPS	Reactor Protection System
RPT	Report
RPV	Reactor Pressure Vessel
RS	Reactor System
RSS	Reserve Shutdown System
RUS	Reactor Unit System
SAD	Acid Decomposition System
SAR	Safety Analysis Report
SAS	Small Absorber Spheres
SG	Steam Generator
SHTS	Secondary Heat Transport System

S-I	Sulfur Iodine
SiC	Silicon Carbide
SNL	Sandia National Laboratory
SO2	Sulfur Dioxide
SOE	Sulfuric Oxide Electrolyzers
SOEC	Sulfuric Oxide Electrolyzers Cells
SR	Side Reflector
SSC	System Structure Component
SSCs	Systems, Structures and Components
SSE	Safe Shutdown Earthquake
SUD	Software Under Development
TBC	To Be Confirmed
TBD	To Be Determined
TDL	Technology Development Loop (As incorporated in Concept 1)
TDRM	Technology Development Road Map
TER	Test Execution Report
THTR	Thorium High Temperature Reactor
TRISO	Triple Coated Isotropic
TRL	Technology Readiness Level
TRM	Technology Road Map
UCO	Uranium Oxycarbide
UO2	Uranium Dioxide
USA.	United States of America
V&V	Verification and Validation
V&Ved	Verified and Validated
VLE	Vapor-Liquid Equilibrium
WBS	Work Breakdown Structure
WEC	Westinghouse Electric Company
TABLE OF CONTENTS

Section SUM	MARY	Title AND CONCLUSIONS	Page 9
11 FUE	L ELEN	MENTS	10
11.1	FUEL E	LEMENT DESCRIPTION/FUNCTION AND OPERATING REQUIREMENTS	10
	11.1.1	Description & Function of the Fuel Elements	10
	11.1.2	Operational Requirements	11
11.2	TECHN	OLOGY/DESIGN SELECTION STATUS	11
	11.1.3	Candidate Technologies	11
	11.1.4	Decision Discriminators	11
	11.1.5	Reference Design	12
	11.1.6	Alternative for Further Evaluation	12
	11.1.7	Down Selection Task	
11.3	TRL ST	ГАТUS	12
11.4	TECHN	OLOGY DEVELOPMENT ROAD MAP SUMMARY	
	11.1.8	Overview	
	11.1.9	PBMR DPP Fuel Irradiation Program Description	13
	11.1.10	PBMR NGNP Fuel Irradiation Program Description	14
11.2	TECHN	OLOGY MATURATION PLAN SUMMARY (TRL 6 TO TRL 8)	15
	11.2.1	TRL 6 to TRL 7	15
	11.2.2	TRL 7 to TRL 8	15
11.5	INPUTS	то СТГ	16
11.6	Referi	ENCES	16
APPENI	DIX A:	TRL RATING SHEETS	17
APPENI	DIX B:	TECHNOLOGY DEVELOPMENT ROAD MAP	20
APPENI	DIX C:	TECHNOLOGY MATURATION PLAN	22

LIST OF TABLES

Table 11-1:	Fuel Qualification Envelope for the DPP and the NGNP	9
Table A-1:	TRL Rating Sheet for the Fuel Elements 1	8

LIST OF FIGURES

SUMMARY AND CONCLUSIONS

The Pebble Bed Modular Reactor (PBMR) Demonstration Power Plant (DPP) is rated at 400MWt and has a reactor outlet temperature of 900°C. The DPP fuel qualification consists of irradiating fuel spheres up to a temperature of 1250° C and to a burn-up value of approximately 111900 MWD/tU¹. The fast neutron dose for these irradiation tests is specified at 2.7 x 10^{21} cm⁻². Post-irradiation heat-up tests will be performed at 1600°C and 1800°C to determine delayed radionuclide releases thereby simulating Loss of Forced Cooling (LOFC) events. The maximum design fuel temperature for the DPP during normal operation is 1130°C and for the DLOFC is 1593°C. Irradiation tests for the PBMR-DPP fuel qualification program will be performed at INM in Russia and HFR Petten in the Netherlands and will be used to achieve an equivalent fuel Technology Readiness Level (TRL) of 8 for the DPP.

The NGNP and Hydrogen Production Pre-Conceptual Design Report [1] describes the 500MWt power and 950°C reactor outlet temperature design. The initial analyses predicted a peak fuel temperature of 1168°C during normal operation and 1750°C during a depressurized LOFC event. Based on these results, the PCDR states that the fuel should have a capability to achieve a maximum temperature of at least 1300°C and a burn-up value of 109000 MWD/tU. The fast neutron dose is specified at 2.7 x 10^{21} cm⁻². The recent Reactor Parametric NGNP Conceptual Design Study [11-2] refined the maximum fuel temperature to 1235°C during normal operation and the peak maximum temperature to 1703°C during a DLOFC event.

Based on the above best estimate results per the Reactor Parametric study [11-2] and PCDR [11-1] values and incorporating comparable margins for uncertainties², the fuel qualification envelope parameters for the DPP and the NGNP are provided in Table 11-1. The fuel for the NGNP is outside the DPP fuel envelope with regards to temperature while the fast neutron flux and burn-up are the same and within the DPP envelope. Note that if the NGNP program focuses on lower temperature applications (<800°C ROT), it is expected that the DPP qualification envelope would suffice.

Doromotor	PBMR-DPP	PBMR-NGNP	
Farameter	Qualification Envelope	Qualification Envelope	
Normal Operations Maximum	1250°C	1335°C	
Temperature (sphere centre)			
DLOFC Peak Maximum Temperature	Up to 1800°C	Up to 1900°C	
Fast neutron flux (n)	$2.7 \text{ x } 10^{21} \text{ cm}^{-2}$	$2.7 \text{ x } 10^{21} \text{ cm}^{-2}$	
Burn-up	1119000 MWd/tU	109000 MWd/tU	

¹ All the qualification envelope values are still subject to change as the analysis is refined with actual design & manufacturing feedback of fuel and reactor.

² It is accepted that the measurement tolerance of temperature above 1000°C in test reactors is typically in the order of ± 50 °C which forms a significant portion of the applied margins.

11 FUEL ELEMENTS

11.1 Fuel Element Description/Function and Operating Requirements

11.1.1 Description & Function of the Fuel Elements

The PBMR fuel pebbles are as described in detail in section 5 of the NGNP PCDR [11-1]. Essentially the fuel pebbles comprise of Triple Coated Isotropic (TRISO) particles containing Low Enriched Uranium (LEU) kernels, embedded in a pressed graphite matrix.

The selected fuel for the PBMR NGNP is the same as the PBMR DPP which is based on the fuel manufactured by HOBEG for the 1988 HTR-Modul proof test and bulk tested in the AVR21-2 reload.

The functions of the fuel system and the fuel elements are provided in section 5 of the NGNP PCDR [11-1].

The success of HTGR fuel could largely be ascribed to the characteristically small, ceramic-coated fuel particles. The breakthrough development considering layering of the uranium-oxide kernels originally led to each particle being surrounded by a porous carbon buffer layer followed by high density pyrolytic carbon layers with a silicon carbide (SiC) layer incorporated in-between the two high density pyrolytic carbon layers. PBMR uses this same German designed TRISO coated particle fuel as reference for its fuel design. This fuel has shown very low particle failure when restrictive parameters are imposed consistent with fuel irradiation and heat-up testing, e.g., burn-ups, fluences, and maximum temperatures. The outstanding high temperature performance has been established by years of irradiation and testing experience where a very small fraction of particle failure and/or fission product release occurred under simulated accident conditions at elevated temperatures up to 1600°C over tens of hours of isothermal and transient simulation temperature tests. This experience performance base of TRISO fuel is extensive and consists of mechanical and irradiation tests performed on a number of fuel types developed in Germany during the 1960s and through 1988.

A total of three DDNs have been identified for the Fuel [11-1]. These DDNs address Fuel irradiation and heating tests as well as graphite irradiation tests, and can be subdivided in to the following:

- Fuel Irradiation Tests for Normal Operational Conditions (DDN NHSS-01-01)
- Fuel Heating Tests for Accident Conditions (DDN NHSS-01-02) Fuel Graphite Irradiation Tests (DDN NHSS-01-03)

In addition to power level, the main design parameter differences between the proposed NGNP and the DPP is the difference between the ROT and RIT which is 400°C (900°C-500°C) for the 400MWt DPP reactor versus 600°C (950°C-350°C) for the 500MWt NGNP reactor.

11.1.2 Operational Requirements

The normal operational irradiation requirements (including margin for uncertainty) for the PBMR-NGNP fuel were defined during the Pre-Conceptual Design Phase [11-1] as:

Maximum Fuel Temperature : $1300^{\circ}C$ Burn-up :109000 MWD/tUFast Neutron Dose : $2.7 \times 10^{21} \text{ cm}^{-2}$

The more recent Reactor Parametric Conceptual Design Study [11-2] predicts a best estimate maximum fuel temperature of 1235°C during normal operation and a maximum peak DLOFC temperature of 1703°C. These results suggest a lower DLOFC temperature than presented in Section 5 of the PCDR, but a slightly higher normal operating temperature.

When defining irradiation and heating tests, temperature uncertainties need to be taken into account. Currently, the magnitudes of these uncertainties are assumed in the PCDR to be as large as 100°C until the temperature uncertainties have been refined after the PBMR DPP Software Verification and Validation is completed [11-1].

The PBMR-DPP fuel qualification program will advance the fuel for the NGNP from TRL 6 to TRL 7 by extending the fuel qualification envelope for several parameters. In order for it to advance from TRL 7 to TRL 8, additional irradiation testing to a maximum fuel temperature of ~1335°C at a burn-up value of ~ 109000 MWD/tU is necessary. The fast neutron dose remains unchanged at 2.7 x 10^{21} cm⁻². Irradiation tests on these additionally irradiated fuel spheres are to be followed up with post-irradiation examination and heat-up tests at temperatures up to 1900°C. On successful completion of these activities, the TRL for PBMR-based NGNP fuel will advance from TRL 7 to TRL 8. It is noted that for the 500MWt NGNP operating with a ROT of <800°C, the DPP qualification program is expected to provide the technical basis for a TRL 8.

11.2 Technology/Design Selection Status

11.1.3 Candidate Technologies

PBMR Fuel is based on the proven German pebble design.

11.1.4 Decision Discriminators

The pebble fuel is the only TRISO fuel capable of supporting on-line refueling which is a strategic advantage of the PBMR.

11.2.1.1Readiness and Design Maturity

Pebble LEU TRISO fuel has been tested and proven in various forms in various reactors and has successfully operated in HTR pebble reactors, thus the technology and design can be considered to be mature. However, due to the time elapsed since the demise of the German programmes and the initiation of the NGNP, the fuel is no longer available from the original German production line. In addition, the evolved reactor design will impose conditions on the operation of the fuel which were not covered with sufficient depth by the German programmes. These two factors have lead to the assessment of the readiness and design maturity as being DRL-5, specifically driven down by the design of the fuel production line, not the specification of the fuel elements.

11.1.5 Reference Design

The reference design for the PBMR-based NGNP is the PBMR DPP Fuel which is based on the Low Enriched Uranium (LEU) SiC TRISO fuel developed for the HTR Modul concept in Germany. There are minor adjustments in enrichment and sphere particle loading to adopt the PBMR service conditions. The development of the German fuel design arriving at the LEU UO_2 TRISO pressed sphere is summarized in the following report:

• VDI-Verlag GmbH, 'AVR – Experimental High-Temperature Reactor, 21 Years of Successful Operation for a future Energy Technology', June 1990

The same LEU UO_2 TRISO design used as basis for the PBMR fuel is described in the following report:

• J Venter, H Nabielek, 'Fuel: Performance Envelope of Modern HTR TRISO Fuel', Proceedings HTR 2006, October 2006

The Fuel Qualification program for the PBMR DPP is set out in the Technology Maturation Plan (TMP) in appendix C.

11.1.6 Alternative for Further Evaluation

No alternative. The PBMR NGNP Fuel will be the same as (or modest extension of) the PBMR-DPP fuel derived from the German pebble fuel.

11.1.7 Down Selection Task

N/a.

11.3 TRL Status

Evaluations of the status of the current technology for pebble fuel resulted in a TRL 6 [11-3]. The generic definition for this selection level states:

"Similar structure, system or component used in a relevant environment but in another configuration or application".

The specific definition (related to the NGNP pebble fuel program TRL level 6) states:

"Pebble bed reactors have been built and operated with comparable performance capability".

The TRL sheets explaining the underlying bases for the current TRL selection are provided in appendix A – refer to section Appendix A.

11.4 Technology Development Road Map Summary

11.1.8 Overview

The present PBMR fuel element irradiation and thermal test program is adequate to support DPP licensing and to advance the PBMR-based NGNP TRL from 6 to 7. Fuel irradiation tests are planned in Dutch Petten HFR and Russian IVV-2M reactors to test pre-production fuel, production fuel and fuel matrix graphite.

Irradiation on pre-production PBMR fuel will commence in FY 2009, whilst irradiation on production PBMR fuel will commence in FY 2012.

11.1.9 PBMR DPP Fuel Irradiation Program Description

The PBMR DPP fuel program includes a pre-production fuel irradiation program. This program is only mentioned here out of interest and credit is not claimed on the NGNP for it, as it does not advance the PBMR-NGNP fuel from one TRL to another.

The pre-production irradiation program consists of:

- Pre-irradiation characterization of fuel spheres.
- Fuel sphere irradiation tests involving the following:
- Fuel Spheres irradiated to a burn-up value of 97 438 MWd/t_{HM}, i.e. 10.1 ± 1.0 % FIMA vs. the specified operating maximum burn-up value for PBMR-DPP of 95723 MWd/t_{HM}.
- Fuel spheres are irradiated to a maximum center temperature of $1200 \text{ }^{\circ}\text{C} \pm 50 \text{ }^{\circ}\text{C}$ vs. the expected operating maximum fuel temperature for PBMR-DPP of 1130°C .
- The fast neutron dose for PBMR-DPP under normal conditions is specified at $2.72 \pm 0.2 \times 10^{21} \text{ cm}^{-2}$.
- Irradiation time is ~ 500 calendar days.
- Post-irradiation examination of fuel spheres.
- Processing of all irradiated and tested samples and fuel.

The PBMR DPP production fuel irradiation program will advance the PBMR-based NGNP fuel from TRL 6 to TRL 7 and consists of the following:

Pre-irradiation characterization of fuel spheres.

Fuel sphere irradiation tests involving the following:

Fuel Spheres irradiated to a burn-up value of 111895 MWd/t_{HM}, i.e. 11.61 % FIMA vs. the expected operating maximum burn-up value of 95723 MWd/t_{HM}.

Fuel spheres are irradiated to a maximum center temperature of 1250 °C vs. the expected operating maximum fuel temperature for PBMR-DPP of 1130 °C.

The fast neutron dose for PBMR-DPP under normal conditions is specified at 2.72 ± 0.2 x 10^{21} cm⁻².

Non-destructive PIE and Küfa heat-up tests at 1600 °C and 1800 °C against the expected DLOFC temperature for the PBMR-DPP of 1593 °C.

Processing of all irradiated and tested samples and fuel.

Fuel graphite qualification entails irradiation tests of extruded and pressed graphite samples at 900°C and 1100°C at different fluences of respectively 1-, 2- and 4 x 10^{21} cm⁻². These tests are not to determine for the 1st time the properties of the graphite to be used, but rather to verify that the newly manufactured graphite properties are similar to those of the historical A3-3 matrix graphite and the MLRF1 machined graphite.

11.1.10 PBMR NGNP Fuel Irradiation Program Description

Additional irradiation testing may be necessary to advance the PBMR-based NGNP fuel from TRL 7 to TRL 8 due to the elevated fuel temperatures³. This gives rise to the following:

Pre-irradiation characterization of PBMR produced fuel spheres (if different production line used to that of DPP).

Fuel sphere irradiation tests involving the following:

- Fuel Spheres irradiated to a burn-up value of ~ 109000 MWd/t_{HM} vs. the expected burn-up value for the PBMR-based NGNP of 94079 MWd/t_{HM}.
- Fuel spheres are to be irradiated to at least a maximum center temperature of 1335°C against an expected operating maximum fuel temperature for PBMR-based NGNP of 1235°C [11-2], to which a 100°C uncertainty factor has been added.
- The fast neutron dose remains unchanged at $2.72 \pm 0.2 \times 10^{21} \text{ cm}^{-2}$.
- Non destructive PIE and Küfa heat-up tests to be performed at 1700 °C and 1900 °C to envelope the expected DLOFC fuel temperature for PBMR-based NGNP of 1703 °C [11-2], taking uncertainty margin into account.
- Processing of all irradiated and tested samples and fuel.

³ All the qualification envelope values are still subject to change as the analysis is refined with actual design & manufacturing feedback of fuel and reactor.

11.2 Technology Maturation Plan Summary (TRL 6 to TRL 8)

PBMR-DPP fuel qualification tests are deemed sufficient to develop the current TRL 6 to a TRL 8 for the PBMR-DPP, but only TRL 7 for the PBMR NGNP. The PBMR-DPP fuel qualification consists of two sets of irradiation tests, namely initial tests on pre-production fuel followed by irradiation tests on production fuel.

11.2.1 TRL 6 to TRL 7

This advancement relies solely on the PBMR-DPP fuel qualification effort:

The PBMR-DPP fuel qualification tests to be performed are:

- Production fuel sphere irradiation at HFR and INM.
- Production fuel sphere PIE followed by subsequent heat-up tests at 1600°C and 1800°C.
- Fuel Graphite irradiation tests.

These tests will be performed on fuel spheres fabricated on a qualified PBMR fuel plant (production fuel) while the fuel graphite tests will be performed on pre-production matrix graphite and production extruded graphite⁴.

11.2.2 TRL 7 to TRL 8

Any additional PBMR-NGNP fuel qualification tests required to progress the PBMR-NGNP fuel from TRL 7 to TRL 8 are activities unique to NGNP:

Production fuel sphere irradiation at a suitable test reactor at an operational temperature of 1335°C to 1350°C which caters for an uncertainty of $100°C^5$. Other parameters are burn-up of 11.61 % FIMA and fast neutron dose of >2.7 x10²¹ cm⁻².

Production fuel sphere PIE followed by subsequent heat-up tests sampled at various temperatures up to 1900 $^{\circ}$ C.

Fuel Graphite irradiation tests⁶ with adjusted temperature sample points of 1000°C and 1250°C.

⁴ It is possible that the requirement to irradiate the extruded graphite of the machined graphite spheres may be deemed to be superfluous and enveloped by the irradiation of the structural graphite of the core.

⁵ The uncertainty factor is provisional, should the DPP V&V be completed prior to the NGNP qualification, the selected temperatures could be adjusted accordingly.

⁶ The requirement to irradiate the graphite to higher temperatures may be shown to be unfounded as the DPP testing may be sufficient to verify the curves produced.

11.5 Inputs to CTF

If CTF is not a nuclear irradiation facility then no input into CTF is required.

11.6 References

- [11-1] NGNP-01-RPT-01: NGNP and Hydrogen Production Pre-Conceptual Design Report; Westinghouse Electric Company, May 2007
- [11-2] NGNP Conceptual Design Study: Reactor Parametric Study, Michael Correia, August 2008
- [11-3] NGNP-TRL & DRL Report; NGNP and Hydrogen Production Report on Design Readiness Levels and Design Technology Readiness Levels, Revision 0, Westinghouse Electric Company, September 2007

APPENDIX A: TRL RATING SHEETS

Table A-1: TRL Rating Sheet for the Fuel Elements

TRL Rating Sheet							
Vendor Name: WEC De		ocument Nun	nber:	002		Revision: 0	
□ Island	□ System	□Subsy	ystem/Structur	e	⊠Con	nponen	t 🛛 Technology
Title: Fuel E	Elements (S	pheres)					
Description: The Technology Readiness Level for fuel elements has been assessed as TRL 6 based on Pebble bed reactors having been built and pebble fuel having been operated with comparable performance capability.							
Island(s):	☑ NHSS	□ HT	S □ H	PS		PCS	□ BOP
ISSCTBS:		Parent:			WBS	:	
			Technology F	Readin	ess Le	vel	
	Next Low Ley	ver Rating vel	Calculate	d Rati	ng		Next Higher Rating Level
Generic Definitions (abbreviated)	Definitions abbreviated)Component or system breadboard in relevant environment		Similar SSC in relevant environment in another application		Pilot/engineering scale demonstration in relevant environment.		
Specific Definitions (<i>if</i> <i>applicable</i>)	c Irradiation test results of representative fuel elements from earlier <i>able</i>) German tests are acceptable		Pebble bed reactors have been built and operated with comparable performance capability		The present PBMR fuel element irradiation and thermal test program is adequate support DPP licensing. Commitments made for fuel irradiation tests in Dutch Petten HFR and Russian IVV-2M reactors		
TRL		5	6				7
 Fuel testing and qualification identified as per Design Data Needs (DDN) NHS-01-01, NHS-01-02 and NHS -01-03. The following accompanying reports and special studies were evaluated: NGNP and Hydrogen Production Pre-conceptual Design Report: Section 5: Reactor Fuel, Rev 0, May 2007. NGNP Conceptual Design Study: Reactor Parametric Study, August 2008. 							
Outline of a plan to get from current level to next level.							
Actions Product Product and 180 Fuel Gripping 	ActionsScheduleCost (K\$)• Production fuel sphere irradiation at INM. • Production fuel sphere heat-up tests at 1600°C and 1800°C. • Fuel Graphite irradiation tests.Starting FY2012 Following Irradiation tests Starting FY2012Costs not provided due to business confidentiality reasons.					Cost (K\$) Costs not provided due to business confidentiality reasons.	
SMF Making Determination: D T Allen							
Sivil Ivianing Determination. D.1 Anon							

Date: 12 Sep 2007 Originating Organization: Technology Insights

APPENDIX B: TECHNOLOGY DEVELOPMENT ROAD MAP

NGNP-CTF MTECH-TDRM-011

NGNP Technology Development Road Mapping Reports Section 11: Fuel Elements

Figure B-1: Technology Development Road Map for the Fuel Elements

WEC-TS-FUEL-005: Additional Production Fuel Irradiation Tests for Normal

WEC-TS-FUEL-006: Production Fuel Heat-up Tests WEC-TS-FUEL-007: Fuel Matrix Graphite Irradiation tests and PIE

Operational Conditions

• •

Document number:

TDRN-011

NGNP-CTF MTECH-TDRM-011_Rev1-final.do

12/9/2008

APPENDIX C: TECHNOLOGY MATURATION PLAN

TABLE OF CONTENTS

Section	Title	Page
C1 TECHNOL	OGY MATURATION PLAN FOR FUEL - TRL 6 TO TRL 7	25
C1.1 TECH	NOLOGY MATURATION PLAN SUMMARY	25
C1.1.1	Objectives	25
C1.1.2	Scope 25	
C1.1.3	Anticipated Schedule	26
C1.1.4	Overall Cost	26
C1.2 TEST S	SPECIFICATIONS	26
C1.2.1	Production Fuel Irradiation Tests for Normal Operational Conditions	26
C1.2.2	Production Fuel Heat-up Tests	28
C1.2.3	Fuel Matrix Graphite Irradiation Tests and PIE	29
C1.2.4	Machined Graphite Irradiation Tests and PIE	31
C2 TECHNOL	OGY MATURATION PLAN FOR FUEL - TRL 7 TO TRL 8	33
C2.1 TECH	NOLOGY MATURATION PLAN SUMMARY	33
C2.1.1	Objectives	33
C2.1.2	Scope 33	
C2.1.3	Anticipated Schedule	33
C2.1.4	Overall Cost	33
C2.2 TEST S	SPECIFICATIONS	34
C2.2.1	Additional Production Fuel Irradiation Tests for Normal Operational	
	Conditions	34
C2.2.2	Production Fuel Heat-up Tests	35
C2.2.3	Fuel Matrix Graphite Irradiation Tests and PIE	36

REQUIRED SPECIFICATIONS/TEST TO ACHIEVE NEXT TRL

TRL 6 to TRL 7:

Specification C1.2.1: Production Fuel Irradiation Tests for DPP Normal Operational Conditions.

Specification C1.2.2: Production Fuel Heat-up Tests at 1600°C and 1800°C.

Specification C1.2.3: Fuel Matrix Graphite Irradiation Tests and PIE.

Specification C1.2.4: Machined Graphite Irradiation Tests and PIE.

TRL 7 to TRL 8:

Specification C2.2.1: Production Fuel Irradiation Tests for NGNP Normal Operational Conditions (at an irradiation temperature of 1335°C). Burn-up to take place up to ~ 109 000 MWd/tU and fast neutron dose to be >2.72 x 10^{21} cm⁻².

Specification C2.2.2: Production Fuel Heat-up Tests at 1700°C and 1900°C.

Specification C2.2.3: Fuel Matrix Graphite Irradiation Tests and PIE.

C1 TECHNOLOGY MATURATION PLAN FOR FUEL - TRL 6 TO TRL 7

C1.1 TECHNOLOGY MATURATION PLAN SUMMARY

C1.1.1 Opjectives

The purpose of the TMP is to give more information regarding the activities to advance PBMR NGNP fuel from TRL 6 to TRL 8. PBMR-based NGNP fuel uses the German HTR-Modul Proof Test fuel design as reference design and a manufacturing process equivalent to that used by Hobeg for the production of German fuel. The PBMR-based NGNP fuel design will thus build upon this experience base through supplemental irradiation and post irradiation examination (PIE) tests to be performed on the PBMR-DPP fuel. The objective is to extend the German LEU-TRISO fuel performance statistical database to show that the PBMR NGNP fuel is capable of meeting the NGNP demands.

Fuel spheres meeting the required specification and quality control standards need to be manufactured on a qualified production line so as to pass the 'Fuel Qualification' test. This implies that the manufactured fuel spheres will meet all mechanical as well as radiation requirements set out by the PBMR design.

The PBMR approach to fuel qualification as far as manufacturing is concerned is to:

Use the same fuel specification that was used by Hobeg to produce the superior quality German fuel.

Apply Quality Control (QC) as per reference fuel.

Use the same process steps as per reference manufactured fuel.

Use direct materials that comply with similar specifications as per reference fuel.

C1.1.2 Scope

In order to advance the maturity of the PBMR-based NGNP fuel element technology from a TRL 6 to TRL 7, the following tasks needs to be performed as per the PBMR-DPP Qualification program. The fuel sphere irradiation programme consists of the following fuel qualification programs:

Production fuel irradiation including pre-irradiation characterization and PIE.

• Fuel Graphite irradiation, including pre-irradiation characterization and PIE.

Each of these programs can be divided into the following test specifications:

- Specification C1.2.1: Production Fuel Irradiation Tests for Normal Operational Conditions
- Specification C1.2.2: Production Fuel Heat-Up Tests for Accident Conditions
- Specification C1.2.3: Fuel matrix Graphite Irradiation Tests and PIE

• Specification C1.2.4: Machined Graphite Irradiation Tests and PIE

C1.1.3 Anticipated Schedule

The anticipated work for the production irradiation tests is set to start in FY 2012.

C1.1.4 Overall Cost

Costs not provided due to business confidentiality reasons.

C1.2 TEST SPECIFICATIONS

C1.2.1 Production Fuel Irradiation Tests for Normal Operational Conditions

C1.2.1.1 Objectives

To demonstrate that the performance of PBMR production fuel satisfies PBMR fuel qualification requirements. A two-phased approach will be used i.e. partial burn-up and full burn-up of fuel spheres.

C1.2.1.2 Test Conditions

C1.2.1.2.1 Test Configuration/Set-up

INM Irradiation Test Program (IVV-2M):

Pre-irradiation tests (19 fuel spheres)

- Partial Burn-up irradiation tests (4 Fuel Spheres)
- Burn-up irradiation tests (12 Fuel Spheres)
- Non-destructive PIE (16 Fuel Spheres)

Parameter	DPP Design	Nominal Partial Proof Test	Nominal Proof Test Irradiation
	Requirements	Irradiation Target	Target
Average residence time (days)	925	As required	731
End of life fast neutron dose	2.72×10^{21}	$1.7 \ge 10^{21}$	3.63×10^{21}
$(E > 0.1 \text{ MeV})(\text{cm}^{-2})$			

Parameter	DPP Design Requirements	Nominal Partial Proof Test Irradiation Target	Nominal Proof Test Irradiation Target	
Average discharge burn-up	91012 / 9.44	48200 / 5	111895 / 11.61	
(MWd/t / % FIMA)				
Normal operation temperature (C)	1068	1200 constant	900 / 1150 cycles	
(sphere surface temperature) ⁷				
DLOFC (C)	1592	1600 / 1800	1600 / 1800	
PLOFC (C)	1319	N/A	1350	
Maximum power per fuel sphere (kW)	2.76	As required	3	

C1.2.1.2.2 Test Duration

The duration of this activity can be subdivided into the following activities:

Irradiation planning & Preparation	ca 260 calendar days
Irradiation of Pre-Production Fuel	ca 1045 calendar days
PIE and Analysis	ca 130 calendar days

C1.2.1.2.3 Proposed Test Location

Production fuel to be irradiated and tested at the INM facility.

C1.2.1.3 Measured Parameters

The following PIE will be performed on the irradiated fuel spheres: Appearance Mass Diameter Burn-up Fission product inventory Deconsolidation Fission product distribution in fuel sphere Optical ceramography of coated particles IMGA on coated particles Fission product distribution in coated particles

C1.2.1.4 Data Requirements

All data shall be acquired using recognized techniques, codes, standards, and QA.

C1.2.1.5 Test Evaluation Criteria

The production test will enable comparison of performance of PBMR Fuel manufactured on a qualified Fuel Plant with former German production pebble fuel.

NGNP-CTF MTECH-TDRM-011_Rev1-final.doc

⁷ The surface temperatures specified in the test aim to achieve the required centre temperatures as required and quoted elsewhere in this document.

C1.2.1.6 Test Deliverables

Deliverables for this test specification shall include:

• Report on all the measured parameters listed in paragraph C1.2.1.3.

C1.2.1.7 Cost, Schedule, and Risk

Costs not provided due to business confidentiality reasons.

C1.2.2 Production Fuel Heat-up Tests

C1.2.2.1 Objectives

The objective of the heat-up tests are to simulate accident transient temperature conditions (DLOFC), nominally set at 1800 °C to verify the integrity of the coated particles and fuel spheres in such simulated conditions. The PBMR-DPP's performance will be used to evaluate fuel integrity for PBMR NGNP.

C1.2.2.2 Test Conditions

C1.2.2.2.1 Test Configuration/Set-up

Fuel spheres to be subjected to heating tests at 1600 °C and at 1800 °C for ca 100 hours respectively.

C1.2.2.2.2 Test Duration

The heat up tests consists of the following subsections:

- Physical Heating Test: 130 days
- PIE and analysis of Heated Spheres: 130 days

C1.2.2.2.3 Proposed Test Location

At the same test station where irradiation was performed.

C1.2.2.3 Measured Parameters

Upon deconsolidation, the following measurements will be performed:

- Optical Ceramography
- Fission product inventory measurements
- •

C1.2.2.4 Data Requirements

All data shall be acquired using recognized techniques, codes, standards, and QA.

C1.2.2.5 Test Evaluation Criteria

Results to be evaluated against current NGNP DLOFC temperature requirements.

C1.2.2.6 Test Deliverables

Deliverables for this test specification shall include:

Report on all the measured parameters listed in paragraph C1.2.2.3. Of particular interest will be the measurement of particle failure fraction, which is related to the free uranium content.

C1.2.2.7 Cost, Schedule, and Risk

Costs not provided due to business confidentiality reasons.

C1.2.3 Fuel Matrix Graphite Irradiation Tests and PIE

C1.2.3.1 Objectives

To acquire relevant material data pertaining to irradiation behaviour of the fuel matrix graphite over the fluence-temperature regime for PBMR fuel as part of PBMR fuel qualification. Data can be used for validation for PBMR NGNP DDNs.

C1.2.3.2 Test Conditions

C1.2.3.2.1 Test Configuration/Set-up

C1.2.3.2.2 It is proposed that matrix graphite samples are irradiated to three different fast neutron doses at the specified irradiation temperatures as follows:

- Fluence = $1.0 \times 10^{21} \text{ cm}^{-2}$ (E>0.1 MeV); Temperature = 900 °C
- Fluence = $2.0 \times 10^{21} \text{ cm}^{-2}$ (E>0.1 MeV); Temperature = 900 °C
- Fluence = $4.0 \times 10^{21} \text{ cm}^{-2}$ (E>0.1 MeV); Temperature = 900 °C
- Fluence = $1.0 \times 10^{21} \text{ cm}^{-2}$ (E>0.1 MeV); Temperature = 1100 °C
- Fluence = $2.0 \times 10^{21} \text{ cm}^{-2}$ (E>0.1 MeV); Temperature = 1100 °C
- Fluence = $4.0 \times 10^{21} \text{ cm}^{-2}$ (E>0.1 MeV); Temperature = 1100 °C

C1.2.3.2.3 Test Duration

The duration of this activity can be subdivided into the following activities:

Irradiation Planning & Preparation	ca 265 calendar days
Irradiation and PIE	ca 1042 calendar days

C1.2.3.2.4 Proposed Test Location

The IVV-2M Russian will be used to test the fuel matrix graphite.

C1.2.3.3 Measured Parameters

Samples for investigation and irradiation will be cut from fuel-free matrix graphite spheres provided for the test. These samples will be cut parallel and perpendicular to the grain direction. Following irradiation, the listed characteristics will be measured prior to and after the irradiation tests.

Pre-irradiation characterisation for fuel matrix graphite will consist of:

Geometrical size Mass Calculation of sample density Measurement of sample density Sample porosity Thermal conductivity in the range 20 °C to T_{irr} °C Electric conductivity in the range 20 °C to T_{irr} °C Thermal coefficient of linear expansion in the range 20 °C to T_{irr} °C Dynamic Young's modulus Compression strength Ultimate bending strength Optical ceramography Uranium and thorium content Visual record of samples selected for irradiation

The measured characteristics will then be compared to the values obtained during pre-irradiation characterization.

C1.2.3.4 Data Requirements

All data shall be acquired using recognized techniques, codes, standards (ASTM) and QA. Neutron Activation Analysis (NAA) will be used for measuring U and Th content.

C1.2.3.5 Test Evaluation Criteria

 T_{irr} is anticipated to be at a maximum of 1100°C for the purposes of these tests. Some graphite properties shown in the list are measured to a maximum temperature of 1100°C, which covers normal operation conditions, while it is known that graphite temperatures might reach higher values than this during temperature transients. This is due to measurement limits imposed by the instrumentation used to measure these properties.

Property values for higher temperatures are found by means of conservative extrapolation from known values.

C1.2.3.6 Test Deliverables

Deliverables for this test specification shall include:

- Report on all the measured parameters listed in paragraph C1.2.3.3.
- •

C1.2.3.7 Cost, Schedule, and Risk

Costs not provided due to business confidentiality reasons.

C1.2.4 Machined Graphite Irradiation Tests and PIE

C1.2.4.1 Objectives

To acquire relevant material data pertaining to irradiation behaviour of the machined graphite spheres over the fluence-temperature regime applicable for the use of these spheres in the PBMR DPP, as part of PBMR fuel qualification. Data can be used for validation for PBMR NGNP DDNs.

C1.2.4.2 Test Conditions

C1.2.4.2.1 Test Configuration/Set-up

C1.2.4.2.2 NOTE: The anticipated cumulative dose to be seen by the machined graphite spheres during their life-cycle profile is expected to be in the order of 1.5×10^{21} cm⁻². The test description presented here is identical to the requirements of the matrix graphite in order that the tests can be conducted simultaneously in the same reactor. There is thus scope for reducing the fluence and consequently the duration of the tests.

C1.2.4.2.3 It is proposed that extruded graphite samples are irradiated to three fast neutron doses at two different irradiation temperatures as follows:

- Fluence = $1.0 \times 10^{21} \text{ cm}^{-2}$ (E>0.1 MeV); Temperature = 900°C
- Fluence = $2.0 \times 10^{21} \text{ cm}^{-2}$ (E>0.1 MeV); Temperature = 900°C
- Fluence = $4.0 \times 10^{21} \text{ cm}^{-2}$ (E>0.1 MeV); Temperature = 900°C
- Fluence = $1.0 \times 10^{21} \text{ cm}^{-2}$ (E>0.1 MeV); Temperature = 1100°C
- Fluence = $2.0 \times 10^{21} \text{ cm}^{-2}$ (E>0.1 MeV); Temperature = 1100°C
- Fluence = $4.0 \times 10^{21} \text{ cm}^{-2}$ (E>0.1 MeV); Temperature = 1100°C

C1.2.4.2.4 Test Duration

The duration of this activity can be subdivided into the following activities:

Irradiation Planning & Preparation	ca 265 calendar days
Irradiation and PIE	ca 1042 calendar days

C1.2.4.2.5 Proposed Test Location

The IVV-2M Russian will be used to test the machined graphite spheres.

C1.2.4.3 Measured Parameters

Samples for investigation and irradiation will be cut from fuel-free machined graphite spheres provided for the test. These samples will be cut parallel and perpendicular to the extrusion direction.

Following irradiation, the listed characteristics will be measured prior to and after the irradiation tests:

Pre-irradiation characterisation for machined graphite will consist of: Geometrical size Mass Calculation of sample density Measurement of sample density Sample porosity Thermal conductivity in the range 20°C to T_{irr} °C Electric conductivity in the range 20°C to T_{irr} °C Thermal coefficient of linear expansion in the range 20°C to T_{irr} °C Dynamic Young's modulus Compression strength Ultimate bending strength Optical ceramography Uranium and thorium content Visual record of samples selected for irradiation

The measured characteristics will then be compared to the values obtained during pre-irradiation characterization.

C1.2.4.4 Data Requirements

All data shall be acquired using recognized techniques, codes, standards (ASTM) and QA. Neutron Activation Analysis (NAA) will be used for measuring U and Th content.

C1.2.4.5 Test Evaluation Criteria

 T_{irr} is anticipated to be at a maximum of 1 100 °C for the purposes of these tests. Some graphite properties shown in the list are measured to a maximum temperature of 1 100 °C, which covers normal operation conditions, while it is known that graphite temperatures might reach higher values than this during temperature transients. This is due to measurement limits imposed by the instrumentation used to measure these properties.

Property values for higher temperatures are found by means of conservative extrapolation from known values.

C1.2.4.6 Test Deliverables

Deliverables for this test specification shall include:

• Report on all the measured parameters listed in paragraph C1.2.4.3.

C1.2.4.7 Cost, Schedule, and Risk

Costs not provided due to business confidentiality reasons.

C2 TECHNOLOGY MATURATION PLAN FOR FUEL - TRL 7 TO TRL 8

C2.1 TECHNOLOGY MATURATION PLAN SUMMARY

C2.1.1 Objectives

The purpose of this TMP is to give more information regarding the activities to advance PBMR-based NGNP fuel from a TRL 7 to TRL 8, should the V&V not succeed in reducing the uncertainty component of the margins to such a degree that the DPP testing can be considered enveloping of the NGNP.

C2.1.2 Scope

In order to advance the maturity of the PBMR-based NGNP fuel element technology from TRL 7 to TRL 8, the following tasks may need to be performed in addition to the PBMR-DPP fuel qualification program.

Production fuel irradiation including pre-irradiation characterization and PIE at a higher irradiation centre temperature than for the PBMR-DPP fuel qualification program (~ 1350 $^{\circ}$ C).

Production fuel heat-up tests at slightly higher LOFC-simulated temperatures than for the PBMR-DPP fuel qualification program (~ 1700° C & 1900° C).

C2.1.3 Anticipated Schedule

The anticipated work for the additional production irradiation tests to extend the PBMR-DPP fuel qualification program is set to start in FY 2012.

C2.1.4 Overall Cost

The cost for these tests will depend on the demand for test facilities at the time of testing as well as the number of rigs used in addition to the post irradiation heating and evaluation costs. Any estimates at this time would be based on the DPP costs which are considered to be confidential.

C2.2 TEST SPECIFICATIONS

C2.2.1 Additional Production Fuel Irradiation Tests for Normal Operational Conditions

C2.2.1.1 Objectives

To demonstrate that PBMR fuel will fulfil the NGNP requirements as per NGNP and Hydrogen Production PCDR [11-1].

C2.2.1.2 Test Conditions

C2.2.1.2.1 Test Configuration/Set-up

Pre-irradiation tests

- Burn-up irradiation tests
- Non-destructive PIE

Irradiation F	Requirements:		
Fuel sphere	center temperatur	res :	1350 °C
Burn-up	: 11.61%	FIMA	
Fast Neutron	n Dose ($E > 0.1$ M	$(eV)^8$:	$>2.7 \times 10^{21} \text{ cm}^{-2}$

C2.2.1.2.2 Test Duration

The duration of this activity can be subdivided into the following activities:

Irradiation planning & Preparation	ca 260 calendar days
Irradiation of Pre-Production Fuel	ca 1045 calendar days
PIE and Analysis	ca 130 calendar days

C2.2.1.2.3 Proposed Test Location

Production fuel to be irradiated and tested at a suitable test reactor facility such as ATR.

C2.2.1.3 Measured Parameters

The following PIE will be performed on the irradiated fuel spheres: Appearance Mass Diameter Burn-up Fission product inventory Deconsolidation

NGNP-CTF MTECH-TDRM-011_Rev1-final.doc

⁸ The fast neutron dose will nominally be in the order of $3.63 \pm 0.2 \times 10^{21}$ cm⁻² to achieve the burn-up at temperature.

Fission product distribution in fuel sphere Optical ceramography of coated particles IMGA on coated particles Fission product distribution in coated particles

C2.2.1.4 Data Requirements

All data shall be acquired using recognized techniques, codes, standards, and QA.

C2.2.1.5 Test Evaluation Criteria

The production test will enable comparison of performance of PBMR-based NGNP Fuel manufactured on a qualified Fuel Plant with former German production pebble fuel.

C2.2.1.6 Test Deliverables

Deliverables for this test specification shall include:

• Report on all the measured parameters listed in paragraph C2.2.1.3.

C2.2.1.7 Cost, Schedule, and Risk

See paragraph C2.1.4.

C2.2.2 Production Fuel Heat-up Tests

C2.2.2.1 Objectives

The objective of the heat-up tests on the additionally irradiated fuel spheres are to verify acceptance of PBMR fuel as per NGNP requirements as set out in the NGNP PCDR [11-1] and the Reactor Parametric Study [11-2].

C2.2.2.2 Test Conditions

C2.2.2.1 Test Configuration/Set-up

Fuel spheres to be subjected to heating tests at 1700° C and at 1900° C for ~ 100 hours respectively.

C2.2.2.2.2 Test Duration

The heat up tests consists of the following subsections:

- Physical Heating Test: 130 days
- PIE and analysis of Heated Spheres: 130 days

C2.2.2.3 Proposed Test Location

At the same test station where irradiation will be performed.

C2.2.2.3 Measured Parameters

Upon deconsolidation, the following measurements will be performed:

- Optical Ceramography
- Fission product inventory measurements.

C2.2.2.4 Data Requirements

All data shall be acquired using recognized techniques, codes, standards, and QA.

C2.2.2.5 Test Evaluation Criteria

Results to be evaluated against NGNP DLOFC temperature requirements.

C2.2.2.6 Test Deliverables

Deliverables for this test specification shall include:

Report on all the measured parameters listed in paragraph C2.2.2.3. Of particular interest will be the measurement of particle failure fraction, which is related to the free uranium content.

C2.2.2.7 Cost, Schedule, and Risk

See paragraph C2.1.4.

C2.2.3 Fuel Matrix Graphite Irradiation Tests and PIE

C2.2.3.1 Objectives

To acquire relevant material data pertaining to irradiation behaviour of the fuel matrix graphite over the fluence-temperature regime for PBMR fuel as part of PBMR fuel qualification. Data can be used for validation for PBMR NGNP DDNs.

C2.2.3.2 Test Conditions

C2.2.3.2.1 Test Configuration/Set-up

C2.2.3.2.2 It is proposed that matrix graphite samples are irradiated to three fast neutron doses at two different irradiation temperatures as follows:

- Fluence = $1.0 \times 10^{21} \text{ cm}^{-2}$ (E>0.1 MeV); Temperature (T_{irr}) = 1000°C
- Fluence = $2.0 \times 10^{21} \text{ cm}^{-2}$ (E>0.1 MeV); Temperature (T_{irr}) = 1000°C

- Fluence = $4.0 \times 10^{21} \text{ cm}^{-2}$ (E>0.1 MeV); Temperature (T_{irr}) = 1000°C
- Fluence = $4.0 \times 10^{21} \text{ cm}^{-2}$ (E>0.1 MeV); Temperature (T_{irr}) = 1250°C Fluence = $2.0 \times 10^{21} \text{ cm}^{-2}$ (E>0.1 MeV); Temperature (T_{irr}) = 1250°C Fluence = $4.0 \times 10^{21} \text{ cm}^{-2}$ (E>0.1 MeV); Temperature (T_{irr}) = 1250°C

C2.2.3.2.3 Test Duration

The duration of this activity can be subdivided into the following activities:

Irradiation Planning & Preparation	ca 265 calendar days
Irradiation and PIE	ca 1042 calendar days

C2.2.3.2.4 Proposed Test Location

A suitable test reactor such as ATR will be used to test the fuel matrix graphite.

C2.2.3.3 **Measured Parameters**

Samples for investigation and irradiation will be cut from fuel-free matrix graphite spheres provided for the test. These samples will be cut parallel and perpendicular to the grain direction. Following irradiation, the listed characteristics will be measured prior to and after the irradiation tests:

Pre-irradiation characterisation for fuel matrix graphite will consist of:

Geometrical size
Mass
Calculation of sample density
Measurement of sample density
Sample porosity
Thermal conductivity in the range 20 °C to T _{irr} °C
Electric conductivity in the range 20 °C to T _{irr} °C
Thermal coefficient of linear expansion in the range 20 $^\circ C$ to $T_{irr} ^\circ C$
Dynamic Young's modulus
Compression strength
Ultimate bending strength
Optical ceramography
Uranium and thorium content
Visual record of samples selected for irradiation

The measured characteristics will then be compared to the values obtained during pre-irradiation characterization.

C2.2.3.4 **Data Requirements**

All data shall be acquired using recognized techniques, codes, standards (ASTM) and QA. Neutron Activation Analysis (NAA) will be used for measuring U and Th content.

C2.2.3.5 Test Evaluation Criteria

 T_{irr} is anticipated to be at a maximum of 1250°C for the purposes of these tests. Some graphite properties shown in the list are measured to a maximum temperature of 1250°C, which covers normal operation conditions, while it is known that graphite temperatures might reach higher values than this during temperature transients.

Property values for higher temperatures are found by means of conservative extrapolation from known values.

C2.2.3.6 Test Deliverables

Deliverables for this test specification shall include:

• Report on all the measured parameters listed in paragraph C2.2.3.3.

C2.2.3.7 Cost, Schedule, and Risk

See paragraph C2.1.4

November 2008

NGNP and Hydrogen Production Conceptual Design Study

NGNP Technology Development Road Mapping Report

Section 12: Core Structure Ceramics

Function	on Printed Name and Signature		Date	
Author	Name: Company:	Riaan de Bruyn M-Tech Industrial	D.	November 18, 2008
Reviewer	Name: Company:	Jaco Lindeboom Pebble Bed Modular Reactor	Timelit	November 19, 2008
Reviewer	Name: Company:	Mark Mitchell Pebble Bed Modular Reactor	& MM	November 19, 2008
Approval	Name: Company:	Jan van Ravenswaay M-Tech Industrial	ma)	November 19, 2008

APPROVALS

Westinghouse Electric Company LLC Nuclear Power Plants Post Office Box 355 Pittsburgh, PA 15230-0355

©2008 Westinghouse Electric Company LLC All Rights Reserved

LIST OF CONTRIBUTORS

Name and Company	Date
Riaan de Bruyn (M-Tech Industrial)	October 31, 2008
Jaco Lindeboom (PBMR)	October 31, 2008
Mark Mitchell (PBMR)	October 31, 2008

BACKGROUND INTELLECTUAL PROPERTY CONTENT

Section	Title	Description

REVISION HISTORY

RECORD OF CHANGES

Revision No.	Revision Made by	Description	Date
А	Riaan de Bruyn	New document	September, 17 2008
В	Riaan de Bruyn	Updated with comments from review	September 17, 2008
С	Riaan de Bruyn	Formal review	September 29, 2008
0	Riaan de Bruyn	Document for Approval	September 29, 2008
0A	Riaan de Bruyn	Updated with BEA comments	October 30, 2008
1	Louisa Venter	Document for release to WEC	November 28, 2008

DOCUMENT TRACEABILITY

Created to Support the Following Document(s)	Document Number	Revision
NGNP and Hydrogen Production Pre-conceptual Design Report	NGNP-01-RPT-001	0

TABLE OF CONTENTS

Section		Title	Page
12 SSC	: CORI	E STRUCTURE CERAMICS (CSC)	10
12.1	CSC D	ESCRIPTION/ FUNCTION AND OPERATING REQUIREMENTS	10
	12.1.1	CSC Description	10
	12.1.2	CSC Function & Interfaces	15
	12.1.3	CSC Operating Conditions	16
12.2	TECHN	OLOGY/DESIGN SELECTION STATUS	17
	12.2.1	Decision Discriminators	17
	12.2.2	Reference Design	17
	12.2.3	Alternative for Further Evaluation	17
	12.2.4	Down Selection Task	17
12.3	TRL S'	TATUS	18
12.4	TECHN	OLOGY DEVELOPMENT ROAD MAP SUMMARY	19
	12.4.1	Overview	19
12.5	TECHN	OLOGY MATURATION PLAN SUMMARY (CURRENT TRL'S TO TRL 8)	19
12.6	INPUTS	TO CTF	19
APPEN	DIX A:	TRL RATING SHEETS	20
APPEN	DIX B:	TECHNOLOGY DEVELOPMENT ROAD MAP	23
APPEN	DIX C:	TECHNOLOGY MATURATION PLAN	25

LIST OF TABLES

Table 12-1: TRL & DRL ratings	18
Table A-1: Core Structure Ceramics: Graphite	21
Table A-2: Core Structure Ceramics: Ceramic, composites etc.	22
Table C-1: Extract from PBMR Equipment Qualification Test List	28
Table C-2: NGNP Incremental Graphite Qualification Costs	37
Table C-3: Parameters to measure	39
Table C-4: Selected Physical Properties of Quartz Insulation	45
Table C-5: Selected Mechanical properties of Quartz Insulation Material	45
Table C-6: Selected Room Temperature Mechanical Properties of Quartz Insulation Material	46

LIST OF FIGURES

Figure 12-1: Probable location of different materials for the CSC	10
Figure 12-2: Side reflector	
Figure 12-3: Top reflector	
Figure 12-4: Central Reflector	
Figure 12-5: Lateral restrain strap	14
Figure 12-6: Tie rod geometry	14
Figure B-1: Technology Development Road Map of the CSC	
Figure C-2: PBMR CSC Qualification Schedule	
Figure C-3: PBMR High Level Qualification Process (incorporating the CSC)	30
Figure C-4: PBMR Qualification Test Types	30
Figure C-5: PBMR Qualification Program Logic	
Figure C-1: Irradiation Requiremts for the NGNP Reflector Graphite	35
ACRONYMS

Acronym	Definition
AI	Inner Annulus (active cooling piping)
AMS	Activity Measurement System
AO	Outer Annulus (active cooling piping)
AOO	Anticipated Operational Occurrence
AS	Automation System
ASME	American Society of Mechanical Engineers
AVR	Arbeitsgemeinschaft Versuchs-Reaktor
BOP	Balance of Plant
BUMS	Burn-up Measurement System
СВ	Core Barrel
CCS	Core Conditioning System
CEA	Commissariat à l'Énergie Atomique
CFD	Computational Fluid Dynamics
CHE	Compact Heat Exchanger
CIP	Core Inlet Pipe
CO2	Carbon Dioxide
COC	Core Outlet Connection
COP	Core Outlet Pipe
COTS	Commercial Off The Shelf
CRADA	Co-operative Research and Development Agreement
CRD	Control Rod Drive
CSC	Core Structure Ceramics
CTF	Component Test Facility
CTF	Component Test Facility
CUD	Core Unloading Devices
DAU	Data Acquisition Unit
DBA	Design Base Accident
DBE	Design Base Event
DDN	Design Data Need
DFC	Depressurized Forced Cooling
DLOFC	De-pressurized Loss of Forced Cooling
DOE	Department of Energy
DPP	Demonstration Power Plant
DRL	Design Readiness Level
DWS	Demineralized Water System
ELE	Elecrolyser System
EM	Evaluation Model
EMB	Electomagnetic Bearing
EOFY	End of Fiscal Year
EPCC	Equipment Protection Cooling Circuit
EPCT	Equipment Protection Cooling Tower
F&OR	Functional and Operational Requirements
FHS	Fuel Handling System
FHSS	Fuel Handling and Storage System

FIMA	Fissions per Initial Metal Atoms
FMECA	Failure Modes. Effects and Criticality Analysis
FS	Fuel Spheres
FTA	Fault Tree Analysis
FUS	Feed and Utility System
H2	Hydrogen
H2SO4	Sulfuric Acid
HC	Helium Circulator
He	Helium
HETP	Height Equivalent of the theoretical Plate
HGD	Hot Gas Duct
н	Hydro-Iodic
HLW	High Level Waste
НРВ	Helium Pressure Boundary
HPC	High Pressure Compressor
HPS	Helium Purification System
HPS	Hydrogen Production System
HPT	High Pressure Turbine
HPU	Hydrogen Production Unit
HRS	Heat Removal System
HTF	Helium Test Facility
HTGR	High Temperature Gas-Cooled Reactor
HTR	High Temperature Reactor
HTS	Heat Transport System
HTSE	High Temperature Steam Electrolysis
HTTR	High Temperature Test Reactor
HVAC	Heating Ventilation and Air Conditioning
HX	Heat Exchanger
HyS	Hybrid Sulfur
1&C	Instrumentation and Control
12	lodine
ID	Inner Diameter
IHX	Intermediate Heat Exchanger
ILS	Integrated Laboratory Scale
I-NERI	International Nuclear Energy Research Initiative
INL	Idaho National Laboratory
INL	Idaho National Laboratory
IPT	Intermediate Pressure Turbine
ISR	Inner Side Reflector
K-T	Kepner-Tregoe
KTA	German nuclear technical committee
LEU	Low Enriched Uranium
	Loss of Forced Cooling
	Low Pressure Lurbine
MES	Membrane-electrode assembly
MTR	Material Lest Reactor
NAA	Neutron Activation Analysis

NCS	Nuclear Control System
NGNP	Next Generation Nuclear Plant
NHI	Nuclear Hydrogen Initiative
NHS	Nuclear Heat Supply
NHSS	Nuclear Heat Supply System
NNR	National Nuclear Regulator
NRG	Nuclear Research and consultancy Group
NRV	Non-Return Valve
O2	Oxygen
OD	Outer Diameter
PBMR	Pebble Bed Modular Reactor
PCC	Power Conversion System
PCDR	Pre-Conceptual Design Report
PCHE	Printed Circuit Heat Exchanger
PCHX	Process Coupling Heat Exchanger
PCS	Power Conversion System
PFHE	Plate Fin Heat Exchanger
PHTS	Primary Heat Transport System
PIE	Post-irradiation Examination
PLOFC	Pressurized Loss of Forced Cooling
POC	Power Conversion System
PPM	Parts per million
PPU	Product Purification Unit
PPWC	Primary Pressurized Water Cooler
QA	Quality Assurance
RAMI	Reliability, Availability, Maintainability and Inspectability
RC	Reactor Cavity
RCCS	Reactor Cavity Cooling System
RCS	Reactivity Control System
RCSS	Reactivity Control and Shutdown System
RDM	Rod Drive Mechanism
RIM	Reliability and Integrity Management
RIT	Reactor Inlet Temperature
RM	Road Map
ROT	Reactor Outlet Temperature
RPS	Reactor Protection System
RPT	Report
RPV	Reactor Pressure Vessel
RS	Reactor System
RSS	Reserve Shutdown System
RUS	Reactor Unit System
SAD	Acid Decomposition System
SAR	Safety Analysis Report
SAS	Small Absorber Spheres
SG	Steam Generator
SHTS	Secondary Heat Transport System
S-I	Sulfur Iodine

SiC	Silicon Carbide
SNL	Sandia National Laboratory
SO2	Sulfur Dioxide
SOE	Sulfuric Oxide Electrolyzers
SOEC	Sulfuric Oxide Electrolyzers Cells
SR	Side Reflector
SSC	System Structure Component
SSCs	Systems, Structures and Components
SSE	Safe Shutdown Earthquake
SUD	Software Under Development
TBC	To Be Confirmed
TBD	To Be Determined
TDL	Technology Development Loop (As incorporated in Concept 1)
TDRM	Technology Development Road Map
TER	Test Execution Report
THTR	Thorium High Temperature Reactor
TRISO	Triple Coated Isotropic
TRL	Technology Readiness Level
TRM	Technology Road Map
UCO	Uranium Oxycarbide
UO2	Uranium Dioxide
USA.	United States of America
V&V	Verification and Validation
V&Ved	Verified and Validated
VLE	Vapor-Liquid Equilibrium
WBS	Work Breakdown Structure
WEC	Westinghouse Electric Company

SUMMARY AND CONCLUSIONS

The WEC proposed NGNP is envisaged to utilize core internals similar to those of the PBMR DPP. These core internal consists of the core barrel assembly and the core structure ceramics of which the latter is identified as a critical SSC. The core structure ceramics (CSC) can further be broken down into the graphite, composites, ceramic and metallic components. The graphite components are mostly made up by the reflector blocks while the composites comprises of the lateral restrain straps and tie rod assemblies. The ceramic components refer to the insulation material at the bottom of the reactor while numerous metallic parts are also present.

In order to utilize these technologies in the NGNP a technology readiness level of 8 (TRL-8) needs to be achieved by the specific technology under investigation. Based on this requirement a study was conducted in which the TRL rating of the different proposed technologies were determined. During this study the CSC were subdivided into two sections, namely the graphite components and the ceramics, composites etc. The graphite components were given a TRL-6 rating while the other components were rated as a 4. In order to utilize these components in the NGNP it now needs to be elevated to the required TRL-8 rating.

This TRL elevation process has been divided into two main activities. The first step is to advance the CSC to a TRL-7 and is achieved by the complete PBMR qualification process which ends with operational testing in the DPP. This qualification process is briefly discussed in the report while references have been provided to typical procedures and tests.

The additional activities need to advance this system to the required TRL-8 are mainly due to the fact that the NGNP operate at a lower inlet temperature as well as a higher outlet temperature. These activities have been captured in Design Data Needs (DDN) from either the NGNP Pre-Concept Design Report or related Special Studies and include the following:

- NHSS-02-01 Extended Properties of Irradiated Graphite at Low Temperatures
- NHSS-02-02 Extended Properties of Irradiated Graphite at High Temperatures
- COMP-01-01 Characterize Race Track Strap and Tie Rod Materials (irradiation

tests)

• COMP-01-04 Insulation Materials (Unirradiated data needed)

These activities have been identified to provide the incremental qualification needed to use the PBMR CSC in the NGNP. Each of these DDN's is also presented as a high level test specification, indicating typical test configurations as well deliverables.

12 SSC : CORE STRUCTURE CERAMICS (CSC)

12.1 CSC DESCRIPTION/ FUNCTION AND OPERATING REQUIREMENTS

12.1.1 CSC Description

The CSC can generally be divided in the graphite, ceramics, metallic and insulation components. The graphite consists mainly of the reflectors while the ceramic and composite materials are used in the Lateral Restraint Straps (LRS) and Tie Rods assemblies. The insulation components are used to the bottom of the CSC with the primary function of reducing the temperature with regards to the metallic components. Figure 12-1 illustrates the probable position for these different components as part of the PBMR CSC.

Figure 12-1: Probable location of different materials for the CSC

Graphite Components

The graphite components consist mainly of the reflectors and are made of bricks arranged to accommodate thermal and radiation induced deformations throughout the life of the reactor, while maintaining its functions. The general arrangement and principles that form the basis for the design of the CSC are based on the German designs for the Thorium High Temperature Reactor (THTR) and later reactors.

The reflectors can be further subdivided into the Bottom Reflector (BR), Side Reflector (SR), Top Reflector (TR), and the Centre Reflector (CR) with a brief summary of the reflectors as follow:

Bottom reflector (BR)

The bottom reflector is supported by the Core Barrel Support Structure (CBSS). This construction forms the base of the Core Structure by supporting the side and central reflectors as well as the fuel core. The stability and the exact location of the bottom reflector are essential for this requirement.

Side reflector (SR)

The side reflector is divided into the inner and outer side reflector. The outer side reflector (OSR) is constructed from 18 20° blocks, which are supported by the 40° bottom reflector outer blocks and form single columns to the top of the reactor.

The inner side reflector (ISR) is constructed from 24 blocks, 15° segments. Four of these blocks are supported by a bottom reflector inner block, which are 60° segments. This configuration also complies with the single column principle, which ensures that relative motion between the columns (due to temperature or irradiation induced dimensional changes) is accommodated without the generation of internal loads. A horizontal section through the side reflector is shown in the following Figure 12-2.

Figure 12-2: Side reflector

Top reflector structure

The Top Reflector (TR) is suspended from the Core Barrel top plate by means of tie-rods, manufactured from CFRC (Carbon Fibre Reinforced Carbon). The Top Reflector provides for neutron absorption and shielding above the core and also protects the top plate from high temperature gas (particularly during accident conditions). The top layer of blocks is manufactured from a solid insulation material. The Top Reflector blocks are also staggered to prevent a direct gap forming from the hot gas in the core to the top plate.

The structural integrity of the Top Reflector ensures that the interfaces, specifically for the RSS and RCS that pass through it, are ensured. The tie rods are designed to prevent the Top Reflector from dropping onto the pebble bed, even during Design Based Accidents. The top plate plug and the reflector suspended from it can be removed to access the core. Figure 12-3 indicates this sub-assembly.

Figure 12-3: Top reflector

Central reflector structure

The Central Reflector, which is manufactured from graphite blocks, comprises the Centre Reflector Structural Spine and the Outer Centre Reflector (OCR). The OCR protects the CR Structural Spine from the high levels of fast neutron irradiation. This ensures that the CS Structural Spine is dimensionally stable. The structural spine ensures the structural integrity of the Central Reflector. A section through the Central Reflector is shown in the Figure 12-4.

Figure 12-4: Central Reflector

The remaining subsystems include the ceramics and composite components as well as the bottom insulation. A brief description of these systems is as follow:

Ceramic and Composite components

Lateral Restraint Strap (LRS)

The Lateral Restraint Straps (Figure 12-5) surround and contribute to the support and stability of the Bottom and Side Reflectors of the CSC, providing circumferential support to the enclosed graphite reflector assemblies. They interface with the CBA, which in turn transmits lateral loads to the RPV. These circumferential supports must expand to maintain the same inner diameter as the outer diameter of the reflector assembly and, therefore, it is essential that they have effective rates of thermal expansion that are similar to those of the reflector assembly that they enclose. These components are being developed for the PBMR DPP and are applicable to the PBMR NGNP.

Figure 12-5: Lateral restrain strap

Tie Rod Assemblies (TR)

The tie rod assemblies are used to suspend the top reflector from the core barrel assembly and are manufactured from flat CFRC plate. Figure 12-6 indicates the tie rod geometry.

Figure 12-6: Tie rod geometry

Insulation components

Bottom insulation components

Insulation components are used in the bottom reflector region of the PBMR NGNP CSC design to reduce the temperature exposure of metallic load-bearing components. These components are subjected to compressive stresses and are fabricated in the form of carbon blocks, fused ceramic forms or plate material that can be fabricated into complex shapes. The key properties needed for this type of application are low thermal conductivity, material stability

under compressive loading and machinability for the specific application. Material choices include baked carbon or fused silica insulation materials, based on investigations that have been performed for the DPP design.

12.1.2 CSC Function & Interfaces

The following section provides a brief summary of the CSC functions together with a condensed list of interfaces with other components and systems.

Functions

Sustain Fission Reaction

- The CSC is required to form and maintain the pebble bed in a mechanically stable configuration.
- The CSC helps to maintain the nuclear reaction by providing neutron reflection for the core.
- The CSC is required to provide access for the In-core Delivery System to the Central Reflector, in order to start the nuclear reaction.
- The CSC is required to maintain flow passage configuration
- The CSC limit the temperatures and the fast neutron fluence in the metallic CBA and the RPV.

Control Radiation Exposure from NHSS

• The CSC protects the metallic components of the CBA and RPV from exposure to high neutron fluence levels.

Limit Component Temperature

- Under normal operation, the CSC is required to protect the metallic components of the Core Structures, including the CBA and RPV from extreme temperatures.
- Under accident conditions, the CSC is required to conduct decay heat from the core to the Core Barrel in order to maintain the maximum fuel temperature at an acceptable level.

Enable Maintenance

• The CSC is required to be assembled in a way that permits replacement of the Central Reflector.

Maintain Configuration under Accident Conditions

- The CSC is required to bear the mechanical loads due to dead weight, lateral loading due to the pebble bed, seismic loadings and the pressure drops established in the core.
- These loads must be transferred to the CBA, which transmits the loads to the RPV as described in the previous section.

• Ensure continued core cooling by the circulating helium in the coolant circuit. In case none of the Active Cooling Systems (ACSs) are available following an accident, the residual heat is transferred by natural processes from the core in such a way that the maximum core fuel temperature does not exceed the allowable limit. For this to happen, the core and reflector thermal characteristics (especially the conductivity) must not fall below specified values.

General Functions

- Provide access borings for insertion of the control elements of both the Reactivity Control System (RCS) and Reserve Shutdown System (RSS). The requirement is that control rods and/or SASs must be able to be freely inserted or dropped into their channels by gravity. Therefore any deformation of these channels following any event must not hinder the insertion of the control rod elements.
- Assure fuel flow by preventing bridging and crystal structure formation
- Provide for the insertion of instrumentation and sensors on the Demonstration Power Plant (DPP) during start-up phase.

Interfaces

The following is a brief summary of the CSC interface with other components and systems.

- RSS and RCS interfaces: The CSC is required to provide access for the RCS and RSS within the Side Reflector and Central Reflector respectively.
- FHSS interface: The CSC is required to provide access at the top for the refueling pipes, as well as the three defueling chutes at the bottom in order to permit circulation of fuel through the core in a uniform flow pattern.
- The CBA the Top Reflector is suspended from the Core Barrel top plate while the Bottom Reflector is constructed on top the Core Barrel bottom plate.
- Bottom Reflector Should provide an interface in order for the Small Absorber Spheres to be inserted at the top and extracted at the bottom.
- The FHSS Defueling Chutes
- The PHTS Piping.

12.1.3 CSC Operating Conditions

The CSC provides access for the In-Core Delivery System in a Multipurpose Channel in the Central Reflector. The helium flow is introduced into the Bottom Reflector of the Core Structure Ceramics, from where it is channelled to the top of the pebble bed in the gas riser channels, located in the Side Reflector. The gas then flows through the pebble bed from top to bottom, being heated in the process. At the bottom of the pebble bed, the gas is collected in the outlet plenum through flow slots between the blocks. The flow is then channelled from the outlet plenum into the core outlet pipe and out of the reactor unit system.

Operating Conditions

Simplified operating conditions of the CSC are provided below:

- Nominal Reactor outlet temperature of 950°C
- Nominal Reactor Inlet Temperature of 350°C
- Nominal Reactor Power level of 500 MWt
- Nominal helium pressure of 9 MPa
- Service Life:
 - Non-replaceable components: 60 equivalent full-power years
 - Replaceable components:
 - Minimum: [15] equivalent full-power years
 - Target: [20] equivalent full-power years

12.2 TECHNOLOGY/DESIGN SELECTION STATUS

The NGNP Core Structure Ceramics is anticipated to be identical to those of the PBMR DPP. Due to this reason the following section will not include any information on a down selection process. The PBMR DPP core structure ceramics are however in their final stages of detail design and component manufacturing is due thereafter. An inquiry into the PBMR design documentation status revealed a total of 685 documents and 500 appropriate drawings. Of these documents approximately 180 reports and 400 drawings currently describe the DPP design baseline used for final review and release for manufacturing.

12.2.1 Decision Discriminators

Not applicable to the NGNP CSC.

12.2.2 Reference Design

Not applicable to the NGNP CSC.

12.2.3 Alternative for Further Evaluation

Not applicable to the NGNP CSC.

12.2.4 Down Selection Task

Not applicable to the NGNP CSC.

12.3 TRL STATUS

The following section provides a summary of the TRL levels of the NGNP CSC as prepared by Technology Insights per NGNP-TRL & DRL Report. These technology readiness levels are presented separately for the graphite and the ceramics, composites and other components and are indicated in Table 12-1. A copy of the original TRL rating sheet can be found in Appendix A.

Critical Structure, System or Component	DRL Level	TRL Level
Core Structure Ceramics – Graphite	5	6
Core Structure Ceramics – Ceramics, composites, etc.	4	4

Table 12-1: TRL & DRL ratings

Basis for Rating: Graphite

The graphite components consist of the reflector blocks within the reactor system and were given a DRL rating of 5. This value was given due to the fact that the core internals for the NGNP will be identical to the internals of the DPP as well as the fact that the preliminary design is complete. An inquiry into the current status of the graphite internals design process however indicated that the detail design phase is nearing its end with manufacturing to follow thereafter.

The TRL level of the graphite internals were determined as 6 due to the fact that current experience with graphite core internals from several graphite moderated and gas-cooled nuclear reactors exists. These existing systems is however not prototypical to that of the PBMR and the designs are based on the German THTR designs.

Basis for Rating: Ceramics, composites, etc.

The ceramic and composites internals for the NGNP was given a DRL rating of 4 and will be similar to the core internals for the DPP. This initial DRL level was assigned due to the fact that the preliminary design of the DPP is underway. An inquiry in the current status of the design might elevate this level to a DRL-5 level.

The TRL rating of 4 was also given to the core internal ceramics & composites and was mainly due to the fact that current HTR operating experience does not apply to these materials. The technology is however beyond the proof-of-concept, which does not make it a TRL-3.

12.4 TECHNOLOGY DEVELOPMENT ROAD MAP SUMMARY

12.4.1 Overview

The tasks needed to advance the CSC to the required TRL-8 rating are accomplished by means of the PBMR equipment qualification process, together with additional tasks. During this process the PBMR qualification tasks advance the CSC up to a TRL-7 while the supplement tasks, as identified through design data needs in either the NGNP Pre Concept Design Report or associated special studies, provide the further enhancement up to a TRL-8.

These additional tasks include extending the irradiation materials properties database for the graphite components as well as additional characterization of the lateral strap and tie rod components. Quartz insulation has also been proposed to supplement the baked carbon insulation, of which numerous material data need to be obtained.

These additional tests can be performed in independent laboratories and does not necessarily create any input to the CTF.

12.5 TECHNOLOGY MATURATION PLAN SUMMARY (CURRENT TRL'S TO TRL 8)

The CSC is divided into the graphite components and the ceramic, composites etc. Of these two the graphite is currently on a TRL-6 while the ceramic, composites etc. are rated as a TRL-4. Both of these will be elevated to a TRL-7 by means of the PBMR qualification process while the incremental maturation tasks as from identified DDN's will provide the final advancement to a TRL-8.

12.6 INPUTS TO CTF

In order to advance the CSC from the current determined TRL levels to the required TRL-8 rating, a number of qualification tasks need to be performed. These tasks consist of the PBMR related qualification plan, being supplemented by incremental additional qualification in order to satisfy the NGNP conditions. All of these incremental activities can be regarded as laboratory type work and does not necessarily need to be performed as part of the CTF. These tests could be performed on a much earlier timescale and by means of independent organizations or companies.

APPENDIX A: TRL RATING SHEETS

Table A-1: Core Structure Ceramics: Graphite

	TRL Rating Shee	et							
Vendor Name: Docu	ment Number:	Revision:							
□ Island □ System ☑Subs	Island □ System ☑ Subsystem/Structure □ 0								
Title: Core Structure Ceramics - Graphite									
Description: The graphite components within the Reactor Vessel, principally the bottom died, top en central reflector blocks, part of the Reactor Unit System									
Area(s): \square NHSS \square HTS \square HPS \square BOP									
ŗ	Fechnology Readiness	Level							
	Next Lower Rating Level	Calculated Rating	Next Higher Rating Level						
Generic Definitions (abbreviated)	Component of system breadboard in relevant environment.	Similar SSC in relevant environment in another application.	Pilot/engineering scale demonstration in relevant environment.						
TRL	5	6	7						
Basis for Rating There is operating experience with graphite core internals form the several graphite moderated and gas- cooled nuclear reactors, but none is prototypical of the PBMR. Particularly the design basis is the German designs for the Thorium High Temperature Reactor (THTR) and later reactors, but these are not considered prototypical. It the were to be considered prototypical, then this is TRL 7. It also can be elevated to TRL 7 when PBMR DPP graphite qualification is completed. The graphite qualification for NGNP is to bring it to TRL 8.									
Outline of a plan to get from current level to next level (Attach additional sheets as needed)									
Actions (list all)	Schedule	Cost (K\$)							
DDN(s) supported: None									
SME Making Determination: D.T. Allen									
Date: 16 Aug 07 Origin	nating Organization: T	echnology Insight							

Table A-2: Core Structure Ceramics: Ceramic, composites etc.

TRL Rating Sheet									
Vendor Name	:	nent Number:		on:					
□ Island	□ System	⊠Subsys	stem/Structure	Componen	Component				
Title: Core S	Structure Cera	amics – (Ceramics, composit	es, etc.					
Description: The ceramic and composite components within the Reactor Vessel; part of the Reactor Unit System.									
Area(s):	☑ NHSS	□ HTS	□ HPS	D PCS	D BO	P			
		Те	chnology Readiness	Level					
			Next Lower Rating Level	Calcu Rat	lated ing	Next Higher Rating Level			
Generic Definitions (abbreviated)			Proof-of-concept in laboratory or analytical model.	Compone system breadboar analytical	nt or rd or model.	Pilot/engineering scale demonstration in relevant environment.			
TRL			3	4		5			
Basis for Rating Operating experience with other HTRs does not apply to advanced materials, such as composites. Technology is beyond proof-of-concept, and so above TRL 3, but lacks experimental validation and so is not TRL 5.									
Outline of a pl	lan to get from	current	level to next level (A	ttach additi	onal sheet	s as needed)			
Actions (list a	11)			Schedul	e	Cost (K\$)			
DDN(s) supported: None									
SME Making Determination: D.T. Allen									
Date: 10 Aug	07	Origina	ting Organization: T	echnology	Insight				

APPENDIX B: TECHNOLOGY DEVELOPMENT ROAD MAP

NGNP-CTF MTECH-TDRM-012

NGNP Technology Development Road Mapping Report Section 12: Core Structure Ceramics

NGNP-CTF MTECH-TDRM-012_Rev1-final.doc

12/9/2008

Page 24 of 49

APPENDIX C: TECHNOLOGY MATURATION PLAN

TABLE OF CONTENTS

Section	Title Pag	;e
C1 TECHNOLO	OGY MATURATION PLAN FOR SSC (CURRENT TRL TO TRL 7) 2	8
C1.1 TECHN	OLOGY MATURATION PLAN SUMMARY (CURRENT TRL TO TRL 7)	8
C1.1.1	Objectives	8
C1.1.2	Scope 28	
C1.1.3	Anticipated Schedule	9
C1.1.4	Overall Cost	9
C1.2 TEST S	SPECIFICATIONS (UP TO TRL 7) 2	9
C1.2.1	SSC Test Specifications #1: PBMR Relevant (WEC-TS-CSC-001) 3	0
C2 TECHNOLO	OGY MATURATION PLAN FOR SSC (TRL 7 TO TRL 8)	4
C2.1 TECHN	OLOGY MATURATION PLAN SUMMARY (TRL 7 TO TRL 8)	4
C2.1.1	Objectives	4
C2.1.2	Scope 35	
C2.1.3	Anticipated Schedule	6
C2.1.4	Overall Cost	7
C2.2 TEST S	SPECIFICATIONS (TRL 7 TO TRL 8)	7
C2.2.1	SSC Test Specification #2: Extended properties of irradiated graphite at low temperatures (WEC-TS-CSC-002)	7
C2.2.2	SSC Test Specification #3: Extended properties of irradiated graphite at high temperatures (WEC-TS-CSC-003)	-1
C2.2.3	SSC Test Specification #4: Characterize race track strap and tie rod materials (WEC-TS-CSC-04)	-1
C2.2.4	SSC Test Specification #5: insulation materials (unirradiated data needed) (WEC-TS-CSC-005)	4
APPENDIX D:	TEST REQUIREMENT SPECIFICATION SAMPLE 4	9

REQUIRED SPECIFICATIONS/TESTS TO ACHIEVE NEXT TRL

TRL 6 (Graphite) & TRL 4 (Ceramics, composites etc.) to TRL 7

• SSC Test Specifications #1: PBMR Relevant (WEC-TS-CSC-001)

TRL 7 (Graphite) & TRL 7 (Ceramics, composites etc.) to TRL 8

- SSC Test Specification #2: Extended Properties of Irradiated Graphite at Low Temperatures (WEC-TS-CSC-002)
- SSC Test Specification #3: Extended Properties of Irradiated Graphite at High Temperatures (WEC-TS-CSC-003)
- SSC Test Specification #4: Characterize Race Track Strap and Tie Rod Materials (WEC-TS-CSC-004)
- SSC Test Specification #5: Insulation Materials (Unirradiated Data Needed) (WEC-TS-CSC-005)

C1 TECHNOLOGY MATURATION PLAN FOR SSC (CURRENT TRL TO TRL 7)

C1.1 TECHNOLOGY MATURATION PLAN SUMMARY (CURRENT TRL TO TRL 7)

C1.1.1 Objectives

The PBMR NGNP Core Structure Ceramics (CSC) comprise the non-metallic components enclosed within the core barrel and its underlying support structure, plus the additional non-metallic components that form and support the top reflector assembly. These components are subdivided into the graphite and other (consisting of the ceramics, composites, etc) and are envisaged to be identical to those of the PBMR DPP. These subsystems has been reviewed and rated in terms of DRL and TRL as indicated in section 12.3.

In order to advance these systems from the determined TRL/DRL levels up to the required NGNP level of TRL-8, a certain number of maturation tasks need to be performed. These maturation tasks have been identified and consist of the qualification process as per PBMR DPP.

C1.1.2 Scope

The PBMR related TRL advancement can be regarded as either development or qualification tests, depending on the relative position with regards to the overall equipment qualification plan. Table C-1-1 provides an extract from the complete list of PBMR qualification and development tests due to business confidentiality reasons.

Test ID	CSC TQC Test Catalogue Extract ¹
CSC-QT-1	Graphite Material Characterisation - Virgin Material
	Properties
CSC-QT-3	Graphite Material Characterisation - Irradiated Material
	Properties
CSC-QT-4	Graphite Wear Characterisation
CSC-QT-5	Lateral Restraint Strap Testing.
CSC-QT-6	Part Type Testing
CSC-QT-11	Sleeve Burst Tests
CSC-QT-13	Dowel Ultimate Load Tests

 Table C-1-1: Extract from PBMR Equipment Qualification Test List

¹ This table represent 12 of 71 tests over the entire CSC qualification process. NGNP-CTF MTECH-TDRM-012_Rev1-final.doc

CSC-QT-14	Tie Rod Ultimate Load Tests
CSC-QT-25	Integrated Insulation Mechanical Test
CSC-QT-32	CIL Core connection HTF Tests
CSC-QT-36	CFRC Material Characterisation - Virgin Material Properties
CSC-QT-41	Insulation Characterisation

C1.1.3 Anticipated Schedule

PBMR Schedule

The PBMR CSC material qualification testing is currently underway with a proposed completion date in the third quarter of 2009. This completion will be followed by numerous design review activities where after all components will be released for manufacturing (also refer to Figure C-4). Figure C-2 provides an extract from the current CSC Engineering schedule.

	a	Task Name	Duration	Start	Finish	F)	2 200	3 2	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
							H2 H1	H2 H	1 H2	H1 H2	H1 H	2 H1 H2	H1 H2	2 H1 H2	2 H1 H2	H1 H2	H1 H2	2 H1 H2	2 H1 H2
1		CSC Qualification Prograu	2745 days	Mon 03/02/03	Fri 13/08/09		-												
2		Design Input Tests (Type	1675 days	Mon 03/02/03	Fri 09/07/03							-							
3		Design By Test (Type 2)	478 days	Mon 04/08/30	Wed 06/06/28														
4		Validation Tests (Type 3)	2105 days	Mon 05/01/31	Fri 13/02/22											1		•	
5		Qualification Tests (Type -	30 mons	Mon 08/06/30	Fri 10/10/15									-	-				
6		PBMR Specific MTR (Mat	60 mons	Mon 09/01/05	Fri 13/08/09											1			

Figure C-1: PBMR CSC Qualification Schedule

C1.1.4 Overall Cost

The overall cost needed to advance the CSC from the determined TRL rating to the required TRL-8 is a combination of the in-kind development costs as incurred by PBMR together with the incremental cost from the additional indentified DDN's. The PBMR related costs is omitted due to business confidentially reasons.

C1.2 TEST SPECIFICATIONS (UP TO TRL 7)

In order to advance the TRL rating of the CSC to the required TRL-8, a number of qualification tests and tasks need to be performed. These tasks consists of the PBMR related qualification activities as previously mentioned together with the incremental tasks as defined in the additional DDN's. Successful completion of the PBMR activities would result in the required TRL-7 rating as per the following the test specifications.

C1.2.1 SSC Test Specifications #1: PBMR Relevant (WEC-TS-CSC-001)

A simplified version of the PBMR equipment qualification process, together with their higher level qualification lifecycle process is indicated in Figure C-2. This figure, illustrating the typical PBMR qualification process, has also been overlaid with the TRL levels as determined from the technology readiness review.

Figure C-2: PBMR High Level Qualification Process (incorporating the CSC)

The complete process includes numerous CSC tests and evaluations, and depending on when they are performed can be categorized as either development or qualifications tests. Figure C-5 indicates the relative position of both these types of test in terms of the overall progress.

Figure C-3: PBMR Qualification Test Types

These tests are all initiated as part of a qualification program logic, as indicated for a specific test in Figure C-4. This logic uses the CSC functions as a starting point, from which numerous qualifications activities are developed. The activities are then translated into tests, and are presented as contract activities (either AN-XX or PA-XX) according to a general test requirements specification.

Figure C-4: PBMR Qualification Program Logic

The following list of tests represents an extract from the PBMR CSC development and qualifications tests. This list include only some of the tests over the entire qualification process of the CSC as well limited information regarding these tests. Appendix D indicates a typical Test Requirement Specification as documented for the bottom reflector insulation integrated test.

CSC-QT-1: Graphite Material Characterisation - Virgin Material Properties

Material input data is generated by means of the material characterisation defined in Section 3.1 of the Material Qualification Plan. For this Qualification Class, data from the completed tests are to be completed and collated in the NBG-18 Material Data Sheet Justification report. These data are then published in the NBG-18 Material Data Sheet.

Qualification Life Cycle Phase:	Off-site
Test Type:	Functional Assessment

CSC-QT-3: Graphite Material Characterisation - Irradiated Material Properties

The characterisation of materials response to Irradiation is to be completed. The highest level requirements for this activity are the defined in section 5 of the Graphite MQP. These requirements are derived from the RDMCI and the NNR's requirements. The final specifications

for the PBMR Specific Materials Test Reactor Programme (PSMP) are defined in the Requirements Specification. The Completion date for this is reflected as prior to the end of commissioning. This reflects that MTR data will be available prior to fuel load and operation. While the available MTR data at this stage may not cover the full life of the graphite components, data enveloping the operation of the plant will always be available.

Qualification Life Cycle Phase:	Off-site
Test Type:	Environmental Assessment

CSC-QT-4: Graphite Wear Characterisation

PBMR plans to make use of the Westinghouse design basis. As required by LD-1097, where provision is made for the use of historical data similarly will be proven by duplicating some of the original test and direct comparison of the results. The correlation of these results determines the acceptability of the historical data in the qualification of the PBMR. The tests requirements for this test are defined in the CSC SGL Test Requirements Specification.

Qualification Life Cycle Phase:	Off-site
Test Type:	Functional Assessment

CSC-QT-5: Lateral Restraint Strap Testing.

The Lateral Restraint Straps (Specifically the CFRC components) are classed as FOAKE. Component level testing is defined as part of the development and qualification of these items. The following tests are completed:

- Manufacture of prototype straps to verify Manufacturability.
- Strength testing of prototype straps to provide for input into the design.
- Fatigue testing of CFRC strap parts.
- Full scale testing of the CFRC part, including the metallic interface components in representative environmental conditions (Temperature, Helium)

The specific test requirements for these tests are defined in the CSC SGL Test Requirements Specification.

Qualification Life Cycle Phase:	Off-site
Test Type:	Environmental Assessment

CSC-QT-6: Part Type Testing

Representative tests of full size components to be executed to provide further validation of assessment methodologies.

Qualification Life Cycle Phase:	Off-site
Test Type:	Functional Assessment

CSC-QT-11: Sleeve Burst Tests

The specific test requirements for this test are defined in the CSC SGL Test Requirements Specification.

Qualification Life Cycle Phase:	Off-site
Test Type:	Functional Assessment

CSC-QT-13: Dowel Ultimate Load Tests

The specific test requirements for this test are defined in the CSC SGL Test Requirements Specification.

Qualification Life Cycle Phase:Off-siteTest Type:Functional Assessment

CSC-QT-14: Tie Rod Ultimate Load Tests

The specific test requirements for this test are defined in the CSC SGL Test Requirements Specification.

These tests verify:

- The CFRC tie rod strengths
- The top interface strength and functionality
- The bottom interface strength and functionality
- The fatigue behaviour of the tie rod."

Qualification Life Cycle Phase:	Off-site
Test Type:	Functional Assessment

CSC-QT-25: Integrated Insulation Mechanical Test

Test is completed on a section of the BR assembly under load, at temperature and in helium to verify the mechanical design of the BR insulation.

Qualification Life Cycle Phase:	Off-site
Test Type:	Environmental Assessment

CSC-QT-32: Core connection HTF Tests

Testing of a Core Connection interface in the HTF verifies the design and performance of the Core Connection Interface design.

Qualification Life Cycle Phase:	Off-site
Test Type:	Functional Assessment

CSC-QT-36: CFRC Material Characterisation - Virgin Material Properties

Material input data is generated by means of the material characterisation defined in Section 3.1 of the Material Qualification Plan for this Qualification Class. This is described in a referenced document for the Plate Material and in another referenced document for the Strap Material. These data are then published in the Material Data Sheets: Plate Material,

Strap Material.

Qualification Life Cycle Phase:	Off-site
Test Type:	Functional Assessment

CSC-QT-41: Insulation Characterisation

Material input data is generated by means of the material characterisation defined in Section 3.1 of the Material Qualification Plan for this Qualification Class. These data are then published in the Insulation Material Data Sheet.

Qualification Life Cycle Phase:	Off-site
Test Type:	Functional Assessment

C2 TECHNOLOGY MATURATION PLAN FOR SSC (TRL 7 TO TRL 8)

C2.1 TECHNOLOGY MATURATION PLAN SUMMARY (TRL 7 TO TRL 8)

C2.1.1 Objectives

The PBMR NGNP Core Structure Ceramics (CSC) comprise the non-metallic components enclosed within the core barrel and its underlying support structure, plus the additional non-metallic components that form and support the top reflector assembly. These components are subdivided into the graphite and other (consisting of the ceramics, composites, etc) and are envisaged to be identical to those of the PBMR DPP. These subsystems has been reviewed and rated in terms of DRL and TRL as indicated in section 12.3.

In order to advance these systems from the determined TRL/DRL levels up to the required NGNP level of TRL-8, a certain number of maturation tasks need to be performed. These maturation tasks have been identified and consist of the qualification process as per PBMR DPP requirements as well additional DDN's that need to be addressed.

These additional DDN's were derived from the NGNP Pre-Concept Design Report as well as associated Special Studies. This section will provide the test specifications for the incremental task that need to be performed due to the identified DDN's.

C2.1.2 Scope

The NGNP related TRL advancement consists of addressing the additional DDN's as identified for the NGNP relevant conditions. These DDN's represent an incremental development due to varying operating conditions between the PBMR DPP and the NGNP. The NGNP has both a lower reactor inlet temperature as well as a higher outlet temperature. Figure C-1 indicate these incremental requirements by means of comparison between the NGNP and PBMR DPP fluence-temperature conditions envelope.

Figure C-1: Irradiation Requirements for the NGNP Reflector Graphite

The following should be noted regarding Figure C-1:

- The enveloping conditions apply only to a small fraction of the replaceable reflector graphite that is immediately adjacent to the pebble core. These components have been given the designation "Structural Reliability Criteria (SRC) 2, Area of Application (AOA) A"
- The NGNP estimates are preliminary and do not have the same detailed basis as the PBMR DPP estimates.

As can been seen in Figure C-2, there are two parts of the PBMR NGNP operating envelope that are not presently addressed by the PSMP. These are in the low-temperature operating range, below about 500 °C, and in the high-temperature, high-fluence range, above about 750 °C and 120x1020 n/cm² EDN, respectively. These areas correspond to the lower reactor inlet temperature and higher reactor outlet temperature of the PBMR NGNP relative to the PBMR DPP.

To accommodate the expanded operating range of the PBMR NGNP, the following DDN's have been identified for the CSC. These DDN's were taken from the NGNP and

Hydrogen Production PCDR (Section 4.3) as well as the NGNP Composite Special Study (NGNP-NHS-RPT.000.S05) and include:

- NHSS-02-01 Extended Properties of Irradiated Graphite at Low Temperatures
- NHSS-02-02 Extended Properties of Irradiated Graphite at High Temperatures
- COMP-01-01 Characterize Race Track Strap and Tie Rod Materials (Irradiation Tests)
- COMP-01-04 Insulation Materials (Unirradiated Data Needed)

These DDN's provide for acquiring the incremental qualification necessary to achieve a required level of technology readiness for the PBMR NGNP. More details regarding these DDN's can be found in section C1.2.12.

C2.1.3 Anticipated Schedule

NGNP Schedule (for incremental DDN)

The NGNP schedule consists of the incremental tasks that need to be performed. As shown in the schedule, Figure C-3, planning for the initial Graphite and composites irradiations and the preparation of samples and capsules is to be completed near the end of FY2009 or beginning FY 2010. The initial irradiations will take place starting in FY2010, with post-irradiation examination (PIE) completed by end-FY2012. This schedule will support the Safety Review in conjunction with the COL that starts in FY2012.

Preparation for the more extended irradiation will be initiated in FY2011, with the irradiation being started in FY20121. The irradiation and PIE will be completed by the end of FY2014. This schedule will support the initial pre-commissioning operations that begin in FY2016 with about one year of margin to accommodate uncertainties. The additional insulation unirradiated material data requirements could be performed later and need to be completed by the end of FY2014.

12/9/2008

Figure C-3: NGNP Incremental Graphite Qualification Schedule

C2.1.4 Overall Cost

Current NGNP cost related information:

The estimated costs of the R&D activities supporting the Reflector Graphite qualification program are shown in Table C-1. Estimates are provided in terms of the labor man-years over time and the total labor and non-labor costs in 2007 dollars. An average labor rate of [\$150/hour] has been applied, which is judged to be representative of a U.S. National Laboratory when considering a composite of technicians, engineers/scientists and managers. An average of 2080 man-hours/man-year (MY) has been assumed for the development of MY estimates. These estimates are presently based on judgment and are acknowledged to have significant uncertainties. The total cost of the extension to the PBMR DPP PSMP is \$5M (\$2.05M for Labor/\$2.95M for Materials & Other) over the period 2009 through 2014.

Table C-1: NGNP Incremental Graphite Qualification Costs

ltem	FY08	FY09	FY10	FY11	FY12	FY13	FY14	Total
Labor (MY)								
Materials Development	1.1	0.8	1.0	0.6	0.6	1.3	1.1	6.5
Methods V&V								
Total	1.1	0.8	1.0	0.6	0.6	1.3	1.1	6.5
Labor Cost (K\$ @ \$150/hr and 2080hr/MY)								
Materials Development	350	250	300	200	200	400	350	2050
Methods V&V								
Subtotal	350	250	300	200	200	400	350	2050
Materials & Other (K\$)								
Materials Development	150	350	500	600	500	500	350	2950
Methods V&V								
Subtotal	150	350	500	600	500	500	350	2950
Total Cost (K\$)								
Materials Development	500	600	800	800	700	900	700	5000
Methods V&V								
Total	500	600	800	800	700	900	700	5000

C2.2 TEST SPECIFICATIONS (TRL 7 TO TRL 8)

In order to advance the TRL rating of the CSC to the required TRL-8, a number of qualification tests and tasks need to be performed. These tasks consists of the PBMR related qualification activities as previously mentioned together with the incremental tasks as defined in the additional DDN's. The following test specifications provide the details of the incremental tests in order to advance the CSC from a TRL-7 to a TRL-8.

C2.2.1 SSC Test Specification #2: Extended properties of irradiated graphite at low temperatures (WEC-TS-CSC-002)

C2.2.1.1 Objectives

The objective of this test is to extend the PSMP envelope by obtaining irradiated properties of the applicable graphite grades in the lower temperature range, possibly at 350°C. This objective is subjective to the following assumptions:

Assumptions

- The graphite grade selected for the PBMR NGNP is the same as that for the PBMR DPP.
- The PBMR-Specific Materials Test Reactor Program (PSMP) basis established for the graphite structures of the PBMR DPP is also acceptable for the PBMR NGNP, specifically:
 - Confirmation via the PSMP that the materials databases developed for similar graphite in earlier gas-cooled reactor applications can be applied to the PMBR DPP/NGNP graphite
 - The proposed balance between pre-operational experimental assessment of the CSC graphite and post-operational surveillance, testing, inspection and maintenance (STIM) will be acceptable for the PBMR NGNP as for the PBMR DPP.

C2.2.1.2 Test Conditions

C2.2.1.2.1 Test Configuration/Set-up

Extended irradiation tests on PBMR reflector graphite need to be performed at 350°C in a fully instrumented, contained radiation capsule. These tests should be at specified fluence intervals on a number of specimens.

The material to be irradiated shall be exactly the same as is currently being used by the PBMR DPP design. This material shall be sampled from production charges that have been accepted and certified. Attention should be given to a traceable specimen extraction and preparation plan, while test samples should conform to size and geometry requirements of the applicable standard.

C2.2.1.2.2 Test Duration

Typical test categories include sample preparation, pre-irradiation characterisation, irradiation tests and post-irradiation examinations. Detail test durations depend on the number of test specimens and material type to be tested. Due to the uncertainty of a final design the overall incremental time schedule (C1.1.3) could be regarded as the time necessary to complete these tests.

C2.2.1.2.3 Proposed Test Location

A National Laboratory or University could perform the irradiation tests on sample scale together with the post irradiation examinations that is needed. Commercial organizations involved in similar process can also participate in this process.

C2.2.1.3 Measured Parameters

The following table provides a list of the minimum parameters that should be determined as a function of irradiation. These parameters should be measured / obtained in accordance with specific standards were applicable or acceptable alternatives if standards are not available.

ID		Property
1		Mass
2		Dimensions
3		Volume
4		Density
5		Open Porosity
6	cal	Pore Size Distribution
7	ysi	Electrical Resistivity
8	Ph	Coefficient of Thermal Expansion
9		Emissivity
10		Specific heat
11		Oxidation rate
12		Thermal Conductivity
13		Specific Gamma dose rate
14		Dynamic Elastic modulus
15	Ы	Irradiation creep
16	nica	Shear Modulus
17	hai	Poisons Ratio
18	1ec	Tensile strength
19	Z	Strain to failure
20		Static Elastic Modulus

 Table C-2: Parameters to measure

Additional parameters to be determined include the irradiation temperature and neutron fluence measurements. All measurements should be conducted according to test specification guidelines with data requirements as indicated here after.

C2.2.1.4 Data Requirements

The data requirements of the test measurement parameters should be captured in the test specifications and should as a minimum define the following:

- Method of measurement (according to appropriate standards)
- Accuracy and precision of measurement
- Differential between measured and calculated values

C2.2.1.5 Test Evaluation Criteria

The extended irradiation tests does not necessarily have a failing criteria, except that irradiation exposures need to be obtained within the specified accuracies and precisions.

C2.2.1.6 Test Deliverables

The test deliverables include a Test Specification, Test Design Justification and the final Test Report. The Test Specification should typically include the following:

- Method of temperature measurement and associated uncertainties.
- Method of fluence measurement and associated uncertainties.
- Specimen Extraction Plan.
- Test Specimen Preparation Procedures.
- Test Methods and uncertainties associated with each method.
- Size and Geometry of Test Specimens (including control materials).
- Number of Specimens per irradiation test condition (Including control material).
- Identification and traceability of test specimens.
- Storage conditions of irradiated test specimens.

The Test Design Justification should be provided as a confirmation of all applicable procedures, test methods and test conditions which will be employed in fulfillment of the Test Specification requirements. Both an approved Test Specification as well as Test Design Justification is required before commencing with any irradiation tests.

The final deliverable consists of the Test Report and need to be provided upon completion of the irradiation tests. This document shall as a minimum report in the following:

- Pre-irradiation test specimen data, i.e. dimensions, surface finish, etc.
- Any applicable test data gathered prior to the applicable irradiation stage.
- Post-irradiation test data and associated uncertainties.
- Irradiation conditions (target temperature, fluence) for the applicable irradiation stage.
- Irradiation conditions per test specimen for the applicable irradiation stage.
- All applicable test specifications.
- All applicable test procedures and test reports.
- Non-conformances in respect of the specified requirements.

Additional to these documents a quality assurance plan also needs to be provided. This plan should meet the requirements of PBMR, the applicable nuclear authorities as well additional client related requirements.
C2.2.1.7 Cost, Schedule, and Risk

The anticipated cost and schedule for these irradiation tests are captured in section C1.1.3 & C1.1.4. Due to the nature of these tests, there are no acceptable fallback positions for the NGNP. The consequences of non-execution might include failure to meet licensing objectives and/or unacceptable operational limitations.

C2.2.2 SSC Test Specification #3: Extended properties of irradiated graphite at high temperatures (WEC-TS-CSC-003)

C2.2.2.1 Objectives

The objective of this test is to extend the PSMP envelope by obtaining irradiated properties of the applicable graphite grades in the higher temperature range. This test is needed due insufficiency of the current envelope above 750° C and 120×10^{20} n/cm² and is proposed to be conducted at 950°C and at higher fluence levels, corresponding to the PBMR NGNP conditions. This test is again subject to the same assumptions as the previous test, while all other requirements can be taken from test C1.2.12.

C2.2.3 SSC Test Specification #4: Characterize race track strap and tie rod materials (WEC-TS-CSC-04)

C2.2.3.1 Objectives

The objective of this test is to characterize the race track strap and tie rod materials under irradiation conditions in order to capture the irradiation properties such as swelling. This test is however subject to the following assumptions:

Assumptions

• The assumption is that the current and planned unirradiated databases for CFRC Grades 1502YR and 2002YR materials are inadequate for the Race Track Strap and Tie Rod applications for the NGNP.

NGNP-CTF MTECH-TDRM-012_Rev1-final.doc

C2.2.3.2 Test Conditions

C2.2.3.2.1 Test Configuration/Set-up

The following test configuration utilizes information from the NGNP Composites Special Study and provides information regarding the test configuration should irradiated properties be necessary. The test set-up will require comprehensive pre-characterization as well post-irradiation test data on all specimens. Irradiation test data for the specimens up to 1 dpa (carbon) or 1.4x1021n/cm2 (E>0.1 MeV) in increments of 0.5 dpa (carbon) at irradiation temperatures of 600°C and 800°C is required.

C2.2.3.2.2 Test Duration

Typical test categories include sample preparation, pre-irradiation characterisation, irradiation tests and post-irradiation examinations. Detail test durations depend on the number of test specimens and material type to be tested. Due to the uncertainty of a final design the overall incremental time schedule (C1.1.3) could be regarded as the time necessary to complete these tests.

C2.2.3.2.3 Proposed Test Location

A National Laboratory or University could perform the irradiation tests on sample scale together with the post irradiation examinations that is needed. Commercial organizations involved in similar process can also participate in this process.

C2.2.3.3 Measured Parameters

The following list indicates pre-irradiation and post-irradiation test data that would be required. These parameters should be measured / obtained in accordance with specific standards were applicable or acceptable alternatives if standards are not available.

- Linear (parallel to length of racetrack and length of Tie Rod) shrinkage or swelling and volumetric shrinkage or swelling following irradiation compared to pre-irradiation data.
- Density (CEN ENV 1389 (1994))
- CTE (RT to 800°C, CEN ENV 1159-1 (1994))
- Flexural Strength (3 point, RT, 600°C, 800°C ASTM C-1341-00 (2005))
- Interlaminar Shear Strength (RT, ASTM C 1425-05),
- Tensile Strength (RT, 600°C, 800°C, ASTM C 1275-00 (2005) and ASTM C 1359-05).

Additional parameters to be measured include the irradiation temperature and neutron fluence. All measurements should be conducted according to test specification guidelines with data requirements as indicated here after. Non irradiated properties to determine include thermal creep as per ASTM C 1337-96(2005)

C2.2.3.4 Data Requirements

The data requirements of the test measurement parameters should be captured in the test specifications and should as a minimum define the following:

- Method of measurement (according to appropriate standards)
- Accuracy and precision of measurement
- Differential between measured and calculated values

C2.2.3.5 Test Evaluation Criteria

The extended irradiation tests does not necessarily have a failing criteria, except that irradiation exposures need to be obtained within the specified accuracies and precisions.

C2.2.3.6 Test Deliverables

The test deliverables include a Test Specification, Test Design Justification and the final Test Report. The Test Specification should typically include the following:

- Method of temperature measurement and associated uncertainties.
- Method of fluence measurement and associated uncertainties.
- Specimen Extraction Plan.
- Test Specimen Preparation Procedures.
- Test Methods and uncertainties associated with each method.
- Size and Geometry of Test Specimens (including control materials).
- Number of Specimens per irradiation test condition (Including control material).
- Identification and traceability of test specimens.
- Storage conditions of irradiated test specimens.

The Test Design Justification should be provided as a confirmation of all applicable procedures, test methods and test conditions which will be employed in fulfillment of the Test Specification requirements. Both an approved Test Specification as well as Test Design Justification is required before commencing with any irradiation tests.

The final deliverable consists of the Test Report and need to be provided upon completion of the irradiation tests. This document shall as a minimum report in the following:

- Pre-irradiation test specimen data, i.e. dimensions, surface finish, etc.
- Any applicable test data gathered prior to the applicable irradiation stage.
- Post-irradiation test data and associated uncertainties.
- Irradiation conditions (target temperature, fluence) for the applicable irradiation stage.

• Irradiation conditions per test specimen for the applicable irradiation stage. NGNP-CTF MTECH-TDRM-012_Rev1-final.doc

12/9/2008

- All applicable test specifications.
- All applicable test procedures and test reports.
- Non-conformances in respect of the specified requirements.

Additional to these documents a quality assurance plan also needs to be provided. This plan should meet the requirements of PBMR, the applicable nuclear authorities as well additional client related requirements.

C2.2.3.7 Cost, Schedule, and Risk

The anticipated cost and schedule for these irradiation tests are captured in section C1.1.3 & C1.1.4. Due to the nature of these tests a fallback position is to assume that irradiation effects on these materials properties are not significant and that the DPP design and data could be used as is.

C2.2.4 SSC Test Specification #5: insulation materials (unirradiated data needed) (WEC-TS-CSC-005)

C2.2.4.1 Objectives

The objective of this test is to obtain unirradiated material data for the quartz insulation material that will be used to supplement the baked carbon insulation in the lower reflector based on the NGNP design requirements. This test is subjective to the following assumptions:

Assumptions

• NBC-07 baked carbon insulation will be the primary insulation used in the lower reflector

C2.2.4.2 Test Conditions

C2.2.4.2.1 Test Configuration/Set-up

Unirradiated test need to be conducted in order to determine the material properties as per Measured Parameters section. These test need to conform to applicable standards and should be similar to the PBMR Materials Datasheet.

C2.2.4.2.2 Test Duration

Typical test categories include sample preparation, pre-testing characterisation, materials property tests and post-testing examinations. Detail test durations depend on the number of test specimens and material type to be tested. Due to the uncertainty of a final design the overall

incremental time schedule (C1.1.3) could be regarded as the time necessary to complete these tests.

C2.2.4.2.3 Proposed Test Location

A National Laboratory or University could perform the tests on sample scale together with the examinations that is needed. Commercial organizations involved in similar process can also participate in this process.

C2.2.4.3 Measured Parameters

The following is an extract of the test data that would be required and has been taken from a PBMR material datasheet. These parameters should be measured / obtained in accordance with specific standards were applicable or acceptable alternatives if standards are not available. These properties include:

Property	Units	Orientation	20°C	200°C	400°C	600°C	800°C	1000 <i>°</i> C
Bulk Density	kg.m ⁻³	-	To be Tested					
Coefficient of Thermal	10 ⁻⁶ K⁻ ₁	With grain	To be Tested	To be Tested				
Expansion* (CTE) (20°C – T)		Against grain		To be Tested				
• • •		Combined		To be Tested				
lsotropy Ratio	-	-	To be Tested	Not Applicable				
Thermal Conductivity	800°C Bake	With grain	To be Tested	To be Tested				
	W.m [⁻] ¹.K⁻¹	Against grain	To be Tested	To be Tested				
		Combined	To be Tested		Тс	be Tested		
	1050° C	With grain	To be Tested	To be Test	ed			
	Bake W.m ⁻	Against grain	To be Tested					
	'.K''	Combined	To be Tested					
Emissivity	-	-	N/A		To be T	ested		

 Table C-3: Selected Physical Properties of Quartz Insulation

Table C-4: Selected Mechanical properties of Quartz Insulation Material

Property	Units	Orientation	20°C
Tensile Strength	MPa	With grain	To be Tested
		Against grain	To be Tested

NGNP-CTF MTECH-TDRM-012_Rev1-final.doc

		Combined	To be Tested
Compressive Strength	MPa	With grain	To be Tested
		Against grain	To be Tested
		Combined	To be Tested
Flexural Strength	MPa	With grain	To be Tested
(4-point)		Against grain	To be Tested
		Combined	To be Tested
Dynamic Elastic	GPa	With grain	To be Tested
Modulus	IS	Against grain	To be Tested
		Combined	To be Tested

Table C-5:	Selected Room	Temperature	Mechanical	Properties of	Quartz Insulation
			Mate	rial	

Property	Units	Orientation	0%	1%	3%	5%	7%	10%
	MPa	With grain	17.7 ± 1.2 ^[1]	13.4	10.5	8.2	6.4	4.4
Tensile Strength	MPa	Against grain	18.0 ± 1.7 ^[1]	13.4	10.5	8.2	6.4	4.4
Compressive	MPa	With grain	137.3 ± 6.7 [1]	103.6	88.8	76.0	65.1	51.6
Strength	MPa	Against grain	139.7±19.2 [1]	69.7	59.7	51.1	43.8	34.7

C2.2.4.4 Data Requirements

The data requirements of the test measurement parameters should be captured in the test specifications and should as a minimum define the following:

- Method of measurement (according to appropriate standards)
- Accuracy and precision of measurement
- Differential between measured and calculated/theoretical values

C2.2.4.5 Test Evaluation Criteria

The extended irradiation tests does not necessarily have a failing criteria, except that irradiation exposures need to be obtained within the specified accuracies and precisions.

NGNP-CTF MTECH-TDRM-012_Rev1-final.doc

C2.2.4.6 Test Deliverables

The test deliverables include a Test Specification, Test Design Justification and the final Test Report. The Test Specification should typically include the following:

- Method of temperature measurement and associated uncertainties.
- Specimen Extraction Plan.
- Test Specimen Preparation Procedures.
- Test Methods and uncertainties associated with each method.
- Size and Geometry of Test Specimens (including control materials).
- Identification and traceability of test specimens.

The Test Design Justification should be provided as a confirmation of all applicable procedures, test methods and test conditions which will be employed in fulfillment of the Test Specification requirements. Both an approved Test Specification as well as Test Design Justification is required before commencing with any irradiation tests.

The final deliverable consists of the Test Report and need to be provided upon completion of the irradiation tests. This document shall as a minimum report in the following:

- Pre-test specimen data, i.e. dimensions, surface finish, etc.
- Post-test data and associated uncertainties.
- Testing conditions (target temperature) for the applicable test.
- All applicable test specifications.
- All applicable test procedures and test reports.
- Non-conformances in respect of the specified requirements.

Additional to these documents a quality assurance plan also needs to be provided. This plan should meet the requirements of PBMR, the applicable nuclear authorities as well additional client related requirements.

C2.2.4.7 Cost, Schedule, and Risk

The anticipated cost and schedule for these irradiation tests are captured in section C1.1.3 & C1.1.4. Due to the nature of these tests a fallback position is to assume that irradiation effects on these materials properties are not significant and that the DPP design and data could be used as is.

NGNP-CTF MTECH-TDRM-012_Rev1-final.doc

APPENDIX D: TEST REQUIREMENT SPECIFICATION SAMPLE

(As provided by PBMR)

NGNP-CTF MTECH-TDRM-012_Rev1-final.doc

PBMR

CORE STRUCTURE CERAMICS

SGL TRS SHEET AN 43: TIE ROD QUALIFICATION TEST -LOWER BLOCK INTERFACE

Document Number	:	048375
Revision	:	3
Status	:	Approved

Signatures for approved documents are held on file in the Document Control Centre of PBMR (Pty) Ltd

This document is the property of PBMR (Pty) Ltd. The content thereof may not be reproduced, disclosed or used without the Company's prior written approval. PBMR

048375

ABSTRACT

This document describes the requirements of test AN 43. The information in this document for the test was extracted from the CSC Test Requirement Specification [4]. This test will form part of an ongoing effort to fulfil and comply with numerous requirements for the CSC.

CONFIGURATION CONTROL

Rev.	Date	Preparer	ECPs	Changes		
А	2006/10/10	Jaco Lindeboom	None	First Draft		
1	2006/10/10	Jaco Lindeboom	None	Updated with comments from review		
1A	2007/05/10	Jaco Lindeboom	None	 The following changes were made: 1. Page 17, Table 1, Heading: Test conditions – The initial load was changed from 35kN to 18kN. 2. Page 5, Section 1 and Page 17, Section 4: Sections were updated to refer to Test Requirement Specification and not to duplicate information. 3. Added: "This length can be modified to accommodate the design of the test setup." Under the heading: Test Description on page 10. 4. Page 10, Table 1, Heading: Test description the symbols β and α were changed around in the sentences where used. 5. Page 10, Heading: Test description and Page 15, Table, Heading Test scope: The requirement was changed from using 4 (Four) assemblies to changing the interfacing components for each test. 6. Page 6: Updated reference table 		
2	2007/05/15	Jaco Lindeboom	None	No updates from reviewers.		
3	2007/05/21	Jaco Lindeboom	None	Changed document to incorporate the changes mentioned in the document history of REV 1A (Update 1 – 35kN to 18 kN), but not made in document body.		

Document History

Document Approval

Action Function		Designate	Signature
Prepared	CSC Design Engineer	Jaco Lindeboom	See signatures on file
Reviewed	CSC Design Engineer	Marius Van Wyk	See signatures on file
2nd Reviewer	TQC Engineer	Gert Jansen Van Rensburg	See signatures on file
Approved	CSC Design Engineer	Mark Mitchell	See signatures on file

Document Retention Time

This document is a Quality Record and shall be retained in accordance with PRC0012.

048375

CONTENTS

ABBREVIATIONS	5
1. INTRODUCTION	6
1.1 SCOPE 1.2 BACKGROUND	6 6
2. REFERENCES	7
3. DESCRIPTION OF TEST	9
3.1 GENERAL DESCRIPTION OF TEST 3.2 TEST REQUIREMENTS	9 .10
4. TEST MANAGEMENT	19
 4.1 TEST RESPONSIBILITIES 4.2 QUALITY ASSURANCE 4.2.1 Required PBMR Interaction 4.3 REQUIRED TEST DOCUMENTATION 	.19 .19 .19 .19

FIGURES

Figure 1: Reference Axis for CFRC Tie-Rod	12
Figure 2: Angles and Displacements to Obtain Non-Ideal Loading Conditions	12
Figure 3: CFRC Tie-Rod to Graphite Block, with CFRC Plate Insert	13
Figure 4: CFRC Tie-Rod to Graphite Block, with CFRC Plate Insert	14
Figure 5: CFRC Tie Rod to Graphite Block, without CFRC Plate Insert	15
Figure 6: CFRC Tie Rod to Graphite Block, without CFRC Plate Insert	16

TABLES

Table 1: Test Requirement Specification Sheet: AN-43	. 10
Table 2: PBMR Interaction Required	. 19

048375

ABBREVIATIONS

This list contains the abbreviations used in this document.

Abbreviation or Acronym	Definition
CFRC	Carbon Fibre Reinforced Composites
CSC	Core Structure Ceramics
ECP	Engineering Change Proposal
GmbH	Gesellschaft mit beschraenkter Haftung (German for Proprietary Limited)
ID	Identity
ID	Internal Diameter
No.	Number
PBMR	Pebble Bed Modular Reactor
PBMR (Pty) Ltd	Pebble Bed Modular Reactor (Pty) Ltd
ROD	Record of Decisions
TBD	To be Determined
TBV	To be Verified
TQC	Testing, Qualification and Commissioning
TR	Top Reflector

1. INTRODUCTION

1.1 SCOPE

This document describes a test identified by PBMR on parts and materials that will be used in the CSC. The information regarding the requirements for this test formed part of the Test Requirement Specification [4]. The Test Requirements Specification grew into a large document and it became difficult to track any updates or changes to individual test requirements. These requirements were extracted from the Test Requirement Specification [4] to this separate document named the Test Requirement Specification Sheets.

These test requirements identified by PBMR are described for the test. This requirement specification sheet provides inputs to the test specifications, experiment design, design reports and results required for each test.

This document states the test objectives, a general description of the test, the test configuration, the test conditions, a basis layout of the test and the reporting requirements.

For this test the test documentation required is mentioned under the section deliverables in Table 1 in accordance with the TRS [4].

1.2 BACKGROUND

During the design phase of the PBMR the CSC Development Specification was constructed [2]. As a means of complying with the requirements PBMR is executing a qualification program.

PBMR

2. REFERENCES

The following documents are referenced within this document.

	Document Title	Preparer/Author	Document Number	Revision or Date of Issue	Proprietary Classification	Applicable* ¹ (Yes/No)
[1]	CSC Qualification Plan	M. Mitchell	033981	В	5	No
[2]	CSC Development Specification	Pauline Prinsloo	026223	С	2	No
[3]	Engineering Contract	PBMR Procurement	CONPBMR001681	1	1	No
[4]	CSC Test requirement specification	J. Lindeboom	040926	1	2	No
[2]	CSC TR Ring 1 Tie Rod PDF drawing	T. Bennie	MR120-015372-1501-IS01	3	2	Yes
[9]	CSC TR Centre Ring Tie Rod PDF drawing	T. Postma	MR120-016522-1501-IS01	3	2	Yes
[2]	CS TR Block Layer 1,0 DEG PDF drawing	T. Postma	MR120-025576-1501-IS01	Е	2	Yes
[8]	CSC TR Insert Assy, Back, 6 DEG PDF drawing	T. Postma	MR120-027659-1502-IS01	С	2	Yes
[6]	CS TR Insert 2, Back, 0 DEG PDF drawing	T. Postma	MR120-027650-1501-IS01	С	2	Yes
[10]	CS TR INSERT, BACK, 0 DEG PDF drawing	T. Postma	MR120-027658-1501-IS01	С	2	Yes
[11]	CSC TR LOCATOR PIN PDF drawing	T. Postma	MR120-025878-1501-IS01	D	2	Yes
[12]	CSC TR Block RNG, LAYR1, 22_5DEG PDF drawing	T. Postma	MR120-015282-1501-IS01	D	2	Yes
[13]	CSC TR Ring 1 Tie Rod UG drawing	T. Bennie	MR120-015372-1501-IS01	3	2	Yes
[14]	CSC TR Centre Ring Tie Rod UG drawing	T. Postma	MR120-016522-1501-IS01	3	2	Yes
[15]	CS TR Block Layer 1,0 DEG UG drawing	T. Postma	MR120-025576-1501-IS01	Е	2	Yes
[16]	CSC TR Insert Assy, Back, 6 DEG UG drawing	T. Postma	MR120-027659-1502-IS01	С	2	Yes
[17]	CS TR Insert 2, Back, 0 DEG UG drawing	T. Postma	MR120-027650-1501-IS01	С	2	Yes
[18]	CS TR INSERT, BACK, 0 DEG UG drawing	T. Postma	MR120-027658-1501-IS01	С	2	Yes
[19]	CSC TR LOCATOR PIN UG drawing	T. Postma	MR120-025878-1501-IS01	D	2	Yes
[20]	CSC TR Block RNG, LAYR1, 22_5DEG UG drawing	T. Postma	MR120-015282-1501-IS01	D	2	Yes
[21]	CSC TR Ring 1 Tie Rod UG model	T. Bennie	015372	3	2	Yes
[22]	CSC TR Centre Ring Tie Rod UG model	T. Postma	016522	3	2	Yes
[23]	CS TR Block Layer 1,0 DEG UG model	T. Postma	025576	ш	2	Yes

¹ Applicable documents are applicable to the extent specified within this document and thus deemed to form part of this document.

© Copyright 2007 by PBMR

Revision: 3 – 2007/05/21 Proprietary Class 2

PBM	R SGL TRS SHEET AN 4	3: TIE ROD QUALIFICATI	ON TEST - LOWER BLOCK INT	TERFACE		048375
	Document Title	Preparer/Author	Document Number	Revision or Date of Issue	Proprietary Classification	Applicable* ¹ (Yes/No)
[24]	CSC TR Insert Assy, Back, 6 DEG UG model	T. Postma	027659	C	2	Yes
[25]	CS TR Insert 2, Back, 0 DEG UG model	T. Postma	027650	C	2	Yes
[26]	CS TR INSERT, BACK, 0 DEG UG model	T. Postma	027658	C	2	Yes
[27]	CSC TR LOCATOR PIN UG model	T. Postma	025878	D	2	Yes
[28]	CSC TR Block RNG, LAYR1, 22_5DEG UG model	T. Postma	015282	D	2	Yes

© Copyright 2007 by PBMR

SGL TRS SHEET AN 43: TIE ROD QUALIFICATION TEST - LOWER BLOCK II	FR BLOCK INTERFACE	
IION OF TEST		
DESCRIPTION OF TEST		
ined by PBMR and will be carried out by SGL Carbon GmbH. PBMR will specify all ri	specify all requirements.	These requireme

Proprietary Class 2

PBMR

3.1 GENERAL

ents are listed h 2 2 Ś. 2 2 The test is defining in Table 1.

© Copyright 2007 by PBMR

Revision: 3 - 2007/05/21 Proprietary Class 2

3.2 TEST REQUIREMENT	
The following table contains	the requirements for the test to be executed:
	Table 1: Test Requirement Specification Sheet: AN-43
Test Requirement Specificat	on Sheet
Test ID Tie R	d Qualification tests - Bottom interface
AN-43	
Test Objectives: The o	jectives of this test are to:
•	determine the maximum tensile load of a standard full size CFRC tie-rod under ideal loading conditions with the authent bottom interface
•	determine the maximum tensile load of a standard full size CFRC tie-rod under non-ideal loading conditions with the authentic bottom interface
The ic	al loading conditions represents the CFRC tie-rod when installed, within the allowed installation tolerances.
The n botton	n-ideal loading conditions are represented by an angular misalignment in the two vertical planes between the top head an head of the tie-rod.
0	

PBMR

Proprietary Class 2

Revision: 3 - 2007/05/21 Proprietary Class 2

© Copyright 2007 by PBMR

Page 10 of 19

lest Requirement S	pecification Sheet
Test Description:	The tests will be carried out in air at room temperature. The test will be carried out on a full size short (+/-850mm long) CFRC tie rod. This length can be modified to accommodate the design of the test setum.
	Two different bottom interfaces exist namely :
	CFRC tie-rod to graphite block, with CFRC plate insert (Ring 1)
	CFRC tie rod to graphite block, without CFRC plate insert (Ring 2)
	Both of these interfaces will be tested separately.
	To ensure that the tests provide the desired results both sides of the tie-rod interface should replicate the bottom interface of the tie- rod during the tests or one head of the tie rod should be designed larger in order for failure to occur at the other head of the CFRC tie rod.
	For the <i>ideal loading</i> conditions test the tie-rod must be installed into the testing machine with the correct interfaces as mentioned above. The alignment must be correct within the specified installation tolerances of the tie-rod.
	In this configuration the ultimate tensile load test must be executed. In this test the test specimen must be loaded to failure. The direction of the applied force must be in the direction on the original normal operating conditions.
	In order to perform the <i>non-ideal loading</i> conditions test one side of the test piece should be able to move in the X and Y direction to provide the angles β and α .
	The tie rod must be installed into the testing machine with the correct interfaces as mentioned above. When perfectly aligned a tensile initial-load must be applied.
	Next the angular misalignment of the tie rod must be done by:
	Moving one side of the tie-rod in the X-direction to obtain angle β
	Next moving one side of the tie-rod in the Y-direction to obtain angle α
	This misalignment can also be done in 1 (one) movement in the resultant direction.
	In this configuration the ultimate tensile load test must be executed. In this test the test specimen must be loaded to failure. The direction of the applied force must be in the direction on the original normal operating conditions and not in the direction of the deflected tie rod.
	Measure and record the angles between the tie rods and the interfacing material after installation in the X-Y plane.
	The graphite blocks, parts and all CFRC parts shall be changed for each test in order to have a repeatable test result.

Revision: 3 - 2007/05/21 Proprietary Class 2

Page 11 of 19

Proprietary Class 2

Revision: 3 – 2007/05/21 Proprietary Class 2

© Copyright 2007 by PBMR

Page 14 of 19

Proprietary Class 2

	Proprietary Class 2
PBMR	SGL TRS SHEET AN 43: TIE ROD QUALIFICATION TEST - LOWER BLOCK INTERFACE 048375
Test Requirement Sp	scification Sheet
Test Scope:	There are 2 different test configurations and for each the amount of tested are:
	 for ideal loading conditions at least 6 specimens
	 for non-ideal loading conditions at least 6 specimens
	This means that a total of at least 24 specimens shall be tested.
	The graphite block, parts and CFRC parts that form part of the direct interface to the tie rod must be changed for each test, but the block that doesn't interface with the tie rod directly doesn't have to be changed each time.
Test Limitations:	None
Test Configuration:	
Test Item:	Test Items as Per Drawings
Analysis Requirements:	TBD SGL
Test Equipment Requirements:	TBD SGL
Test Parameters:	The test parameters are as follows:
	Tie-rod tensile force
	 Tie-rod elongation (
	Misalignment angles:
	 α or distance ΔY
	 β or distance ΔX
	Atmosphere
	Pressure
Instrumentation Requirements:	TBD SGL
Test Control Systems and Data Acquisition:	TBD SGL
Test Facilities and Interfaces:	TBD SGL
Test Personnel	SGL Carbon GmbH to provide.

© Copyright 2007 by PBMR

Revision: 3 - 2007/05/21 Proprietary Class 2

Page 17 of 19

		120
		0/00
Test Requirement Spe	ecification Sheet	
Test Conditions:	The tests will be performed in the following conditions:	
	Initial-load (tensile force) to simulate normal operation approximately 18 kN	
	Misalignment angles:	
	• $\alpha < 0.5^{\circ}$ between the top and bottom of the tie-rod in the Y-direction	
	• $\beta < 0.5^{\circ}$ between the top and bottom of the tie-rod in the X-direction	
	Atmosphere and Temperature will be air at room temperature	
	 Ultimate tensile load under ideal conditions will be < 100 kN (TBD) approximately 	
	 Ultimate tensile load under non-ideal conditions will be < 100 kN (TBD) approximately 	
Test Set-up/Layout:	When applying the misalignment angles α and β the movement cannot be done in the vertical plane only. The head moved must be allowed to move in the Z direction in order not to increase the initial-load due to the movement.	۳.
Test Deliverables:	Test specification	
	Test design report	
	Test report	
Comments:		

Revision: 3 - 2007/05/21 Proprietary Class 2

© Copyright 2007 by PBMR

PBMR

4. TEST MANAGEMENT

4.1 TEST RESPONSIBILITIES

Test Responsibilities as per TRS [4].

4.2 QUALITY ASSURANCE

All Quality Assurance related matters are as per the document: TRS [4], except for required PBMR interaction that differs for this test as stated in 4.2.1.

4.2.1 Required PBMR Interaction

PBMR interaction must occur in according to the hold and witness points indicated in Table

2. The actions listed are from TRS [4].

Action	PBMR Intervention	Applicable
Requirements Definition	None	Yes
Experiment Design	None	N/A
Test Readiness Review 1	Hold point	Yes
Experiment Preparation	None	N/A
Test Readiness Review 2	Hold point	Yes
Experiment Execution	Witness point	Yes
Test Execution and Data Review	Hold point	Yes

Table 2: PBMR Interaction Required

4.3 REQUIRED TEST DOCUMENTATION

Required Test Documentation as per TRS [4] and under heading: "Test Deliverables" in Table 1.

048375

NGNP-CTF MTECH-TDRM-013 Revision 1 December 2008

NGNP and Hydrogen Production Conceptual Design Study

NGNP Technology Development Road Mapping Report

Section 13: Reserve Shutdown System

APPROVALS

Function		Date	
Author	Name: Company:	D.J. Viljoen M-Tech Industrial (Pty) Ltd	December 3, 2008
Reviewer	Name: Company:	Steven Pieterse Pebble Bed Modular Reactor (Pty) Ltd	December 3, 2008
Reviewer	Name: Company:	Justin Mann Pebble Bed Modular Reactor (Pty) Ltd	December 3, 2008
Approval	Name: Company:	Jan van Ravenswaay M-Tech Industrial (Pty) Ltd	December 3, 2008

Westinghouse Electric Company LLC Nuclear Power Plants Post Office Box 355 Pittsburgh, PA 15230-0355

©2008 Westinghouse Electric Company LLC All Rights Reserved

List of Contributors

Name and Company	Date
D.J. Viljoen (M-Tech Industrial)	October 27, 2008
Steven Pieterse (PBMR)	October 27, 2008
Pieter Coetzer (PBMR)	October 27, 2008
Renée Greyvenstein (PBMR)	October 27, 2008

BACKGROUND INTELLECTUAL PROPERTY CONTENT

Section	Title	Description
N/A		

REVISION HISTORY

RECORD OF CHANGES

Revision No.	Revision Made by	Description	Date
А	D.J. Viljoen	Comments Review	September 12, 2008
В	D.J. Viljoen	Formal Review	October 6, 2008
С	D.J. Viljoen	Changes to TDRM roadmap	October 27, 2008
0	D.J. Viljoen	Document for Approval	October 27, 2008
0A	D.J. Viljoen	Incorporating BEA comments	December 2, 2008
1	D.J. Viljoen	Document for release to WEC	December 3, 2008

DOCUMENT TRACEABILITY

Created to Support the Following Document(s)	Document Number	Revision
N/A		

TABLE OF CONTENTS

Section List of Contr	Title	Page 2
LIST OF TA	BLES	4
LIST OF FIG	URES	4
	·	5
		····· J
SUMMARY	AND CONCLUSIONS	6
13 RESERV	E SHUTDOWN SYSTEM (RSS)	7
13.1 RSS	DESCRIPTION / FUNCTION, COMPONENTS AND OPERATING REQUIREMENTS	s7
13.1	1 RSS Description	7
13.1	2 Helium Test Facility (HTF)	9
13.1	3 Functions	10
13.1	4 Interfaces	11
13.1	5 NGNP Operating Requirements	12
13.2 TEC	HNOLOGY/DESIGN SELECTION STATUS	12
13.1	6 Candidate Technologies – RSS	12
13.1	7 Decision Discriminators	12
13.1	8 Reference Design	12
13.1	9 Alternative for Further Evaluation	13
13.1	10 Down Selection Task	13
13.3 TRI	, STATUS	13
13.4 TEC	HNOLOGY DEVELOPMENT ROAD MAP SUMMARY	13
13.1	11 Overview	13
13.5 TEC	HNOLOGY MATURATION PLAN SUMMARY (CURRENT TRL TO TRL 8)	14
13.6 INPU	TS TO CTF	15
13.7 R EF	ERENCES	15
APPENDIX	A: TRL RATING SHEETS	16
APPENDIX	B: TECHNOLOGY DEVELOPMENT ROAD MAP	18
APPENDIX	C: TECHNOLOGY MATURATION PLAN	20

LIST OF TABLES

Table A-1: TRL Rating Sheets for the RSS	17
Table C-1: Example of Maturation Tasks to mature the RSS to a TRL of 8	
Table C-2: Test Matrix	
Table C-3: List of Instruments used for Data Capturing.	

LIST OF FIGURES

Figure 13-1: Reserve Shutdown System Schematic Layout	8
Figure 13-2: The HTF (Left) and its Main Loop (Right)	9
Figure 13-3: Part of the RSS during installation.	0
Figure B-1: Technology Development Road Map for the RSS	9

ſ

ACRONYMS

Acronym	Definition
А	Ampere
AOO	Anticipated Operational Occurrence
AS	Automation System
ASME	American Society of Mechanical Engineers
B ₄ C	Boron Carbide
BOP	Balance of Plant
СВ	Core Barrel
CTF	Component Test Facility
DBA	Design Bases Accident
DDN	Design Data Need
DPP	Demonstration Power Plant
FHSS	Fuel Handling and Storage System
FY	Fiscal Year
HPS	Hydrogen Production System
HTF	Helium Test Facility
HTR	High Temperature Reactor
HTS	Heat Transport System
HTTR	High Temperature Test Reactor
HVAC	Heating Ventilation and Air Conditioning
NGNP	Next Generation Nuclear Plant
NHSS	Nuclear Heat Supply System
PBMR	Pebble Bed Modular Reactor
PCS	Power Conversion System
PSU	Power Supply Unit
QCP	Quality Control Programme
RPV	Reactor Pressure Vessel
RSS	Reserve Shutdown System
SAS	Small Absorber Spheres
SCADA	Supervisory Control and Data Acquisition
TRL	Technology Readiness Level
V	Volt
WBS	Work Breakdown Structure
WEC	Westinghouse Electric Company

SUMMARY AND CONCLUSIONS

The Reserve Shutdown System (RSS) has been identified as a critical system in the development of the Next Generation Nuclear Plant (NGNP). The RSS forms part of the Reactivity Control and Shutdown System and is a totally diverse reactor shutdown system. The RSS is used to keep the reactor subcritical and below an average core temperature of at least 100°C during shutdown. The NGNP WEC-team envisages utilizing a RSS similar to that of the Pebble Bed Modular Reactor (PBMR) Demonstration Power Plant (DPP).

The RSS development for the PBMR DPP is currently in its basic design phase, with a number of development tests being performed, resulting in a Technology Readiness Level (TRL) rating of 6. A number of development and qualification tests will be performed on the Helium Test Facility (HTF) in South Africa before the RSS will be commissioned in the DPP. Upon the completion of these tests, the DPP RSS will have a TRL status of 7, where after the completion of DPP tests will advance the DPP RSS TRL status to an 8. If the NGNP Requirements are enveloped by the DPP, these development and qualification tests will be sufficient to advance the NGNP RSS to a TRL of 8. If the NGNP requirements are not enveloped by the DPP, then the RSS will be re-qualified in the HTF to progress the NGNP RSS to TRL 7 in which case it will obtain TRL 8 status in the NGNP itself. The need for potential further qualification can however only be defined once more analyses have been performed to determine what the exact requirements would be for application in the NGNP.

It is not believed that any additional testing would be required in the NGNP Component Test Facility (CTF) since additional testing is likely to take place at the existing PBMR HTF facility.

13 RESERVE SHUTDOWN SYSTEM (RSS)

13.1 RSS Description / Function, Components and Operating Requirements

13.1.1 RSS Description

The Reserve Shutdown System (RSS) is a totally diverse reactor shutdown system. It consists of eight identical units that can insert Small Absorber Spheres (SAS) into the eight borings of the centre reflector of the Core. SAS are typically inserted to shut the reactor down to 'cold' conditions for maintenance operations. When inserted, the RSS by itself keeps the reactor subcritical to an average core temperature of 100 $^{\circ}$ C or less.

The SAS are comprised of 10 mm diameter graphite spheres that contain 10% (weight) natural B_4C . The ¹⁰B isotope in the natural B_4C acts as the neutron absorber.

When shutdown is required, the valves of the SAS storage units are opened allowing the SAS to flow under gravity into the centre reflector borings.

The RSS interfaces with both the Reactor Pressure Vessel (RPV) and Core Barrel (CB) and operates under the same pressure and temperature as the reactor. The SAS are extracted from the centre reflector borings (all eight channels are removed simultaneously) and pneumatically transported back via the sphere return pipe to the feeder bin at the top of the reactor. The feeder bin distributes the SAS to each of the eight individual SAS storage containers. Gas flow from the Fuel Handling and Storage System (FHSS) blower fluidizes and moves the SAS. The transportation gas is returned to the blower via the gas extraction line after the SAS have been separated out from the conveying gas stream. During SAS transport, the FHSS does not transport fuel and is isolated from the reactor. Pneumatic SAS transportation can only be done at gas temperatures amenable to the valves and other components wetted by gas flow [13-1].

A schematic layout of the RSS is shown in Figure 13-1.

Figure 13-1: Reserve Shutdown System Schematic Layout.

NGNP-CTF MTECH-TDRM-013_Rev1-final.doc
13.1.2 Helium Test Facility (HTF)

The Helium Test Facility (HTF) provides the capability to test components and sub assemblies in a high-temperature and high-pressure helium environment that is similar to the operating conditions expected for the PBMR DPP. The HTF was mandated in part to support the design, development, functional and integrated performance testing of the RSS up to delivery of the RSS to the DPP.

One full scale RSS unit will be accommodated in the HTF in the form of the RSS test setup. The RSS test set-up represents one full-scale RSS unit of the 8 units comprising the complete RSS of the PBMR reactor unit. The aim of the HTF main loop for the RSS test set-up is to simulate the dimensions, environmental and certain postulated operational conditions of the RSS inside the PBMR reactor [13-3]. The test set-up will simulate the steady state environment of the PBMR RSS during normal, abnormal and shutdown conditions.

Figure 13-2 shows a photo of a section of the HTF during construction. Figure 13-3 shows part of the RSS test setup during installation.

Figure 13-2: The HTF (Left) and its Main Loop (Right)

Figure 13-3: Part of the RSS during installation.

13.1.3 Functions

The RSS performs the following functions:

Maintain RPV Pressure Boundary

• Certain RSS components mount onto the RPV and penetrate the RPV therefore forming part of the Helium Pressure Boundary. As a result one of the main functions of the RSS is to maintain the Helium Pressure Boundary of the RPV.

Perform Volume Separation

• The RSS is linked to both the RPV upper volume as well as the Core volume. One of the functions of the RSS is to provide separation between the upper RPV volume and the Core volume to prevent cooling gas inside the RPV upper volume from entering into the Core.

Load SAS

• The RSS must make provision to replenish SAS that could potentially be damaged during the operating life of the plant.

Store SAS

• SAS must be stored inside the RSS Storage Containers in the RPV upper volume above the reactor centre reflector in a "ready to insert" state during plant operation.

Insert SAS

• Insert SAS into the centre reflector borings (for shutdown) under gravity when electrical power supply to the RSS Valve Actuators is removed.

Confirm SAS Insertion

• Provide a means of indicating that the SAS has been released from the SAS Storage Containers and that the Storage Container Valves are open.

Keep SAS Inserted

• Ensure that SAS are contained within the centre reflector borings, SAS Discharge Pipe and Sphere Return Pipe.

Absorb neutrons

• The main function of the RSS is to shut down the reactor through neutron absorption inside the reactor. The SAS contain B₄C to absorb the neutrons.

Check SAS Availability for Insertion

• Provision must be made to verify the capability to insert SAS.

Remove SAS

• Extract SAS from the centre reflector borings and pneumatically convey it back the feeder bin at the top of the reactor.

Contain SAS

• SAS must be contained within the system boundary during and after removal.

Confirm SAS Removal

• Provide a means of indicating that the SAS has been removed from the centre reflector borings and conveyed back to the SAS Storage Containers.

Unload SAS

• Provide a means of unloading SAS into a place from where it can be moved into storage.

Guide SAS

• Provide a positive guide to transfer SAS between the RPV (top) and Core Barrel Top Plate, between the Core Barrel Top Plate and Core Structures Ceramics, and between the Core Barrel and RPV (bottom) respectively.

13.1.4 Interfaces

The RSS interfaces with the following systems or components:

- Module Decontamination System
- Reactor Pressure Vessel
- Core Barrel Assembly
- Core Structures Ceramics
- Auxiliary Electrical Power System
- Equipment Handling System

- Reactor Building Structure
- Helium Leak Detection and Monitoring System
- Waste Handling System
- Automation System (AS)
- Heating, Ventilation and Air Conditioning (HVAC)
- In-Core Delivery System
- Fuel Handling and Storage System
- Compressed Air System

13.1.5 NGNP Operating Requirements

The DPP reactor operates at a power level of 400MWt with the core inlet and outlet temperatures at 500°C and 900°C respectively. This differs from the proposed NGNP core inlet and outlet temperatures of 350°C and 950°C respectively and a reactor power level of 500MWt. These operating conditions should not have a significant influence on the RSS under normal operation. This may however lead to higher SAS temperatures during accident conditions, which in turn would require additional qualification tests for application in the NGNP. The balance of the RSS system design should however remain unchanged for the NGNP.

13.2 Technology/Design Selection Status

The use of the RSS on the NGNP could demand additional qualification in some components of the RSS, as the RSS environment i.e. centre reflector boring could potentially be at a higher temperature and flux level during certain conditions.

The component that will mainly require possible further qualification is the SAS. Currently this component is made from graphite containing B_4C for neutron absorption. No alternative technologies will be considered at this point in time though.

13.1.6 Candidate Technologies – RSS

N/A

13.1.7 Decision Discriminators

N/A

13.1.8 Reference Design

The PBMR RSS will serve as the reference design for the NGNP.

13.1.9 Alternative for Further Evaluation

Not Applicable.

13.1.10 Down Selection Task

Not applicable.

13.3 TRL Status

The DPP RSS is currently at a TRL 6 based on the fact that operating experience exists for similar shutdown systems in other gas-cooled, graphite moderated reactor applications, in particular Fort Saint Vrain and the Japanese HTTR as well as results from the German HTR-Modul qualification programme. The DPP RSS will reach a TRL of 8 when HTF development and qualification tests as well as DPP testing have been completed.

Due to the NGNP's different operating envelope, additional validation for the SAS might be required as well as testing in an upgraded / revised HTF to bring the NGNP RSS from a possible TRL of 6 to a TRL of 7. The NGNP will then receive the RSS at a TRL of 7 and will be advanced to a TRL 8 during commissioning in the NGNP.

The TRL rating sheet for the RSS is shown in Appendix A.

13.4 Technology Development Road Map Summary

13.1.11 Overview

The RSS technology development road map shows the maturation tasks necessary to advance the RSS from its current TRL status to a TRL status of 8. The road map is divided into a DPP and a NGNP section. The roadmap shows that further SAS validation may be required for NGNP application due to the environmental differences that exist between the DPP and NGNP. During this maturation process, experience from the DPP (then already at a TRL 8) will be fed into the NGNP RSS maturation tasks to help advance the NGNP RSS from its current TRL 6 to a TRL of 8. An already developed technology for the RSS will be used for the NGNP and there will thus be no down selection in terms of potential new technologies but rather an evaluation of the suitability of the current technology for application in the NGNP. The technology development road map is shown in Appendix B.

13.5 Technology Maturation Plan Summary (Current TRL to TRL 8)

The DPP RSS is currently at a TRL of 6 and will achieve a TRL of 8 when HTF development and qualification tests as well as testing in the DPP have been completed. The qualification of the full-scale DPP RSS is achieved against a technology maturation plan that includes design, analysis, testing, inspection or a combination hereof.

In order to achieve qualification, the following different functional requirements have been identified for the RSS requiring verification. These functional requirements are as follows [13-4]:

- Maintain RPV pressure boundary
- Perform volume separation
- Store SAS
- Insert SAS
- Confirm SAS insertion
- Check SAS availability for insertion
- Remove SAS
- Confirm SAS removal
- Load SAS
- Unload SAS
- Keep SAS inserted
- Guide SAS
- Absorb neutrons
- Contain Helium

The qualification activities can be classified as one of the following, depending on the requirements of the specific function:

- Manufacturing
- Functional assessment
- Seismic assessment
- Environmental assessment

It is foreseen that certain components of the NGNP RSS will operate at higher temperatures and flux than in the DPP i.e. SAS and as a result additional qualification may be required for the SAS. The following tasks will aid in determining the extent of additional qualification required for the SAS for application in the NGNP:

• Design calculations to evaluate the operational environment of the RSS in the NGNP for Normal Operation, AOOs and DBA

Qualification of the DPP RSS will be achieved by means of testing, design or analysis or a combination of these actions. To achieve this, procedures and facilities such as the HTF are developed. Successful completion and demonstration of the maturation tasks in the HTF as well as the DPP will take the DPP RSS to a TRL of 8.

13.6 Inputs to CTF

It is not foreseen that any additional testing will be conducted in the CTF to mature the RSS technology to a TRL suitable for use in the NGNP. Should additional qualification of the SAS be required, it is likely that this will be done in the HTF.

13.7 References

- [13-1] PBMR Technical Description, Doc no.016956 Rev 5
- [13-2] NGNP CTF Feasibility and Recommendations
- [13-3] System Operational Description, Doc no. HTF-000000-225
- [13-4] Qualification Life Cycle Strategy, Doc no. 066776 Rev A
- [13-5] SAS Dosing Test, Doc no. PEL000180

APPENDIX A: TRL RATING SHEETS

Table A-1: TRL Rating Sheets for the RSS

TRL Rating Sheet							
Vendor Name: WECDocument Number: 007Revision: 0					Revision: 0		
□ Island □ Syster	n 🗹 S	Subsystem/Structur	re 🗆 C	ompoi	nent		Technology
Title: Reserve Shutdo	own Syste	em (RSS)					
Description: Reserve Shutdown Sy delivery and recovery	stem cons equipmer	ists of the Small ht; part of the Rea	Absorber S actor Unit S	Sphere Systen	es and th n.	neir a	ssociated storage,
Area(s): ☑ NHSS		HTS 🗆 HE	PS □	PCS	[∃ BO	Р
ISSCTBS: N/A		Parent: N/A			WBS:	N/A	
		Technology R	eadiness Le	evel			
	Next	_ower Rating Level	Calculat	ted R	ating	N	ext Higher Rating Level
Generic Definitions (abbreviated) Component o breadboard in environment		ent or system rd in relevant nent	Similar SSC in relevant environment in another application		Pilo dem envi	t/engineering scale nonstration in relevant ironment	
TRL 5 6			7				
Basis for Rating:Operating experience exists for similar shutdown systems in other gas-cooled, graphite moderated reactor applications, in particular Fort Saint Vrain and the Japanese HTTR as well as results from the German HTR-Modul qualification programme.The DPP RSS can be at a TRL-7 when the present HTF test program provides demonstration and a TRL-8 when DPP commissioning is complete.							
Outline of a plan to ge	t from cu	rrent level to nex	t level (Att	ach a	dditiona	l she	ets as needed)
Actions (list all)				Sch	edule		Cost (\$)
 Functional/Performance testing of the RSS i <u>SAS Valve actuation</u> <u>Insertion & transportation at 9Mpa, 700°</u> <u>Hot drop test (Pre-heated SAS at 900°C</u> <u>SAS thermal induced lock-up test in disc</u> Etc. 			n the HTF <u>C</u> harge pipe	FY 2012	2009 – I 2	ŦΥ	Refer to Section C1.1.4
DDN(s) supported: Nil							
SME Making Determi	nation: S.	Pieterse					
Date: September 2008	0	riginating Organi	ization: N/A	ł			

APPENDIX B: TECHNOLOGY DEVELOPMENT ROAD MAP

NGNP-CTF MTECH-TDRM-013

NGNP Technology Development Road Mapping Report Section 13: Reserve Shutdown System

Page 19 of 25

APPENDIX C: TECHNOLOGY MATURATION PLAN

TABLE OF CONTENTS

Section		Title	Page
C13	TECHNOLOGY (CURRENT TE	Y MATURATION PLAN FOR RSS RL TO TRL 8)	
C13.	1 TECHNO	LOGY MATURATION PLAN SUMMARY	
	(CURRE	NT TRL TO TRL 8)	
	C13.1.1 Objectiv	es	
	C13.1.2 Scope		
	C13.1.3 Anticipa	ted Schedule	
	C13.1.4 Overall	Cost	
C13.	2 TEST SPI	ECIFICATIONS	
	C13.2.1 Typical	RSS Test Specification	
	C13.2.1.1	Objectives	
	C13.2.1.2	Test Conditions	
	C13.2.1.3	Measured Parameters	
	C13.2.1.4	Test Deliverables	

C13 TECHNOLOGY MATURATION PLAN FOR RSS (CURRENT TRL TO TRL 8)

C13.1 TECHNOLOGY MATURATION PLAN SUMMARY (CURRENT TRL TO TRL 8)

C13.1.1 Objectives

The objective of the technology maturation plan is to mature the RSS technology from its current TRL to a TRL of 8 in order to qualify the technology ready for use in the DPP reactor.

C13.1.2 Scope

The qualification of the full-scale RSS involves a maturation process which includes testing, design and analysis. These maturation tasks are summarized as follows:

- Testing the RSS in its relevant operating envelope, as provided in the HTF, will verify that each component of the RSS subsystem performs within its design specifications.
- Design is used to qualify the RSS technology. Relevant design codes such as ASME III NB for pressure boundary components, ASME III NG for internals, ASME III NF for pipe supports and EJEMA 8 for bellows are used for this purpose.
- Analysis of the RSS and its subsystems is also used to qualify the RSS. This is done using relevant analysis procedures, methods and validated software.

As an example, **Table C-1** lists some of the maturation tasks required for each of the functional requirements (shown in bold) and also lists the maturation methods and maturation actions to mature the DPP RSS to a TRL of 8 [13-4].

Maturation task description	Maturation method	Maturation action
Store SAS		
Containers seismic analysis	Analysis	Seismic
Insert SAS		
Valve weld test	Test	Environmental
Test SAS insertion		
Open and close valve actuator	Test	Functional
Remove SAS		
Discharge pipe structural integrity	Test	Environmental
Keep SAS inserted		
Seismic analysis	Analysis	Seismic
Absorb neutrons		
Neutron analysis	Analysis	Functional
Maintain RPV pressure boundary		
Leak sensitivity analysis	Analysis	Functional
Support storage container		
Supplier QCP (ASME III NG)	Design	Manufacture

 Table C-1: Example of Maturation Tasks to mature the RSS to a TRL of 8.

C13.1.3 Anticipated Schedule

The testing is expected to last at least three years which will be followed by continuous lifecycle testing (availability, reliability, etc.).

C13.1.4 Overall Cost

The PBMR related cost is omitted due to business confidentiality.

C13.2 TEST SPECIFICATIONS

C13.2.1 Typical RSS Test Specification

A typical test specification [13-5] used to mature the RSS technology to a TRL of 7 is given below:

C13.2.1.1 Objectives

There were two main objectives with this test, namely:

- SAS sensing: investigate the SAS detection capability of the level probes.
- SAS dosing (insertion): to determine the dosing time of the RSS system by investigating and recording the status of the level probes for predetermined and repeatable durations of SAS dosing (insertion).

SAS transportation was done only to move the SAS back to the feeder bin and not to characterize transportation.

C13.2.1.2 Test Conditions

SAS dosing was done by inserting a dosing time value, in seconds, into the Supervisory Control and Data Acquisition (SCADA) module and then executing that. This execution then resulted in the SCADA opening the SAS valve and then closing it again after the set time value has been reached. This was done for dosing times ranging from 5 seconds to 14 seconds. It was intended that 5 repetitions per dosing time should be done to ensure repeatability of the results.

A full SAS load (feeder bin filled to 100 mm from transport line inlet) was used to do this test.

The test matrix (Table C-2:) lists all the test runs that were required by the Test Specification. The test numbers that were used are an extension of the overall test number. The "-001", "-002" up to "-010" correspond to a specific test condition while the "-01" up to "-05" at the end denotes the repetitions at these test conditions.

Test run number	Pressure	Temperature	Helium Flow	SAS dosing duration
	MPa	°C	kg/s	seconds (s)
HTF-TST000035-001-01 to 05	1	ambient	only to transport SAS	5
HTF-TST000035-002-01 to 05	1	ambient	only to transport SAS	6
HTF-TST000035-003-01 to 05	1	ambient	only to transport SAS	7
HTF-TST000035-004-01 to 05	1	ambient	only to transport SAS	8
HTF-TST000035-005-01 to 05	1	ambient	only to transport SAS	9
HTF-TST000035-006-01 to 05	1	ambient	only to transport SAS	10
HTF-TST000035-007-01 to 05	1	ambient	only to transport SAS	11
HTF-TST000035-008-01 to 05	1	ambient	only to transport SAS	12
HTF-TST000035-009-01 to 05	1	ambient	only to transport SAS	13
HTF-TST000035-010-01 to 05	1	ambient	only to transport SAS	14

 Table C-2: Test Matrix.

C13.2.1.3 Measured Parameters

During the test runs the instruments listed in Table C-3 were logged on the data historian.

Instrument No.	Position/Description	Units	Range	Class	Accuracy	Samples/s
Z ALGC20 CL001	Feeder Bin Level	ohm	0 - 1000	С	N/A	1
Z ALGC20 CL008	Feeder Bin Level	ohm	0 - 1000	С	N/A	1
Z ALGC20 CL002	Storage Container Level	ohm	0 - 1000	C	N/A	1
Z ALGC20 CL003	Storage Container Level	ohm	0 - 1000	C	N/A	1
Z ALGC20 CL004	Storage Container Level	ohm	0 - 1000	C	N/A	1
Z ALGC20 CL005	Discharge Vessel Level	ohm	0 - 1000	C	N/A	1
Z ALGC20 CL006	Discharge Vessel Level	ohm	0 - 1000	C	N/A	1
Z ALGC20 CE101	Storage Container Valve PSU Voltage	V	0 - 200	C	N/A	1
Z ALGC20 CE202	Storage Container Valve PSU Current	A	0-2.5	C	N/A	1
Z ALGC20 CF001.PV	Sphere Transport Supply Line Flow rate	nm3/h	0 - 2100	C	N/A	1

Table C-3: List of Instruments used for Data Capturing.

C13.2.1.4 Test Deliverables

No data analysis was requested. The data was only packaged and presented in graphed form as requested in the Test Specification.

NGNP-CTF MTECH-TDRM-014 Revision 0

November 2008

NGNP and Hydrogen Production Conceptual Design Study

NGNP Technology Development Road Mapping Report

Section 14: Reactivity Control System

Function		Printed Name and Signature	Date
Author	Name:	André van der Walt	November 18,
	Company:	M-Tech Industrial	2008
Reviewer	Name:	Steven Pieterse	November 20,
	Company:	Pebble Bed Modular Reactor	2008
Reviewer	Name:	Pieter Coetzer	November 20,
	Company:	Pebble Bed Modular Reactor	2008
Approval	Name:	Jan van Ravenswaay	November 20,
	Company:	M-Tech Industrial	2008

APPROVALS

Westinghouse Electric Company LLC Nuclear Power Plants Post Office Box 355 Pittsburgh, PA 15230-0355

©2008 Westinghouse Electric Company LLC All Rights Reserved

LIST OF CONTRIBUTORS

Name and Company	Date
André van der Walt – M-Tech Industrial (Pty) Ltd.	September 10, 2008
Steven Pieterse – PBMR (Pty) Ltd.	September 10, 2008
Pieter Coetzer – PBMR (Pty) Ltd.	September 10, 2008
Renée Greyvenstein – PBMR (Pty) Ltd.	September 10, 2008
Roger Young – PBMR (Pty) Ltd.	September 10, 2008

BACKGROUND INTELLECTUAL PROPERTY CONTENT

Section	Title	Description
N/A		

REVISION HISTORY

RECORD OF CHANGES

Revision No.	Revision Made by	Description	Date
А	André van der Walt	Comments Review	September 12, 2008
В	André van der Walt	Formal Review	September 23, 2008
С	André van der Walt	Pending incorporation of final comment	October 07, 2008
D	André van der Walt	Final comments review	October 29, 2008
0	André van der Walt	Document for release to WEC	October 30, 2008

DOCUMENT TRACEABILITY

Created to Support the Following Document(s)	Document Number	Revision
NGNP and Hydrogen Production Pre-conceptual Design Report	NGNP-01-RPT-001	0

TABLE OF CONTENTS

	Se	ection	Title	Page
14	REA	CTIVI	ГҮ CONTROL SYSTEM	10
	14.1	RCS D	ESCRIPTION/ FUNCTION AND OPERATING REQUIREMENTS	10
		14.1.1	Description	10
		14.1.2	RCS in the HTF	13
		14.1.3	Functions	14
		14.1.4	Interfaces	16
		14.1.5	Operating Conditions	16
	14.2	TECHN	OLOGY / DESIGN SELECTION STATUS	17
		14.2.1	Candidate Technologies – RCS	17
		14.2.2	Decision Discriminators	17
		14.2.3	Reference Design	18
		14.2.4	Alternatives for Further Evaluation	18
		14.2.5	Down Selection Task	18
	14.3	TRL R	ATING	18
	14.4	TECHN	OLOGY DEVELOPMENT ROAD MAP SUMMARY	19
		14.4.1	Overview	19
	14.5	TECHN	OLOGY MATURATION PLAN SUMMARY (CURRENT TRL 6 TO TRL 7)	19
		14.5.1	Maturation plan for the PBMR DPP RCS	20
		14.5.2	Tasks to be performed to qualify the materials used for the control rod class	lding
			in the NGNP	20
	14.6	INPUTS	то СТГ	21
	14.7	Referi	ENCES	21

LIST OF TABLES

Table A-1: TRL Rating Sheet of the RCS	24
Table C-1: Groups of tests that need to be performed to verify critical RCS functions	29
Table C-2: Test Conditions	31

LIST OF FIGURES

Figure 1	14-1: Layout and position of the Reactivity Control System.	12
Figure 1	14-2: Photo of the HTF tower where the RCS test setup is located	14
Figure	B-1: Technology Development Road Map of the RCS	26

ACRONYMS

Acronym	Definition
AI	Inner Annulus (active cooling piping)
AMS	Activity Measurement System
AO	Outer Annulus (active cooling piping)
AOO	Anticipated Operational Occurrence
AS	Automation System
ASME	American Society of Mechanical Engineers
AVR	Arbeitsgemeinschaft Versuchs-Reaktor
BOP	Balance of Plant
BUMS	Burn-up Measurement System
СВ	Core Barrel
CCS	Core Conditioning System
CEA	Commissariat à l'Énergie Atomique
CFD	Computational Fluid Dynamics
CHE	Compact Heat Exchanger
CIP	Core Inlet Pipe
CO2	Carbon Dioxide
COC	Core Outlet Connection
COP	Core Outlet Pipe
COTS	Commercial Off The Shelf
CRADA	Co-operative Research and Development Agreement
CRD	Control Rod Drive
CSC	Core Structure Ceramics
CTF	Component Test Facility
CTF	Component Test Facility
CUD	Core Unloading Devices
DAU	Data Acquisition Unit
DBA	Design Base Accident
DBE	Design Base Event
DDN	Design Data Need
DFC	Depressurized Forced Cooling
DLOFC	De-pressurized Loss of Forced Cooling
DOE	Department of Energy
DPP	Demonstration Power Plant
DRL	Design Readiness Level
DWS	Demineralized Water System
ELE	Elecrolyser System
EM	Evaluation Model
EMB	Electomagnetic Bearing
EOFY	End of Fiscal Year
EPCC	Equipment Protection Cooling Circuit
EPCT	Equipment Protection Cooling Tower
F&OR	Functional and Operational Requirements
FHS	Fuel Handling System

FHSS	Fuel Handling and Storage System
FIMA	Fissions per Initial Metal Atoms
FMECA	Failure Modes, Effects and Criticality Analysis
FS	Fuel Spheres
FTA	Fault Tree Analysis
FUS	Feed and Utility System
H2	Hydrogen
H2SO4	Sulfuric Acid
HC	Helium Circulator
He	Helium
HETP	Height Equivalent of the theoretical Plate
HGD	Hot Gas Duct
HI	Hydro-Iodic
HLW	High Level Waste
HPB	Helium Pressure Boundary
HPC	High Pressure Compressor
HPS	Helium Purification System
HPS	Hydrogen Production System
HPT	High Pressure Turbine
HPU	Hydrogen Production Unit
HRS	Heat Removal System
HTF	Helium Test Facility
HTGR	High Temperature Gas-Cooled Reactor
HTR	High Temperature Reactor
HTS	Heat Transport System
HTSE	High Temperature Steam Electrolysis
HTTR	High Temperature Test Reactor
HVAC	Heating Ventilation and Air Conditioning
HX	Heat Exchanger
HyS	Hybrid Sulfur
I&C	Instrumentation and Control
12	lodine
ID	Inner Diameter
IHX	Intermediate Heat Exchanger
ILS	Integrated Laboratory Scale
I-NERI	International Nuclear Energy Research Initiative
INL	Idaho National Laboratory
INL	Idaho National Laboratory
IPT	Intermediate Pressure Turbine
ISR	Inner Side Reflector
K-T	Kepner-Tregoe
KTA	German nuclear technical committee
LEU	Low Enriched Uranium
LOFC	Loss of Forced Cooling
LPT	Low Pressure Turbine
MES	Membrane-electrode assembly
MTR	Material Test Reactor

NAA	Neutron Activation Analysis
NCS	Nuclear Control System
NGNP	Next Generation Nuclear Plant
NHI	Nuclear Hydrogen Initiative
NHS	Nuclear Heat Supply
NHSS	Nuclear Heat Supply System
NNR	National Nuclear Regulator
NRG	Nuclear Research and consultancy Group
NRV	Non-Return Valve
O2	Oxygen
OD	Outer Diameter
PBMR	Pebble Bed Modular Reactor
PCC	Power Conversion System
PCDR	Pre-Conceptual Design Report
PCHE	Printed Circuit Heat Exchanger
PCHX	Process Coupling Heat Exchanger
PCS	Power Conversion System
PFHE	Plate Fin Heat Exchanger
PHTS	Primary Heat Transport System
PIE	Post-irradiation Examination
PLOFC	Pressurized Loss of Forced Cooling
POC	Power Conversion System
PPM	Parts per million
PPU	Product Purification Unit
PPWC	Primary Pressurized Water Cooler
QA	Quality Assurance
RAMI	Reliability, Availability, Maintainability and Inspectability
RC	Reactor Cavity
RCCS	Reactor Cavity Cooling System
RCS	Reactivity Control System
RCSS	Reactivity Control and Shutdown System
RDM	Rod Drive Mechanism
RIM	Reliability and Integrity Management
RIT	Reactor Inlet Temperature
RM	Road Map
ROT	Reactor Outlet Temperature
RPS	Reactor Protection System
RPT	Report
RPV	Reactor Pressure Vessel
RS	Reactor System
RSS	Reserve Shutdown System
RUS	Reactor Unit System
SAD	Acid Decomposition System
SAR	Safety Analysis Report
SAS	Small Absorber Spheres
SG	Steam Generator
SHTS	Secondary Heat Transport System

S-I	Sulfur Iodine
SiC	Silicon Carbide
SNL	Sandia National Laboratory
SO2	Sulfur Dioxide
SOE	Sulfuric Oxide Electrolyzers
SOEC	Sulfuric Oxide Electrolyzers Cells
SR	Side Reflector
SSC	System Structure Component
SSCs	Systems, Structures and Components
SSE	Safe Shutdown Earthquake
SUD	Software Under Development
TBC	To Be Confirmed
TBD	To Be Determined
TDL	Technology Development Loop (As incorporated in Concept 1)
TDRM	Technology Development Road Map
TER	Test Execution Report
THTR	Thorium High Temperature Reactor
TRISO	Triple Coated Isotropic
TRL	Technology Readiness Level
TRM	Technology Road Map
UCO	Uranium Oxycarbide
UO2	Uranium Dioxide
USA.	United States of America
V&V	Verification and Validation
V&Ved	Verified and Validated
VLE	Vapor-Liquid Equilibrium
WBS	Work Breakdown Structure
WEC	Westinghouse Electric Company

SUMMARY AND CONCLUSIONS

The Reactivity Control System (RCS) has been identified as a critical system in the development of the Next Generation Nuclear Plant (NGNP). The RCS forms part of the Reactivity Control and Shutdown System, and serves the purpose of controlling the reactivity in the core, and shutting the reactor down quickly. The NGNP WEC-team envisages to utilise a RCS similar to that of the PBMR PBMR DPP.

Operating experience exists on reactivity control systems similar to that of the RCS on other Gas Cooled Reactors. The RCS development for the PBMR Demonstration Power Plant is nearing basic design completion, with a number of development tests being performed, resulting in a TRL rating of 6.

A number of development and qualification tests will be performed on the Helium Test Facility (HTF) in South Africa before the RCS can be commissioned in the PBMR DPP. Upon the completion of these tests, the RCS will have a TRL Rating of 7. It has however been identified that the environment in which the RCS must operate in the NGNP, may be at a higher temperature than that of the PBMR DPP. For this reason it is possible that alternative materials may need to be investigated for certain components of the RCS.

Carbon composite materials have been identified as potential candidate materials for the components in question. Decision discriminators have been identified to aid in the selection between the conventional metallic materials and the alternative candidate materials. The TRL Rating of the candidate materials has however not yet been fixed or validated. This can only be done once more analyses have been performed to determine what the exact requirements of the materials would be for application in the NGNP.

A Technology Development Roadmap (TDRM) has been compiled to outline the process that needs to be followed for the RCS to obtain a TRL Rating of 8. The TDRM indicates that the experience obtained in the development of the RCS for the PBMR DPP can be fed back into the development of the RCS that may need to be done for application in the NGNP. Any additional qualification tests for temperature effects that may need to be performed for the NGNP RCS can be conducted at the HTF, depending on the details of the test requirements. Testing required in an environment where radiation is present will have to be performed outside the HTF. It is however not foreseen at this stage that any RCS tests will need to be performed in the Component Test Facility (CTF).

The PBMR NGNP RCS is expected to be operated at slightly different conditions than PBMR DPP and hence detailed system level analyses are required to confirm the operating envelope. It is noted that the technology roadmap and maturation plans will need to be adjusted as new DDNs evolve as part of the conceptual basic and final designs. *NGNP-CTF MTECH-TDRM-014-Rev0-final.doc*

14 REACTIVITY CONTROL SYSTEM

14.1 RCS Description/ Function and Operating Requirements

14.1.1 Description

The RCS is used to control the reactivity in the core, to quickly shut the reactor down and to keep it in a shutdown state. The RCS consists of 24 identical units, comprising one group of 12 control rods and a second group of 12 shutdown rods. The only difference between the control rods and the shutdown rods are the length of the chain from which the rods are suspended. The longer length of the shutdown rod chains allows these rods to protrude deeper into the side reflector borings than the control rods, thereby providing absorption over the full active length of the core. The control system moves each group of rods alternatively to an equal depth into the side reflector. Following a scram or shutdown rods are fully inserted into the top part of the reflector whereas the shutdown rods are fully inserted into the reflector.

The RCS rods are raised and lowered mechanically inside the borings in the side reflector. The system will also hold it steady in any position over its entire range of travel. Insertion of the rods is by gravity when power to the drive motors is cut (scram activation). During this event, the drop velocity of the RCS units is limited to a pre-determined value. The safety function of ensuring hot shutdown by means of the RCS is performed by inserting the control rods into the boring channels provided in the side reflector.

Each rod consists of six segments containing absorber material in the form of sintered B_4C rings between two coaxial claddings. Gaps between the cladding and B_4C rings prevent constraint forces from arising due to radiation-induced swelling of the B_4C . Pressure equalizing openings expose the B_4C to the surrounding coolant gas to avoid any pressure build-up.

The individual segments are connected by means of articulated joints and suspended from one another to form a complete rod. This configuration minimizes torsion caused by asymmetric temperature profiles across the rod. Each segment joint is held in place by mechanical stops.

The rods are freely suspended in the side reflector boring by chains. A relatively large annular gap (25 mm) exists between the rod and the side reflector boring sleeve to avoid jamming of the rods resulting in no guide being required between the Core Structure Ceramics (CSC) and the rods. The rod is cooled inside and outside by a stream of cold gas to remove the heat generated in the absorber during normal operations.

The chains link the rods to the Rod Drive Mechanism (RDM) that is used to raise and lower the rods in the rod channels and to hold it at any position in its travel range. The RDM's

are installed above the core and are integrated into the Reactor Pressure Vessel (RPV) head. The essential parts of the drive mechanisms are:

- A link chain to connect the drive mechanism and rod. When the rod is raised, the chain is stored in a loose pile inside a chain container from which it is extracted when the rod is lowered.
- An electric drive motor, which holds the rod in position or moves the rod up or down.
- A gearbox, comprising a reducing bevel gear and spur gear in between a chain sprocket and the drive motor.
- An eddy current brake with permanent magnets, which is integrated as part of the gearbox to limit the drop velocity of the rod in the case of a reactor SCRAM.
- A shock absorber to absorb the kinetic energy of the inserted rod and the rotating masses (installed at the drive-side end of the link chain) in case of a reactor SCRAM.
- A rod position indicator as well as proximity sensors for the upper and lower limit positions to indicate fully inserted and fully extracted positions of the rod.

A secondary shock absorber is installed at the bottom of each of the side reflector borings to absorb the impact and protect the graphite blocks of the side reflector in the unlikely event of a rod becoming disengaged from the link chain and dropping to the bottom of the boring.

Figure 14-1: Layout and position of the Reactivity Control System.

14.1.2 RCS in the HTF

One full scale RCS shutdown unit will be accommodated in the HTF in the form of the RCS test set-up. The test set-up will simulate the steady state environment of the PBMR RCS during normal and abnormal conditions.

The main features of the RCS test set-up are as follows:

- 1) Temperatures, pressure and flow rates are adjustable through six inlet channels to create representative environments.
- 2) Longitudinal temperature distribution along the length of the rod channel (6 zones over the length of the rod representing temperature variations along the length of the side reflector borings).
- 3) Radial temperature distribution on the circumference of the rod channel (6 zones representing a side reflector boring).
- 4) Rod internal heating simulating neutronic heating due to neutron absorption.
- 5) Simulation of the PBMR PBMR DPP demonstration plant environment conditions at the following positions:
 - a) Upper reactor citadel.
 - b) Reactor pressure vessel (RPV) top volume.
 - c) Drive motor housing.
 - d) Rod drive mechanism (RDM) housing.
 - e) Side reflector boring.
 - f) Side reflector boring bottom volume (position of secondary shock absorber).
- 6) Measure vibration of the rod inside the channel.

The RCS test set-up will be utilised to verify the performance of the different subsystems and components integrated into the RCS, at certain operating conditions. The HTF main loop will create the required conditions in the RCS test set-up for the simulation of PBMR conditions.

Each of the respective supply lines from the main loop of the HTF will be utilised in a specific part of the RCS test set-up to simulate the different conditions in the PBMR.

Figure 14-2: Photo of the HTF tower where the RCS test setup is located.

14.1.3 Functions

Perform Volume Separation

• The RCS interfaces with both the RPV and the Core. As a result one of the functions of the RCS is to provide separation between the upper RPV volume and the Core volume to keep cooling gas inside the upper RPV volume from entering into the Core.

Confine Process Gas and Contaminants

• In order to keep the dose to the public low, the Reactor gasses need to be confined inside the Reactor.

Prevent Air Ingress

• Air ingress into the Core at elevated temperatures is detrimental to the CSC and as a result the amount of air that enters the Core during an event that the Reactor pressure boundary is breached needs to be limited as far as possible.

Prevent Damage to CSC

• The RCS shall not damage the CSC during normal operation (e.g. rod scuffing) or as a result of RCS failures (e.g. rod drop).

Absorb neutrons

• The main function of the RCS is to perform reactivity control through neutron absorption inside the reactor. The RCS rods contain sintered B4C rings to absorb the neutrons.

Maintain Rod Position

- The RCS shall stop and hold a rod in position when commanded to do so.
- When the capability to hold the RCS rod in position fails, it must always fail to the fully inserted position.

Change Rod Position

• The RCS shall move the rod to any position in the entire range of travel of the rod when commanded to do so by the Automation System (AS).

Perform Emergency Shutdown

• The RCS rods shall be fully inserted under gravity from any stationary position in its entire range of travel when no electrical power is supplied to the RCS (SCRAM).

Guide rods

• A positive guide function must be provided to guide the rods in the cavity between the RPV and the core during installation of the rods.

Monitor and Communicate the RCS Status

- The RCS must detect that the control and shutdown rods have been fully inserted and communicate its status to the Automation System.
- The RCS must detect that the control and shutdown rods have been fully extracted and communicate its status to the Automation System.
- The RCS must continuously monitor and report to the Automation System the position of each rod.
- The RCS must detect the status of the rod (stuck or free running).
- The RCS must continuously monitor the current system health of the RCS system and communicate it back to the Automation System. It must also alarm situations where the RCS has deteriorated to such an extent that it starts to operate outside its normal operating parameters.

14.1.4 Interfaces

The RCS interfaces with the following systems or components:

- Module Decontamination System.
- Reactor Pressure Vessel.
- Core Barrel Top Plate.
- Core Structure Ceramics.
- Auxiliary Electrical Power System.
- Equipment Handling System.
- Reactor Building Structure.
- Helium Leak Detection and Monitoring System.
- Waste Handling System.
- Automation System (AS).
- Heating, Ventilation and Air Conditioning (HVAC).

14.1.5 Operating Conditions

The RCS will be subjected to the reactor core inlet and outlet temperatures. The NGNP nominal operating conditions are:

- Nominal outlet temperature of 950°C.
- Nominal inlet temperature of 350°C.
- Nominal Reactor Power level of 500 MWt.
- Nominal Helium pressure of 9 MPa.
- Service Life:
 - Non-replaceable components: 60 equivalent full-power years.
 - Replaceable components:
 - Minimum: [15] equivalent full-power years.
 - Target: [20] equivalent full-power years.

The RCS operating conditions for the NGNP are expected to be as follows:

- 750°C maximum normal operating temperature based on PBMR DPP temperatures plus 50°C (0).
- For DBA temperatures up to 1000°C are projected.
- The RCS cladding and joints are estimated to be exposed to a neutron fluence of up to $5x10^{21}$ n/cm2 (E > 0.1 MeV) (about 3.6dpa) for the NGNP design at 60 years. The estimate is based on PBMR DPP fluence +25% multiplied by 1.5 for NGNP fluence (0).

The different postulated plant transients will need to be analysed for the above reactor design in order to determine whether or not the current design will envelope these transients.

14.2 Technology / Design Selection Status

The PBMR DPP RCS technology will be used in the NGNP. The PBMR DPP RCS is nearing the completion of its basic design phase while development tests are also being performed.

The use of the PBMR DPP RCS on the NGNP could demand further development in some materials of the RCS, as the RCS operating environments could potentially be at higher temperatures during certain plant conditions e.g. DBA's. The component that mainly needs possible further development is the control rod cladding used to contain the B₄C rings. Currently this component is made from Incoloy 800H. Other candidate materials need to be considered for this component, with potential candidate materials already having been identified.

14.2.1 Candidate Technologies – RCS

The candidate technologies currently under consideration are:

- Conventional metallic rods as being developed for the PBMR DPP.
- Non-metallic, carbon composite (e.g. SiC/SiC) control rods.
- Carbon Fiber Reinforced Composites (CFRC)

14.2.2 Decision Discriminators

Design / Technology development

The primary decision discriminators are the temperature and fluence to which the control rods will be subjected during normal as well as accident conditions. These discriminators will determine whether the conventional material (i.e. the material used for the PBMR DPP RCS) can be used, or whether it will be required to investigate alternative materials.

Since conventional metallic material will be used in the PBMR DPP RCS and its application validated by means of development and qualification tests, the potential risk of using this material should be lower, provided the operating envelope for the two applications are the same.

Operations and Maintenance

The influence that each of the materials could potentially have on the reliability, availability and maintainability of the RCS, will need to be evaluated. The potential operation and maintenance risk also needs to be determined.

Life Cycle Cost

The total system life cycle cost needs be evaluated.

A trade-off study needs to be performed, weighing up the difference in manufacturing costs against the operating and maintenance costs for the different solution.

Manufacturing and Availability

The manufacturing capabilities as well as the materials availability need to be considered in the selection of the material.

14.2.3 Reference Design

The PBMR PBMR DPP RCS will serve as the reference design for the NGNP.

14.2.4 Alternatives for Further Evaluation

Control rod (cladding) materials, which include:

- SiC/SiC control rods.
- CFRF control rods.
- Conventional metallic control rods as applied in the PBMR DPP RCS design (Incoloy 800H).

14.2.5 Down Selection Task

The final control rod design for the NGNP RCS will be done during the basic design phase, based on available material data, calculated operating and accident conditions for the NGNP RCS as well as prototype testing.

The following tasks will aid in selecting the most appropriate material:

- Design calculations to evaluate the operational environment of the RCS in the NGNP for Normal Operation, AOOs and DBA;
- Perform a reliability, availability and maintainability analysis;
- Perform life cycle cost analysis;
- Establish suppliers availability; and
- Perform trade off studies between the cost and impact on schedule based on the selection of each material.

14.3 TRL Rating

The NGNP RCS is currently rated at a Technology Readiness Level of 6, based on the fact that operating experience exists for similar reactivity control systems in other gas-cooled, graphite moderated reactor applications. The applicable TRL sheets are attached in Appendix A. *NGNP-CTF MTECH-TDRM-014-Rev0-final.doc* 10/27/2008

Since the NGNP will operate at 500MWt, instead of 400MWt as in the case of the PBMR PBMR DPP, the RCS may be required to operate in an environment falling outside the material qualification limits of the control rod cladding. Further material qualification may therefore be required for the NGNP application. Candidate materials have been defined as potentially acceptable technologies. The TRL Rating for the materials used on the NGNP RCS will only be determined once the requirements for the NGNP RCS have been confirmed through analyses.

14.4 Technology Development Road Map Summary

14.4.1 Overview

Since the RCS that is being developed for the PBMR PBMR DPP will be used in the NGNP, no decision criteria are required for the selection of the integrated reactivity control system technology. However, design calculations could prove it necessary to evaluate alternative materials for the control rod cladding, for the RCS application in the NGNP. The RCS for the PBMR DPP is at a TRL Rating of 6. Possible candidate materials have been identified for the control rod claddings for the RCS for application in the NGNP.

14.5 Technology Maturation Plan Summary (Current TRL 6 to TRL 7)

The PBMR DPP RCS is currently at a TRL Rating of 6, and will reach a TRL Rating of 7 after HTF development and qualification tests have been completed.

It is envisaged that the NGNP RCS will operate at higher temperatures and fluence than in the PBMR PBMR DPP. Material selection and qualification could therefore be required for the control rod cladding. The alternative materials is not on a validated TRL level, since further analyses needs to be performed to determine the exact requirements of the control rod cladding in the NGNP.

Before the alternative materials can be incorporated into the NGNP RCS design, material qualification tests needs to be performed. After the required material qualification tests have been completed, the alternative material can be incorporated into RCS design for the NGNP. This design can then be regarded to be on a TRL Rating of 6.

Only certain tests performed to mature the PBMR DPP RCS to a TRL Rating of 7 may need to be repeated with NGNP RCS design with the possible alternative material. Therefore a number of tests which are to be performed for the PBMR PBMR DPP RCS are not expected to be repeated for NGNP RCS. The technology maturation plan can therefore be divided into:
- Tasks to be performed to mature the PBMR PBMR DPP RCS from its current TRL to a TRL Rating of 7; and
- Tasks to be performed to qualify the materials used for the control rod cladding in the NGNP and tasks to be repeated to mature the PBMR DPP RCS design, with the material selected for the NGNP, to a TRL Rating of 7.

14.5.1 Maturation plan for the PBMR DPP RCS

The maturation plan of the RCS for the PBMR DPP consists of a number of qualification actions that are aimed at validating certain functions of the RCS. The qualification activities can be classified as one of the following, depending on the requirements of the specific function:

- Manufacturing Inspection
- Functional Assessment
- Environmental Assessment or
- Seismic Assessment

Each of the functions can be verified by means of design, analysis, testing, inspection or a combination hereof. The different functions that will require verification include the following:

- Perform Volume separation
- Confine Process Gas and Contaminants
- Prevent Air Ingress
- Prevent Damage to CSC
- Absorb neutrons
- Maintain Rod Position
- Change Rod Position
- Perform Emergency Shutdown
- Guide rods
- Monitor and Communicate the RCS Status

14.5.2 Tasks to be performed to qualify the materials used for the control rod cladding in the NGNP

Since the specific requirements of the materials are not yet clearly defined, no such qualification tasks can yet be fixed in a plan. Some tests may need to be repeated in the HTF for the selected material of the control rod cladding to ensure that the functional requirements of the RCS are still fulfilled for the new material. Tasks required for qualification of the materials and integrated testing of the NGNP RCS could include, but is not limited to, the following:

1) A review of the adequacy of the Alloy 800H material for the control rods is required for the NGNP application.

- 2) Modeling is required of the Inner Side Reflector (ISR) to determine the fluences experienced by the control rods and chains for the NGNP application.
- 3) A modeling study to verify the temperature of the RCS control rods and chains needs to be performed for the NGNP design.
- 4) A study to determine qualification testing and procedures for the components of the RCS is needed for the NGNP design. These include tests that need to be repeated in the HTF, possibly at higher temperatures. This could include:
 - a) SCRAM tests.
 - b) Rod temperature distribution (thermal bending) tests.
- 5) Irradiation testing at the temperatures that is required in the NGNP.
- 6) Material characterization of the selected material in and outside a Helium environment.
- 7) Structural ageing tests of selected material due to radiation, Helium and elevated temperatures.

Note that the maturation plan for the NGNP RCS is not elaborated in Appendix C, since test specifications have not yet been developed.

14.6 Inputs to CTF

It is not envisaged that any of the tests will be performed on the CTF. Development and qualification tests of the RCS will be performed on the Helium Test Facility (HTF) or the PBMR PBMR DPP. Qualification of materials can be performed by means of laboratory scale tests. Once the selected materials have been incorporated into the RCS design, the affected components, sub-system or integrated system can once again be tested on the HTF.

14.7 References

- [14-1] HTF-000000-225, Rev 1A: High Temperature High Pressure Helium Test Facility System Operational Description.
- [14-2] 016974, Rev 1D: Reactivity Control System Development Specification.
- [14-3] RCSS-A-000000-111/1, Rev 1: RCS HTF Movement and SCRAM Test Specification
- [14-4] 001929-4, Rev 2: PBMR Safety Analysis Report: Reactor Unit and Fuel.
- [14-5] 016956 Rev 5: Technical Description of the PBMR Demonstration Power Plant.

Page 21 of 33

- [14-6] 066780 Rev A: Qualification Test and Analysis Requirements.
- [14-7] 066778 Rev A: Qualification Life Cycle Strategy.

- [14-8] NGNP-NHS-RPT.000.S05: NGNP Conceptual Design Study Composites R&D Technical Issues
- [14-9] TDRM-014: Reactivity Control System Visio Road Map

APPENDIX A: TRL RATING SHEETS

Table A-1: TRL Rating Sheet of the RCS

TRL Rating Sheet				
Vendor Name: WECDocument Number: 006Revision: 0			Revision: 0	
□ Island □ System	m ØSubsystem/Structu	re 🛛 Compo	nent	□ Technology
Title: Reactivity Contro	ol System (RCS)			
Description: The Reactivity Control S Unit System.	System consists of the Contr	ol Rods and the Sh	nutdown	Rods; part of the Reactor
Area(s): I NHSS		PS 🗆 PCS	C	BOP
ISSCTBS: N/A	Parent: N/A		WBS: N	N/A
	Technology R	Readiness Level		
	Next Lower Rating Level	Calculated R	ating	Next Higher Rating Level
Generic Definitions (abbreviated)	Component or system breadboard in relevant environment	Similar SSC in re environment in a application	elevant Inother	Pilot/engineering scale demonstration in relevant environment
TRL	5	6		7
Basis for Rating: There is operating experience with similar reactivity control systems in other gas-cooled graphite- moderated reactors, particularly Fort Saint Vrain, Japanese HTTR and the German THTR, but those are not prototypical of the PBMR. The RCS can have a TRL-7 when the present HTF test program provides demonstration. The TRL can be elevated to a TRL-8 when PBMR PBMR DPP operates. For the NGNP analyses need to be performed to determine whether the operating conditions are beyond the material capabilities of the PBMR DPP RCS. If this proofs to be the case, the NGNP RCS will probably be on a TRL-5, with further material qualification required to progress it to TRL-6.				
Outline of a plan to get from current level to next level (Attach additional sheets as needed)				
Actions (list all)		Sche	dule	Cost (K\$)
• <u>Functional/performance testing in</u> <u>HTF</u>		<u>n the</u> FY 2 2012	2009 – F	Y Refer to Section A
DDN(s) supported: D	DN COMP-01-02 RC	S Materials Cha	racteriza	tion.
SME Making Determi	ination: D,T, Allen			
Date: 22Aug07Originating Organization: Technology Insights			ghts	
NGNP-CTF MTECH-TDRM-01	NGNP-CTF MTECH-TDRM-014-Rev0-final.doc 10/27/2008			

10/27/2008

APPENDIX B: TECHNOLOGY DEVELOPMENT ROAD MAP

NGNP-CTF MTECH-TDRM-014

NGNP Technology Development Road Mapping Report Section 14: Reactivity Control System

Page 26 of 33

10/27/2008

Figure B-1: Technology Development Road Map of the RCS

APPENDIX C: TECHNOLOGY MATURATION PLAN

TABLE OF CONTENTS

Section	Title	Page
C1 TECHNOLO	DGY MATURATION PLAN FOR PBMR DPP RCS (TRL 6 TO TRL	7) 29
C1.1 TECH	NOLOGY MATURATION PLAN SUMMARY (TRL 6 TO TRL 7)	29
C1.1.1	Objectives	29
C1.1.2	Scope	29
C1.1.3	Anticipated Schedule	30
C1.1.4	Overall Cost	30
C1.2 TEST S	SPECIFICATIONS	30
C1.2.1	RCS Test Specification #1: Control Rod SCRAM (WEC TS RCS-001)	31

10/27/2008

C1 TECHNOLOGY MATURATION PLAN FOR PBMR DPP RCS (TRL 6 TO TRL 7)

C1.1 TECHNOLOGY MATURATION PLAN SUMMARY (TRL 6 to TRL 7)

C1.1.1 Objectives

The objective of the maturation plan is to advance the RCS from a TRL Rating of 6 to a TRL Rating of 7. The plan proposes a number of tests aimed at verifying certain critical functions of the RCS prior to it being installed and commissioned in the PBMR DPP.

C1.1.2 Scope

The tests that have been defined in support of the verification of the functions that needs to be performed for the RCS are listed in Table C-1 below. These are not individual tests (or test specifications), but rather a general outline of the tests. An example of a test specification is shown in C1.2.1.

Qualification Test	Verification	Qualification Activity
	Method	
Confine Process Gas and Contaminants		
Pressure Test	Test	Functional Assessment
Volume Separation		
Volume Separation verification	Inspection	Manufacturing Inspection
Perform Emergency shutdown		
Verification of control and shutdown rods	Analysis	Functional Assessment
insertion upon power loss		
Verification of control and shutdown rods	Test	Functional Assessment
insertion upon power loss		
Control rod withdrawal speed		
Mechanical limit	Test	Functional Assessment
Software limit	Test	Functional Assessment
Control Rod Status		
Control rod status	Analysis	Functional Assessment
Control rod status	Test	Functional Assessment
Control rod fully inserted	Analysis	Functional Assessment
Control rod fully inserted	Test	Functional Assessment
Factory Acceptance Testing of RCS	Test	Functional Assessment
component assembly		

Table C-1: Groups of tests that need to be performed to verify critical RCS functions.

NGNP-CTF MTECH-TDRM-014-Rev0-final.doc

10/27/2008

Auglification Test	Varification	Qualification Activity
Quantication Test	vernication	Qualification Activity
	Method	
Prototype production dry run	Inspection	Manufacturing Inspection
Control rod SCRAM simulation	Test	Functional Assessment
FAT inspection of the prototype without	Test	Manufacturing Inspection
shroud		
Process Qualification of RCS	Inspection	Manufacturing Inspection
Component Manufacture and Quality		
Surveillance		
RCS motor functional acceptance testing	Test	Functional Assessment
and characterisation		
Installation inspection of the RCS	Inspection	Installation Assessment
subassemblies		
Installation inspection of the RCS	Inspection	Installation Assessment
assemblies		
Environmental Assessment of the	Test	Functional Assessment
CRDM Motor and Eddy Current Brake		
Seismic qualification of position sensors	Test	Seismic Assessment
Control rod analyses	Analysis	Environmental Assessment
Load Testing of the SCRAM shock	Test	Functional Assessment
absorber		
Incoloy Qualification and certification	Test	Environmental Assessment
RCS chain weld evaluation	Analysis	Environmental Assessment
RCS chain weld evaluation	Test	Environmental Assessment
Control rod position functional test	Test	Functional Assessment

C1.1.3 Anticipated Schedule

The testing is expected to last at least three years which will be followed by continuous lifecycle testing (availability, reliability, etc.).

C1.1.4 Overall Cost

The PBMR related cost is omitted due to business confidentiality.

C1.2 TEST SPECIFICATIONS

An example of one of the test specifications is given below. This test will form part of the verification process of the Control Rod SCRAM function.

C1.2.1 RCS Test Specification #1: Control Rod SCRAM (WEC-TS-RCS-001)

C1.2.1.1 Objectives

The objectives of these tests are to verify the movement and SCRAM functions of the RCS system under different environmental conditions. One of the main objectives of these tests is to verify the operation of the RCS system in a Helium environment.

C1.2.1.2 Test Conditions

The test will be performed at different environmental conditions. Table 1 indicates all the different conditions with associated temperatures and pressures.

Nr.	Medium	Pressure	Motor Temp	Gearbox Temp	Guide tube Temp	Boring Temp
C1	Air	Atmospheric	Ambient	Ambient	Ambient	Ambient
C2	Helium	Atmospheric	Ambient	Ambient	Ambient	Ambient
C3	Helium	2 MPa	100 °C	200 °C	200 °C	200 °C
C4	Helium	3.6 MPa	160 °C	300 °C	300 °C	300 °C
C5	Helium	3.6 MPa	Measure	Measure	300 °C	300 °C

Table C-2: Test Conditions

C1.2.1.2.11 Test Configuration/Set-up

The unit under test for this test will consist of the following:

- 1. RCSS-A-000030 RDM Assembly
- 2. RCSS-A-000763 Stepper Motor, Eddy Current Assembly
- 3. HTF-A-004227 Control Unit, HTF RCS

The hardware will include 2 resolvers on the motor and a flexible coupling between the motor and the gearbox. The motor drive will also have a profibus capability.

The tests will be performed in the RCS test setup in the HTF, without the RDM Housing and Motor outer conditioning chamber installed.

C1.2.1.2.12 Proposed Test Location

The tests will be performed in the RCS test setup in the HTF in South Africa.

C1.2.1.3 Measured Parameters

The following measurements need to be logged during the tests:

- 1. Total distance that the rod moved (odometer).
- 2. Distance that the rod has SCRAMed (speed > 0.05 m/s)
- 3. Total number of SCRAMs performed by the rod.
- 4. Full-in and full-out sensor readings.
- 5. Temperature readings of the motor, gearbox, guide tube and boring.
- 6. Temperature readings of the outside of motor and RDM Housing.
- 7. Pressure.
- 8. Helium purity
- 9. Rod position.
- 10. Rod speed.
- 11. Motor drive current.

C1.2.1.4 Data Requirements

All measurements shall be for reference only.

C1.2.1.5 Test Evaluation Criteria

The Westinghouse Electric – South Africa (WE-SA) design engineer in conjunction with the HTF test team shall decide whether to continue testing, abort the test or repeat a test after each test has been finished. Specific criteria will be included in later test plans.

C1.2.1.6 Test Deliverables

All measurements shall be logged during the tests and the data shall be available after the test for review purposes. A Test Execution Report (TER) shall be compiled containing at least the following data:

- 1. Odometer readings at the beginning and end of the test.
- 2. Total number of SCRAMs that the rod have performed during the test.
- 3. Maximum speed during SCRAM for all SCRAMs.
- 4. One speed vs time curve during the SCRAM for each test condition.

- 5. Actual test conditions, including temperatures, pressure and Helium purity.
- 6. Temperature results for test condition C5.
- 7. Any failures that occurred during the tests.
- 8. Any deviations from the test instruction.
- 9. Any observations during the test.

NGNP-CTF MTECH-TDRM-015 Revision 1

November 2008

NGNP and Hydrogen Production Conceptual Design Study

NGNP Technology Development Road Mapping Report

Section 15: Core Conditioning System

APPROVALS

Function		Printed Name and Si	ignature	Date
Author	Name: Company:	Lucas Pitso M-Tech Industrial		November 19, 2008
Reviewer	Name: Company:	Alwyn Strauss Pebble Bed Modular Reactor	Graus,	November 19, 2008
Reviewer	Name: Company:	Adele Engelbrecht Pebble Bed Modular Reactor	A SAH	November 19, 2008
Approval	Name: Company:	Jan van Ravenswaay M-Tech Industrial	forma	November 19, 2008

Westinghouse Electric Company LLC Nuclear Power Plants Post Office Box 355 Pittsburgh, PA 15230-0355

©2008 Westinghouse Electric Company LLC All Rights Reserved

LIST OF CONTRIBUTORS

Name and Company	Date
Lucas Pitso (M-Tech Industrial (Pty) Ltd)	September 10, 2008
Alwyn Strauss (Pebble Bed Modular Reactor (Pty) Ltd)	September 10, 2008
Adele Engelbrecht (Pebble Bed Modular Reactor (Pty) Ltd)	September 10, 2008
Roger Young (Pebble Bed Modular Reactor (Pty) Ltd)	September 10, 2008

BACKGROUND INTELLECTUAL PROPERTY CONTENT

Section	Title	Description
N/A		

REVISION HISTORY

RECORD OF CHANGES

Revision No.	Revision Made by	Description	Date
А	Lucas Pitso	Comments Review	September 15, 2008
В	Lucas Pitso	Formal Review	September 16, 2008
0	Lucas Pitso	Document for Approval	September 26, 2008
0A	Lucas Pitso	BEA Comments Incorporated	October 29, 2008
1	Lucas Pitso	Document for Release to WEC	October 31, 2008

DOCUMENT TRACEABILITY

Created to Support the Following Document(s)	Document Number	Revision
NGNP and Hydrogen Production Pre-conceptual Design Report	NGNP-01-RPT-001	0

TABLE OF CONTENTS

Section	Title	Page
LIST OF TABL	ES	
LIST OF FIGU	RES	
ACRONYMS		
SUMMARY AN	ID CONCLUSIONS	9
15 CORE CON	DITIONING SYSTEM	
15.1 Funct	ON AND OPERATING REQUIREMENTS	
15.1.1	Operating Modes and States	
15.1.2	Operating Conditions	
15.1.3	Components	
15.2 TRL ST	TATUS OF THE CCS	
15.3 TECHN	OLOGY DEVELOPMENT ROAD MAP	
15.3.1	Overview	
15.4 TECHN	OLOGY MATURATION STATUS	
15.4.1	Summary of Maturation Tasks for the CCS	
15.4.2	Test Maturation Plans Summary	
15.5 INPUTS	то СТГ	
15.6 Referi	ENCES	
APPENDIX	A: TRL RATING SHEETS	
APPENDIX	B: TECHNOLOGY DEVELOPMENT ROAD MAP	
APPENDIX	C: TECHNOLOGY MATURATION PLAN	

LIST OF TABLES

Table 15-1: The NGNP Modes and States with CCS Operation Mapped	11
Table 15-2: CCS Steady State Characteristics for Active Cooling	12
Table A-1: Technology Readiness Levels for the CCS	19

LIST OF FIGURES

Figure 15.1: Process Flo	w Diagram of the CCS	10
Figure B-1: Technology	Development Road Map of the CCS.	22

ACRONYMS

Acronym	Definition
AI	Inner Annulus (active cooling piping)
AMS	Activity Measurement System
AO	Outer Annulus (active cooling piping)
AOO	Anticipated Operational Occurrence
AS	Automation System
ASME	American Society of Mechanical Engineers
AVR	Arbeitsgemeinschaft Versuchs-Reaktor
BOP	Balance of Plant
BUMS	Burn-up Measurement System
СВ	Core Barrel
CCS	Core Conditioning System
CEA	Commissariat à l'Énergie Atomique
CFD	Computational Fluid Dynamics
CHE	Compact Heat Exchanger
CIP	Core Inlet Pipe
CO2	Carbon Dioxide
COC	Core Outlet Connection
COP	Core Outlet Pipe
COTS	Commercial Off The Shelf
CRADA	Co-operative Research and Development Agreement
CRD	Control Rod Drive
CSC	Core Structure Ceramics
CTF	Component Test Facility
CTF	Component Test Facility
CUD	Core Unloading Devices
DAU	Data Acquisition Unit
DBA	Design Base Accident
DBE	Design Base Event
DDN	Design Data Need
DFC	Depressurized Forced Cooling
DLOFC	De-pressurized Loss of Forced Cooling
DOE	Department of Energy
DPP	Demonstration Power Plant
DRL	Design Readiness Level
DWS	Demineralized Water System
ELE	Elecrolyser System
EM	Evaluation Model
EMB	Electomagnetic Bearing
EOFY	End of Fiscal Year
EPCC	Equipment Protection Cooling Circuit
EPCT	Equipment Protection Cooling Tower
F&OR	Functional and Operational Requirements
FHS	Fuel Handling System

FHSS	Fuel Handling and Storage System
FIMA	Fissions per Initial Metal Atoms
FMECA	Failure Modes, Effects and Criticality Analysis
FS	Fuel Spheres
FTA	Fault Tree Analysis
FUS	Feed and Utility System
H2	Hydrogen
H2SO4	Sulfuric Acid
HC	Helium Circulator
Не	Helium
HETP	Height Equivalent of the theoretical Plate
HGD	Hot Gas Duct
н	Hydro-Iodic
HLW	High Level Waste
HPB	Helium Pressure Boundary
HPC	High Pressure Compressor
HPS	Helium Purification System
HPS	Hydrogen Production System
HPT	High Pressure Turbine
HPU	Hydrogen Production Unit
HRS	Heat Removal System
HTF	Helium Test Facility
HTGR	High Temperature Gas-Cooled Reactor
HTR	High Temperature Reactor
HTS	Heat Transport System
HTSE	High Temperature Steam Electrolysis
HTTR	High Temperature Test Reactor
HVAC	Heating Ventilation and Air Conditioning
НХ	Heat Exchanger
HyS	Hybrid Sulfur
1&C	Instrumentation and Control
12	Iodine
ID	Inner Diameter
IHX	Intermediate Heat Exchanger
ILS	Integrated Laboratory Scale
I-NERI	International Nuclear Energy Research Initiative
INL	Idaho National Laboratory
INL	Idaho National Laboratory
IPT	Intermediate Pressure Turbine
ISR	Inner Side Reflector
K-T	Kepner-Tregoe
KTA	German nuclear technical committee
LEU	Low Enriched Uranium
LOFC	Loss of Forced Cooling
LPT	Low Pressure Turbine
MES	Membrane-electrode assembly
MTR	Material Test Reactor

NAA	Neutron Activation Analysis
NCS	Nuclear Control System
NGNP	Next Generation Nuclear Plant
NHI	Nuclear Hydrogen Initiative
NHS	Nuclear Heat Supply
NHSS	Nuclear Heat Supply System
NNR	National Nuclear Regulator
NRG	Nuclear Research and consultancy Group
NRV	Non-Return Valve
02	Oxygen
OD	Outer Diameter
PBMR	Pebble Bed Modular Reactor
PCC	Power Conversion System
PCDR	Pre-Conceptual Design Report
PCHE	Printed Circuit Heat Exchanger
PCHX	Process Coupling Heat Exchanger
PCS	Power Conversion System
PFHE	Plate Fin Heat Exchanger
PHTS	Primary Heat Transport System
PIE	Post-irradiation Examination
PLOFC	Pressurized Loss of Forced Cooling
POC	Power Conversion System
PPM	Parts per million
PPU	Product Purification Unit
PPWC	Primary Pressurized Water Cooler
QA	Quality Assurance
RAMI	Reliability, Availability, Maintainability and Inspectability
RC	Reactor Cavity
RCCS	Reactor Cavity Cooling System
RCS	Reactivity Control System
RCSS	Reactivity Control and Shutdown System
RDM	Rod Drive Mechanism
RIM	Reliability and Integrity Management
RIT	Reactor Inlet Temperature
RM	Road Map
ROT	Reactor Outlet Temperature
RPS	Reactor Protection System
RPT	Report
RPV	Reactor Pressure Vessel
RS	Reactor System
RSS	Reserve Shutdown System
RUS	Reactor Unit System
SAD	Acid Decomposition System
SAR	Safety Analysis Report
SAS	Small Absorber Spheres
SG	Steam Generator
SHTS	Secondary Heat Transport System

S-I	Sulfur Iodine
SiC	Silicon Carbide
SNL	Sandia National Laboratory
SO2	Sulfur Dioxide
SOE	Sulfuric Oxide Electrolyzers
SOEC	Sulfuric Oxide Electrolyzers Cells
SR	Side Reflector
SSC	System Structure Component
SSCs	Systems, Structures and Components
SSE	Safe Shutdown Earthquake
SUD	Software Under Development
TBC	To Be Confirmed
TBD	To Be Determined
TDL	Technology Development Loop (As incorporated in Concept 1)
TDRM	Technology Development Road Map
TER	Test Execution Report
THTR	Thorium High Temperature Reactor
TRISO	Triple Coated Isotropic
TRL	Technology Readiness Level
TRM	Technology Road Map
UCO	Uranium Oxycarbide
UO2	Uranium Dioxide
USA.	United States of America
V&V	Verification and Validation
V&Ved	Verified and Validated
VLE	Vapor-Liquid Equilibrium
WBS	Work Breakdown Structure
WEC	Westinghouse Electric Company

SUMMARY AND CONCLUSIONS

The WEC proposed NGNP is envisaged to utilize a Core Conditioning System (CCS) similar to that of the Pebble Bed Modular Reactor (PBMR) Demonstration Power Plant (DPP). The CCS consists of a dual redundant system, each having a gas circulating blower, a high temperature water-cooled heat exchanger, isolation and blower control valves, hot gas ducts, pressure boundary and control instrumentation.

In order to utilize these technologies in the operational NGNP a technology readiness level of 8 (TRL 8) needs to be achieved by the specific technology under investigation. Based on this requirement a study was conducted in which the TRL rating of the different proposed technologies was determined. During this study the CCS components were given a TRL 6 rating. Thus the CCS now needs to be elevated to the required TRL 8 rating.

This TRL maturation process has been divided into two main activities, namely a maturation from the current TRL rating up to TRL 7, and then from TRL 7 to TRL 8. To reach a TRL 7, various tests will be done on the individual components of the CCS. The tests will qualify the technology to be used in the final designs of the CCS components. The final components will be integrated as a subsystem into the DPP and will be tested as an integrated unit. When the CCS subsystem tests are complete, it will have progressed to a TRL 8.

The NGNP CCS is expected to operate at slightly different conditions than the DPP CCS. Hence detailed system level analyses are required to confirm the DDN's and the operating envelope.

15 CORE CONDITIONING SYSTEM

15.1 Function and Operating Requirements

The Core Conditioning System (CCS) removes decay heat from the reactor in cases where the Heat Transport System (HTS) is not operational. When the CCS is in operation, hot gas is extracted from the core outlet pipe, passed through a water-cooled heat exchanger, through the CCS blower and then back into the annular cooling cavity of the hot gas ducts and the core inlet pipe. A CCS by-pass control valve regulates the amount of gas directed back to the core. This way the core temperature may be controlled. The CCS consists of two identical loops which are housed and operated separately for redundancy. A simplified diagram showing one loop of the CCS is presented in Figure 15.1 along with a simplified gas flow path through the reactor unit.

Figure 15.1: Process Flow Diagram of the CCS

The CCS operates in the following instances:

- 1. During normal maintenance operations to keep the core temperatures within set limits
- 2. During any incidences where use of the HTS is inhibited.

Other functions of the CSS are to:

- 1. Circulate heated nitrogen through the primary loop during commissioning of the Nuclear Heat Supply System (NHSS).
- 2. Provide cooling flow to the reactor during maintenance.
- 3. Cool the core down to maintenance conditions or keep it at operating conditions should there be small leaks in the Helium Pressure Boundary (HPB). This depends on the ability to isolate and repair small leaks.

15.1.1 Operating Modes and States

The CCS operational states as mapped to the NGNP Modes and States are detailed in Table 15-1.

NGNP Mode		NGNP State	CCS Operation
enance	1	Defueled Maintenance	No
Mainte	2	Fueled Maintenance	Yes
down	3	Shutdown -Heat Sink through CCS	Yes
Shut	4	Shutdown -Heat Sink through PCS	No
	5	NHSS and PCS Partially Operational	No
Operation	6	NHSS and PCS Fully Operational	No
	7	HPS Ready	No
	8	Whole Plant in Operation	No

 Table 15-1: The NGNP Modes and States with CCS Operation Mapped

15.1.2 Operating Conditions

Table 15-2 provides an indication of the steady-state operating conditions of the CCS, based on those of the DPP and slightly adjusted for NGNP, based on engineering judgment. The actual steady-state conditions for the NGNP CCS will only be determined through dynamic modeling as part of conceptual design.

Condition*	Inlet Pressure [kPa]	Inlet Temperature [℃]	Max. Outlet Temperature [℃]	Minimum flow rate [kg/s]	Maximum flow rate [kg/s]	Heat Removed [MW]	Description
Pressurized conditions	9000	950	350	3	10**	Max. 35**	Higher temp operation after trip
Depressurized Forced Cooling	101.3	950	350	1.6	1.9	4.35	Start of DFC
Maintenance cooling	101.3	250	90	1.6	1.9	2	Maintenance

Table 15-2:	CCS Stead	v State	Characteristics f	for Active	Cooling
	CCD Dicuu	y Diale	Character istics i		cooming

Notes: ** Short durations only.

15.1.3 Components

Components of the CCS are:

15.1.3.1 Blower

The blower is a 450 kW single stage centrifugal blower that has variable speed drive. It is submerged in the HPB and uses Electro-Magnetic Bearings (EMB). It will have the capability to circulate both nitrogen and helium within the pressure ranges stated in Table 15-2. The pressure loss through the cooling flow path is estimated to be less than 10 kPa at the specified mass flow rate and pressure combinations.

Design pressure	Min: 1 kPa	Max: 9700 kPa
Design temperature	Min: 18 °C	Max: 371 °C

15.1.3.2 Heat exchanger

A shell and tube heat exchanger will be used for cooling the gas from the reactor core. It should have the capability to cool the gas to temperatures required as stated in Table 15-2.

<u>Helium side</u>		
Design pressure	Min: 1 kPa	Max: 9700 kPa
Design temperature	Min: 18 °C	Max: 1000 °C
<u>Water side</u> Design pressure	Min: 100 kPa	Max: 300 kPa
Design temperature	Min: 18 °C	Max: 41 °C

15.1.3.3 Valves

The CCS has two valves, the blower bypass control valve and the blower isolation valve. The bypass control valve is a control valve and the isolation valve is a butterfly valve. Currently two technologies are short-listed for use for valve actuations. They are the hydraulic and electric actuations with a bias towards electric actuation. The maximum pressure across the isolation valve when closed is 300 kPa while the maximum flow rate is 10kg/s. The valve type will be re-evaluated during conceptual design when the NGNP specific operating parameters have been refined.

Design pressure	Min: 1 kPa	Max: 9700 kPa
Design temperature	Min: 18 °C	Max: 371 °C

15.1.3.4 Hot gas ducts & piping

The CCS hot gas ducts form part of the Primary Heat Transport System's (PHTS) HPB, thus they will not be considered here. Refer to Section 6 of the WEC NGNP report.

15.1.3.5 Control & Instrumentation

The CCS will incorporate electrical power supply and a C&I system based on standard components and includes a Data Acquisition Unit (DAU).

15.1.3.6 Pressure Boundary

All the components will be designed such that minimal leakage of helium is experienced. This is due to economical and safety reasons. Tests for leaks will be conducted but the maximum leak rates of the NGNP are yet to be established.

<u>Hot gas ducts</u> Design pressure	Min: 1 kPa	Max: 9700 kPa
Design temperature	Min: 18 °C	Max: 1000 °C
<u>Pressure boundary</u> Design pressure	Min: 1 kPa	Max: 9700 kPa
Design temperature	Min: 18 °C	Max: 371 °C

15.2 TRL Status of the CCS

The status of technology for the CCS was evaluated and it resulted in a determination of TRL 6.

The justification for this rating is based on the following:

- A 100 kW blower of a similar design to the CCS is undergoing testing at the PBMR Helium Test Facility (HTF).
- Prototype valves with similar materials and configurations as the CCS valves have been tested in a helium environment to temperatures up to 350°C at 9 MPa Additional prototype valves (for the DPP Main Power System) will be tested at the HTF.
- The high temperature water cooled heat exchanger is similar to the CCS heat exchanger used in the Japanese High Temperature Test Reactor (HTTR).

(Refer to Appendix A for the TRL rating sheet)

15.3 Technology Development Road Map

15.3.1 Overview

The technology development road map (TDRM) for the CCS starts where most of the CCS components are at this stage, at the technology testing stage. The technology to be used for the CCS is relatively advanced. Tests are currently ongoing to qualify it to be used in the final designs of the CCS components for the DPP.

The CCS Technology Development Roadmap is attached in Appendix B while the maturation tasks are described below.

15.4 Technology Maturation Status

15.4.1 Summary of Maturation Tasks for the CCS

In the sections below the tasks needed to advance the technology of the CCS system from a validated TRL 6 to a validated TRL 8 are described in detail. Various tests will be done on the individual components of the CCS. The tests will qualify the technology to be used in the final designs of the CCS components. Upon completion of the tests, the CCS components will be manufactured to designs which incorporate the feedback from the testing and assembled into an integrated system (in the DPP). On completion of successful integration, the system will be considered to be at TRL 7. During cold and hot commissioning of the DPP, the CCS will be tested as an integrated system within its operational environment. When the integrated CCS tests are complete, it would have progressed to a TRL 8.

15.4.1.1 Maturation Tasks form TRL 6 to TRL 7

The following tasks will be undertaken to mature the technology used on the CCS from TRL 6 to TRL 7.

Blower:

A 100 kW blower of a similar design to the CCS is undergoing testing at the HTF. The following tasks will be performed on the blower as part of the HTF main loop:

- Perform functionality tests.
- Run the blower in operating conditions similar to the DPP conditions for a continuous period of time and monitor the reliability and availability.
- Evaluate performance at sudden depressurization.

Valves:

Prototype valves with similar materials and configurations as the CCS valves have been tested up to temperatures of 350°C. Additional prototype MPS valves similar to the CCS valves will be tested at the HTF and modifications from the outcome will be incorporated into the production units. The following tasks will be performed to advance the valves to a TRL 7:

- Perform functionality and performance tests.
- Evaluate the reliability and endurance of the valves when exposed to operating conditions similar to the DPP conditions for a period of time.

Heat Exchanger:

The CCS high temperature water cooled heat exchanger is similar to the Primary Pressurized Water Cooler (PPWC) used in the Japanese HTTR. The HTTR has a 30 MW_t PPWC with a helium inlet temperature of 950 °C and outlet temperature of 395°C. It operates at 4 MPa on the gas side and 3.5 MPa on the water side. The successful operation of the PPWC in

the HTTR under the stated conditions gives the CCS water-cooled heat exchanger technology a TRL of 7. Thus no further steps are necessary to mature it.

Hot Gas Ducts:

See Hot Gas Ducts technology development road map (Section 6 of the WEC NGNP TDRM report).

Control and Instrumentation:

The control and instrumentation technology is currently rated TRL 7.

Pressure Boundary:

All components of the CCS will be designed according to ASME III NB. The code effectively places the pressure boundary technology at TRL 7.

15.4.1.2 Maturation Tasks from TRL 7 to TRL 8

Once all individual components are rated TRL 7, they will be assembled together to form the CCS at the DPP. The following tasks will then be undertaken to get the system as a whole to a TRL 8.

- Evaluate the functionality of the CCS as a system.
- Confirm the integrity of the pressure boundary at operating conditions.
- Evaluate performance of the CCS with the high temperature reactor connected.
- Confirm the capability of the CCS as per design requirements.
- Evaluate the reliability and availability of CCS over a period of time.

15.4.2 Test Maturation Plans Summary

As explained above, several tests will be conducted on the technology used on the different components of the CCS. The data from the tests will be fed into the final design of the components. The components will be assembled at the DPP where further maturation tests will be performed on the system as a unit.

15.5 Inputs to CTF

The technology used in the CCS has progressed quite far and the components are at an advanced stage of testing. No CCS component tests are currently foreseen to be undertaken at the CTF.

15.6 References

[15-1] TDRM-015: Technology Development Road Map of the CCS visio file.

APPENDIX A: TRL RATING SHEETS

Г

Table A-3: Technology Readiness Levels for the CCS

TRL Rating Sheet						
Vendor Name:	Document Number:	009 Revision: 1				
□ Island ☑ System	□Subsystem/Structure	Component	□ Technology			
Title: Core Conditioning System						
Description: The Core Conditioning System removes decay heat from the reactor when the PHTS blower is not functional or during maintenance conditions						
Area(s): INHSS	□ HTS □ HPS		⊐ BOP			
ISSCTBS: N/A	Parent: N/A	WBS: N/A				
Technology Readiness Level						
	Next Lower Rating Level	Calculated Rating	Next Higher Rating Level			
Generic Definitions (abbreviated)	Component or system breadboard in relevant environment	Similar SSC in relevant environment in another application	Prototype demonstration in relevant environment			
TRL	5	6	7			
There is substantial experience with different components of the CCS. Blower: The blower is part of the subsystem of the HTF and is undergoing tests in a high pressure high temperature helium environment. When tests are complete it will be rated TRL 7. Valves: The functionality and performance of the valves will be tested at the HTF and the University of Stellenbosch in RSA. When tests are complete they will be rated TRL 7. Heat exchanger: It is based on the technology used successfully in the PPWC at the HTTR in Japan. The 30 MW _t PPWC at the HTTR has the helium inlet at 950 °C and pressure is 4 MPa on the gas side and 3.5 MPa on the water side. It is currently rated TRL 7.						
industry and is rated TRL 7.						
Outline of a plan to get from current level to next level (Attach additional sheets as needed)						
Actions (list all)ScheduleCost (K\$)			Cost (K\$)			

•	Performance	& functionality tests on	FY 2009 – FY			
components		2012	Refer to Section			
•	Endurance tests			C1.1.4		
•	Reliability an	d availability monitoring				
•	Sudden depre	ssurization tests				
DDN(s) supported: None						
SME Making Determination: D.T. Allen						
Date: 09 Aug	ust 07	Originating Organization: Technology Insights				

APPENDIX B: TECHNOLOGY DEVELOPMENT ROAD MAP

NGNP-CTF MTECH-TDRM-015

NGNP Technology Development Road Mapping Report Section 15: Core Conditioning System

Page 22 of 34

NGNP-CTF MTECH-TDRM-015-Rev1-final.doc

10/31/2008
APPENDIX C: TECHNOLOGY MATURATION PLAN

TABLE OF CONTENTS

C1 TECHNOL	OGY MATURATION PLAN FOR CCS (TRL 6 TO TRL 7)	. 25
C1.1 TECH	NOLOGY MATURATION PLAN SUMMARY	. 25
C1.1.1	Objectives	. 25
C1.1.2	Scope 25	
C1.1.3	Anticipated Schedule	. 25
C1.1.4	Overall Cost	. 25
C1.2 TEST S	SPECIFICATIONS	. 25
C1.2.1	CCS Test Specification #1: Valve (WEC-TS-CCS-001)	. 26
C1.2.2	CCS Test Specification #2: Blower (WEC-TS-CCS-002)	. 28
C2 TECHNOL	OGY MATURATION PLAN FOR CCS (TRL 7 TO TRL 8)	. 30
C2.1 TECH	NOLOGY MATURATION PLAN SUMMARY	. 30
C2.1.1	Objectives	. 30
C2.1.2	Scope	. 30
C2.1.3	Anticipated Schedule	. 30
C2.1.4	Overall Cost	. 30
C2.2 TEST S	SPECIFICATIONS	. 31
C2.2.1	CCS Test Specification #3: CCS Integrated Testing (WEC-TS-CCS-003)	. 31
C2.2.2	CCS Test Specification #4: CCS Blower at Operational Temperatures (WEC	2-
	TS-CCS-004)	. 33

C1 TECHNOLOGY MATURATION PLAN FOR CCS (TRL 6 TO TRL 7)

C1.1 TECHNOLOGY MATURATION PLAN SUMMARY

C1.1.1Objectives

The purpose of this Technology Maturation Plan is to describe the activities required to advance the maturity of the technology for the CCS from a TRL level of 6 to a TRL of 7. The activities include testing the prototype components in a high pressure high temperature helium environment.

C1.1.2 Scope

The maturation tasks and other associated activities to advance the maturity of the technology of the CCS from TRL 6 to TRL 7 are listed below:

- Conduct development tests for the valves.
- Conduct development tests for the blower.

C1.1.3 Anticipated Schedule

All the work described by the Test Specifications in this Technology Maturation Plan could be accomplished during the period FY 2009 through FY 2011. Work on the two test specifications can be conducted in parallel and each has an expected duration of three years.

C1.1.4 Overall Cost

The PBMR related costs is omitted due to business confidentiality reasons.

C1.2 TEST SPECIFICATIONS

The following specifications/ tests to achieve the next TRL have been identified:

TRL 6 to TRL 7:

- Specification 1: Valves development test specification (WEC-TS-CCS-001)
- Specification 2: Blower development test specification (WEC-TS-CCS-002)

TRL 7 to TRL 8:

- Specification 3: CCS integrated testing (WEC-TS-CCS-003)
- Specification 4: CCS blower at operational temperatures (WEC-TS-CCS-004)

C1.2.1

C1.2.2CCS Test Specification #1: Valve (WEC-TS-CCS-001)

C1.2.2.1 Objectives

The objectives of the test include:

- a) Validation of the performance parameters for the valve, including:
 - Determination of the closing and opening time of the valve.
 - Leak rates (internal and external) at the maximum operating pressure as a function of time/usage.
- b) Assessment of the position feedback for the bypass control valve and isolation valve.
- c) Assessment of sealability of seals after a number of cycles.
- d) Determination of key inputs for maintenance procedures.
- e) Endurance of valve components including metals seals in a helium environment.

C1.2.2.2 Test Conditions

The functionality test would be conducted at 70 bar air pressure. The response time test would need helium pressure at a minimum of 100 bar. The tests will be conducted at ambient temperature higher than 25 °C with relative humidity of 50-70 %. The maximum temperature for the test is 140 °C and the maximum pressure is 10 MPa. (Tests up to 350°C at 9MPa in a helium atmosphere has been conducted at the University of Stellenbosch)

C1.2.2.2.1 Test Configuration/Set-up

The following equipment would be needed for the test

- a) The prototype valve incorporating instrumentation for position feedback and limit indicators on the housing would be installed in-between two high pressure vessels.
- b) Inter-connecting pipe work with isolation of the pressure vessel from the prototype valve inlet before and after the test.
- c) Analogue pressure gauges and transducers.
- d) Electrical and C&I system which includes a Data Acquisition Unit (DAU).

The following facilities would be needed for the test:

- a) High pressure air supply at a minimum of 70 bar supply pressure.
- b) High pressure helium supply at a minimum of 100 bar supply pressure.
- c) Two 90 bar pressure vessels for helium blow-down tests.

NGNP-CTF MTECH-TDRM-015-Rev1-final.doc

10/31/2008

- d) Three phase electrical supply rated 20 kW.
- e) Minimal floor area of 40 m^2 .
- f) An overhead crane rated 10 tons covering the entire floor area.
- g) High pressure (>120 bar) helium cylinder(s) with a regulator for leak test and endurance test.

C1.2.2.2.2 Test Duration

The test is estimated to run for a minimum of time period of three years.

C1.2.2.2.3 Proposed Test Location

The Helium Test facility (HTF) at Pelindaba is the preferred site for the test. The valve can be installed between two existing pressure vessels for setting up the maximum operating pressure differential with helium as the test medium.

C1.2.2.3 Measured Parameters

Parameters for valve performance as specified in the valve specification and requirement.

C1.2.2.4 Data Requirements

Measured parameters will be determined using recognized techniques, codes, standards and QA.

C1.2.2.5 Test Evaluation Criteria

All measured parameters shall meet the design requirements as listed in the valve specification and requirements. Specifically:

- ASME III, Div 1, NB
- ASME B16.34
- MSS-SP-61
- API standard 598

C1.2.2.6 Test Deliverables

A test report shall be compiled after the tests containing the following:

- Test equipment and calibration
- Test software used
- Data recorder
- Type of observations

- Results and acceptability
- Actions taken in connection with any deviations noted
- Unresolved anomalies

C1.2.2.7 Cost, Schedule, and Risk

The PBMR related cost is omitted due to business confidentiality reasons. Actual testing, data reduction and the compilation of the test report are expected to take three years. There is a medium risk associated with the test due to the high working pressures.

C1.2.3

C1.2.4CCS Test Specification #2: Blower (WEC-TS-CCS-002)

C1.2.4.1 Objectives

The objectives of the test include:

- a) Validation of the performance parameters of the blower, including
 - Determination of availability of the blower.
 - Determination of the reliability of the blower.
 - Assessment of the performance of the electromagnetic bearings.
- b) Endurance of the blower, including metal parts, in a helium environment.
- c) Determination of key inputs for maintenance procedures.
- d)

C1.2.4.2 Test Conditions

The blower is connected to the main loops of the HTF. It operates at a pressure of 90 bar and temperatures up to 140 $^{\circ}$ C with helium as a test medium.

C1.2.4.2.1 Test Configuration/Set-up

The blower acts as a circulator of the helium in the main loops.

C1.2.4.2.2 Test Duration

The duration of the test and monitoring is estimated to be three years.

C1.2.4.2.3 Proposed Test Location

The PBMR HTF at Pelindaba.

C1.2.4.3 Measured Parameters

Time available for tests, downtime, mass flow, power consumption, pressure rise across blower, blower speed across the pressure ranges as listed in the blower specifications and requirement.

C1.2.4.4 Data Requirements

Measured parameters will be determined using recognized techniques, codes, standards and QA.

C1.2.4.5 Test Evaluation Criteria

All measured parameters shall meet the design requirements as listed in the blower specification and requirements.

C1.2.4.6 Test Deliverables

A test report shall be compiled after the tests containing the following:

- Test equipment and calibration
- Test software used
- Data recorder
- Type of observations
- Results and acceptability
- Actions taken in connection with any deviations noted
- Unresolved anomalies
- Data inputs to the final design of the blower.

C1.2.4.7 Cost, Schedule, and Risk

The PBMR related cost is omitted due to business confidentiality reasons. Actual testing, data reduction and the compilation of the test report are expected to take three years. There is a medium risk associated with the test due to the high working pressures.

C2 TECHNOLOGY MATURATION PLAN FOR CCS (TRL 7 TO TRL 8)

C2.1 TECHNOLOGY MATURATION PLAN SUMMARY

C2.1.1Objectives

The purpose of this Technology Maturation Plan is to describe the activities required to advance the maturity of the technology for the CCS from a TRL level of 7 to a TRL of 8. The activities include testing the final components of the assembled together as unit in operating conditions that are exactly the same as the system operating conditions. It is PBMR's contention that the operating conditions of the DPP are such that the requirements of an operational environment are met, so that a TRL-8 can be achieved through the use of the DPP prior to installation in the NGNP. The specific operational parameters of the NGNP CCS which are not enveloped by the DPP will be tested in the NGNP as part of the NGNP commissioning program, but do not contribute to the maturation of the technology of the CCS.

C2.1.2Scope

The maturation tasks and other associated activities to advance the maturity of the technology of the CCS from TRL 7 to TRL 8 are listed below:

- Conduct operational tests for the integrated CCS.
- Conduct blower tests at operational temperature.

C2.1.3Anticipated Schedule

The test is expected to last at least two years.

C2.1.4Overall Cost

The PBMR related cost is omitted due to business confidentiality reasons.

C2.2 TEST SPECIFICATIONS

C2.2.1CCS Test Specification #3: CCS Integrated Testing (WEC-TS-CCS-003)

C2.2.1.1 Objectives

The objectives of the test include:

- a) CCS functional test
- b) Cold integrated flow test
- c) Pressure boundary integrity test
- d) CCS test in helium
- e) CCS first nuclear test
- f) CCS full capability test
- g) Operational monitoring

C2.2.1.2 Test Conditions

The functional test would be conducted in compressed air at 60 bar pressure and ambient temperature. Humidity would be in the region 50-70%. When confidence is built that the CCS is properly functional in air, the same test will proceed as a cold integrated flow test with helium as a medium. The helium temperatures will be elevated. The other tests will proceed with helium in the pressure ranges 100-6000 kPa and elevated temperatures. The CCS full capability test would be conducted with the CCS connected to the operating PBMR DPP reactor at temperatures of 900 °C and 90 bar pressure.

C2.2.1.2.1 Test Configuration/Set-up

The inlet pipe of the CCS is connected to the DPP reactor gas outlet pipe and the outlet pipe of the CCS is connected to the DDP reactor gas inlet pipe.

C2.2.1.2.2 Test Duration

The testing, data collection and report writing for the test will take approximately two years.

C2.2.1.2.3 Proposed Test Location

The test will be performed at the PBMR DPP power plant at Koeberg, Cape Town.

C2.2.1.3 Measured Parameters

Time available for operation, downtime, mass flow, leakage rates, power consumption, system pressure, cooling achieved, performance across pressure ranges as listed in the CCS specifications and requirements.

C2.2.1.4 Data Requirements

Measured parameters will be determined using recognized techniques, codes, standards and QA.

C2.2.1.5 Test Evaluation Criteria

All measured parameters shall meet the design requirements as listed in the blower specification and requirements. Specifically:

- ASME III, Div 1, NB
- ASME B16.34
- MSS-SP-61
- API standard 598

C2.2.1.6 Test Deliverables

A test report shall be compiled after the tests containing the following:

- Test equipment and calibration
- Test software used
- Data recorder
- Type of observations
- Results and acceptability
- Actions taken in connection with any deviations noted
- Unresolved anomalies
- Data inputs for the refinement of the CCS system .

C2.2.1.7 Cost, Schedule, and Risk

The PBMR related cost is omitted due to business confidentiality reasons. Actual testing, data reduction and the compilation of the test report are expected to take one year. There is a medium risk associated with the test due to the high working pressures.

C2.2.2CCS Test Specification #4: CCS Blower at Operational Temperatures (WEC-TS-CCS-004)

C2.2.2.1 Objectives

The objectives of the test include:

a) Validation of the blower maps at various temperatures and pressures.

C2.2.2.2 Test Conditions

The blower is installed in the DPP main power system as part of the CCS. The DPP main power system is heated to 350°C using the primary loop initial clean-up system heaters with either nitrogen or helium and circulated through the main power system (including reactor core) using the CCS blower. The CCS blower commences circulating the gas while the system is being pressurized up to a maximum of 9MPa. The CCS heat exchanger is disabled allowing the circulation gas to reach the CCS blower at approximately 300°C. The CCS blower is monitored at this temperature to determine its functionality as part of the integrated system at high temperatures.

C2.2.2.2.1 Test Configuration/Set-up

DPP fully assembled and ready for commissioning. Reactor core filled with fuel-free machined graphite spheres.

The Primary Loop Initial Clean-up System is attached to the main power system helium pressure boundary.

Clean nitrogen is available for initial pressurization and evacuation of main power system.

C2.2.2.2.2 Test Duration

The duration of the test will be determined by the moisture content of the circulating nitrogen. (The main purpose of this phase of DPP commissioning is cleaning up the main power system, particularly the reactor core).

C2.2.2.2.3 Proposed Test Location

The PBMR DPP at Koeberg, Cape Town.

C2.2.2.3 Measured Parameters

- Time
- Blower speed

- Blower power consumption
- Mass flow rates
- Input temperature
- Output temperature
- Input pressure
- Output pressure
- Other condition monitoring parameters such as vibration, power factor, bearing cooling, etc.

C2.2.2.4 Data Requirements

Measured parameters will be determined using recognized techniques, codes, standards and QA.

C2.2.2.5 Test Evaluation Criteria

All measured parameters shall meet the design requirements as listed in the blower specification and requirements.

C2.2.2.6 Test Deliverables

A test report shall be compiled after the tests containing the following:

- Test equipment and calibration
- Test software used
- Data recorder
- Type of observations
- Results and acceptability
- Actions taken in connection with any deviations noted
- Unresolved anomalies
- Data inputs for the refinement of the CCS system.

C2.2.2.7 Cost, Schedule, and Risk

The PBMR related cost has not been specifically highlighted as this test forms part of the normal start-up of the DPP. It is not anticipated that the test will require the DPP schedule to be adjusted for the purposes of the data gathering. The risks should have been addressed by the time the DPP is ready for commissioning.

NGNP-CTF MTECH-TDRM-016 Revision 1 November 2008

NGNP and Hydrogen Production Conceptual Design Study

NGNP Technology Development Road Mapping Report

Section 16: Reactor Cavity Cooling System

APPROVALS

Function	Printed Name and Signa	ature Mar	Date
Author	Name: Lucas Pitso Company: M-Tech Industrial		November 18, 2008
Reviewer	Name: Wallo Grant Company: PBMR	Add front	November 20, 2008
Reviewer	Name: Ivan Drodskie Company: PBMR	The F	November 20, 2008
Approval	Name: Jan van Ravenswaay Company: M-Tech Industrial	ACOUNT	November 20, 2008

Westinghouse Electric Company LLC Nuclear Power Plants Post Office Box 355 Pittsburgh, PA 15230-0355

©2008 Westinghouse Electric Company LLC All Rights Reserved

LIST OF CONTRIBUTORS

Name and Company	Date
Werner van Antwerpen (M-Tech Industrial (Pty) Ltd)	September 10, 2008
Wallo Grant (Pebble Bed Modular Reactor (Pty) Ltd)	September 10, 2008
Ivan Drodskie (Pebble Bed Modular Reactor (Pty) Ltd)	September 10, 2008
Lucas Pitso (M-Tech Industrial (Pty) Ltd)	September 10, 2008

BACKGROUND INTELLECTUAL PROPERTY CONTENT

Section	Title	Description
N/A		

REVISION HISTORY

RECORD OF CHANGES

Revision No.	Revision Made by	Description	Date
А	Werner van Antwerpen	Comments Review	September,15 2008
В	Werner van Antwerpen	Formal Review	September, 25 2008
С	Wallo Grant	Comments of Reviewer included	September 26, 2008
0	Werner van Antwerpen	Document for approval	September 29, 2008
0A	Lucas Pitso	BEA Comments incorporated	October 29, 2008
1	Lucas Pitso	Formal Issue	October 30, 2008

DOCUMENT TRACEABILITY

Created to Support the Following Document(s)	Document Number	Revision
NGNP and Hydrogen Production Preconceptual Design Report	NGNP-01-RPT-001	0

TABLE OF CONTENTS

S	ection	Title	Page
LIST O	F TABL	ES	4
LIST O	F FIGU	RES	
ACRON	IVMS		5
	· · · · · · · · · · · · · · · · · · ·		
SUMMA	ARY AN	D CONCLUSIONS	
16 RCC	CS		
16.1	RCCS	DESCRIPTION/ FUNCTION AND OPERATING REOUIREMENTS	
16.2	TECHN	OLOGY/DESIGN SELECTION STATUS	
	16.2.1	Candidate Technologies – RCCS	
	16.2.2	Decision Discriminators	
	16.2.3	Reference Design	
	16.2.4	Alternative for Further Evaluation	
	16.2.5	Down Selection Task	
16.3	TRL S	ГАТUS	
16.4	TECHN	OLOGY DEVELOPMENT ROAD MAP SUMMARY	
	16.4.1	Overview	
16.5	TECHN	OLOGY MATURATION PLAN SUMMARY	
	16.5.1	Maturation Tasks for RCCS	
16.6	INPUTS	TO CTF	
16.7	Refer	ENCES	
APPEN	DIX A:	TRL RATING SHEET	
APPEN	DIX B:	TECHNOLOGY DEVELOPMENT ROAD MAP	
APPEN	DIX C:	TECHNOLOGY MATURATION PLAN	

LIST OF TABLES

Table C.1:	Compliance tests	(summary))	26
------------	------------------	-----------	---	----

LIST OF FIGURES

Figure 16-1: Flow direction of the water in the RCCS during active operation	11
Figure 16-2: Flow directions of the water in the RCCS during passive operation	12
Figure 16-3: General arrangement of RCCS components.	13
Figure 16-4: Arrangement of water storage tanks. Top header is for steam release; second fr	om
top is the water inlet header. Bottom header returns water to the EPCC	13
Figure 16-5: Cross sectional view of the RCCS standpipes	14
Figure B-1: Technology Development Road Map of the RCCS.	21

ACRONYMS

Acronym	Definition
AI	Inner Annulus (active cooling piping)
AMS	Activity Measurement System
AO	Outer Annulus (active cooling piping)
AOO	Anticipated Operational Occurrence
AS	Automation System
ASME	American Society of Mechanical Engineers
AVR	Arbeitsgemeinschaft Versuchs-Reaktor
BOP	Balance of Plant
BUMS	Burn-up Measurement System
СВ	Core Barrel
CCS	Core Conditioning System
CEA	Commissariat à l'Énergie Atomique
CFD	Computational Fluid Dynamics
CHE	Compact Heat Exchanger
CIP	Core Inlet Pipe
CO2	Carbon Dioxide
COC	Core Outlet Connection
COP	Core Outlet Pipe
COTS	Commercial Off The Shelf
CRADA	Co-operative Research and Development Agreement
CRD	Control Rod Drive
CSC	Core Structure Ceramics
CTF	Component Test Facility
CTF	Component Test Facility
CUD	Core Unloading Devices
DAU	Data Acquisition Unit
DBA	Design Base Accident
DBE	Design Base Event
DDN	Design Data Need
DFC	Depressurized Forced Cooling
DLOFC	De-pressurized Loss of Forced Cooling
DOE	Department of Energy
DPP	Demonstration Power Plant
DRL	Design Readiness Level
DWS	Demineralized Water System
ELE	Elecrolyser System
EM	Evaluation Model
EMB	Electomagnetic Bearing
EOFY	End of Fiscal Year
EPCC	Equipment Protection Cooling Circuit
EPCT	Equipment Protection Cooling Tower
F&OR	Functional and Operational Requirements
FHS	Fuel Handling System

FHSS	Fuel Handling and Storage System
FIMA	Fissions per Initial Metal Atoms
FMECA	Failure Modes. Effects and Criticality Analysis
FS	Fuel Spheres
FTA	Fault Tree Analysis
FUS	Feed and Utility System
H2	Hydrogen
H2SO4	Sulfuric Acid
HC	Helium Circulator
He	Helium
HETP	Height Equivalent of the theoretical Plate
HGD	Hot Gas Duct
HI	Hydro-Iodic
HLW	High Level Waste
HPB	Helium Pressure Boundary
HPC	High Pressure Compressor
HPS	Helium Purification System
HPS	Hydrogen Production System
HPT	High Pressure Turbine
HPU	Hydrogen Production Unit
HRS	Heat Removal System
HTF	Helium Test Facility
HTGR	High Temperature Gas-Cooled Reactor
HTR	High Temperature Reactor
HTS	Heat Transport System
HTSE	High Temperature Steam Electrolysis
HIIR	High Temperature Test Reactor
HVAC	Heating Ventilation and Air Conditioning
HX	Heat Exchanger
HyS	Hybrid Sulfur
	Instrumentation and Control
12	Iodine
ID	Inner Diameter
IHX	Intermediate Heat Exchanger
	Integrated Laboratory Scale
	Idaho National Laboratory
	Intermediate Pressure Turbine
	Koppor Tragoo
N-1	Corman nuclear technical committee
	Membrane-electrode assembly
	Metorial Test Passter

NAA	Neutron Activation Analysis
NCS	Nuclear Control System
NGNP	Next Generation Nuclear Plant
NHI	Nuclear Hydrogen Initiative
NHS	Nuclear Heat Supply
NHSS	Nuclear Heat Supply System
NNR	National Nuclear Regulator
NRG	Nuclear Research and consultancy Group
NRV	Non-Return Valve
O2	Oxygen
OD	Outer Diameter
PBMR	Pebble Bed Modular Reactor
PCC	Power Conversion System
PCDR	Pre-Conceptual Design Report
PCHE	Printed Circuit Heat Exchanger
PCHX	Process Coupling Heat Exchanger
PCS	Power Conversion System
PFHE	Plate Fin Heat Exchanger
PHTS	Primary Heat Transport System
PIE	Post-irradiation Examination
PLOFC	Pressurized Loss of Forced Cooling
POC	Power Conversion System
PPM	Parts per million
PPU	Product Purification Unit
PPWC	Primary Pressurized Water Cooler
QA	Quality Assurance
RAMI	Reliability, Availability, Maintainability and Inspectability
RC	Reactor Cavity
RCCS	Reactor Cavity Cooling System
RCS	Reactivity Control System
RCSS	Reactivity Control and Shutdown System
RDM	Rod Drive Mechanism
RIM	Reliability and Integrity Management
BIT	Reactor Inlet Temperature
BM	Road Map
ROT	Reactor Outlet Temperature
BPS	Reactor Protection System
RPT	Report
BPV	Reactor Pressure Vessel
RS	Reactor System
BSS	Reserve Shutdown System
BUS	Reactor Unit System
SAD	Acid Decomposition System
SAR	Safety Analysis Report
SAS	Small Absorber Spheres
SG	Steam Generator
	Secondary Heat Transport System
0110	

S-I	Sulfur Iodine
SiC	Silicon Carbide
SNL	Sandia National Laboratory
SO2	Sulfur Dioxide
SOE	Sulfuric Oxide Electrolyzers
SOEC	Sulfuric Oxide Electrolyzers Cells
SR	Side Reflector
SSC	System Structure Component
SSCs	Systems, Structures and Components
SSE	Safe Shutdown Earthquake
SUD	Software Under Development
TBC	To Be Confirmed
TBD	To Be Determined
TDL	Technology Development Loop (As incorporated in Concept 1)
TDRM	Technology Development Road Map
TER	Test Execution Report
THTR	Thorium High Temperature Reactor
TRISO	Triple Coated Isotropic
TRL	Technology Readiness Level
TRM	Technology Road Map
UCO	Uranium Oxycarbide
UO2	Uranium Dioxide
USA.	United States of America
V&V	Verification and Validation
V&Ved	Verified and Validated
VLE	Vapor-Liquid Equilibrium
WBS	Work Breakdown Structure
WEC	Westinghouse Electric Company

SUMMARY AND CONCLUSIONS

The RCCS system is envisaged by the NGNP WEC-team to be utilized in a similar operational environment to that of the PBMR Demonstration Power Plant (DPP). The RCCS is required to maintain the reactor citadel concrete structure within allowable temperatures through heat removal and shielding of the concrete from direct thermal radiation during normal and abnormal conditions. The DPP RCCS design is expected to be employed as is for the PBMR NGNP, with possibly only minor changes to water reservoir requirements.

The current TRL status of the DPP RCCS is rated at TRL 6.

Progression from TRL 6 to TRL 7 will be achieved through analysis while progression to TRL 8 will be through the commissioning and operation of the DPP.

The current DPP RCCS strategy is to utilize two independent internationally recognized software codes RELAP5TM and SPECTRATM to evaluate the passive operation of the RCCS. To date, both software codes have indicated that the RCCS will adequately satisfy its requirements.

However, the benefits of testing to reduce risk are acknowledged and therefore PBMR is investigating further means for validating RCCS software code models. The definition of these validation tests has not yet been fully developed – although it is favored to use representative part-scale testing.

Even though PBMR is investigating supplementary testing, additional testing by others will be welcomed by PBMR through a CRADA-type arrangement if 1) the tests are representative of the PBMR RCCS design (PBMR to provide test specification inputs), 2) the tests can be conducted by the 2010 timeframe and 3) if PBMR are involved with the test definitions and execution of such tests.

NOTE: The test specifications given in this document [CTF Deliverable] are only applicable to full-scale testing in the DPP (implying that analyses will progress the RCCS to TRL 7 and the DPP commissioning will progress the RCCS from TRL 7 to TRL 8).

16 REACTOR CAVITY COOLING SYSTEM

16.1 RCCS Description/ Function and Operating Requirements

In order to utilize common materials with the goal of keeping the PBMR affordable, a requirement arose for a system capable of keeping the selected citadel structural concrete within its code limits during normal operations and anticipated operational occurrences by removing waste heat from the cavity and shielding the concrete from thermal radiation. This gave rise to the Reactor Cavity Cooling System (RCCS).

The RCCS design is derived from the following functional requirements:

- Operational Functions
 - Remove normal operational waste heat from the reactor cavity with the following performance parameters:
 - Maintain reactor cavity concrete surface temperature below code limit to allow continuous operation for the full operational life of the plant.
- Safety Functions
 - Remove decay heat from reactor cavity during design bases events :
 - During passive operation the RCCS maintains the reactor supports and load bearing concrete within their design temperatures.

Although not a specifically allocated function, it is noted that through removing heat from the reactor cavity, the RCCS assists the primary cooling flow (internal to the RPV) to keep the RPV temperature below code limits for the full operational life of the plant.

In response to the above requirements, the RCCS design consists of the following:

- 72 overlapping oval standpipes located between the RPV and the cavity wall, the overlap ensuring that there is no thermal radiation line of sight between the RPV and the concrete
- Water storage tanks (with sufficient water for 72 hours of passive operation without refilling)
- Headers, filters, steam vents and associated piping
- Manually operated valves for maintenance operations
- Instrumentation

Redundancy is catered for by feeding the 72 standpipes from 18 independent tanks. The standpipes from the same tank are segregated to limit concentration of hot areas should one system fail. In terms of redundancy, significantly less than the full complement is needed to remove the full heat load, however due to the possibility of hot spots forming on the concrete when two or more adjacent standpipes are non-functional, credit is not taken for more than one train being unserviceable at a time.

The RCCS operates as follows:

The RCCS removes waste heat from the Reactor Cavity (RC). During normal operations, the RCCS operates in Active Mode when water is circulated through the standpipes by the Equipment Protection Cooling Circuit (EPCC) pumps. The heat is transferred to the water in the standpipes and dissipated through the main heat sink, or the Equipment Protection Cooling Tower (EPCT) as back-up.

In case of failure of the Active Mode, the RCCS is capable of operating in a Passive Mode. Water circulates through the standpipes by convection flow only, thus operating as thermal siphons with cool water descending through the standpipe's inner tube and the warm water rising in the outer section. The water is supplied from the storage tanks mounted above the reactor and boils off to the atmosphere after the initial heat-up period.

The different flow paths of the active and passive operation are illustrated in Figure 16-1 and Figure 16-2 below. Switching from active to passive operation will take place without any mechanical, electrical or human intervention.

Only the passive mode of operation of the RCCS is a safety classified function. The RCCS components are seismically designed to be capable of functioning during and after a Safe Shutdown Earthquake (SSE).

Figure 16-1: Flow direction of the water in the RCCS during active operation.

Figure 16-2: Flow directions of the water in the RCCS during passive operation.

Figure 16-3 shows the general layout of the RCCS, while Figure 16-4 and Figure 16-5 show details of various components. The water storage tanks are located above the reactor cavity to ensure the continuous feed of water into the thermal siphons during passive mode. The RCCS inlet header is connected to the EPCC via a non-return valve (NRV) and vacuum breaker valves to prevent the header emptying if the EPCC feed pipe should rupture. Backup water supply lines from the demineralized water system (DWS) and EPCT are attached between the NRV and the RCCS inlet header. A particle filter separates the steam header from outside air, and allows the tanks to remain at atmospheric pressure while preventing contaminants from entering the system.

Figure 16-3: General arrangement of RCCS components.

Figure 16-4: Arrangement of water storage tanks. Top header is for steam release; second from top is the water inlet header. Bottom header returns water to the EPCC.

Figure 16-5: Cross sectional view of the RCCS standpipes.

- (a) Proposed details of the standpipes with their sliding supports.
- (b) The 72 standpipes as they are arranged in the reactor cavity. The oval shape and overlapping arrangement prevents thermal radiation from the reactor pressure vessel from impinging directly onto the concrete walls of the cavity.

Inside the reactor cavity, the surface of the standpipes facing the RPV may be exposed to temperatures of up to 350°C during normal operation. Other components, such as distribution pipes and tanks, may experience temperatures up to approximately 100°C, but generally, environmental conditions during normal operation will be mild. The standpipes and supports are designed to safely withstand these conditions. The RCCS in active mode has a total mass flow of 135 kg/s with an inlet temperature of 18 °C and an outlet temperature of approximately 22 °C.

16.2 Technology/Design Selection Status

The RCCS is nearing completion of its basic design. The technology base is considered to be established for the DPP, and no new technology needs to be examined. An alternative design utilizing heat pipes is being evaluated for future plants, though the DPP design remains the basis for the PBMR NGNP.

16.2.1 Candidate Technologies – RCCS

N/A

16.2.2 Decision Discriminators

N/A

16.2.3 Reference Design

N/A

16.2.4 Alternative for Further Evaluation

N/A

16.2.5 Down Selection Task

N/A

16.3 TRL Status

Evaluations of the status of technology for the RCCS system were made and resulted in a TRL 6 rating. This determination was made during compilation of the NGNP-DRL &TRL Report and is shown in Appendix A.

It should be noted that the HTTR Test Reactor in Japan to which reference is made is significantly smaller than the system being designed for the PBMR. However the technical concept of thermo-siphons is clearly a TRL 9 – it is just the specific design of the PBMR application which holds the system back from being a TRL of 8.

16.4 Technology Development Road Map Summary

16.4.1 Overview

Given the maturity of the DPP design and the exact applicability of this design to the NGNP, the left hand side of the TDRM is considered complete. The RCCS system begins with a TRL of 6 on the right hand side of the TDRM and matures to a TRL of 8 when all the tests are completed in the DPP.

16.5 Technology Maturation Plan Summary

The sections below describe in detail the maturation tasks needed to advance the technology of the RCCS from a validated TRL 6 to a validated TRL 8.

16.5.1 Maturation Tasks for RCCS

The following section will show the Technology Maturation Plan required to progress this technology from a TRL 6 to a TRL 8.

16.5.1.1 Maturation Tasks from TRL 6 to TRL 7.

To move from a TRL 6 to a TRL 7, the TRL definition requires:

• Subsystem integrated into a system for integrated engineering scale demonstration in a relevant environment.

Two independent internationally recognized software codes RELAP5TM and SPECTRATM were used to evaluate the passive operation of the RCCS. Both software codes indicated that the RCCS will adequately satisfy its requirements. Verification and validation of the boundary conditions used in the models¹ will be performed as part of preparation for operational readiness (including sensitivity analysis). Software verification and validation has been considered as sufficient to advance the TRL level from 6 to 7.

Recognizing the benefits of testing to reduce risk, PBMR is investigating further means for validating the numerical model used to simulate the RCCS in the software. The definition of these validation tests has not yet been fully developed – although it is favored to use representative part-scale testing.

Even though PBMR is investigating supplementary testing, testing by others is welcomed through a CRADA-type of arrangement if:

- The tests are representative of the PBMR RCCS design.
- The tests can be conducted by the 2010 timeframe.
- If PBMR is involved in the test definitions and execution of such tests.

16.5.1.2 Maturation Tasks from TRL 7 to TRL 8.

To move from a TRL 7 to a TRL 8, the TRL definition requires:

10/30/2008

¹ Being nuclear approved codes the software has undergone V&V and its range of application has been defined. The issue of low pressure application has specifically been addressed. The V&V of the boundary conditions intends to show that the model of the RCCS used in the code is valid.

- Integrated prototype of the system is demonstrated in its operational environment with the appropriate number and duration of tests and at the required levels of test rigor and quality assurance.
- Analyses, if used, support extension of demonstration to all design conditions.
- Analysis methods verified and validated.
- Technology issues resolved pending qualification (for nuclear application, if required).
- Demonstrated readiness for hot startup.

It is recognized that further testing will serve to reduce risks associated with the RCCS, notably to confirm input assumptions and integrated operation. However, the construction of a RCCS test set-up is complicated by the complexity of the interdependencies of the RCCS boundary conditions, namely heat transfer to adjacent standpipes, air circulation created by the specific arrangement of the RPV and other components in the cavity, and convection currents within each standpipe. A test setup will therefore have to simulate the reactor cavity. These reasons, and the subsequent timescales and budget, tend to favor that the RCCS be tested full-scale in the DPP for the first time. For the purposes of this document only the DPP "commissioning-type" tests of the RCCS are presented.

16.6 Inputs to CTF

Not applicable. For the purposes of the NGNP, the RCCS would be qualified to a TRL-8 by the DPP and hence no RCCS unique tests are required for the RCCS in the CTF.

16.7 References

[16-1] NGNP-TRL & DRL Report, Rev 0: Report on Design Readiness Levels and Technology Readiness Levels

APPENDIX A: TRL RATING SHEET

Table A-1: TRL Rating Sheet of the RCCS										
TRL Rating Sheet										
Vendor Name:		Document Number:		010 Re		evision: 1				
□ Island ☑ System □		Subsystem/Structure		Component 🛛		□ Technology				
Title: Reactor Cavity Co	oling	System								
Description: The Reactor Cavity Cooli of the Reactor Unit System	ng Sy n and	stem removes heat NHS structure.	from the	e react	or cavit	y and limits tempe	ratures			
Area(s): ☑ NHSS		HTS 🗆 HPS	[⊐ PCS	[BOP				
ISSCTBS: N/A		Parent: N/A		WBS: N/A		N/A	А			
Technology Readiness Level										
		Next Lower Rating Level		Calculated Rating		Next Higher Rating Level				
Generic Definitions (abbreviated)	Component or system breadboard in relevant environment		Similar SSC in relevant environment in another application		Prototype demonstration in relevant environment					
TRL		5		6		7				
Basis for Rating (Attach ad There is operating experienc TRL-8 when PBMR DPP op	dition e with perates	al sheets as needed): 1 similar system in th 3.	e HTTR,	their V	Vessel Co	ooling System. Will	be			
Outline of a plan to get from current level to next level (Attach additional sheets as needed)										
Actions (list all)			Schedule		Cost (K\$)					
				FY 2 2012	2009 – F 2	Y				
DDN(s) supported: None										
SME Making Determination	on: Iv	van Drotsky				_				
Date: September 2008 Originating Organization: PBMR (Pty) Ltd										

APPENDIX B: TECHNOLOGY DEVELOPMENT ROAD MAP

5
Ξ
0
<u> </u>
\geq
\sim
H
F.
÷
艺
g
щ
F
2
щ
E
\mathbf{O}
<u>,</u>
H
4
C
5

Figure B-1: Technology Development Road Map of the RCCS.

APPENDIX C: TECHNOLOGY MATURATION PLAN

TABLE OF CONTENTS

Section	Title	Page
C1 RCCS TECI	HNOLOGY MATURATION PLAN (TRL 6 TO TRL 7)	
C1.1 TECH	NOLOGY MATURATION PLAN SUMMARY	
C1.1.1	Objectives	
C1.1.2	Scope 25	
C1.1.3	Anticipated Schedule	
C1.1.4	Overall Cost	
C1.2 TEST S	SPECIFICATIONS	
C2 RCCS TECI	HNOLOGY MATURATION PLAN (TRL 7 TO TRL 8)	
C2.1 TECH	NOLOGY MATURATION PLAN SUMMARY	
C2.1.1	Objectives	
C2.1.2	Scope 26	
C2.1.3	Anticipated Schedule	
C2.1.4	Overall Cost	
C2.2 TEST S	SPECIFICATIONS	
C2.2.1	RCCS Test Specification #1 (WEC-TS-RCCS-001)	
C2.2.2	RCCS Test Specification #2 (WEC-TS-RCCS-002)	
C2.2.3	RCCS Test Specification #3 (WEC-TS-RCCS-003)	

REQUIRED SPECIFICATIONS/TEST TO ACHIEVE NEXT TRL

TRL 6 to TRL 7:

• No specifications have been defined as of yet. Only software analysis will be conducted. Physical testing to verify and validate the analysis may be considered in future.

TRL 7 to TRL 8:

- Specification 1: Verify the functioning of the RCCS with respect to maintaining Reactor Cavity concrete below code limits (WEC-TS-RCCS-001).
- Specification 2: Confirm operation of RCCS tank automatic water replenishment function (WEC-TS-RCCS-002).
- Specification 3: Validate analysis of DWS supply and heat sink performance (WEC-TS-RCCS-003).
- Specification 4: Validate theoretical analysis of pump trip effect on RCCS pressure (WEC-TS-RCCS-004).
C1 RCCS TECHNOLOGY MATURATION PLAN (TRL 6 TO TRL 7)

C1.1 TECHNOLOGY MATURATION PLAN SUMMARY

C1.1.1 Objectives

The purpose of this Technology Maturation Plan is to describe the activities required to advance the maturity of the technology from a TRL of 6 to a TRL of 7. The maturation tasks required to achieve this goal will be through analysis only. Physical testing may be considered to verify the input data used in the analysis.

C1.1.2 Scope

Only if it is decided to perform physical tests, the scope of the tests will be defined.

C1.1.3 Anticipated Schedule

The analysis of the RCCS could be accomplished during the period FY2008 through FY2010.

C1.1.4 Overall Cost

The PBMR related cost is omitted due to business confidentiality.

C1.2 TEST SPECIFICATIONS

For the purpose of advancing the TRL to a 7, no tests have been defined as of yet. Advancement to the next TRL will only be achieved through software analysis. Physical testing may be considered to verify the input data used in the analysis.

C2RCCS TECHNOLOGY MATURATION PLAN (TRL 7 TO TRL 8)

C2.1 TECHNOLOGY MATURATION PLAN SUMMARY

C2.1.1 Objectives

The purpose of this Technology Maturation Plan is to describe the activities required to advance the maturity of the technology from a TRL of 7 to a TRL of 8. The maturation tasks required to achieve this goal involve testing at the DPP to commission and qualify the RCCS. Test specifications are listed below for the full-scale testing in the DPP, representing the required though not all expected testing.

C2.1.2 Scope

The testing deemed necessary for technology maturation to TRL 8 are listed in Table C.1.

Description	Test Compliance
Verify the functioning of the RCCS with respect to	Reactor Cavity wall remains below 65°C.
maintaining Reactor Cavity concrete within specification	
(WEC-15-RCC5-001).	
Confirm operation of RCCS tank automatic water	DWS automatically replenishes the RCCS tanks
replenishment function (WEC-TS-RCCS-002).	
Validate analysis of DWS supply and heat sink	Based on a sea water temperature of 15 °C, 135 kg/s of
performance (WEC-TS-RCCS-003)	inhibited demineralized water at a design temperature of
	18 °C will be supplied to the RCCS.
Validate theoretical analysis of pump trip effect on	EPCC pump trip does not result in pressures outside of
RCCS pressure (WEC-TS-RCCS-004).	design limits

 Table C.1: Compliance tests (summary)

C2.1.3 Anticipated Schedule

The work described by the Test Specifications in this Technology Maturation Plan could be accomplished during the period FY2010 through FY2015.

C2.1.4 Overall Cost

NGNP-CTF MTECH-TDRM-016-Rev1-final.doc

The PBMR related cost is omitted due to business confidentiality.

C2.2 TEST SPECIFICATIONS

C2.2.1 RCCS Test Specification #1 (WEC-TS-RCCS-001)

C2.2.1.1 Objectives

Verify the functioning of the RCCS with respect to maintaining Reactor Cavity concrete below code limits.

C2.2.1.2 Test Conditions

The test will be performed under normal operational conditions with active mode of cooling in progress.

C2.2.1.2.1 Test Configuration/Set-up

RCCS fully installed in the DPP. Thermocouples will be installed in the concrete behind the standpipes for temperature monitoring.

C2.2.1.2.2 Test Duration

Between FY2012 through FY2015.

C2.2.1.2.3 Proposed Test Location

PBMR DPP.

C2.2.1.3 Measured Parameters

- Synchronized Time
- Reactor thermal power
- RPV temperature
- RCCS water temperature (in/out)
- RCCS water flow rate
- Cavity concrete temperature
- ٠

C2.2.1.4 Data Requirements

Measured parameters will be determined using recognized techniques, codes, standards, and QA.

C2.2.1.5 Test Evaluation Criteria

Concrete temperature must be below 65°C under normal operating conditions.

C2.2.1.6 Test Deliverables

Time based plots for all parameters

C2.2.1.7 Cost, Schedule, and Risk

The PBMR related cost is omitted due to business confidentiality.

C2.2.2 RCCS Test Specification #2 (WEC-TS-RCCS-002)

C2.2.2.1 Objectives

Confirm operation of RCCS tank automatic water replenishment function.

C2.2.2.2 Test Conditions

Reactor non-operational: Water will be drained manually from the tanks until the water level drops to the set point. Confirm activation of the level transmitters, and subsequent activation of the DWS replenishment. Confirm DWS shuts off when water level is at upper limit.

C2.2.2.1 Test Configuration/Set-up

RCCS fully installed in the DPP.

C2.2.2.2.2 Test Duration

Between FY2012 through FY2015.

C2.2.2.3 Proposed Test Location PBMR DPP.

C2.2.2.3 Measured Parameters

- Synchronized time
- RCCS Water tank level
- DWS Reaction time
- DWS input water flow rate
- •

C2.2.2.4 Data Requirements

Measured parameters will be determined using recognized techniques, codes, standards, and QA.

C2.2.2.5 Test Evaluation Criteria

Ensuring an automatic activation of the DWS without any human intervention.

C2.2.2.6 Test Deliverables

Monitoring the confirmation of the level transmitters, subsequently activating the DWS.

C2.2.2.7 Cost, Schedule, and Risk

The PBMR related cost is omitted due to business confidentiality.

C2.2.3

C2.2.4RCCS Test Specification #3 (WEC-TS-RCCS-003)

C2.2.4.1 Objectives

To validate analysis of DWS supply and heat sink performance

C2.2.4.2 Test Conditions

The test will be performed under normal operational conditions with active mode of cooling in progress.

C2.2.4.2.1 Test Configuration/Set-up

RCCS fully installed in the DPP.

C2.2.4.2.2 Test Duration

Between FY2012 through FY2015.

C2.2.4.2.3 Proposed Test Location PBMR DPP.

C2.2.4.3 Measured Parameters

- Synchronized Time
- RPV temperature
- RCCS water temperature (in/out)
- RCCS water flow rate
- RCCS water pressure
- DWS water supply flow rate
- DWS water pressure

C2.2.4.4 Data Requirements

Measured parameters will be determined using recognized techniques, codes, standards, and QA.

C2.2.4.5 Test Evaluation Criteria

Based on a sea water temperature of 15 °C, confirm that 135 kg/s of inhibited demineralized water at a design temperature of 18 °C is supplied to the RCCS.

C2.2.4.6 Test Deliverables

Mass flows of all the flow meters. Also the temperature measurements of the inlet and outlet temperatures of the RCCS.

C2.2.4.7 Cost, Schedule, and Risk

The PBMR related cost is omitted due to business confidentiality.

C2.2.5 RCCS Test Specification #4 (WEC-TS-RCCS-004)

C2.2.5.1 Objectives

Validate theoretical analysis of pump trip effect on RCCS pressure.

C2.2.5.2 Test Conditions

Reactor non-operational: The EPCC pumps will be tripped in various configurations, and pressure measurements taken to confirm theoretical analyses.

C2.2.5.2.1 Test Configuration/Set-up

RCCS fully installed in the DPP.

C2.2.5.2.2 Test Duration Between FY2012 through FY2015.

C2.2.5.2.3 Proposed Test Location PBMR DPP.

C2.2.5.3 Measured Parameters

- Synchronized Time
- EPCC pump electrical power
- EPCC pump pressure
- EPCC pump flow rate
- RCCS water pressure
- RCCS water temperature
- RCCS water flow rate

C2.2.5.4 Data Requirements

Continuous synchronized measurements of pump power, pressure and flow rate versus RCCS water pressure are to be captured.

Measured parameters will be determined using recognized techniques, codes, standards, and QA.

C2.2.5.5 Test Evaluation Criteria

The measured data must confirm theoretical analysis.

C2.2.5.6 Test Deliverables

Time history of trip & restart / pressure relationships.

C2.2.5.7 Cost, Schedule, and Risk

The PBMR related cost is omitted due to business confidentiality.