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Executive Summary 

The Next Generation Nuclear Plant (NGNP), which is an advanced high temperature gas 

reactor (HTGR) concept with emphasis on production of both electricity and hydrogen, involves 

helium as the coolant and a closed-cycle gas turbine for power generation with a core outlet/gas 

turbine inlet temperature of 900-1000°C.  In the indirect cycle system, an intermediate heat 

exchanger is used to transfer the heat from primary helium from the core to the secondary fluid, 

which can be helium, nitrogen/helium mixture, or a molten salt.  The system concept for the vary 

high temperature reactor (VHTR) can be a reactor based on the prismatic block of the GT-MHR 

developed by a consortium led by General Atomics in the U.S. or based on the PBMR design 

developed by ESKOM of South Africa and British Nuclear Fuels of U.K.   

This report has made an assessment on the issues pertaining to the intermediate heat 

exchanger (IHX) for the NGNP.  A detailed thermal hydraulic analysis, using models developed 

at ANL, was performed to calculate heat transfer, temperature distribution, and pressure drop.  

Two IHX designs namely, shell and straight tube and compact heat exchangers were 

considered in an earlier assessment.  Helical coil heat exchangers were analyzed in the current 

report and the results were compared with the performance features of designs from industry.  

In addition, a comparative analysis is presented between the shell and straight tube, helical, and 

printed circuit heat exchangers from the standpoint of heat exchanger volume, primary and 

secondary sides pressure drop, and number of tubes.  

The IHX being a high temperature component, probably needs to be designed using 

ASME Code Section III, Subsection NH, assuming that the IHX will be classified as a class 1 

component.  With input from thermal hydraulic calculations performed at ANL, thermal 

conduction and stress analyses were performed for the helical heat exchanger design and the 

results were compared with earlier-developed results on shell and straight tube and printed 

circuit heat exchangers.  
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Assessment of the Next Generation Nuclear Plant 
Intermediate Heat Exchanger Design 

1. Introduction 
 

In the coming decades, the United States and the entire world will need energy supplies to 

meet the growing demands due to population increase and increase in consumption due to 

global industrialization.  One of the reactor system concepts, the Very High Temperature Helium 

Cooled Reactor System (VHTR) has been identified as uniquely suited for producing hydrogen 

without consumption of fossil fuels or the emission of greenhouse gases [Generation IV 2002].  

The U.S. Department of Energy (DOE) has selected this system for the Next Generation 

Nuclear Plant (NGNP) Project, to demonstrate emissions-free nuclear-assisted electricity and 

hydrogen production within the next 15 years.   

The NGNP reference concepts are helium-cooled, graphite-moderated, thermal neutron 

spectrum reactors with a design goal outlet helium temperature of �1000°C [MacDonald et al. 

2004].  The reactor core could be either a prismatic graphite block type core or a pebble bed 

core.  The use of molten salt coolant, especially for the transfer of heat to hydrogen production, 

is also being considered.  The NGNP is expected to produce both electricity and hydrogen.  The 

process heat for hydrogen production will be transferred to the hydrogen plant through an 

intermediate heat exchanger (IHX).   

The basic technology for the NGNP has been established in the former high temperature 

gas reactor (HTGR) and demonstration plants (DRAGON, Peach Bottom, AVR, Fort St. Vrain, 

and THTR).  In addition, the technologies for the NGNP are being advanced in the Gas Turbine-

Modular Helium Reactor (GT-MHR) project, and the South African state utility ESKOM-

sponsored project to develop the Pebble Bed Modular Reactor (PBMR).  Furthermore, the 

Japanese HTTR and Chinese HTR-10 test reactors are demonstrating the feasibility of some of 

the planned components and materials. 

The proposed high operating temperatures in the VHTR place significant constraints on 

the design of the IHX as well as the thermal hydraulic and component material performance and 

ASME Code compliance.  The focus of this assessment is to perform thermal hydraulic 

calculations for helium-to-helium heat exchanges for shell and straight tube, shell and helical 

tube, and printed circuit designs.  The IHX being a high temperature component, probably 

needs to be designed using ASME Code Section III, Subsection NH, assuming that the IHX will 

be classified as a class 1 component.  With input from thermal hydraulic calculations performed 

at ANL, thermal conduction and stress analyses were performed for HXs of different designs.  

2. Intermediate Heat Exchanger Requirements 
 

Several different potential plant design configurations for the NGNP with either direct or 

indirect power conversion cycles and integrated IHX designs were proposed and evaluated by 

Davis et al. [2005].  These configurations included IHX designs in parallel or in series with the 

NGNP power conversion system.  In the serial designs, the total primary system flow from the 

reactor outlet passes through the IHX where approximately 50 MWt is transferred to the 

intermediate loop to drive the hydrogen production process.  In these designs, heat is extracted 

from the primary fluid at the highest possible temperature (the reactor outlet temperature) for 

delivery to the hydrogen production process, while the power conversion system receives a 
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slightly lower temperature fluid.  In the parallel designs, the flow from the reactor outlet is split, 

with a small fraction of the flow (approximately 10%) going to the IHX to drive the hydrogen 

production process, while the majority of the flow is delivered to the power conversion system 

for electrical power production.  In these designs, both the hydrogen production process and the 

power conversion system receive the highest possible temperature fluid.  Harvego [2006] has 

discussed the possible configurations for the design of IHX for NGNP and established the pros 

and cons of each configuration.  Based on the design, he also established the flow rates, 

temperatures distribution through the loops, and other IHX requirements.   Based on results 

from his study, we selected 900°C reactor outlet temperature as the base case in the earlier 

study [Natesan et al 2006].   

The purpose of the IHX in NGNP is to transfer the heat from the nuclear reactor to the 

hydrogen production facility.  Due to safety concerns, the hydrogen production facility cannot be 

integrated into the nuclear power production plant and the heat generated in the reactor may 

need to be transported over significant distances to the hydrogen production plant [Lillo et al. 

2005].  The IHX must be robust enough to effectively transfer the heat from the reactor outlet 

helium at 900-1000°C to the secondary system.  The hydrogen production facility requires a 

minimum temperature of 800°C for the thermochemical production of hydrogen (e.g., Sulfur-

Iodine cycle) and about 700°C for high temperature electrolysis of water [Independent 

Technology Review Group 2004].  Therefore, the components of the heat transport system will 

be subjected to elevated temperatures for long times where adequate and reliable performance 

of materials is critical.  This report presents a comparative analysis of heat transfer 

characteristics and component/material performance of different designs. 

2.1 IHX Design Concepts 
 

Three potential IHX design concepts, namely shell and straight tube, shell and helical 

tube, and printed circuit compact heat exchangers, are proposed for the transfer of heat from 

the primary helium to the secondary system.  Compared to shell and tube heat exchangers, the 

compact HXs are characterized by a large heat transfer area per unit volume of the exchanger, 

resulting in reduced space, weight, support structure, and material cost. 

The shell and tube exchanger is generally built of round tubes in a cylindrical shell with the 

tube axis parallel to that of the shell.  One fluid flows inside the tubes and the other flows across 

and along the tubes.  The major components of this exchanger are tubes, shell, front-end head, 

rear-end head, baffles, and tubesheets.  Two of the three industrial teams, General Atomics 

[2008] and AREVA [2008], have proposed the use of helical coil heat exchanger (HCHX) as an 

intermediate heat exchanger (IHX) for primary-to-intermediate helium heat transfer for NGNP.  

The helical coil heat exchanger design however was not considered in the previous study 

[Natesan et al 2006]. Therefore, a computational model for the HCHX was developed for the 

present study.  

Compact heat exchangers or printed circuit heat exchangers, which can substantially 

reduce the size of the unit for a given thermal capacity, have the potential for application in 

NGNP system.    Additional details on such exchangers were discussed in an earlier report 

[Natesan et al 2006]. 

Model Description 

A thermal hydraulic model was developed to calculate heat transfer, temperature 

distribution, and pressure drop inside a heat exchanger (HX).  The model is one dimensional, 
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meaning that it is assumed that all channels on one side are identical and the calculations are 

done for one hot channel and one cold channel.  Thus, any edge effects, such as heat losses 

though HX outside surface, are ignored.  The model also assumes that the flow inside the HX is 

counter-flow, i.e. any heat transfer in flow distribution regions is ignored.  Also the model is for 

single-phase fluids only and it is assumed that there is no phase transition inside the HX.  

The model takes into account the fluid properties variation along the channel length.  

The channel length is divided into a number of regions.  Inside each region the fluid properties 

are assumed to be constant, but the properties vary from region to region.  For each region the 

heat transfer equations are solved to calculate the temperature changes in the region for both 

fluids.  Also, the pressure drop for each region is calculated.  The heat transfer equations, as 

well as their solution are described elsewhere [Moisseytsev 2003]. 

The input data for the model include: 

- Hot and cold side fluids, 

- Hot and cold side inlet conditions (temperature and pressure), 

- Hot and cold side flow rates, 

- Number of HX units and unit dimensions (length, height and width, or diameter), 

- HX-type specific information to describe the channel geometry (e.g., tube inner and 

outer diameter, tube pitch, etc.), 

- HX (tube) material,  

- Heat transfer correlation to use,  

- Number of regions along the channel, and 

- Required accuracy of the calculation. 

 

 The output data (results) of the model are:  

- Hot and cold sides outlet temperatures and pressures, 

- HX heat duty, and 

- Pressure and temperature distribution along the channel inside the heat exchanger.  

2.1.1 Helical Coil Heat Exchanger 
 

The HCHX model, developed for this study, is based on the earlier developed shell-and-

tube heat exchanger model [Natesan et al 2006].  The model is designed to calculate the heat 

transfer and pressure drop on both sides of the heat exchanger.  It is a one-dimensional multi-

node single-phase design model that takes into account the variation in properties of the two 

fluids and thermal conductivity of tube wall with temperature and pressure.  Even though there 

are several ways in which the model can be used for the heat exchanger design calculations, in 

the present study the inlet conditions (temperature, pressure, and flow rate) are specified for 

both fluids as well as the desired hot side outlet temperature.  The model then iterates on the 

heat exchanger dimensions (tube bundle height for HCHX) to match the required outlet 

conditions.  The main outputs from the model include the required heat exchanger dimensions 

as well as outlet temperatures and pressure drops for both sides.  Also, as a result of the 

calculations, the detailed distributions of pressure, temperature and other parameters (such as 

heat transfer coefficients, for example) inside the heat exchanger are available.    

 

 The previous shell-and-tube heat exchanger model was modified to enable HCHX 

calculations.  The modifications include the helical coil geometry treatment as well as 
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introduction of heat transfer and pressure drop correlations for helical coil.  These modifications 

are briefly discussed below.  

 

 The implementation of the HCHX model follows the recommendations described in 

Reference [Smith 1997].  The simplified HCHX geometry is shown in Fig. 2.1.  The HCHX in 

Fig. 2.1 has three coils (group of tubes at the same diameter D).  The example in Figure 2.1 

also demonstrates that the number of tubes per coil varies from coil to coil (three tubes for outer 

coil, four for middle coil and five for inner coil in Fig. 2.1).  Figure 2.1 also defines the axial (t) 
and vertical (p) pitches as tube center-to-tube center distances between coils and tubes in the 

same coil, respectively.  It is assumed in Fig. 2.1 and in the model that all tubes have the same 

diameter and wall thickness.  It is also assumed in the model (consistent to designs in 

References [General Atomics 2008, Areva 2008] that the helix angle of coil, �,  (measured to 

the horizontal axis) is constant for all tubes.  

 

Figure 2.1.  Helical coil heat exchanger geometry [Smith 1997]. 

 

Similar to the previous models, the HCHX model calculates heat transfer and pressure 

drop in helical coil region only, i.e. any heat transfer and pressure drop in flow distributor regions 

are ignored.  Figure 2.2 shows how the geometric parameters for HCHX model are calculated.  

The dotted line on the side view represents one tube among the several tubes for a coil.  The 

bottom view shows only one tube per coil (for simplicity); in reality there would be several tubes 

per coil starting at different angular locations.   
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Figure 2.2.  Helical coil heat exchanger geometry for the model. 

 

The tube length in helical coil region is calculated as 

 

 , 

where L = helical region height (Figs. 2.1 and 2.2). 

 

Note that the tube length is the same for all coils since the helix angle is constant.  The 

number of tube, Nt, for a coil of diameter D is calculated from the following relationships (Figure 

2.2): 

 

   

thus 

   

 

Of course, the number of tubes is an integer number, so the result of the equations above 

is rounded to the nearest integer to get a number of tubes for a coil.  The coil diameter for coil is 

calculated as 

 

, i = 1…Ncoil 

Bottom view 

Dout 

D 

Din 
t 

d 
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L 
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�D � 
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where D1 is the diameter of the innermost coil and the number of coils is defined as a maximum 

number i such that Di<Dout. 

 

The code calculates the heat transfer based on an “average” coil.  The average coil is 

defined as a coil of average diameter  that is calculated as 

 

 

 

The model assumes that the flow per tube is a total flow divided by the total number of 

tubes, i.e., it is assumed that the flow is distributed equally among all tubes.  

 

The heat transfer calculations are performed for all tubes (rather than for one tube).  That 

means that the flow rates are total flows for a heat exchanger, the heat transfer area is defined 

as a total surface area of all tubes, and the flow areas are defined as a total inside cross 

sectional area of all tubes for the tube side and the total available flow area (total area minus 

area blocked by tube coils) on the shell side.  The total heat transfer (coil region) length is 

divided into a number of regions; the fluid and tube wall properties are assumed to be constant 

inside each region but are changing from region to region.  The pressure drop on tube side is 

calculated based on flow per one tube. 

 

The following heat transfer and pressure drop correlations [Smith 1997] are used in the 

model (Tables 2.1. and 2.2).  In the model, the correlations are applied based on the average 

coil diameter calculated in the equation above. 

 

Table 2.1.  Heat transfer correlations for HCHX [Smith 1997] 

 Laminar flow  Turbulent flow  

Tube 
Side 
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Shell 
Side  

Nu = 0.332 �Re0.6�Pr 0.36 for 1�103 < Re < 2�104( )
Nu = 0.123 �Re0.7 �Pr 0.36 for 2�104 � Re < 2�105( )
Nu = 0.036 �Re0.8�Pr 0.36 for 2�105 � Re < 9�105( )

 

 

 

Table 2.2.  Friction factor correlations for HCHX [Smith 1997] 

 Laminar flow  Turbulent flow  

Tube Side  

f =

0.305 1+
0.112

Re d D( )
2[ ]
0.2

� 

� 
� 

� 
� 

� 

� 
� 

	 
� 
d D

4 Re d D( )
2[ ]
0.2

 

Shell Side   

 

where 

Retr = 2,300 1+ 8.6 d D( )
0.45[ ]  = laminar-turbulent transition Reynolds number, 

 = Dean number, 

d = tube inner diameter, 

D = coil diameter, 

Py = shell side porosity (fraction of shell inside volume not occupied by tubes). 

 

Since the shell diameter for HCHX is defined by a number of coils, it could not be varied 

continuously (unlike the shell diameter in shell-and-tube heat exchanger). Therefore, the HCHX 

model is modified such that it calculates the required heat exchanger height (length) for the 

specified heat duty (versus shell diameter variation for shell-and-tube heat exchanger).  

 

2.1.2   Comparison of the HCHX Model with GA and AREVA Results 
 

The HCHX model has been applied to the helical coil HX designs reported by GA and 

AREVA.  

 

Table 2.3 shows the comparison of the model results of for the GA PCS-side IHX with 18 

coil layers (Tables 4-3 and 4-4 of Reference [General Atomics 2008]).  Highlighted in yellow are 

the calculated results while the input parameters are shown in white.  Overall, a close 

agreement is achieved by the HCHX model.  The only significant differences are in pressure 

drops (the HCHX model calculates pressure drop in the helical coil (tube bundle) region only; it 

is not clear whether the GA results included the headers and distribution regions).  

 

Table 2.4 shows the comparison of the model results for the AREVA tubular IHX for two-

loop design (Table 5-7 of Reference [Areva 2008]).  Similar to Table 2.3, highlighted in yellow 

are the calculated results while the input parameters are shown in white.  Again, a close 

agreement is achieved by the HCHX model.  For this design, however, some detailed design 

information is not reported in Reference [Areva 2008] and had to be estimated, based on some 

assumptions (such as the same horizontal and vertical pitches).  
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Since more detailed information is available for GA PCS-side IHX design, this design is 

selected for further analysis.  Also, the comparison between different IHX designs, reported in 

consequent sections, is based on the conditions defined by this design.    

 

Table 2.3.  Comparison of the model results with GA design 

Item Unit GA Design Model 

Number of units  3 3 

Unit heat duty MWt 178 178.4 

Fluid  He He 

Side  Shell Shell 

Inlet temperature °C 900 900 

Flow rate kg/s 81.80 81.80 

Outlet temperature °C 480 480 

Inlet pressure MPa 7.0 7.0 

Primary side  

Pressure drop kPa 4 2.024 

Fluid  He He 

Side  Tube Tube 

Flow rate kg/s 87.64 87.64 

Inlet temperature °C 308 308 

Outlet temperature °C 700 700 

Inlet pressure MPa 7.1 7.1 

Secondary 

side  

Pressure drop kPa 79 37.05 

Outer diameter mm 45 45 

Thickness mm 5 5 

Tube length m 22.05 22.14 
Tube 

Number of tubes  550 552 

Angle deg 12 12 

Number of coils  18 18 

Diameter of inner coil mm 1870 1870 

Diameter of outer coil mm 4080 4080 

Horizontal pitch mm 65 65 

Vertical pitch mm 65 65 

Helically 

coiled tube 

bundle 

Effective height m 4.58 4.60 

High temperature region m/s 11 8.29 

Middle temperature region m/s 9.11 6.71 
Velocity of 

primary He 
Low temperature region m/s 7.2 5.37 

High temperature region m/s 46.08 47.02 

Middle temperature region m/s 36.66 36.80 

Velocity of 

secondary He 

Low temperature region m/s 27.36 28.23 
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 Table 2.4.  Comparison of the model results with AREVA design 

Item Unit 
AREVA 
Design  

Model 

Unit heat duty MWt 290 289.6 

Fluid  He He 

Side  Shell Shell 

Flow rate kg/s 136 136 

Inlet temperature °C 900 900 

Outlet temperature °C 490 490 

Inlet pressure MPa 5.0 5.0 

Primary side  

Pressure drop MPa 0.02 0.023 

Fluid  He He 

Side  Tube Tube 

Flow rate kg/s 136 136 

Inlet temperature °C 415 415 

Outlet temperature °C 825 825 

Inlet pressure MPa 5.5 5.5 

Secondary 

side  

Pressure drop MPa 0.2 0.183 

Outer diameter mm 21 21 

Thickness mm 2.2 2.2 

Tube length m 18.3 
20.0  

(18.2 for 7.8m H) 

Tube 

Number of tubes  2,966 3,045 

Angle deg 25.38 25.38 

Number of coils   29 

Diameter of inner coil mm 1,500 1,500 

Diameter of outer coil mm 3,478 3,478 

Horizontal pitch mm 35.3* 35.3* 

Vertical pitch mm 35.3* 35.3* 

Helically 

coiled tube 

bundle 

Effective height m 7.8 8.55 

* Data is not reported; estimated based on number of tubes, number of coils, and coil inner 

and outer diameters. 

 

2.1.3   HCHX Model Results 
 

From the thermal hydraulic calculations based on the HCHX design model, a detailed 

distribution of different parameters along the HX height is available.  This information is used for 

stress analysis of helical coil heat exchanger.  Figure 2.3 shows the example of this distribution 

for the fluid and tube wall temperatures, along with other calculated parameters, such as heat 

flux and thermal resistance. 
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Figure 2.3.  Calculated axial profiles for HCHX. 
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Figure 2.3.  Calculated axial profiles for HCHX (Continued). 
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Figure 2.3.  Calculated axial profiles for HCHX (Continued). 
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To estimate the effect of the temperature variation between different coils, the following 

analysis has been carried out.  In addition to the average coil calculations, described above, the 

analysis has been repeated for coils representing the first (inner) and the last (outer) coils of the 

HCHX.  The heat exchanger height is fixed in these calculations.  Also fixed are the flow rates 

on shell and tube sides, i.e. any differences in flow variation between coils are ignored.  This 

assumption was necessary due to one-dimensional nature of the code.  It is expected that this 

assumption is the most limiting on the shell side, where the flow area between the coils 

increases with coil diameter such that the flow distribution between the coils would be expected.  

Table 2.5 shows the variation of the coil diameter and number of tubes by coil for the PCS-side 

design defined in Table 2.3.  

 

Table 2.5.  Variation of the parameters by coils 

Coil 

Number 

Coil 

Diameter 

(m) 

Number 

of 

Tubes 

1 1.87 19 

2 2.00 21 

3 2.13 22 

4 2.26 23 

5 2.39 25 

6 2.52 26 

7 2.65 27 

8 2.78 29 

9 2.91 30 

10 3.04 31 

11 3.17 33 

12 3.30 34 

13 3.43 35 

14 3.56 37 

15 3.69 38 

16 3.82 39 

17 3.95 41 

18 4.08 42 

 

Table 2.6 shows the comparison between the outlet temperatures for the first, average 

and the outer coils for the HCHX design and conditions defined in Table 2.3.  The average coil 

conditions are those used in the design calculations so they are exactly the same as in Table 

2.3.  The variation in the heat flux and, therefore, the outlet temperatures is mostly due to 

dependency of the heat transfer correlations on the coil diameter (Table 2.1).  The variation is 

pressure drop between the coils is minimal due to the fact the both HX height and tube length 

are the same for all coils, such that the difference in pressure drop are caused by properties 

(e.g., density) variation and friction factor dependency on the coil diameter only.  

 
Table 2.6.  Outlet temperatures (in °C) in different coils 

 First coil Average Coil Last Coil 

Primary side 478.2 480.0 480.9 

Secondary side 701.8 700.0 699.1 
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It is noted again that the results in Table 2.6 were obtained from one-dimensional code 

under the fixed flow rate assumption.  In detailed three-dimensional calculation, it is expected 

that the temperature variation would be more significant due to flow redistribution.  

2.1.4   Shell-and-Straight Tube Heat Exchanger 

To compare the shell-and-tube heat exchanger with helical coil HX, the design 

calculations, similar to those reported in previous work [Natesan et al 2006] have been carryout 

out for the PCS-side HX conditions defined in Table 2.3.  The calculations are carried out for 

two different tube dimensions (diameter and thickness): those selected in previous work (1.0 cm 

ID, 2 mm wall) and those selected for HCHX design presented in Table 2.3 (3.5 mm ID, 5 mm 

wall).  The pitch of the 1 cm tubes has been modified from previous results to match the pitch-

to-diameter ratio of the HCHX design (p/d=1.444).  

Figure 2.4 shows how the calculated design parameters vary with the selected tube length 

for 1 cm tube design.  In general, longer tubes allow the smaller shell diameter and smaller total 

HX volume, but at expense of the pressure drop and possibly higher fabrication costs.  Since 

the PCS-side IHX design requirements define maximum allowable pressure drop as 50 kPa for 

both sides (Table 4-3 of Reference [General Atomics 2008]), 4 m tubes are selected for this 

design.  The resulting design and flow parameters are presented in Table 2.7 that compares all 

the considered concepts in Section 2.1.6 below.    

 

Figure 2.4.  Shell-and-tube design sensitivity on the tube length for 1 cm tube. 
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Figure 2.5 shows the similar results for larger 3.5 cm tubes. It is expected that the larger 

tubes would require longer heat exchanger to achieve the equivalent heat transfer rate.  In fact, 

the calculations show that for the tubes shorter than 10 m, the laminar flow regime is calculated 

such that very large heat exchanger would be required.  Also the calculations have shown the 

results approach the HCHX parameters if tube length approaches that of the HCHX (�20 m). 

Since the fabrication of 20+m-long heat exchanger would be problematic, 12 m tubes are 

selected for the comparison.  Due to large tube diameter, the pressure drop stays small even for 

very long tubes such that pressure drop requirements do not limit the design choices.   

 

Figure 2.5.  Shell-and-tube design sensitivity on the tube length for 3.5 cm tube. 

 2.1.5 Printed Circuit Heat Exchanger 

The Printed Circuit Heat Exchanger (PCHE) calculations similar to those carried out in 

previous work [Natesan et al 2006] have been repeated for the thermal loading conditions of 

HCHX.  Compared to the previous approach, some design modifications were made in the 

present study to satisfy the IHX requirements.  In particular, the channel diameter was

increased to 3.0 mm (compared to 1.6 mm used in the earlier study) and channel zigzag angle 

was decreased to 30° (compared to 90° and 45° used earlier) in order to satisfy the pressure 

drop design requirements (50 kPa on each side).  Consequently, both plate thickness and 

channel pitch were increased since the pitch-to-diameters and plate thickness-to-channel 

diameter ratios are assumed to be the same for these calculations, as in the previous work.  



 

 
16 

The resulting PCHE parameters are presented in comparison with helical coil and shell-

and-straight tube designs in Table 2.7 in the next section. 

 

2.1.6   Comparison of the Heat Exchanger Designs 
 

Table 2.7 compares the main design parameters and calculated conditions for helical coil, 

shell-and-tube, and printed circuit heat exchanger.  The results presented in Table 2.7 are for one 

178 MWt heat exchanger; three times more units will be required for the entire plant according to 

Table 2.3.  Note that in HX volume comparison, the HCHX has an inner pipe such that the actual 

heat transfer volume is somewhat smaller than the total heat exchanger volume reported in Table 

2.7.  

 

Table 2.7. Comparison of the heat exchanger concepts 

Shell-and-Tube 

 
Helical 

Coil 
1 cm tube 3.5 cm tube 

PCHE 

Number of units 1 1 1 9 

Tube inner (channel) diameter, mm 35.0 10.0 35.0 3.0 

Tube (min. plate) thickness, mm 5.0 2.0 5.0 1.0 

Tube (channel) pitch, mm  65.0 20.22 65.0 1.5 

Tube (channel) length, m 22.1 4.0 12.0 0.39 

Number of tubes 552 9,621 4,192 - 

HX length*, m 4.60 4.0 12.0 0.6 

HX cross section, m 4.08 D 2.08 D 4.42 D 0.6 H x 1.5 W 

Unit volume*, m
3
 60.14 13.62 183.96 0.54 

Total HX volume*, m
3
 60.14 13.62 183.96 4.86 

Primary side pressure drop, kPa 2.024 1.577 0.077 44.351 

Secondary side pressure drop, kPa 37.05 15.774 0.486 36.951 

*For tubular design, only length of heat transfer region is given (i.e., headers are excluded) 
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3 Stress Calculations in Gas-to Gas IHX 
 

3.1 Helical IHX 
 

Although thermal and stress analyses of a three-dimensional spiral structure like the helical 

IHX are complex, since its basic component consists of a thin walled tube, rules of Subsection NH 

of the ASME Code can be applied.  The outer diameter and wall thickness of the tube are 45 mm 

and 5 mm, respectively. 

 

For the purpose of the present report, a single 4.6 m long (excluding the header regions at 

the inlet and outlet ends) average helical IHX is considered.  A finite element model of the IHX for 

thermal conduction analysis is shown in Fig. 3.1.  The helix diameter and pitch are 3.128 m and 

65 mm, respectively.  The base case with the reactor outlet temperature of 900°C, the reactor 

outlet pressure of 7 MPa, and the intermediate loop pressure of 7.1 MPa is considered for stress 

analysis.  First, a steady-state thermal conduction analysis was carried out using the heat transfer 

data for both the hot and cold sides of the helical tube as a function of axial location.  Next stress 

analyses were conducted with and without thermal stress contribution. 

 

Figure 3.1. Finite element model of a helical IHX. 

 

 

3.1.1 Thermal Conduction Analysis 
 

The structural material considered was Alloy 617 whose thermal conductivity was input as a 

function of temperature in the finite element code (ABAQUS).  The HTC and gas temperature 

data at inner diameter (ID) and outer diameter (OD) surfaces of the helical IHX were input in the 

FEM as functions of vertical (axial) location.   

 

The FEA-calculated distribution of temperatures at the hot side (OD surface) and cold side 

of the tube are plotted in Figs. 3.2 and 3.3, respectively.  Note that the temperature gradient at 

each end from the hottest to the coldest point is small (�30°C).  However, there is a large axial 

temperature gradient from the hot to the cold end, as expected.  The maximum and minimum 

structure temperatures are 775 and 347°C, respectively.  For comparison, the maximum and 

minimum structure temperatures calculated by the thermal hydraulics analysis are 779°C and 

359°C, respectively.  Detailed temperature distributions near the hot end and cold end of the IHX 

are plotted in Figs. 3.4 and 3.5, respectively.  
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Figure 3.2.  Temperature 

distribution in the helical IHX at 

the outer surface (hot side). 

 

 

 

 

 

 

 

 

 
Figure 3.3.  Temperature 

distribution in the helical IHX at 

the inner surface (cold side). 
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Figure 3.4.  Detailed 

temperature distribution in 

the helical IHX at the hot 

end. 

 

 

Figure 3.5.  Detailed 

temperature distribution in 

the spiral IHX at the cold 

end. 

 

 
3.1.2 Stress Analyses 

 

Two stress analyses, both assuming linear elastic behavior, were conducted using the finite 

element code ABAQUS.  First, a primary (pressure) stress analysis was conducted without any 

contribution from thermal stresses.  Second, a secondary (thermal) stress analysis was conducted 

without the pressure stresses.  In the second analysis, the temperature data calculated in the 

thermal conduction analysis (Section 3.1.1) were input into the ABAQUS code.  For the stress 

analysis, the IHX at each end was analyzed as a donut-shaped ring.  

 

3.1.2.1 Primary Stress Analysis 
 

The primary stress distribution in the IHX is shown in Fig. 3.6.  As expected, the stresses are 

very low due to the small pressure drop from the ID to the OD side of the tube.  The maximum 

von Mises effective stress is 0.4 MPa, which is approximately uniform over the entire IHX. 
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Figure 3.6.  Distribution 

of primary (pressure) 

von Mises effective 

stress at either end of 

the helical IHX. 

 

 
3.1.2.2 Secondary Stress Analysis 

 

The distribution of effective von Mises stress at the hot and cold ends of the IHX due to 

thermal loading are plotted in Figs. 3.7 and 3.8, respectively.  A peak stress of 58 MPa occurs at 

the hot end and a peak stress of 54 MPa occurs at the cold end. 

 

 

Figure 3.7.  Distribution of 

von Mises effective stress 

due thermal loading at the 

hot end of the helical IHX. 
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Figure 3.8.  Distribution of von 

Mises effective stress due to 

thermal loading at the cold end 

of the helical IHX. 

 

 

 
3.1.3 ASME Code Compliance Calculations 

 
Since the IHX operates in a high temperature environment where creep deformation is 

important, Subsection NH of ASME Code, Section III is applicable.  However, the use of the 

primary candidate structural Alloy 617 is currently not approved in Subsection NH. There is a draft 

Code Case (still unapproved) for designs using Alloy 617.  The draft Code Case was patterned 

after relevant portions of Subsection NH, and limited to Alloy 617, temperature of 982°C (1800°F), 

and maximum service life [total life at temperatures above 427°C (800°F)] of 100,000 h or less.  

However, the ratcheting rules in the draft Code Case is limited to a maximum temperature of 

649°C.  The draft Code Case focused on Alloy 617 because it was a leading candidate high-

temperature structural material, and there was a significant material properties database at the 

temperature of interest.  We have used the allowable stress values from this draft Code Case for 

the present report. 

 

3.1.3.1 Primary Stress Limits 
 

A basic high temperature primary stress limit is Smt, which is the lesser of Sm and St, and 

is a function of both time and temperature. For nickel-based alloys, Sm is basically defined as 

follows: 

          (3.1) 

where Su is the lesser of ultimate tensile strength at temperature and the minimum ultimate 

tensile strength at room temperature, Sy is the lesser of yield strength at temperature and the 

minimum yield strength at room temperature. For each specific time t and temperature T, St is 

defined as the least of the following three stresses: 

 

(1) 100% of average stress to obtain a total (elastic, plastic, and creep) strain of 1%, 

(2) 80% of the minimum stress to cause initiation of tertiary creep, and   (3.2) 

(3) 67% of the minimum stress to cause rupture. 
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In the draft code case for Alloy 617, the condition (2) above is dropped because nickel-base 

alloys do not exhibit classical (i.e., primary, secondary, and tertiary) creep behavior.  The 

reported Sm and St values for Alloy 617 are plotted in Fig. 3.9.  To apply the code rules for 

primary stresses, primary membrane and bending stresses have to be determined first.  

However, in the case of the helical IHX the primary stresses are so low (<1 MPa) that they 

easily satisfy the primary stress limits corresponding to 105 hours at 775°C (Fig. 3.9).  

 

Figure 3.9.  Variation of Sm and St of 

Alloy 617 with temperature and time. 

 

3.1.3.2 Primary Plus Secondary Stress Limit 

The primary plus secondary stress limits were checked at the hot end and the cold end.  A 

summary of the stresses at these locations is given in Table 3.1. 

Table 3.1.  Summary of primary and secondary stresses in HCHX at the cold and hot ends 

 

Location 

PL  + Pb 

(MPa) 

Q 

(Mpa) 

T 

(°C) 

Sy 

(Mpa) 

X Y 

Cold end 0.4 54 360 238 0.001 0.23 

Hot end 0.4 58 770 279 0.001 0.21 

Ratcheting Limit 

 

One of the available tests in Subsection NH for satisfying the ratcheting strain limit is Test 

no A2. 

Test No. A2 

X + Y � 1 (3.3)

for those cycles during which the average wall temperature at one of the stress extremes 

defining the maximum cyclic primary plus secondary stress range is below the temperature 

where creep is negligible.  In Eq. 1.3, 

X=(PL + Pb)/Sy or Pm/Sy and Y=Q/Sy where Q=secondary stress intensity range. 
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Assuming that the low temperature end of the temperature cycle is below the creep range, 

it can be verified that Test No. A2 is satisfied for both locations considered in Table 1.1.  

However, according to the draft code case for Alloy 617, the behavior of Alloy 617 above 650°C 

is such that simple ratcheting rules like Test No A2 may not be applicable.  New rules are 

needed in this temperature range. 

 

Creep-Fatigue Limit 

 

Creep-fatigue life of the IHX will be influenced by the peak stresses created by the 

interaction of the header region with the helical core which was not included in the FEM.  The 

creep and fatigue curves given in the draft code case do not include the effects of impure helium 

environment.  Currently the design fatigue cycles for the IHX are not well established and 

therefore, fatigue and creep-fatigue life analyses were not performed. 

 

3.2 Shell and Straight Tube Heat Exchanger 
 

We have analyzed the base case for the reference deign of the shell and tube IHX which 

consists of 12-m long, 35-mm ID, and 45-mm OD Inco Alloy 617 tubes arranged in a triangular 

lattice inside a shell.  The reactor outlet temperature and pressure are 900°C, and 7 MPa, 

respectively and the secondary side pressure is 7.1 MPa and the inlet cold temperature is 

308°C. 

 

The shell and tube design is relatively easy to analyze. A single tube without the header 

region is considered for analysis (Fig. 3.10). The interaction of the header region with tube, 

which will add some complications to the analyses, is ignored for the present. In all cases, the 

axial displacement (uz) was set equal to zero at one end (z=0) and generalized plane strain 

deformation (i.e., uz=constant) was assumed at the other end. 

 

Figure 3.10. Tube analyzed for the shell and tube design. 

 

 
3.2.1 Thermal Conduction Analysis 
 

Thermal conduction analysis was conducted with the HTCs and gas temperatures at the 

OD and ID surfaces prescribed as functions of axial location.  Detailed temperature distributions 
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at the hot and cold ends are plotted in Figs. 3.11 and 3.12, respectively.  The temperature 

gradient at each end is small (8°C).  As for the helical design, there is a large temperature 

gradient from the hot to the cold end.  The maximum temperature is 775°C, which is the same 

as that for the helical design.  However, the minimum temperature of 365°C is higher than that 

for the helical design (347°C). 

 

 

Figure 3.11.  Detailed temperature 

distribution in the tubular IHX at the 

hot end. 

 

 

 

 

Figure 3.12.  Detailed temperature 

distribution in the tubular IHX at the 

cold end. 

 

 

 

 
3.2.2 Primary Stresses 

 
The membrane primary stress intensity (Pm) due to the base case primary and secondary 

side pressures is 6.9 MPa (Fig. 3.13) and the maximum average wall temperature at the hot end 

is 770°C. The calculated values of Pm and PL + Pb are plotted on the allowable stress 

intensities vs. time and temperature plot for Alloy 617 in Fig. 3.14.  It is evident that the design 

life is significantly greater than 105 h. 
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Figure 3.13.  Distribution of primary 

(pressure) von Mises effective 

stress at either end of the helical 

IHX. 

 

 

 

Figure 3.14.  Calculated Pm and PL + Pb 

values for the shell and tube IHX plotted on 

the allowable stress intensities vs. 

temperature and time curves for Alloy 617. 

3.2.3 Primary Plus Secondary Stresses 
 

The distribution of thermal stress intensity (Q) at the hot and cold ends are plotted in Figs. 

3.15 and 3.16, respectively.  Variation of the primary membrane (Pm) and maximum secondary 

stress intensities (Q) in the tube axial direction is shown in Fig. 3.17. 

 

Figure 3.15.  Distribution of von Mises 

effective stress due thermal loading at 

the hot end of the tubular IHX. 
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Figure 3.16.  Distribution of von 

Mises effective stress due to thermal 

loading at the cold end of the tubular 

IHX. 

 

 

Figure 3.17.  Variation of Pm and Q 

along the length of the tube. 

 

 
Ratcheting Limit 

As in Section 5.1.3.2 of the earlier report [Natesan et al 2006], assuming that the low 

temperature end of the temperature cycle is below the creep range, Test No. A2 (Eq. 3.3) is 

applied.  A plot of the variation of the value of X+Y and average temperature with axial location 

is plotted in Fig. 3.18 that shows that Test A2 (Eq. 3.3) is satisfied at all axial locations. 
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Figure 3.18.  Variation of X + Y and 

average T along the length of the tube. 

 

4.  Summary 

Preliminary thermal and stress analyses have been conducted for the helical gas-to-gas 

IHX and the 12 m long shell and straight tube gas-to-gas IHX, ignoring any interaction with the 

header regions.  The header regions have to be included in the analyses, because interaction 

between the core structure and the header regions may lead to high local stresses. 

Analyses of simplified geometries of the core region of both designs conducted in this 

report show that both designs, using Alloy 617 as the structural material, satisfy the primary 

stress and ratcheting stress limits for the base case.  However, it should be noted that the 

ratcheting rules in the Draft Code Case for Alloy 617 are limited to temperatures <650°C, which 

is violated in the base case.  Therefore, new ratcheting rules are needed for the IHX.   

 

For a reactor outlet temperature and pressure of 900°C and 7 MPa, respectively, and a 

secondary side inlet temperature and pressure of 308°C and 7.1 MPa, respectively, the 

allowable design life (based on in-air tensile and creep rupture strengths of Alloy 617) is >105 h 

for both the helical and the 12 m long shell and tube IHX.  Because of the low primary stress, 

the 4 m long shell and tube design should also behave in a similar fashion.  These calculations 

are based on analyses of the IHX core; further reduction in life may result from interaction of the 

core region with the header regions, which is not included in the present analyses.  

 

It should be noted that the above lifetimes are based on creep rupture data of Alloy 617 in 

thick sections in air.  If tests show that exposure to high temperature impure helium leads to 

significant reduction of creep rupture life compared to that in air, the design lifetimes will be 

reduced.  The design lives may also have to be reduced to account for thickness effect. 
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