

Preliminary findings: Microscopic examination and fission product precipitate identification in irradiated TRISO CPs from the AGR-1 Experiment.

I.J. van Rooyen^a, D. Janney^a, P. Demkowicz^a, B. Miller^a, J. Riesterer^a

a Idaho National Laboratory, United States of America

Agenda

- Introduction
- Objectives of electron microscopy examination
- Sample identification
- Precipitate distribution and quantification
- Precipitate identification
- Conclusion
- Acknowledgements

Introduction

- AGR-1 irradiation test:
 December 2006 November 2009
- Four different fuel types
 - variation in deposition parameters for IPyC or SiC
 - UCO kernels, ~ 350 µm with a U-235 enrichment ~19.7%.
- This work is "Baseline" fuel type:
 - Historic German fuel coating process conditions chosen as starting point for baseline fuel.

Objectives of Electron Microscopic Examination

- Characterize Microstructure:
 - Establish irradiation effects
 - Fuel kernel porosity
 - Layer degradation/corrosion
 - Fission product precipitation
 - Migration of fission products in SiC layer
 - Interlayer bonding integrity
 - SiC Grain size, texture & grain boundary alignment

Sample identification

Based on IMGA Ag-110m inventory from 40 particles

Precipitate distribution and quantification

Precipitate distribution and quantification

Precipitate distribution and quantification

- Pd-rich precipitates located on:
 - SiC fingers,
 - SiC and IPyC in region of SiC-IPyC interlayer
 - Depth of 2-4 µm in SiC

Precipitate identification

TEM

TEM- EDS

Precipitate identification

All Ag peaks within the standard energy range of current TEM-EDS detector (0-20 keV) are overlapped by peaks from U or Pd, making it impossible to identify Ag

qualitatively

If the EDX detector is configured for an expanded energy range (e.g., 0-40 keV), the Ag Kα1 peak can be used to qualitatively confirm the presence of Ag. This peak may overlap the lower-intensity Ag Kα2 peak (at 21.993 keV), but does not overlap significant peaks from other elements believed to be present in the sample (C, Si, U, Pd, Zr, and Pu).

X-ray	Energy (keV)	Relative intensity	Overlapped by
Ag Lℓ	2.633	4	Pd Lη
Ag Lα	2.984	111	Pd Lβ
Ag Lβ1	3.150	56	U Μα
Ag Lβ2, 15	3.347	13	U Mβ
Ag Lγ1	3.519	6	U М γ
Ag Kal	22.166	100	(None)

Precipitate identification: Silver confirmation

SEM-WDS

- Ag Lα & Pd Lβ X-rays (2.984 and 2.990 keV) are similar
- •Ag L β X-ray is more suitable for WDS maps because it is separated by 78 eV from the closest Pd X-ray (Pd L β 3, at 3.072 keV) and by 96 eV from the closest U X-ray (U M α 2, at 3.1596 keV).

Precipitate identification

SiC-IPyC microstructure

Compact 6-3-2 CP34 (Mount 48)
Represenatative IPyC Microstructure
TEM Position 1a

2a 2b 1

No debonding observed in TEM samples evaluated (CP34, CP35)

Position 1a

Compact 6-3-2 CP34 (Mount 48)
IPyC-SiC interface TEM Position 3

IPyC

IPyC-SiC interface

No debonding observed

SiC

No significant change observed

Compact 6-3-2 CP34 (Mount 48)

SiC microstructure

No evidence of any phase transformation (CP34, CP35)

SiC microstructure: Low 110m Ag (CP30)

Conclusions: Preliminary

- Pd-rich precipitates randomly distributed in SiC-IPyC interlayer and present on both the SiC fingers and IPyC
- Ag identified in Pd-rich precipitates
- No significant difference in SiC microstructure observed between low and high 110m Ag particles----still under investigation
- No SiC phase transformation due to irradiation observed
- Pd-rich precipitates identified but detail will be provided at HTR2012 conference

Acknowledgements

- Jim Madden: FIB sample preparation
- Scott Ploger & Jason Harp: Mount and decontamination preparation for electron microscopy examination

