
Document ID: TEV-693 Revision ID: 1 Effective Date: 05/15/10

Technical Evaluation Study

Project No. 23843

Nuclear-Integrated Hydrogen Production Analysis

The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance.

The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance

Idaho National Laborator				Identifi	er:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN		Revisio		1			
PRODUCTION ANALYSIS					ve Date:	05/15/10	Page: 1 of 15
NGNP Project	Techn	ical Evaluation	Study (TE	V)	<i>.</i>	eCR N	umber: 577614
		с _{В.}					
			Signa	tures	2.		
Signature and Typed or Printed Na	ime	Signature Code	Da (mm/do			Organization	/Discipline
Mature & mikelle		Р	5/15	/10	NGNP Engineering Support		ipport
M.G. McKellar							
Richard D. Bard	huran	A	5/0	3/2010	NGNP	Engineering Su	ipport
R. D. Boardman				,			
HOLA		С	5/5	12010	NGNP	Engineering Te	echnical Manager
M. W. Patterson							a

For Preparer of the document. P

For Approval: This is for non-owner approvals that may be required as directed by a given program or A project. This signature may not be applicable for all uses of this form. For documented review and concurrence.

С

Note: Applicable QLD: REC-000101

NUCLEAR-INTEGRATED HYDROGEN PRODUCTION ANALYSIS

Identifier:TEV-693Revision:1Effective Date:05/15/10Page: 2

Page: 2 of 151

REVISION LOG

Rev.	Date	Affected Pages	Revision Description
0	11/03/09	All	Newly issued document.
1	05/15/10	All	Added economic sections and URS & INL comments

NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN PRODUCTION ANALYSIS	Revision:	1	
FRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 3 of 151

EXECUTIVE SUMMARY

This technical evaluation (TEV) has been prepared as part of a study for the Next Generation Nuclear Plant (NGNP) Project to evaluate integration of high temperature gas-cooled reactor (HTGR) technology with conventional chemical processes. This TEV addresses the integration of an HTGR with high-temperature steam electrolysis (HTSE). The main products are hydrogen and oxygen.

An HTGR can produce steam, high-temperature helium, and/or electricity. In conventional processes, these products are generated by the combustion of fossil fuels such as coal and natural gas, resulting in significant emissions of greenhouse gases such as carbon dioxide. Heat or electricity produced in an HTGR could be used to supply process heat or electricity to conventional processes without generating any greenhouse gases. This report describes how nuclear-generated heat and electricity could be integrated into the HTSE process, provides a preliminary economic analysis of the process, and assesses greenhouse gas (GHG) emissions of the conventional steam methane reforming (SMR) process and nuclear-integrated HTSE.

The following list identifies the major conclusions drawn by evaluating the nuclearintegrated HTSE process against the conventional process, SMR:

- Four and one third 600-MW_t HTGRs are required to support the production of 719 tons/day of hydrogen and 5,668 tons/day of oxygen using HTSE. An SMR process requires 2078 tons of natural gas to produce the same amount of hydrogen. The SMR process emits 3,393 tons/day of carbon dioxide (CO2). The nuclear-integrated HTSE process emits 0 tons/day.
- At a 12% internal rate of return (IRR), the price of hydrogen from an HTGR with a 750°C outlet temperature using HTSE is \$3.67/kg. Estimated SMR prices vary from \$1.26/kg to \$2.51/kg.

NUCLEAR-INTEGRATED HYDROGEN PRODUCTION ANALYSIS

Revision:1Effective Date:05/15/10

TEV-693

Page: 4 of 151

CONTENTS

Identifier:

EXEC	UTIVE	SUMMARY	3
1.	INTRO	DDUCTION	5
2.	MODE	ELING OVERVIEW	6
	2.1	Introduction	6
	2.2	Hydrogen Production via Steam Reforming of Methane	6
	2.3	Hydrogen Production via HTSE	7
3.	ECON	OMIC MODELING	.10
	3.1	Capital Cost Estimation	.11
	3.2	Estimation of Revenue	.16
	3.3	Estimation of Manufacturing Costs	.16
	3.4	Economic Comparison	.17
		3.4.1 Cash Flow	
4.	ECON	3.4.2 Internal Rate of Return	
5.	CONC	LUSIONS AND RECOMMENDATIONS	.21
6.	REFE	RENCES	.22
7.	APPE	NDIXES	.23

NUCLEAR-INTEGRATED HYDROGEN PRODUCTION ANALYSIS

1. INTRODUCTION

This technical evaluation (TEV) has been prepared as part of a study for the Next Generation Nuclear Plant (NGNP) Project to evaluate integration of high-temperature gas-cooled reactor (HTGR) technology with conventional chemical processes. The NGNP Project is being conducted under U.S. Department of Energy (DOE) direction to meet a national strategic need identified in the *National Energy Policy* to promote reliance on safe, clean, economic nuclear energy and to establish a greenhouse-gas-free technology for the production of hydrogen. The NGNP represents an integration of high-temperature reactor technology with advanced hydrogen, electricity, and process heat production capabilities, thereby meeting the mission need identified by DOE. The strategic goal of the NGNP Project is to broaden the environmental and economic benefits of nuclear energy in the U.S. economy by demonstrating its applicability to market sectors not being served by light water reactors.

An HTGR produces steam, high-temperature helium, or electricity. A summary of these products and a brief description is shown in Table 1. In conventional processes, these products are generated by the combustion of fossil fuels such as coal and natural gas, resulting in significant emissions of greenhouse gases such as carbon dioxide. Heat or electricity produced in an HTGR could be used to supply process heat or electricity to conventional processes without generating any greenhouse gases. The use of an HTGR to supply process heat or electricity to conventional processes is referred to as a nuclear-integrated process. This report describes how nuclear-generated heat or electricity could be integrated into conventional processes and provides a preliminary economic analysis to show which nuclear-integrated processes compare favorably with conventional processes.

HTGR Product	Product Description				
Steam	540 to 593°C and 17 to 24 MPa				
High-Temperature Helium	Up to 750°C and 9.1 MPa				
Electricity	Generated by Rankine cycle with thermal efficiency of 40%				

Table 1. Project outputs of an HTGR.

In 2009, an independent review team considered three hydrogen production technologies to be combined with a next generation nuclear plant.¹ Those technologies included the sulfur iodine (SI) process, the hybrid sulfur (HyS) process and the HTSE process. The review team recommended the HTSE process as the first choice for the NGNP Project, with HyS as the second option. The purpose of this TEV is to present the process modeling and economic results from producing hydrogen from high-temperature steam electrolysis combined with a high-temperature gas reactor. These results are used in other process models developed under the NGNP program where HTGR-integrated hydrogen may be integrated with industrial processes. The economics of this TEV are used to estimate the overall economics of these combined nuclear and industrial processes.

The Advanced Process and Decision Systems Department at Idaho National Laboratory (INL) has spent several years developing detailed process simulations of chemical and thermodynamic processes. The processes included HTSE combined with a variety of nuclear reactors. These simulations have been developed using HYSYS Process and ASPEN PLUS—state-of-the-art, steady-state, thermodynamic, and chemical process simulators developed by Hyprotech and

Idaho National Laboratory	

NUCLEAD INTECDATED HUDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 6 of 151

ASPEN. This study makes extensive use of these models and the modeling capability at INL to evaluate the integration of HTGR technology with potential hydrogen production technologies.

This TEV assumes familiarity with HYSYS Process and APSEN PLUS software, so a detailed explanation of the software capabilities, thermodynamic packages, unit operation models, and solver routines is beyond the scope of this TEV. Also assumed is a familiarity with thermodynamic, heat exchange, and heat recuperation systems; hence, a thorough explanation of these technologies is also considered to be beyond the scope of this TEV.

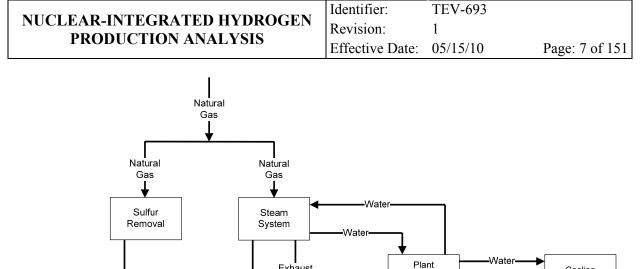
2. MODELING OVERVIEW

2.1 Introduction

The purpose of this modeling effort is to predict the flow of hydrogen output of HTSE combined with a 600 MWt reactor. The hydrogen and oxygen flows are used with other process models where the hydrogen may be used in substitute of hydrogen from other processes. The model also includes the resources needed to accomplish the production rates including electrical power and water usage. By combining this model with other process models being developed in the NGNP program, an overall picture of nuclear integrated chemical processing may be achieved. The scale of the modeling within Section 2 is based on a steam methane reforming (SMR) process that produces 719 tons/day of hydrogen.

2.2 Hydrogen Production via Steam Reforming of Methane

Hydrogen is a key element for making fuels and other industrial chemicals. Industry is currently making hydrogen from natural gas via steam reforming. Water and methane are feeds for the process in which some of the methane is used to make steam and the remainder is combined with the steam to create hydrogen and carbon dioxide. The two basic chemical equations describing the process, methane reforming and gas shift, are:


$$CH_4 + H_2O \Leftrightarrow CO + 3H_2$$

$$CO + H_2O \Leftrightarrow CO_2 + H_2.$$
(1)
(2)

Figure 1 is a simplified block diagram showing the major process components. The process was modeled using ASPEN PLUS process modeling software. Four processes were modeled: methane reforming, gas shift, cleanup, and cooling.

Cooling

Towers

Exhaust

H₂-Rich Syngas

Water

Treatment

Nate

Shift & Syngas

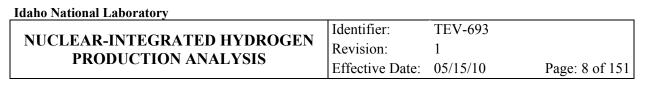
Conditioning

 $\dot{CO_2}$

Wate

Figure 1. Hydrogen production through the steam reforming of natural gas.

2.3 **Hydrogen Production via HTSE**


Stean

Natural Gas

Reformer

Exhaust

Hydrogen can also be produced using a high-temperature nuclear reactor by way of HTSE. The heat and electrical power from the reactor can be used to split water using solid oxide electrolysis cells, (SOEC) to create hydrogen and oxygen. The process heat from the reactor reduces the amount of electricity needed to split the water, thus increasing the efficiency of the process when compared to low-temperature electrolysis. Figure 2 is a simplified diagram of the process. The HYSYS process modeling software was used to model the HTSE process. The process model included heat recuperation and the power from a nuclear high-temperature gas reactor. HYSYS allows for accurate mass and energy balances and contains components like compressors, turbines, pumps, valves, and heat exchangers to simulate components in the process. Figure 3 diagrams the HTSE process in detail.

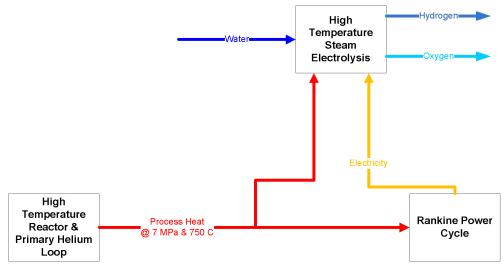


Figure 2. Hydrogen production via HTSE.

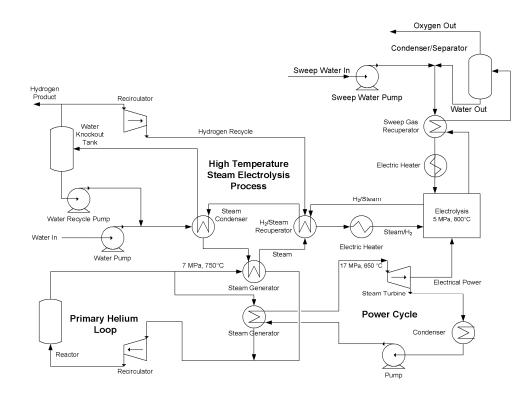


Figure 3. Process flow diagram of HTSE process.

NUCLEAR-INTEGRATED HYDROGEN PRODUCTION ANALYSIS

Identifier:	TEV-693	
Revision:	1	
Effective Date:	05/15/10	Page: 9 of 151

RESULTS OF PROCESS MODEL

The block flow diagram of the hydrogen processes shown in Figure 4 includes the input and product streams for each process. The size of each process was adjusted to the hydrogen production expected from a typical steam reformer, equaling 700 tons/day of hydrogen. To achieve this, the steam reformer requires 2,000 tons/day of natural gas resulting in nearly 3,400 tons/day of carbon dioxide emissions. Nearly 12 MWe of electricity is needed to support the process along with 1,360 gal/minute of water to supply steam and cooling.

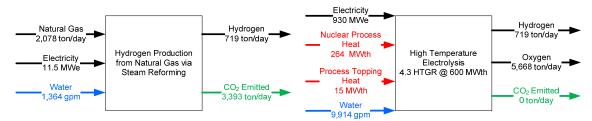


Figure 4. Block flow diagram of hydrogen production technologies.

The HTSE process produces no carbon dioxide but has a 930 MWe electrical load. The electrical power is primarily for the actual electrolysis process as shown in Table 2. The process requires 264 MWt of process heat from the reactor to create the steam necessary for the electrolysis process. The recuperating heat exchangers have a total duty of 230 MWt. It is assumed in this analysis that the steam generator can deliver 700°C steam to the electrolysis cells. The HTSE process requires the feed stream to be heated to 800°C, requiring additional topping heat from another heat source. This heat source could come from a combustor, electricheating or waste heat from a neighboring process, which may need to use the hydrogen from the HTSE process. The topping heat is 15 MWt. This analysis assumes that the topping heat either comes from electric heating or from other processes. If the heat is supplied by a neighboring process, the carbon footprint should already be accounted for by that process, making the carbon footprint of the hydrogen process at zero. This process requires much more water than the steam reforming process. The primary need for the water is for cooling of the reactors, as seen in Table 2. The electrical and process heat needs require 4.3 high-temperature gas reactors rated at 600 MWt. The hydrogen product has a purity of 99.9% with water as the remaining component. Oxygen is a byproduct of the HTSE process that may also be used in other chemical processes. The purity of the oxygen stream is 99.99% with water as the remaining component.

The hydrogen production efficiency was calculated for both processes. The hydrogen production efficiency is defined as the thermal value of the hydrogen product divided by the sum of thermal value of the feed streams, process heat in, and thermal equivalent of the electric power. The efficiency is basically the thermal value of the hydrogen output divided by the thermal value of the input. For the steam reforming case, the hydrogen production efficiency is the higher heating value of the hydrogen divided by the sum of the higher heating value of the natural gas and the thermal energy equivalent of the electrical power input. The thermal value of the electricity is found by the electrical power divided by the efficiency of the power cycle. The power cycle efficiency in this study was assumed at 40%. The hydrogen production efficiency for the HTSE process is the higher heating value of the hydrogen product divided by the sum of the thermal energy of the electrical power produced, the process heat from the reactor, and the topping heat. The hydrogen production efficiency of primarily by the

NUCLEAR-INTEGRATED HYDROGEN
PRODUCTION ANALYSISIdentifier:
Revision:TEV-693Revision:1Effective Date:05/15/10Page: 10 of 151

natural gas input, whereas the electrical power has the greatest influence for the HTSE case (see Table 2). The HTSE case has an efficiency of 40.4%, very close the power cycle efficiency for the electrical power, whereas the steam reforming case has an efficiency of 79.4%.

	Steam Methane Reforming	High Temperature Steam Electrolysis
Inputs		
Natural Gas Rate (ton/day)	2,078	0
# 600 MWt HTGRs Required	n/a	4.3
Intermediate Products		
Syngas (ton/day)	8,768	n/a
Syngas Produced /Natural Gas Fed (lb/lb)	4.2	n/a
Outputs		
Hydrogen (ton/day)	719	719
Hydrogen Production Efficiency	79.4%	40.4%
(Power Cycle Efficiency = 40%)		
Oxygen (ton/day)	0	5,668
Utility Summary		
Total Power (MWe)	11.5	930
Electrolyzers	n/a	923
NG Reformer	3.5	n/a
Gas Cleaning	3.6	n/a
Water Treatment	2.8	0
Cooling Towers	0.6	6.9
Power Block	1.0	n/a
Pumps	n/a	0.5
Recirculator	n/a	0.1
Process Heat		
Total Process Heat (MWt)	n/a	278
Process Heat from Reactor (MWt)	n/a	264
Topping Process Heat (MWt)	n/a	14.9
Water Consumption		
Total Water (gpm)	1,364	9,914
Water Consumed/Hydrogen Produced		
(lbm/lbm)	11.5	83.3
CO2 Emissions		
Emitted (ton/day CO ₂)	3,393	0

Table 2. Hydrogen production summary.

3. ECONOMIC MODELING

The economic viability of the HTSE process was assessed using standard economic evaluation methods. The economics were evaluated for the HTSE process combined with a single 600 MWt HTGR with a Rankine steam power cycle. Future work will include an economic analysis of the SMR process. The total capital investment (TCI), based on the total equipment costs, along with the variable and fixed operating costs were first calculated for the cases. The present worth of the annual cash flows (after taxes) was then calculated for the TCI, as well as the TCI at +50% and -30% of the HTGR cost, with the debt-to-equity ratios equal to 80%/20%. The following sections

Idaho National Laboratory						
NUCLEAD INTECDATED HYDDOCEN	Identifier:	TEV-693				
NUCLEAR-INTEGRATED HYDROGEN	Revision:	1				
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 11 of 151			

describe the methods used to calculate the capital costs, fixed and variable operating costs, and the methods used for the economic assessments. All calculations assume that a 600 MWt HTGR is used to produce only hydrogen and oxygen via HTSE by supplying electricity and process heat. The economic analysis includes the HTSE process, the power cycle, and the reactor.

For the nuclear-integrated cases, the estimates of capital costs and operating and maintenance costs assumed the nuclear plant was an "nth of a kind", (NOAK). In other words, the estimates were based on the costs expected after the HTGR technology is integrated into an industrial application more than 10 times. The economic modeling calculations were based on two capital cost scenarios: a current best estimate of \$2,000/kWt ["INL/BEA Pre-Conceptual Design Report name"] and a target of \$1,400/kW_{th} [personal communications with Larry Demick] where kW_{th} is the thermal rating of the plant. In comparison, light water nuclear reactor costs are approximately $$1,250/kW_{th}$. Based on the two capital cost scenarios for HTGR technology, the nominal capital cost for a 600 MW_{th} HTGR would be \$1.2 billion; the target capital cost would be \$840 million.

3.1 Capital Cost Estimation

The capital installed costs for the HTSE process are based on a report by Harvego et al.² which assumes hydrogen production from a 600 MWt high-temperature gas reactor with an outlet temperature of 900°C. At that temperature, the power cycle efficiency is 53% with a corresponding hydrogen production rate of 2.4 kg/sec. For the current NGNP case, the power cycle efficiency is 40% with a hydrogen production flow rate of 1.75 kg/sec. The hydrogen production system in the Harvego report used air as the sweep gas, whereas this analysis used steam for the sweep gas. The change in type of sweep gas was selected to be able to provide an oxygen product. Water as a sweep gas is more easily separated from oxygen generated than the nitrogen from the air in the air sweep option. Heat exchanger costs in the HTSE process were adjusted in this analysis to account for the different sizes. Air sweep compressor costs (including intercoolers) were removed and a water pump for the sweep gas was added. The water for the sweep side is heated to make steam which sweeps the oxygen from the electrolyzers. The water is removed from the oxygen by condensing and recycled. To size the sweep pump, the flow rate of the pump was adjusted until the outlet molar composition of the electrolysis unit was 50% oxygen and 50% steam. The same installed cost factors found in the Harvego report were used to adjust the cost of the equipment. The costs from the Harvego report are 2005 costs; Table 3 shows the adjusted capital costs. This analysis is performed using 2009 costs; therefore the Chemical Engineering Plant Cost Index (CEPCI) was used to adjust the costs to 2009 dollars. Uninstalled costs are the basic cost of the equipment from the manufacturer. Installed costs are the uninstalled costs plus the additional materials and labor needed to place and install the equipment.

Harvego et al. used *A Guide to Chemical Engineering Process Design and Economics*³ to estimate the costs of the separation tanks, steam generators, and heat recuperators. This analysis uses the separation tank cost found in Harvego et al., but linearly interpolates the cost of the steam generators and recuperators based on the overall heat transfer coefficient and heat transfer area product (UA) of the heat exchangers, because the heat exchanger sizes differ between cases. The topping heaters do not have a UA in the process model, but a similar approach was used in scaling the cost using the heat duty instead of the UA.

NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN PRODUCTION ANALYSIS	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 12 of 151

The pumps and hydrogen circulator come directly from the Harvego report and differ only in quantity. Harvego et al. used the Matches' Process Equipment Cost Estimates Website⁴ to obtain the capital costs for these components. The *H2-MHR Pre-Conceptual Design Report: HTE-Based Plant*⁵ was used by Harvego et al. to cost the water supply system, piping, electrical capital, and miscellaneous equipment.

In the Harvego report, the cost of the electrolysis cells is \$200/kWe, based on the power into the cells. This was derived from a 2007 goal of the Solid State Energy Conversion Alliance (SECA) for solid oxide fuel cells. The goal was set to \$400/kWe for the fuel cells, but because solid oxide electrolysis cells run at twice the voltage for the same current density, the electrolysis cells are half the cost. At a recent SECA conference, the goal for solid oxide fuel cells has changed to \$175/kWe, which when halved for SOEC comes to \$87.5/kWe.⁶ Consulting with HTSE experts, INL, and Ceramatec, a NOAK goal of \$100/kWe was used for this study.^{7,8}

The 4.74 installed cost factor is based on the Lang factor for predominately fluid processing plants. The Lang factor is the multiplier used on the major equipment cost to account for installing a process in a plant. The 1.2 cost factor is based on Reference 5. The 1.8 cost factor is based on consultation with experts at INL and Cerametec on HTSE.^{7,8}

A percentage breakdown of the installed capital costs of the HTSE process without reactor and power cycle costs is shown in Figure 4. The results show that 2/3 of the cost is due to the electrolysis cells. The results indicate that a sensitivity study of the cell cost could be beneficial. However when cost of the reactor and the cost of the power cycle, the capital cost of the HTSE process is only 8.41%, see Figure 5.

Equipment	2005 Uninstalled Costs	2009 Uninstalled Costs	Installed Cost Factors	2009 Installed Costs		
Water Separation Tanks	\$143,980	\$157,449	4.74	\$746,310		
Recycle Pumps	\$18,800	\$20,559	4.74	\$97,448		
Water Supply System	\$1,000,000	\$1,093,550	1.2	\$1,312,260		
Water Pumps	\$41,400	\$45,273	4.74	\$214,594		
Heat Recuperators	\$1,186,193	\$1,297,161	4.74	\$6,148,543		
Steam Generators	\$765,529	\$837,144	4.74	\$3,968,062		
Topping Heaters	\$190,000	\$207,774	4.74	\$984,851		
Hydrogen Circulator	\$19,600	\$21,433	4.74	\$101,595		
HSTE Piping	\$1,250,000	\$1,366,937	1.2	\$1,640,325		
Electrical	\$2,000,000	\$2,187,100	1.2	\$2,624,519		
Misc. Equipment	\$2,500,000	\$2,733,874	1.2	\$3,280,649		
Solid Oxide Electrolyzer	\$21,383,267	\$23,383,667	1.8	\$42,090,600		
Total Installed Cost \$63,209,757						

Table 3. Capital costs of HTSE connected to a 600 MWt HT
--

NUCLEAD INTECDATED HUDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 13 of 151

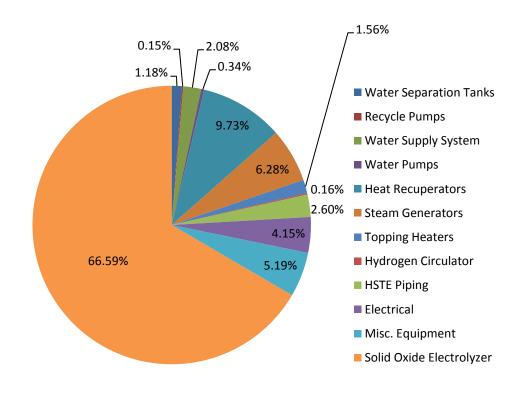


Figure 4. Installed capital costs of HTSE without reactor and power cycle costs.

The capital costs presented are for inside the battery limits, and exclude costs for administrative offices, storage areas, utilities, and other essential and nonessential auxiliary facilities. The estimate presented is a study (factored) estimate which has a probable error up to $\pm 30\%$.⁹ Fixed capital costs were estimated from literature estimates and scaled estimates (capacity, year, and material) from previous quotes. Capacity adjustments were based on the six-tenths factor rule:

$$C_2 = C_1 \left(\frac{q_2}{q_1}\right)^n \tag{3}$$

where C_1 is the cost of the equipment item at capacity q_1 , C_2 is the cost of the equipment at capacity q_2 , and n is the exponential factor, which typically has a value of 0.6.¹⁰ It was assumed that the number of trains did not have an impact on cost scaling. Cost indices were used to adjust equipment prices from previous years to values in July of 2009 using the CEPCI.

Form 412.09 (Re	v. 10)
-----------------	--------

NILCI EAD INTECDATED HUDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 14 of 151

Table 4. CEPCI data.					
Year	CEPCI	Year	CEPCI		
1990	357.6	2000	394.1		
1991	361.3	2001	394.3		
1992	358.2	2002	395.6		
1993	359.2	2003	402		
1994	368.1	2004	444.2		
1995	381.1	2005	468.2		
1996	381.7	2006	499.6		
1997	386.5	2007	525.4		
1998	389.5	2008	575.4		
1999	390.6	July 2009	512		

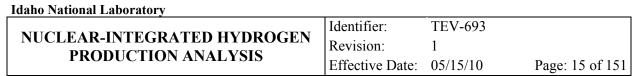

After cost estimates were obtained for each of the process areas, the costs for water systems, piping, instrumentation and control, electrical systems, and buildings and structures were added based on scaling factors for the total installed equipment costs.¹¹ These factors were not added to the cost of the HTGR or the power cycle. Table presents the factors utilized in this study:

Table 5. Capital cost adjustment factors.

Year	Factor
Water Systems	7.1%
Piping	7.1%
Instrumentation and Control	2.6%
Electrical Systems	8.0%
Buildings and Structures	9.2%

Finally, an engineering fee of 10% and a project contingency of 18% were assumed to determine the total capital investment (TCI). Neither engineering fees nor contingencies were applied to the HTGR costs. Table presents the capital cost estimate breakdown for the HTSE. These cost factors are applied only to the installed costs of the HTSE equipment; therefore, the numbers in Table 6 show those costs only as applied to HTSE alone. The water systems, piping, instrumentation and control, electrical systems, and buildings and structures costs are already incorporated in the reactor and power cycle costs and are represented by the numbers shown. Figure 5 shows the total capital investment cost for all three major components for nuclear-integrated hydrogen production. The HTSE TCI is only 8.41% of the total TCI.

Cost estimators at the INL performed a capital cost analyses for a number of nuclear integrated industrial processes. The HTSE and power cycle capital costs are a part of many of these analyses. In appendix D is the capital cost analyses for ammonia production. Based on this analysis and scaled to a 600 MWt reactor, the total capital costs of the reactor, power cycle and HTSE are \$1,025,100,000; \$170,600,000; and \$109,900,000. The total capital cost is \$1,305,600,000.

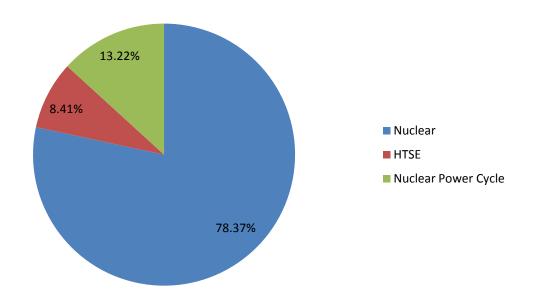


Figure 5. Total capital investment cost for HTSE hydrogen production connected to a 600 MWt HTGR.

Table 6. Total capital investment, HTSE connected to a 600 MWt HTGR.

	Installed Cost	Engineering Fee	Contingency	Total Capital Cost
Nuclear				\$1,025,000,000
Power Cycle	\$133,258,047	\$13,325,805	\$26,385,093	\$172,968,945
HTSE Total	\$ 84,706,502	\$ 8,470,650	\$ 16,771,887	\$ 109,949,039
HTSE Major Equipment	\$63,209,150	\$6,320,915	\$12,515,412	\$82,045,477
Cooling Towers	\$4,657	\$466	\$922	\$6,045
Water Systems	\$4,488,180	\$448,818	\$888,660	\$5,825,658
Piping	\$4,488,180	\$448,818	\$888,660	\$5,825,658
I&C	\$1,643,559	\$164,356	\$325,425	\$2,133,340
Electrical Systems	\$5,057,105	\$505,710	\$1,001,307	\$6,564,122
Buildings and Structures	\$5,815,670	\$581,567	\$1,151,503	\$7,548,740
Total Capital Investment		·		\$1,307,917,985
Total Capital Investment (+50)% HTGR)			\$1,820,417,985
Total Capital Investment (-30	% HTGR)			\$1,000,417,985

NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 16 of 151

3.2 Estimation of Revenue

Yearly revenues were estimated for the HTSE case. Revenues were estimated for low, average, and high prices for hydrogen.

	Price Generated		Price		Annual Revenue
Oxygen	0.04586	\$/kg	13.8	kg/s	\$18,351,646
Hydrogen - Low	1.50	\$/kg	1.75	kg/s	\$76,158,819
Hydrogen – Avg.	3.25	\$/kg	1.75 kg/s		\$165,010,774
Hydrogen - High	5.00	\$/kg	1.75	kg/s	\$253,862,730
Annual Revenue, low				\$94,510,465	
Annual Revenue, average			\$183,362,420		
Annual Revenue, high				\$272,214,375	

Table 7. Annual revenues, HTSE connected to a 600 MWt HTGR.

3.3 Estimation of Manufacturing Costs

Manufacturing cost is the sum of direct and indirect manufacturing costs. Direct manufacturing costs for this project include the cost of raw materials, utilities, and operating labor and maintenance. Indirect manufacturing costs include estimates for the cost of overhead and insurance and taxes.⁹

Table 8 shows the items that need to be considered for operation and maintenance. The expected duration of the electrolysis cells for NOAK is 8 years. Assuming that one-eighth of the cells are replaced every year, and based on the \$100/kWe cost of the cells, the yearly replacement cost is \$2,714,310. The number of staff members is an estimate based on the Harvego document. The water usage for the electrolyzer and the sweep gas comes from the HTSE process model. The cooling tower water usage is calculated from the ambient heat load from the model and from using the estimation procedure found in Keeper.¹² The electrical power usage and product flow rates are found in the process model. Finally, it was necessary to estimate the water needed to start the system by considering the sweep gas and the electrolysis recycle loops. The volumes of each major component were estimated by allowing a 10-minute resident time of the flow in each vessel.

Labor costs are assumed to be 1.15% of the total capital investment. Maintenance costs were assumed to be 3% of the total capital investment.¹³ The power cycles and HTSE were not included in the TCI for operation and maintenance costs, as they were calculated separately. Taxes and insurance were assumed to be 1.5% of the total capital investment, excluding the HTGR, an overhead of 65% of the labor and maintenance costs was assumed, and royalties were assumed to be 1% of the coal or natural gas cost.¹³ Table 9 provides the manufacturing costs for the HTSE case. Availability of the nuclear plant was assumed to be 92%.

NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 17 of 151

Table 8. Operations and maintenance cost considerations for HTSE.				
Water usage (gpm) 436.9				
Initial water need (gallons)	19,400			
Electrical power (kWe)	214,000			
Oxygen product (m ³ /s)	10.2			
Hydrogen product (m ³ /s)	20.4			

Table 9. Annual manufacturing costs, HTSE connected to a 600 MWt HTGR.

		Price	Cons	sumed	Annual Cost
Direct Costs					
Materials					
Water Clarification	0.024	\$/1000 gal	629,136	gal/day	\$5,167
Water Treatment	1.315	\$/1000 gal	356,976	gal/day	\$157,621
HTSE Cell Replacements	0.024	\$/lb H ₂	333,333	lb/day H ₂	\$2,714,310
Nuclear Fuel	4.22	\$/MWt-h	600	MWt	\$20,416,590
Utilities					
Water	0.046	\$/k-gal	629,136	gal/day	\$9,718
Labor and Maintenance					\$3,110,680
O&M Nuclear					\$8,276,996
Indirect Costs					
Overhead					\$2,021,942
Insurance and Taxes					\$4,243,770
Manufacturing Costs					\$40,956,793

3.4 Economic Comparison

To assess the economics of the HTSE case, several economic indicators were calculated. The IRR for low, average, and high hydrogen selling prices was calculated. In addition, the fuel price necessary for a return of 12% was calculated. The following assumptions were made for the economic analyses:

- The plant startup year is 2014
- A construction period of five years for the nuclear plant that begins in 2009
 - It is assumed that all reactors come online at the same time
 - Percent capital invested for the HTGR is 20% per year
- Plant startup time is one year
 - Operating costs are 85% of the total value during startup
 - Revenues are 60% of the total value during startup

NUCLEAR-INTEGRATED HYDROGEN
PRODUCTION ANALYSISIdentifier:
Revision:
1
Effective Date:TEV-693
05/15/10NUCLEAR-INTEGRATED HYDROGEN
PRODUCTION ANALYSISIdentifier:
Revision:
1
Effective Date:05/15/10

- The analysis period for the economic evaluation assumes an economic life of 30 years, excluding construction time (the model is built to accommodate up to 40 years)
- An inflation rate of 2.5% is assumed
- Debt-to-equity ratios of 80%/20% and 55%/45% are calculated; however, results are only presented for 80%/20% as this would be most consistent for an NOAK plant
 - The interest rate on debt is assumed to be 8%
 - The repayment term on the loan is assumed to be 15 years
- The effective income tax rate is 38.9%
 - State tax is 6%
 - Federal tax is 35%
- Modified Accelerated Cost-Recovery System (MACRS) depreciation is assumed.

3.4.1 Cash Flow

To assess the IRR and present worth (PW) of each scenario, it is necessary to calculate the after tax cash flow. To calculate the after tax cash flow (ATCF) it is necessary to first calculate the revenues (R_k), cash outflows (E_k), sum of all noncash, or book, costs such as depreciation (d_k), net income before taxes (NIBT), the effective income tax rate (t), and the income taxes (T_k), for each year (k). The taxable income is revenue minus the sum of all cash outflow and noncash costs. Therefore the income taxes per year are defined as follows:

$$T_k = t \left(R_k - E_k - d_k \right) \tag{4}$$

Depreciation for the economic calculations was calculated using a standard MACRS depreciation method with a property class of 15 years. Depreciation was assumed for the total capital investment over the five year construction schedule, including inflation.

Table presents the recovery rates for a 15 year property class:

NILCI FAD INTECDATED HUDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN PRODUCTION ANALYSIS	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 19 of 151

Table 10. MACRS depreciation.

Year	Recovery Rate	Year	Recovery Rate
1	0.05	9	0.0591
2	0.095	10	0.059
3	0.0855	11	0.0591
4	0.077	12	0.059
5	0.0693	13	0.0591
6	0.0623	14	0.059
7	0.059	15	0.0591
8	0.059	16	0.0295

The ATCF is then the sum of the before tax cash flow (BTCF) minus the income taxes owed. Note that the expenditures for capital are not taxed but are included in the BTCF each year there is a capital expenditure (C_k); this includes the equity capital and the debt principle. The BTCF is defined as follows:

$$BTCF_k = R_k - E_k - C_k \tag{5}$$

The ATCF can then be defined as:

$$ATCF_k = BTCF_k - T_k \tag{6}$$

3.4.2 Internal Rate of Return

The IRR method is the most widely used rate of return method for performing engineering economic analyses. This method solves for the interest rate that equates the equivalent worth of an alternative's cash inflows to the equivalent worth of cash outflows (after tax cash flow), i.e., the interest rate at which the PW is zero. The resulting interest is the IRR (i'). For the project to be economically viable, the calculated IRR must be greater than the desired minimum annual rate of return (MARR).

$$PW(i^{\prime}\%) = \sum_{k=0}^{N} ATCF_{k} (1+i^{\prime})^{-k} = 0$$
(7)

IRR calculations were performed for an 80%/20% debt-to-equity ratio (results for the 55%/45% ratio can be found in Appendix C for HTSE) for +50% TCI and -30% TCI for the HTGR at low, average, and high prices. In addition, the price of hydrogen necessary for an IRR of 12% and a PW of zero was calculated for each case at each debt-to-equity ratio. The IRR and hydrogen

Idaho National Laboratory			
NUCLEAD INTECDATED HUDDOCEN	Identifier:	TEV-693	

NUCLEAD INTEODATED HYDDOCEN	identifier.	1 L V -075	
NUCLEAR-INTEGRATED HYDROGEN	Revision:	1	
PRODUCTION ANALYSIS	ICCVISIOII.	1	
I RODUCTION ANAL ISIS	Effective Date:	05/15/10	Page: 20 of 151

price required (for an IRR of 12%) was solved for using the Goal Seek function in Excel.

4. ECONOMIC MODELING RESULTS

Table 11 presents the results for an 80%/20% debt-to-equity ratio for HTSE. Figure depicts the associated IRR results for HTSE.

Table 11. HTSE connected to a 600 MWt HTGR IRR results for 80%/20% debt-to-equi	y ratio.
---	----------

	TCI -30	% HTGR	TCI		TCI +50% HTGR	
	IRR	\$/kg	IRR	\$/kg	IRR	\$/kg
	\$1,000,	417,985	\$1,307,	917,985	\$1,820,	417,985
	3.31	\$1.50	1.22	\$1.50	-1.08	\$1.50
HTSE	13.79	\$3.25	10.28	\$3.25	6.70	\$3.25
	21.65	\$5.00	16.88	\$5.00	12.10	\$5.00
	12.00	\$2.90	12.00	\$3.67	12.00	\$4.96

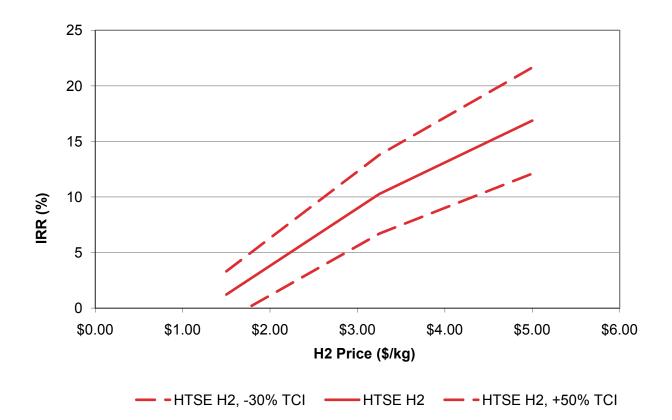


Figure 6. HTSE connected to a 600 MWt HTGR IRR 80%/20% debt-to-equity economic results.

NUCLEAD INTECDATED HUDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN PRODUCTION ANALYSIS	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 21 of 151

The cost of hydrogen for an 80% debt to 20% equity and a 12% IRR is 3.67/kg. The cost of the hydrogen ranges from 2.90/kg to 4.96 based a +50% to a -30% on the capital cost of the reactor.

It is likely that many industrial processes will require more than 1.75 kg/s of hydrogen. The price of hydrogen production would likely go down if considering economy of scale.

5. CONCLUSIONS AND RECOMMENDATIONS

For a 600 MWt high-temperature gas reactor with an outlet temperature of 750°C dedicated to hydrogen production using HTSE, the following conclusions may be made:

- HTSE delivers 1.75 kg/s of hydrogen and 13.8 kg/s of oxygen
- The hydrogen is produced with no production of carbon dioxide
- Based on a 12% IRR and 80/20 debt-to-equity, the cost of hydrogen is \$3.67/kg
- Total installed capital cost for HTSE is \$82 million
- Total capital investment is \$1.3 billion
- Two-thirds of the installed capital cost for the HTSE process is electrolysis cells excluding the cost of the reactor and power cycle
- 78% of the total capital investment is the reactor cost
- 2,300 gallons per minute of water is needed for the process, most of which is used for the condenser of the power cycle.

For these conclusions, one is assuming NOAK for the reactor and HTSE costs.

Based on an INL report,² a 600 MWt reactor with an outlet reactor temperature of 900°C can produce 2.36 kg/s of hydrogen. This is a 35% increase of hydrogen production. The increase is due to an increase in the power cycle efficiency from 40% to 53%, resulting in the higher production of hydrogen. At this temperature the need for topping heat goes away for the HTSE process.

Water is also a major concern due to the cooling need of the power cycle loop. By using an air-cooled tower, the reduction of water usage may be achieved.

It is recommended that:

• A similar analysis, as outlined in this TEV, is performed at a reactor outlet temperature of 900°C

NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN PRODUCTION ANALYSIS	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 22 of 151

- A process model is developed using air-cooled condensers as opposed to water cooled.
- A similar analysis is performed considering economy of scale.
- A sensitivity analysis of the cell costs should be performed.

6. **REFERENCES**

- 1. NGNP, 2009, *NGNP Hydrogen Technology Down-Selection: Results of the Independent Review Team (IRT) Evaluation*, July 31, 2009, R-6917-00-01.
- 2. Harvego, E. A., M. G. McKellar, M. S. Sohal, J. E. O'Brien, and J. S. Herring, 2008, *Economic Analysis of the Reference Design for a Nuclear-Driven High-Temperature-Electrolysis Hydrogen Production Plant*, INL/EXT-08-13799, January 2008.
- 3. Ulrich, Gael D., 1984, *A Guide to Chemical Engineering Process Design and Economics*, John Wiley and Sons, Inc.
- 4. Matches, "Matches' Process Equipment Cost Estimates," http://matche.com/EquipCost., Website viewed 02/03/2010.
- Richards, M. B., A. S. Shenoy, E. A. Harvego, M.G. McKellar, K. L. Peddicord, S. M. M. Reza, and J. P. Coupey, 2006, *H2-MHR Pre-Conceptual Design Report: HTE-Based Plant*, GAA25402, April 2006.
- 6. Surdoval, Wayne, 2009, "Clean Economic Energy in a Carbon Challenge World," Presentation at 10th Annual Solid State Energy Conversion Alliance (SECA) Workshop, Plenary Session, July 14–16, 2009, Pittsburgh, PA, viewed at http://www.netl.doe.gov/publications/proceedings/09/seca/index.html.
- 7. Personal communication with Dr. Stephen Herring, High Temperature Electrolysis project lead, Idaho National Laboratory, Jan 22, 2010.
- 8. Personal communication with Dr. Joseph Hartvigsen, Senior Engineer, SOFC and Hydrogen Technologies, Ceramatec Inc., Jan 21, 2010.
- 9. Perry, Robert H. and Don W. Green, *Perry's Chemical Engineers' Handbook*, 7th Edition, Robert H. Perry and Don W. Green, Eds., McGraw-Hill, 1997.
- 10. Peters, Max S. and Klaus D. Timmerhaus, *Plant Design and Economics for Chemical Engineers*, 4th Edition, Max S. Peters and Klaus D. Timmerhaus, Eds., McGraw-Hill, 1991.

NUCLEAD INTECDATED HYDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN PRODUCTION ANALYSIS	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 23 of 151

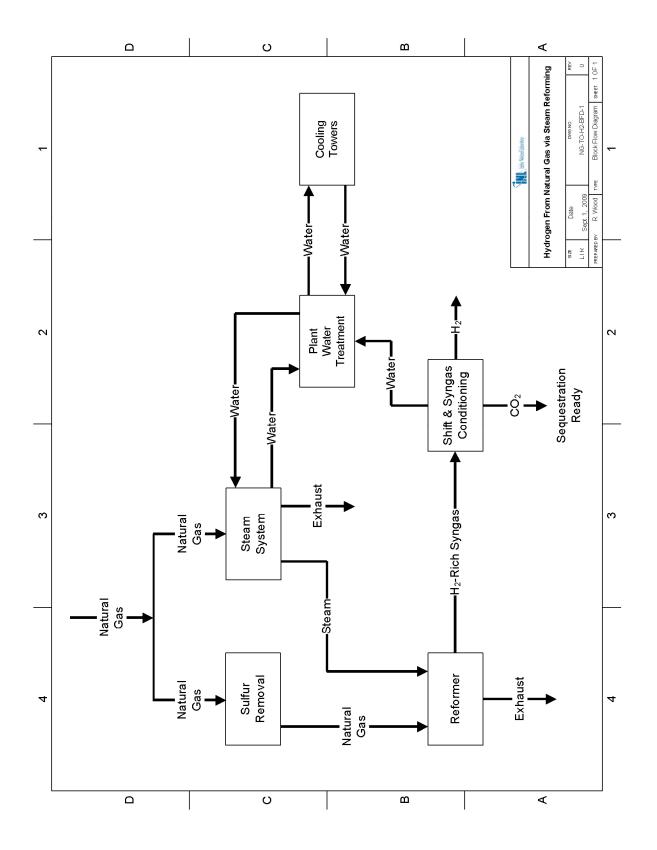
- 11. National Energy Technology Laboratory (NETL), 2000, Shell Gasifier IGCC Base Cases. PED-IGCC-98-002, Pittsburgh: NETL, 2000.
- 12. Keeper, Stephen A., 1981, *Wet Cooling Towers: "Rule of Thumb" Design and Simulation*, EGG-GTG-5775, Idaho National Laboratory, Department of Energy, July 1981.
- 13. Jones, David S. J., and Peter R. Rujado, 2006, *Handbook of Petroleum Processing*. Dordrecht: Spring, 2006.
- 14. Molburg, John C., and Richard A. Doctor, 2003, "Hydrogen from Steam-Methane Reforming with CO₂ Capture." 20th Annual International Pittsburgh Coal Conference, September 15–19, 2003, Pittsburgh PA.
- 15. "The Impact of Increased Use of Hydrogen on Petroleum Consumption and Carbon Dioxide Emissions", Energy Information Administration, Department of Energy, Report SR/OIAF-CNEAF/2008-04, August 2008.
- U.S. Energy Information Administration, Independent Statistics and Analysis, Natural Gas Navigator, <u>http://tonto.eia.doe.gov/dnav/ng/hist/n3035us3m.htm</u>.

7. APPENDIXES

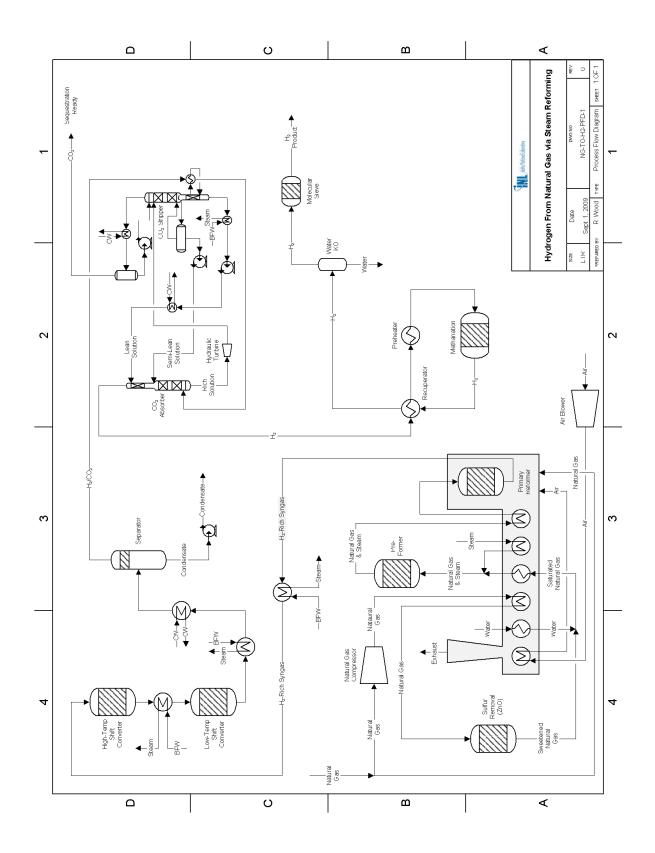
Appendix A, Steam Methane Reforming Detailed Results

Appendix B, High-Temperature Steam Electrolysis Results

Appendix C, 55%/45% Debt-to-Equity Results


Appendix D, Cost Estimate Support Data Recapitulation

NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN PRODUCTION ANALYSIS	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 24 of 151


Appendix A Steam Methane Reforming Detailed Results

The model of the steam methane reforming process and results in Appendix A were developed using Aspen Plus version 2006 (20.0.2.3781) from AspenTech on a desktop computer running Microsoft Windows XP Professional Version 2002 Service Pack 3.

NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 25 of 151

NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 26 of 151

Appendix A

NILCI EAD INTECDATED HUDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 27 of 151

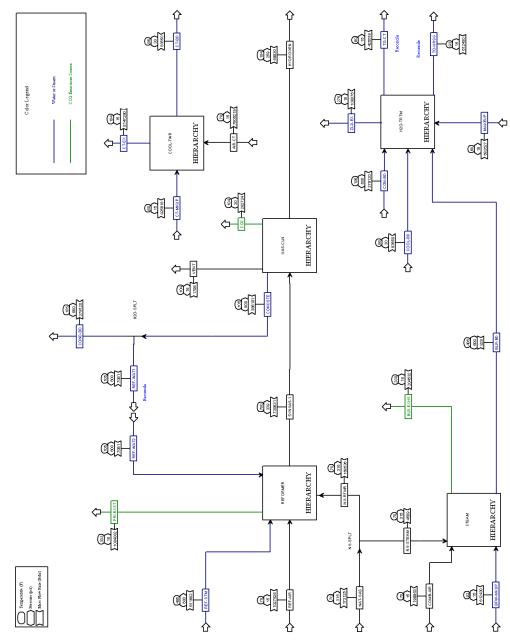
H2 Production Calculator Block SUMMARY	from Natural Gas Summary
FEED SUMMARY:	
NATURAL GAS PROPERTIES:	
MASS FLOW = VOLUME FLOW = HHV = HHV = ENERGY FLOW =	2078. TON/DY 92. MMSCFD @ 60°F 23061. BTU/LB 1044. BTU/SCF @ 60°F 95820. MMBTU/DY
COMPOSITION: METHANE = ETHANE = PROPANE = BUTANE = HEXANE = HEXANE = NITROGEN = OXYGEN = CO2 = C4H10S = C2H6S = H2S =	93.568 MOL.% 3.749 MOL.% 0.920 MOL.% 0.260 MOL.% 0.040 MOL.% 0.010 MOL.% 0.100 MOL.% 0.250 MOL.% 30. PPMV 3. PPMV 5. PPMV
INTERMEDIATE PRODUCT SUMMARY: RAW SYNGAS MASS FLOW = RAW SYNGAS VOLUME FLOW = RAW SYNGAS COMPOSITION: H2 CO CO2 N2 H2O CH4 FINAL PRODUCT SUMMARY:	730631. LB/HR 490. MMSCFD @ 60°F 41.0 Mol.% 6.3 Mol.% 5.7 Mol.% 0.1 Mol.% 46.1 Mol.% 0.7 Mol.%
HYDROGEN MASS FLOW = HYDROGEN VOLUME FLOW = HYDROGEN COMPOSITION: H2 N2 CH4 C0 H2 PRODUCED / NATURAL GAS FEE CARBON DIOXIDE MASS FLOW = CARBON DIOXIDE VOLUME FLOW = CARBON DIOXIDE COMPOSITION: C02 H2 N2	282724. LB/HR
СН4 СО Н2О	0. PPMV 0. PPMV 1. PPMV

POWER SUMMARY:

NILCI EAD INTECDATED HUDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 28 of 151

H2 Production fro	om Natural Gas Summary
ELECTRICAL CONSUMERS: NG REFORMER POWER CONSUMPTION GAS CLEANING POWER CONSUMPTION POWER BLOCK POWER CONSUMPTION CO2 PROCESSING POWER CONSUMPTI AMMONIA SYNTH. POWER CONSUMPTI UREA SYNTHESIS POWER CONSUMPTI HNO3 SYNTH. POWER CONSUMPTI NH4NO3 SYNTH. POWER CONSUMPTIC COOLING TOWER POWER CONSUMPTIC WATER TREATMENT POWER CONSUMPTIC	
NET PLANT POWER CONSUMPTION =	11.5 MW
WATER BALANCE:	
EVAPORATIVE LOSSES: COOLING TOWER EVAPORATION = ZLD SYSTEM EVAPORATION = TOTAL EVAPORATIVE LOSSES =	807.8 GPM 216.0 GPM 1023.8 GPM
WATER CONSUMED: BOILER FEED WATER MAKEUP = COOLING TOWER MAKEUP = TOTAL WATER CONSUMED =	1223.9 GPM 850.6 GPM 2074.4 GPM
WATER GENERATED: GAS CLEANING CONDENSATE = BOILER BLOWDOWN = COOLING TOWER BLOWDOWN = TOTAL WATER GENERATED = PLANT WATER SUMMARY: NET MAKEUP WATER REQUIRED = WATER CONSUMED / NG FED =	757.6 GPM 1.7 GPM 167.0 GPM 926.3 GPM
	3.94 LB/LB
CO2 BALANCE: CO2 EMITTED (TOTAL) = CO2 EMITTED (TOTAL) = FROM HRSG = FROM REFORMER = FROM GAS CLEANING = (THIS SOURCE IS "SEQUESTRATE CO2 EMITTED / NG FED =	1838. TON/DY 3390. TON/DY
Calculator Block NG-RFMR Hierarchy:	REFORMER
SULFUR REMOVAL CONDITIONS:	
INLET BED TEMPERATURE =	304. °F
PREFORMER CONDITIONS:	
INLET TEMPERATURE = STEAM TO CARBON MOLAR RATIO =	925.°F 5.00
PRIMARY REFORMER CONDITIONS:	
INLET TEMPERATURE =	1292. °F

NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 29 of 151


H2 Production from	Natural Gas Summary
STEAM TO CARBON MOLAR RATIO =	4.77
NATURAL GAS BURNED FOR HEAT =	33.56 %
OUTLET TEMPERATURE =	1598.°F
METHANE CONVERSION =	93.8 %

Calculator Block AIRPROPS

HUMIDITY DATA FOR STREAM	PRI-AIR:
HUMIDITY RATIO =	43.5 GRAINS/LB
RELATIVE HUMIDITY =	39.0 %

Appendix A

NILCI FAD INTECDATED HUDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 30 of 151

Hydrogen from Natural Gas

Appendix A

NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 31 of 151

	AIR-CT	BFW-MKUP	BLR-BD	BLR-EXHS	CO2
Temperature F Pressure psi Vapor Frac	70 14.7 1	92.4 14.7 0	600	330.4 17.7 1	104 30 1
Mole Flow Ibmol/hr Mass Flow Ib/hr Volume Flow cuft/hr Enthalpy MMBtu/hr	270488.931	33995.058 612430.495 9864.271	45.948 827.772	7204.534	6466.603 282723.87 1.29E+06 -1085.797
Dew Temp	AIR-CT	BFW-MKUP	BLR-BD	BLR-EXHS	CO2
Mass Flow Ib/hr					
H2O O2	48246.87 1.80E+06	612430.495 0	827.772 0	11048.904 28378.321	33.262 0
N2	5.85E+06	0	0	150049.771	0
AR NO	100565.963	0	0	2576.154	0
NO NO2	0 0	0	0	0	0 0
N2O4	0	0	0	0	0
NH3	0	0	0	0	0
HNO3	0	0	0	0	0
NH4NO3	0	0	0	0	0
H2 CO	53.987 0	0	0 0	0	81.988 17.23
CO2	3535.89	0	0	12478.146	282531.577
H2S	0	0	0	0	0
S02	0	0	0	0.65	0
METHANE	0	0	0	0	59.813
METHANOL	0	0	0	0	0
ETHANE ETHYLENE	0 0	0	0	0	0.001
C	0	0	0	0 0	0 0
S	0	0	0	0	0
UREA	0	0	0	0	0
CARB	0	0	0	0	0
ZNO	0	0	0	0	0
ZNS C2H6S	0	0	0	0	0
C2H6S C4H10S	0 0	0	0	0 0	0 0
PROPANE	0	0	0	0	0
BUTANE	0	0	0	0	0
PENTANE	0	0	0	0	0
HEXANE	0	-		0	0
Maca Erac	AIR-CT	BFW-MKUP	BLR-BD	BLR-EXHS	CO2
Mass Frac H2O	0.006	1	1	0.054	0
02	0.23	0	0	0.139	0
N2	0.75	0	0	0.734	0
AR	0.013	0	0	0.013	0

Idano National Laboratory					<u></u>	1
NUCLEAR-INTEGRATED HYDROGEN			ntifier:	TEV-69.	5	
		Rev	vision:	1		
PRODUCTION A	NALYSIS	Eff	ective Dat	te: 05/15/10	Page	e: 32 of 151
		LII	eenve Bu		1 48	0. 52 01 101
NO	0	C) 0	0	0	
NO2	0	(0	
N2O4	0	(
NH3	0	(0	
HNO3	0	C			0	
NH4NO3	0	C			0	
H2	0	C) 0	0	0	
CO	0	C) 0	0	0	
CO2	0	C) 0	0.061	0.999	
H2S	0	C			0	
S02	0	C) 0	0	0	
METHANE	0	C) 0	0	0	
METHANOL	0	C) 0	0	0	
ETHANE	0	C) 0	0	0	
ETHYLENE	0	(0	
C	0	C			0	
S	0	C			0	
UREA	0	C			0	
CARB	0	0			0	
ZNO	0	0			0	
ZNS	0	0			0	
C2H6S	0	0			0	
C4H10S	0	0			0	
PROPANE	0	(0	
BUTANE	0	(0	
PENTANE	0	(0	
HEXANE		BFW-MKUP		-	0	
Mole Flow lbmol/hr	AIR-CT	DEM-MIKOP	DLR-DD	BLR-EXHS	CO2	
H2O	2678.108	33995.058	45.948	613.307	1.846	
02	56213.492)			1.840	
N2	208972.785	(0	
AR	2517.422	(
NO	2317.422	(
NO2	0	(
N2O4	0	0				
NH3	0	(
HNO3	0	C			0	
NH4NO3	0	C			0	
H2	26.781	C) 0	0	40.671	
CO	0	C		0		
CO2	80.343	C) 0	283.531	6419.742	
H2S	0	C				
SO2	0	C) 0	0.01	0	
METHANE	0	C) 0			
METHANOL	0	C) 0	0	0	
ETHANE	0	C				
ETHYLENE	0	C				
C	0	C) 0	0	0	

NUCLEAR-INTEGRATED HYDROGEN PRODUCTION ANALYSIS	Identifier:	TEV-693	
	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 33 of 151

Mole Frac H2O 0.01 1 1 0.085 0 O2 0.208 0 0.123 0 N2 0.773 0 0 0.743 0 AR 0.009 0 0 0.009 0 NO 0 0 0 0 0 0 NO 0 0 0 0 0 0 0 N204 0 0 0 0 0 0 0 NH3 0 0 0 0 0 0 0 H2 0 0 0 0 0 0 0 CO2 0 0 0 0 0 0 0 H2 0 0 0 0 0 0 0 0 CO2 0 0 0 0 0 0 0 0 CO2 0 0	S UREA CARB ZNO ZNS C2H6S C4H10S PROPANE BUTANE PENTANE HEXANE	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
O2 0.208 0 0.123 0 N2 0.773 0 0 0.743 0 AR 0.009 0 0 0.009 0 NO 0 0 0 0 0 0 NO 0 0 0 0 0 0 NO2 0 0 0 0 0 0 N204 0 0 0 0 0 0 NH3 0 0 0 0 0 0 HH3 0 0 0 0 0 0 HH3 0 0 0 0 0 0 HH4NO3 0 0 0 0 0 0 0 CO2 0 0 0 0 0 0 0 So2 0 0 0 0 0 0 0 0 0 <t< td=""><td>Mole Frac</td><td></td><td></td><td></td><td></td><td></td></t<>	Mole Frac					
N2 0.773 0 0.743 0 AR 0.009 0 0.009 0 NO 0 0 0 0 0 NO 0 0 0 0 0 NO 0 0 0 0 0 NO2 0 0 0 0 0 N204 0 0 0 0 0 NH3 0 0 0 0 0 HNO3 0 0 0 0 0 H2 0 0 0 0 0 CO 0 0 0 0 0 CO2 0 0 0 0 0 METHANE 0 0 0 0 0 METHANOL 0 0 0 0 0 ETHANE 0 0 0 0 0 CARB						
AR 0.009 0 0.009 0 0.009 0 NO 0 0 0 0 0 0 NO2 0 0 0 0 0 0 N204 0 0 0 0 0 0 NH3 0 0 0 0 0 0 HNO3 0 0 0 0 0 0 NH4NO3 0 0 0 0 0 0 H2 0 0 0 0 0 0 0 CO2 0 0 0 0 0 0 0 0 CO2 0			-	-		
NO 0 0 0 0 0 NO2 0 0 0 0 0 N204 0 0 0 0 0 NH3 0 0 0 0 0 NH4N03 0 0 0 0 0 H2 0 0 0 0 0 0 CO 0 0 0 0 0 0 0 0 SO2 0 0 0 0 0 0 0 0 0 METHANE 0 0 0 0 0 0 0 0 0 0 0 0 <						
NO2 0 0 0 0 0 N2O4 0 0 0 0 0 NH3 0 0 0 0 0 HNO3 0 0 0 0 0 NH4NO3 0 0 0 0 0 H2 0 0 0 0 0 CO 0 0 0 0 0 H2 0 0 0 0 0 CO 0 0 0 0 0 0 CO2 0 0 0 0 0 0 0 SO2 0 0 0 0 0 0 0 0 METHANE 0 0 0 0 0 0 0 0 C 0 0 0 0 0 0 0 0 0 0 0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
N2O4 0 0 0 0 0 NH3 0 0 0 0 0 HNO3 0 0 0 0 0 NH4NO3 0 0 0 0 0 NH4NO3 0 0 0 0 0 H2 0 0 0 0 0 CO 0 0 0 0 0 CO2 0 0 0 0 0 SO2 0 0 0 0 0 METHANE 0 0 0 0 0 METHANE 0 0 0 0 0 ETHYLENE 0 0 0 0 0 0 CARB 0 0 0 0 0 0 0 ZNS 0 0 0 0 0 0 0 0 0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
NH3 0 0 0 0 0 HNO3 0 0 0 0 0 NH4NO3 0 0 0 0 0 H2 0 0 0 0 0 H2 0 0 0 0 0 CO 0 0 0 0 0 CO2 0 0 0 0 0 SO2 0 0 0 0 0 METHANE 0 0 0 0 0 METHANE 0 0 0 0 0 FTHANE 0 0 0 0 0 C 0 0 0 0 0 0 G 0 0 0 0 0 0 0 METHANE 0 0 0 0 0 0 0 CARB 0 <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td>			-	-		
HNO300000NH4NO3000000H2000000CO0000000CO20000000H2S0000000SO20000000METHANE0000000ETHANE0000000C00000000C00000000C00000000CARB00000000ZNO00000000ZNS00000000C4H10S00000000BUTANE00000000PENTANE00000000MWMX28.85618.01518.01528.38943.721000						
NH4NO3 0 0 0 0 0 H2 0 0 0 0 0.006 CO 0 0 0 0 0 CO2 0 0 0 0.039 0.993 H2S 0 0 0 0 0 SO2 0 0 0 0 0 METHANE 0 0 0 0 0 METHANOL 0 0 0 0 0 ETHANE 0 0 0 0 0 METHANOL 0 0 0 0 0 ETHANE 0 0 0 0 0 S 0 0 0 0 0 0 VIEA 0 0 0 0 0 0 0 VIEA 0 0 0 0 0 0 0 0 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
H200000.006CO0000000CO20000000H2S0000000SO20000000METHANE0000000METHANE0000000ETHANE0000000C0000000C0000000CARB0000000ZNO0000000ZNS0000000C4H10S0000000PROPANE0000000BUTANE0000000HEXANE0000000MWMX28.85618.01518.01528.38943.721						
CO00000CO20000.0390.993H2S00000SO200000METHANE00000METHANE00000ETHANE00000C00000ETHYLENE0000C0000CARB0000ZNO0000ZNS0000C4H10S0000PROPANE0000BUTANE0000MWMX28.85618.01518.01528.389AUX28.85618.01518.01528.389						
CO2 0 0 0 0.039 0.993 H2S 0 0 0 0 0 SO2 0 0 0 0 0 METHANE 0 0 0 0 0 METHANE 0 0 0 0 0 METHANE 0 0 0 0 0 ETHANE 0 0 0 0 0 ETHANE 0 0 0 0 0 C 0 0 0 0 0 0 ETHYLENE 0 0 0 0 0 0 0 S 0 0 0 0 0 0 0 UREA 0 0 0 0 0 0 0 ZNO 0 0 0 0 0 0 0 ZNO 0 0 0						
H2S 0 0 0 0 0 SO2 0 0 0 0 0 METHANE 0 0 0 0 0 0 METHANOL 0 0 0 0 0 0 ETHANE 0 0 0 0 0 0 ETHYLENE 0 0 0 0 0 0 C 0 0 0 0 0 0 0 UREA 0 0 0 0 0 0 0 0 ZNO 0 0 0 0 0 0 0 0 ZNS 0 0 0 0 0 0 0 0 ZNS 0 0 0 0 0 0 0 0 ZNS 0 0 0 0 0 0 0 0 PROPANE 0 0 0 0 0 0 0 0 <tr< td=""><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></tr<>		-	-	-	-	-
SO200000METHANE00000.001METHANOL00000ETHANE00000ETHYLENE00000C00000REA00000UREA00000ZNO00000ZNS00000C4H10S00000PROPANE00000BUTANE00000MWMX28.85618.01518.01528.38943.721			-	-		
METHANE0000.001METHANOL00000ETHANE00000ETHYLENE00000C00000S00000UREA00000ZNO00000ZNS00000ZNS00000C4H10S00000PROPANE00000BUTANE00000HXANE00000MWMX28.85618.01518.01528.38943.721						
METHANOL0000ETHANE0000ETHYLENE0000C0000S0000UREA0000CARB0000ZNO0000ZNS0000CH6S0000C4H10S0000PROPANE0000BUTANE0000HEXANE0000MWMX28.85618.01518.01528.38943.721						-
ETHANE0000ETHYLENE0000C0000S0000UREA0000CARB0000ZNO0000ZNS0000C4H10S0000PROPANE0000BUTANE0000MWMX28.85618.01518.01528.389						
ETHYLENE0000C00000S00000UREA00000CARB00000ZNO00000ZNS00000C4H5S00000C4H10S00000PROPANE00000BUTANE00000HEXANE00000MWMX28.85618.01518.01528.38943.721						
C00000S00000UREA00000CARB00000ZNO00000ZNS00000ZH6S00000C4H10S00000PROPANE00000BUTANE00000HEXANE00000MWMX28.85618.01518.01528.38943.721						
S 0 0 0 0 0 UREA 0 0 0 0 0 0 CARB 0 0 0 0 0 0 0 ZNO 0 0 0 0 0 0 0 ZNS 0 0 0 0 0 0 0 C2H6S 0 0 0 0 0 0 0 C4H10S 0 0 0 0 0 0 0 PROPANE 0 0 0 0 0 0 0 BUTANE 0 0 0 0 0 0 0 HEXANE 0 0 0 0 0 0 0 MWMX 28.856 18.015 18.015 28.389 43.721						
UREA00000CARB000000ZNO000000ZNS000000C2H6S000000C4H10S000000PROPANE000000BUTANE000000HEXANE000000MWMX28.85618.01518.01528.38943.721						
CARB0000ZNO0000ZNS0000C2H6S0000C4H10S0000PROPANE0000BUTANE0000PENTANE0000HEXANE0000MWMX28.85618.01518.01528.389			-	-		
ZNO 0						
ZNS0000C2H6S00000C4H10S00000PROPANE00000BUTANE00000PENTANE00000HEXANE00000MWMX28.85618.01518.01528.38943.721		-	-	-	-	
C2H6S00000C4H10S000000PROPANE000000BUTANE000000PENTANE000000HEXANE000000MWMX28.85618.01518.01528.38943.721						
C4H10S0000PROPANE0000BUTANE0000PENTANE0000HEXANE0000MWMX28.85618.01518.01528.389						
PROPANE 0 0 0 0 0 BUTANE 0 0 0 0 0 0 PENTANE 0 0 0 0 0 0 0 HEXANE 0 0 0 0 0 0 0 MWMX 28.856 18.015 18.015 28.389 43.721						
BUTANE0000PENTANE0000HEXANE00000MWMX28.85618.01518.01528.38943.721		-	-	-	-	
PENTANE 0 0 0 0 0 HEXANE 0 0 0 0 0 0 MWMX 28.856 18.015 18.015 28.389 43.721						
HEXANE0000MWMX28.85618.01518.01528.38943.721						
MWMX 28.856 18.015 18.015 28.389 43.721				-		
RELHUMID	MWMX	28.856	18.015	18.015	28.389	43.721
	RELHUMID					

NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN	Revision:		
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 34 of 151

	COMB-AIR	CON-BD	COND-BD	CONDSTE	COOL-BD
Temperature F Pressure psi	70 14.7	104.6 600 0	600	600	86 30 0
Vapor Frac Mole Flow Ibmol/hr Mass Flow Ib/hr Volume Flow cuft/hr	1 6928.996 199942.946 2.68E+06	21042.898 379120.155	21042.898 379120.155	21434.816 386181.143	4635.597
Enthalpy MMBtu/hr Dew Temp	-7.85				
·	COMB-AIR	CON-BD	COND-BD	CONDSTE	COOL-BD
Mass Flow lb/hr	1005 010	270022 477	270022 477	200001 040	02450 127
H2O O2	1235.919 46078.155	379022.477 0			
N2	149960.757		0.002	0.002	71.281
AR	2576.154	0.002			1.545
NO	2570.154	0	0	0	1.545
NO2	0	0	0		Ő
N2O4	0	0	0	0	0
NH3	0	44.763	44.763	45.596	0 0
HNO3	0	0	0	0	0
NH4NO3	0	0			0
H2	1.383	0.253	0.253	0.257	0
CO	0	0.002	0.002	0.002	0
CO2	90.577	52.569	52.569	53.548	0.602
H2S	0	0	0	0	0
S02	0	0	0	0	0
METHANE	0	0.089	0.089	0.091	0
METHANOL	0	0	0	0	0
ETHANE	0	0	0	0	0
ETHYLENE	0	0	0	0	0
С	0	0	0	0	0
S	0	0	0	0	0
UREA	0	0	0		0
CARB	0	0	0		0
ZNO	0	0	0	0	0
ZNS	0	0	0	0	0
C2H6S	0	0	0		0
C4H10S	0	0	0	0	0
PROPANE	0	0	0	0	0
BUTANE	0	0	0	0	0
PENTANE	0	0	0	0	0
HEXANE		-			-
Mass Frag	COMB-AIR	CON-BD	COND-BD	CONDSTE	COOL-BD
Mass Frac H2O	0.006	1	1	1	0.999
02	0.008				
N2	0.25		0	0	0.001
AR	0.013		0	0	0.001
<i>,</i> 、	0.015	0	0	0	0

NUCLEAR-INTEGRATED HYDROGE PRODUCTION ANALYSIS		Iden	tifier:	TEV-693	
		JEN Rev	ision:	1	
		Effe	ctive Date:	05/15/10	Page: 35 of 151
NO	0	0	0	0	0
NO2	0	0	0	0	0
N204	Ő	0	0	0	0
NH3	0	0	0	0	0
HNO3	0	0	0	0	0
NH4NO3	0	0	0	0	0
H2	0	0	0	0	0
СО	0	0	0	0	0
CO2	0	0	0	0	0
H2S	0	0	0	0	0
SO2	0	0	0	0	0
METHANE	0	0	0	0	0
METHANOL	0	0	0	0	0
ETHANE	0	0	0	0	0
ETHYLENE	0 0	0	0	0	0
C S	0	0	0	0	0 0
UREA	0	0	0	0	0
CARB	0 0	0	0	0	0
ZNO	Ő	0	0	0	0
ZNS	0	0	0	0	0
C2H6S	0	0	0	0	0
C4H10S	0	0	0	0	0
PROPANE	0	0	0	0	0
BUTANE	0	0	0	0	0
PENTANE	0	0	0	0	0
HEXANE	0	0	0	0	0
	COMB-AIR	CON-BD	COND-BD	CONDSTE	COOL-BD
Mole Flow Ibmol/hr					
H2O	68.604	21038.945	21038.945	21430.788	4632.186
02	1439.996	0	0	0	0.814
N2	5353.164	0	0	0	2.545
AR NO	64.488 0	0 0	0 0	0 0	0.039 0
NO2	0	0	0	0	0
N204	Ő	0	0	0	0
NH3	Ő	2.628	2.628	2.677	0
HNO3	0	0	0	0	
NH4NO3	0	0	0	0	0
H2	0.686	0.125	0.125	0.128	0
СО	0	0	0	0	0
CO2	2.058	1.194	1.194	1.217	0.014
H2S	0	0	0	0	-
S02	0	0	0	0	0
METHANE	0	0.006	0.006	0.006	0
METHANOL	0	0	0	0	0
ETHANE	0	0	0	0	0
ETHYLENE	0 0	0	0	0	0 0
C	0	0	0	0	U

Idaho National Laboratory					
NUCLEAD INTECDATED	IWDDOCEN	Identifier:	TEV-693		
NUCLEAR-INTEGRATED		Revision:	1		
PRODUCTION ANA	L Y 515	Effective Date:	05/15/10		Page: 36 of 151
S	0	0	0	0	0
UREA	0	0	0	0	0
CARB	0	0	0	0	0
ZNO	0	0	0	0	0

ZNS	0		0	0	0	0
C2H6S	0		0	0	0	0
C4H10S	0		0	0	0	0
PROPANE	0		0	0	0	0
BUTANE	0		0	0	0	0
PENTANE	0		0	0	0	0
HEXANE	0		0	0	0	0
	COMB-AIR	CON-BD	CONI	D-BD CONI	DSTE C	OOL-BD
Mole Frac	0.01		1	1	1	0.000
H2O	0.01		1	1 0	1 0	0.999
O2 N2	0.208 0.773		0 0	0	0	0 0.001
AR	0.773		0	0	0	
NO	0.009		0	0	0	0 0
NO2	0		0	0	0	0
N02 N2O4	0		0	0	0	0
				-	-	
NH3	0		0	0 0	0 0	0
HNO3	0		0			0
NH4NO3 H2	0 0		0 0	0 0	0 0	0 0
	0		0	0	0	
CO CO2	0		0	0	0	0 0
H2S	0		0	0	0	0
H25 S02	0		0	0	0	0
METHANE	0		0	0	0	0
METHANE	0		0	0	0	0
ETHANE	0		0	0	0	0
ETHYLENE	0		0	0	0	0
C	0		0	0	0	0
S	0		0	0	0	0
UREA	0		0	0	0	0
CARB	0		0	0	0	0
ZNO	0		0	0	0	0
ZNS	0		0	0	0	0
C2H6S	0		0	0	0	0
C4H10S	0		0	0	0	0
PROPANE	0		0	0	0	0
BUTANE	0		0	0	0	0
PENTANE	0		0	0	0	0
HEXANE	0		0	0	0	0
MWMX	28.856			18.017	0 18.017	18.023
RELHUMID	20.000	10.0	1/	10.01/	10.01/	10.025
RELIGHID						

NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 37 of 151

	CT-BD	CT-EX	CT-MKUP	HYDROGEN	MAKEUP
Temperature F Pressure psi Vapor Frac	86 30 0	104.1 14.7 0.996	60 14.7 0	104 259.29 1	60 14.7 0
Mole Flow Ibmol/hr	4635.597	289771.942	23625.388	25664.228	37891.551
Mass Flow lb/hr	83549.613		425617.984		682626.908
Volume Flow cuft/hr	1343.362			601993.862	12820.295
Enthalpy MMBtu/hr Dew Temp	-568.888	-2315.3	-2912.212	-9.599	-4699.571
	CT-BD	CT-EX	CT-MKUP	HYDROGEN	MAKEUP
Mass Flow lb/hr	00450 407	404000 505	125617.004	0.460	
H2O O2	83450.127 26.057	404232.525 1.80E+06	425617.984 0		682626.908
N2	71.281	5.84E+06	0	2135.195	0 0
AR	1.545		0	2135.155	0
NO	0	0	0	0	0
NO2	0	0	0	0	0
N2O4	0	0	0	0	0
NH3	0	0	0	0	0
HNO3	0	0	0	0	0
NH4NO3	0	0	0	0	0
H2 CO	0	53.979 0	0 0	50689.51 0	0 0
CO2	0.602	3451.702	0	0	0
H2S	0.002	0	0	0	0
S02	0	0	0	0	0 0
METHANE	0	0	0	7105.005	0
METHANOL	0	0	0	0	0
ETHANE	0	0	0	0	0
ETHYLENE	0	0	0	0	0
С	0	0	0	0	0
S UREA	0	0	0 0	0 0	0 0
CARB	0	0	0	0	0
ZNO	0	0	0	0	Ő
ZNS	0	0	0	0	0
C2H6S	0	0	0	0	0
C4H10S	0	0	0	0	0
PROPANE	0	0	0	0	0
BUTANE	0	0	0	0	0
PENTANE	0	0	0	0	0
HEXANE	0 CT-BD			0 HYDROGEN	0 Μακεί ιρ
Mass Frac		CILX		MEROGEN	MAREON
H2O	0.999	0.05	1	0	1
02	0	0.22	0		0
N2	0.001			0.036	0
AR	0	0.012	0	0	0

		Ide	ntifier:	TEV-693	
NUCLEAR-INTEGRAT		Rev	vision:	1	
PRODUCTION A	ANAL Y SIS	Eff	ective Date:	05/15/10	Page: 38 of 15
NO NO2 N2O4 NH3	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
HNO3	0	0	0	0	0
NH4NO3	0	0	0	0	0
H2	0	0	0	0.846	0
CO	0	0	0	0	0
CO2	0	0	0	0	0
H2S SO2	0 0	0 0	0 0	0	0 0
METHANE	0	0	0	0.119	0
METHANOL	0	0	0	0.119	0
ETHANE	0	Ő	0 0	0	0
ETHYLENE	0	0	0	0	0
С	0	0	0	0	0
S	0	0	0	0	0
UREA	0	0	0	0	0
CARB	0	0	0	0	0
ZNO	0	0	0	0	0
ZNS C2H6S	0 0	0 0	0 0	0	0 0
C4H10S	0	0	0	0	0
PROPANE	0	0	0	0	0
BUTANE	0	Ő	0	0	0
PENTANE	0	0 0	0	0	0
HEXANE	0	0	0	0	0
	CT-BD CT-E>	<	CT-MKUP	HYDROGEN	MAKEUP
Mole Flow lbmol/hr					
H2O		38.315	23625.388	0.026	37891.551
02		99.578	0	0	0
N2 AR	2.545 2086 0.039 2	2512.01	0 0	76.22 0	0 0
NO	0.039 2	0	0	0	0
NO2	0	0	0	0	0
N2O4	0	0	0	0	0
NH3	0	0	0	0	0
HNO3	0	0	0	0	0
NH4NO3	0	0	0	0	0
H2	0	26.777	0	25145.103	0
СО	0	0	0	0	0
CO2	0.014	78.43	0	0	0
H2S	0	0	0	0	0
SO2 METHANE	0 0	0 0	0 0	0 442.879	0 0
METHANE	0	0	0	442.879	0
ETHANE	0	0	0	0	0
ETHYLENE	0	0	0	0	0
C	0	0	0	0	0

		Identifier		TEV-693	
	RATED HYDROGEN	Revision	:	1	
PRODUCTIO	RODUCTION ANALYSIS		Date:	05/15/10	Page: 39 of 151
S	0	0	0	0	0
UREA	0	0	0	0	0
CARB	0	0	0	0	0
ZNO	0	0	0	0	0
ZNS	0	0	0	0	0
C2H6S	0	0	0	0	0
C4H10S	0	0	0	0	0
PROPANE	0	0	0	0	0
BUTANE	0	0	0	0	0
PENTANE	0	0	0	0	0
HEXANE	0	0	0	0	0
	CT-BD CT-EX	CT-MK	(UP ł	HYDROGEN MA	KEUP
Mole Frac					
H2O		1 077	1	0	1

	CT-BD	CT-EX	CT-MKUP	HYDROGEN	MAKEUP
Mole Frac					
H2O	0.999	0.077	1	0	1
02	0	0.194	0	0	0
N2	0.001	0.72		0.003	0
AR	0	0.009	0	0	0
NO	0	0	0	0	0
NO2	0	-	0	-	0
N2O4	0	0	0	0	0
NH3	0	-	0	-	0
HNO3	0		0		0
NH4NO3	0		0	0	0
H2	0		0		
CO	0		0		
CO2	0		-		0
H2S	0	-		-	0
S02	0	-	0	-	0
METHANE	0		0		
METHANOL	0		0		
ETHANE	0				
ETHYLENE	0	-	0	-	0
С	0		0		0
S	0		0		0
UREA	0		0		0
CARB	0		0		
ZNO	0		0		0
ZNS	0		0	-	0
C2H6S	0	-	0		0
C4H10S	0	-	0	-	0
PROPANE	0		0		0
BUTANE	0		0	0	0
PENTANE	0		0	0	0
HEXANE	0		0	-	0
MWMX	18.023	28.116	18.015	2.335	18.015
RELHUMID					

NUCLEAD INTECDATED HUDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 40 of 151

	NAT-GAS	NG-RFMR	NG-STEAM	PRI-EXST	REF-AIR
Temperature F	70	70	70	333	70
Pressure psi	314.7	314.7	314.7	17.7	14.7
Vapor Frac	1	1	1	1	1
Mole Flow Ibmol/hr	10076.025	9808.941	267.084	39007.232	35608.693
Mass Flow Ib/hr	173125				1.03E+06
Volume Flow cuft/hr	172389.296				1.38E+07
Enthalpy MMBtu/hr	-330.118			-1249.957	-40.344
Dew Temp					
	NAT-GAS	NG-RFMR	NG-STEAM	PRI-EXST	REF-AIR
Mass Flow lb/hr					
H2O	0	0	0	127210.398	6351.491
02	32.234	31.38	0.854	18723.078	236799.503
N2	3358.149	3269.135	89.014	771758.021	770660.899
AR	0	0	0	13239.072	13239.072
NO	0	0	0	0	0
NO2	0	0	0	0	0
N2O4	0	0	0	0	0
NH3	0	0	0	0	0
HNO3	0	0	0	0	0
NH4NO3	0	0	0	0	0
H2	0	0	0	0	7.107
CO	0	0	0	0	0
CO2	1108.346		29.379	153145.658	465.485
H2S	1.717	1.671	0.046	0	0
SO2	0	-	0	8.012	0
METHANE	151249.661 0	147240.507	4009.153 0	0	0
METHANOL ETHANE	11359.138	0 11058.043	301.095	0 0	0 0
ETHYLENE	11559.158			0	0
C	0	0	0	0	0
S	0	0	0	0	0
UREA	0	0	0	0	0
CARB	0	0	0 0	0	0
ZNO	0	0	0	0	0
ZNS	0	0	0	0	0
C2H6S	1.878	1.828	0.05	0	0
C4H10S	27.256	26.534	0.722	0	0
PROPANE	4086.75	3978.423	108.327	0	0
BUTANE	1522.335	1481.983	40.352	0	0
PENTANE	290.726	283.02	7.706	0	0
HEXANE	86.812	84.511			0
	NAT-GAS	NG-RFMR	NG-STEAM	PRI-EXST	REF-AIR
Mass Frac					
H2O	0	0	0	0.117	0.006
02	0			0.017	0.23
N2	0.019			0.712	0.75
AR	0	0	0	0.012	0.013

NUCLEAD INTEODATE		Identifier	r:	TEV-693	
NUCLEAR-INTEGRATE		Revision	:	1	
PRODUCTION AN	AL Y 515	Effective Date:		05/15/10	Page: 41 of 151
NO	0	0	0	0	0
NO2	0	0	0	0	0
N2O4	0	0	0	0	0
NH3	0	0	0	0	0
HNO3	0	0	0	0	0
NH4NO3	0	0	0	0	0
H2	0	0	0	0	0

NH3	0	0	0	0	0
HNO3	0	0	0	0	0
NH4NO3	0	0	0	0	0
H2	0	0	0	0	0
СО	0	0	0	0	0
CO2	0.006	0.006	0.006	0.141	0
H2S	0	0	0	0	0
S02	0	0	0	0	0
METHANE	0.874	0.874	0.874	0	0
METHANOL	0	0	0	0	0
ETHANE	0.066	0.066	0.066	0	0
ETHYLENE	0	0	0	0	0
С	0	0	0	0	0
S	0	0	0	0	0
UREA	0	0	0	0	0
CARB	0	0	0	0	0
ZNO	0	0	0	0	0
ZNS	0	0	0	0	0
C2H6S	0	0	0	0	0
C4H10S	0	0	0	0	0
PROPANE	0.024	0.024	0.024	0	0
BUTANE	0.009	0.009	0.009	0	0
PENTANE	0.002	0.002	0.002	0	0
HEXANE	0.001	0.001	0.001	0	0
HEXANE	0.001 NAT-GAS	0.001 NG-RFMR	0.001 NG-STEAM	0 PRI-EXST	0 REF-AIR
				-	-
Mole Flow lbmol/hr		NG-RFMR		PRI-EXST	REF-AIR
Mole Flow lbmol/hr H2O	NAT-GAS 0	NG-RFMR 0	NG-STEAM 0	PRI-EXST 7061.25	REF-AIR 352.561
Mole Flow Ibmol/hr H2O O2	NAT-GAS 0 1.007	NG-RFMR 0 0.981	NG-STEAM 0 0.027	PRI-EXST 7061.25 585.118	REF-AIR 352.561 7400.262
Mole Flow Ibmol/hr H2O O2 N2	NAT-GAS 0 1.007 119.876	NG-RFMR 0 0.981 116.699	NG-STEAM 0 0.027 3.178	PRI-EXST 7061.25 585.118 27549.523	REF-AIR 352.561 7400.262 27510.359
Mole Flow lbmol/hr H2O O2 N2 AR	NAT-GAS 0 1.007 119.876 0	NG-RFMR 0 0.981 116.699 0	NG-STEAM 0 0.027 3.178 0	PRI-EXST 7061.25 585.118 27549.523 331.408	REF-AIR 352.561 7400.262 27510.359 331.408
Mole Flow Ibmol/hr H2O O2 N2	NAT-GAS 0 1.007 119.876	NG-RFMR 0 0.981 116.699	NG-STEAM 0 0.027 3.178	PRI-EXST 7061.25 585.118 27549.523	REF-AIR 352.561 7400.262 27510.359
Mole Flow Ibmol/hr H2O O2 N2 AR NO	NAT-GAS 0 1.007 119.876 0 0	NG-RFMR 0.981 116.699 0 0	NG-STEAM 0 0.027 3.178 0 0	PRI-EXST 7061.25 585.118 27549.523 331.408 0	REF-AIR 352.561 7400.262 27510.359 331.408 0 0
Mole Flow Ibmol/hr H2O O2 N2 AR NO NO2	NAT-GAS 0 1.007 119.876 0 0 0	NG-RFMR 0.981 116.699 0 0 0	NG-STEAM 0 0.027 3.178 0 0 0 0	PRI-EXST 7061.25 585.118 27549.523 331.408 0 0	REF-AIR 352.561 7400.262 27510.359 331.408 0
Mole Flow Ibmol/hr H2O O2 N2 AR NO NO2 N2O4 NH3	NAT-GAS 0 1.007 119.876 0 0 0 0 0	NG-RFMR 0 0.981 116.699 0 0 0 0 0	NG-STEAM 0.027 3.178 0 0 0 0 0	PRI-EXST 7061.25 585.118 27549.523 331.408 0 0 0	REF-AIR 352.561 7400.262 27510.359 331.408 0 0 0 0 0 0
Mole Flow Ibmol/hr H2O O2 N2 AR NO NO2 N2O4	NAT-GAS 0 1.007 119.876 0 0 0 0 0 0 0	NG-RFMR 0.981 116.699 0 0 0 0 0 0 0	NG-STEAM 0.027 3.178 0 0 0 0 0 0 0	PRI-EXST 7061.25 585.118 27549.523 331.408 0 0 0 0 0 0	REF-AIR 352.561 7400.262 27510.359 331.408 0 0 0
Mole Flow Ibmol/hr H2O O2 N2 AR NO NO2 N2O4 NH3 HNO3 NH4NO3	NAT-GAS 0 1.007 119.876 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NG-RFMR 0.981 116.699 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NG-STEAM 0 0.027 3.178 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PRI-EXST 7061.25 585.118 27549.523 331.408 0 0 0 0 0 0 0 0 0 0 0 0	REF-AIR 352.561 7400.262 27510.359 331.408 0 0 0 0 0 0 0 0 0 0 0 0
Mole Flow Ibmol/hr H2O O2 N2 AR NO NO2 N2O4 NH3 HNO3	NAT-GAS 0 1.007 119.876 0 0 0 0 0 0 0 0 0 0 0	NG-RFMR 0.981 116.699 0 0 0 0 0 0 0 0 0 0 0 0 0	NG-STEAM 0.027 3.178 0 0 0 0 0 0 0 0 0 0 0 0	PRI-EXST 7061.25 585.118 27549.523 331.408 0 0 0 0 0 0 0 0	REF-AIR 352.561 7400.262 27510.359 331.408 0 0 0 0 0 0 0 0 0
Mole Flow Ibmol/hr H2O O2 N2 AR NO NO2 N2O4 NH3 HNO3 NH4NO3 H2 CO	NAT-GAS 0 1.007 119.876 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NG-RFMR 0.981 116.699 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NG-STEAM 0 0.027 3.178 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PRI-EXST 7061.25 585.118 27549.523 331.408 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	REF-AIR 352.561 7400.262 27510.359 331.408 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Mole Flow Ibmol/hr H2O O2 N2 AR NO NO2 N2O4 NH3 HNO3 NH4NO3 H2 CO CO2	NAT-GAS 0 1.007 119.876 0 0 0 0 0 0 0 0 0 0 0 25.184	NG-RFMR 0 0.981 116.699 0 0 0 0 0 0 0 0 0 24.517	NG-STEAM 0 0.027 3.178 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PRI-EXST 7061.25 585.118 27549.523 331.408 0 0 0 0 0 0 0 0 0 0 0 3479.808	REF-AIR 352.561 7400.262 27510.359 331.408 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Mole Flow Ibmol/hr H2O O2 N2 AR NO NO2 N2O4 NH3 HNO3 NH4NO3 H2 CO	NAT-GAS 0 1.007 119.876 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NG-RFMR 0.981 116.699 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NG-STEAM 0 0.027 3.178 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PRI-EXST 7061.25 585.118 27549.523 331.408 0 0 0 0 0 0 0 0 0 0 0 0 0 3479.808 0	REF-AIR 352.561 7400.262 27510.359 331.408 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Mole Flow Ibmol/hr H2O O2 N2 AR NO NO2 N2O4 NH3 HNO3 NH4NO3 H2 CO CO2 H2S SO2	NAT-GAS 0 1.007 119.876 0 0 0 0 0 0 0 0 25.184 0.05 0	NG-RFMR 0 0.981 116.699 0 0 0 0 0 0 0 0 0 24.517 0.049 0	NG-STEAM 0 0.027 3.178 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PRI-EXST 7061.25 585.118 27549.523 331.408 0 0 0 0 0 0 0 0 0 0 0 0 3479.808 0 0.125	REF-AIR 352.561 7400.262 27510.359 331.408 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Mole Flow Ibmol/hr H2O O2 N2 AR NO NO2 N2O4 NH3 HNO3 NH4NO3 H2 CO CO2 H2S SO2 METHANE	NAT-GAS 0 1.007 119.876 0 0 0 0 0 0 0 0 0 0 25.184 0.05	NG-RFMR 0 0.981 116.699 0 0 0 0 0 0 0 0 0 24.517 0.049	NG-STEAM 0 0.027 3.178 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PRI-EXST 7061.25 585.118 27549.523 331.408 0 0 0 0 0 0 0 0 0 0 0 0 0 3479.808 0	REF-AIR 352.561 7400.262 27510.359 331.408 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Mole Flow Ibmol/hr H2O O2 N2 AR NO NO2 N2O4 NH3 HNO3 NH4NO3 H2 CO CO2 H2S SO2 METHANE METHANOL	NAT-GAS 0 1.007 119.876 0 0 0 0 0 0 0 0 0 25.184 0.05 0 9427.908	NG-RFMR 0 0.981 116.699 0 0 0 0 0 0 0 0 24.517 0.049 0 9178.003	NG-STEAM 0 0.027 3.178 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PRI-EXST 7061.25 585.118 27549.523 331.408 0 0 0 0 0 0 0 0 0 0 3479.808 0 0.125 0	REF-AIR 352.561 7400.262 27510.359 331.408 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Mole Flow Ibmol/hr H2O O2 N2 AR NO NO2 N2O4 NH3 HNO3 NH4NO3 H2 CO CO2 H2S SO2 METHANE METHANE METHANOL ETHANE	NAT-GAS 0 1.007 119.876 0 0 0 0 0 0 0 0 0 0 0 25.184 0.05 0 9427.908 0 377.761	NG-RFMR 0 0.981 116.699 0 0 0 0 0 0 0 24.517 0.049 0 9178.003 0 367.748	NG-STEAM 0 0.027 3.178 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PRI-EXST 7061.25 585.118 27549.523 331.408 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	REF-AIR 352.561 7400.262 27510.359 331.408 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Mole Flow Ibmol/hr H2O O2 N2 AR NO NO2 N2O4 NH3 HNO3 NH4NO3 H2 CO CO2 H2S SO2 METHANE METHANOL	NAT-GAS 0 1.007 119.876 0 0 0 0 0 0 0 0 0 0 25.184 0.05 0 9427.908 0	NG-RFMR 0 0.981 116.699 0 0 0 0 0 0 0 24.517 0.049 0 9178.003 0	NG-STEAM 0 0.027 3.178 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PRI-EXST 7061.25 585.118 27549.523 331.408 0 0 0 0 0 0 0 0 0 0 0 0 3479.808 0 0.125 0 0 0	REF-AIR 352.561 7400.262 27510.359 331.408 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

	Identifier:	TEV-693	
PRODUCTION ANALYSIS	Revision:	1	
	Effective Date:	05/15/10	Page: 42 of 151

S	0	0	0	0	0
UREA	0	0	0	0	0
CARB	0	0	0	0	0
ZNO	0	0	0	0	
ZNS	0	0	0	0	-
C2H6S	0.03	-	0.001	0	
C4H10S				0	
	0.302		0.008	-	-
PROPANE	92.677	90.221	2.457	0	-
BUTANE	26.191	25.497	0.694		-
PENTANE	4.029		0.107		
HEXANE	1.007	0.981	0.027	0	
	NAT-GAS	NG-RFMR	NG-STEAM	PRI-EXST	REF-AIR
Mole Frac					
H2O	0	0	0	0.181	0.01
02	0	0	0	0.015	0.208
N2	0.012	0.012	0.012	0.706	0.773
AR	0	0	0	0.008	0.009
NO	0			0	
NO2	0	0	0	0	
N2O4	0	0	0 0	0	
NH3	0	0	0	0	-
HNO3	0	0	0	0	-
	0		0		
NH4NO3		0		0	
H2	0	0	0	0	
CO	0	0	0	0	-
CO2	0.002	0.002	0.002	0.089	
H2S	0		0	0	
S02	0	-	0	0	-
METHANE	0.936	0.936	0.936	0	0
METHANOL	0	0	0	0	0
ETHANE	0.037	0.037	0.037	0	0
ETHYLENE	0	0	0	0	0
С	0	0	0	0	0
S	0	0	0	0	0
UREA	0	0	0	0	0
CARB	0		0	0	
ZNO	0	0	0	0	-
ZNS	0	0	0	0	
C2H6S	0	0	0	0	
C4H10S	0	0	0	0	-
	-	-	-	-	-
PROPANE	0.009	0.009	0.009	0	
BUTANE	0.003	0.003	0.003	0	
PENTANE	0		0	0	
HEXANE	0	0	0	0	-
MWMX	17.182	17.182	17.182	27.792	28.856
RELHUMID					

NUCLEAD INTEODATED HUDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 43 of 151

	REF-STM	REF-WAT1	REF-WAT2	SYNGAS-1	то-ст
Temperature F Pressure psi Vapor Frac	485.2 600 1	104.6 600 0		700 338.59 1	60 14.7 0
Mole Flow Ibmol/hr	33949.11	391.917			23625.388
Mass Flow Ib/hr	611602.723		7060.989	730631.091	425617.984
Volume Flow cuft/hr	486069.137				7993.456
Enthalpy MMBtu/hr Dew Temp	-3447.229				-2930.183
Mass Flow h/hr	REF-STM	REF-WAT1	REF-WAT2	SYNGAS-1	то-ст
Mass Flow lb/hr H2O	611602.723	7059.169	7059 169	446631.689	425617 984
02	011002.725			0000000	425017.904
N2	0	0	0	2129.142	0
AR	0	0	0	0	0
NO	0	0	0	0	0
NO2	0	0	0	0	0
N2O4	0	0	0	0	0
NH3	0	0.834		52.96	0
HNO3 NH4NO3	0 0	0 0	0	0 0	0 0
H2	0	0.005	0.005		0
CO	0	0.003			0
CO2	0	0.979		135889.567	0
H2S	0	0		0	0
S02	0	0	0	0	0
METHANE	0	0.002	0.002	5981.418	0
METHANOL	0	0			0
ETHANE	0	0	0	0.11	0
ETHYLENE	0	0	0	0	0
C S	0	0	0	0	0
S UREA	0 0	0 0	0 0	0 0	0 0
CARB	0	0	0	0	0
ZNO	0	0	0	0	0
ZNS	0	0	0	0	0
C2H6S	0	0	0	0	0
C4H10S	0	0	0	0	0
PROPANE	0	0	0	0	0
BUTANE	0	0	0	0	0
PENTANE	0	0	0	0	0
HEXANE	0 REF-STM	0 Ref-W/AT1	0 REF-WAT2	0 SVNGAS-1	0 TO-CT
Mass Frac				JINGAJ-1	
H2O	1	1	1	0.611	1
02	Ō	0	0	0	0
N2	0	0	0	0.003	0
AR	0	0	0	0	0

Idaho National Laboratory

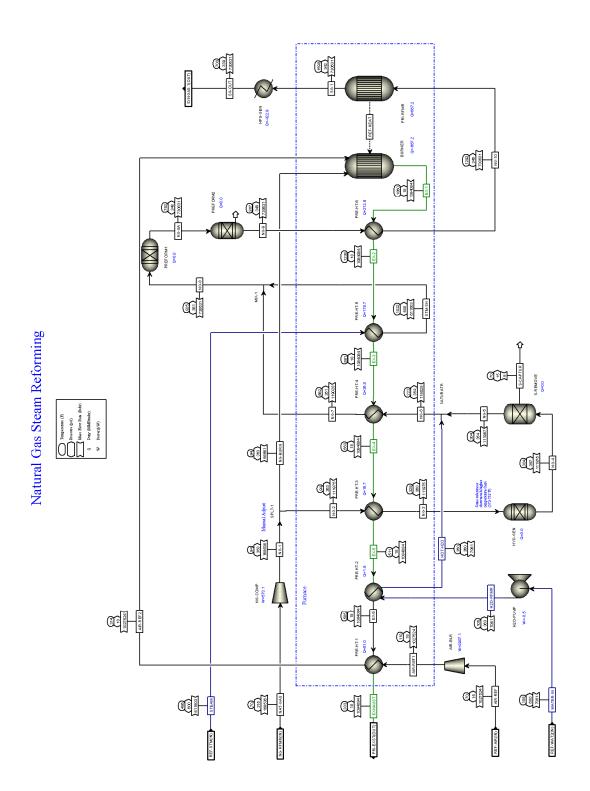
Idano National Laboratory		Ida	ntifier:	TEV-693	
NUCLEAR-INTEGRATI	ED HYDROGE				
PRODUCTION A		Rev	vision:	1	
		Effe	ective Date	: 05/15/10	Page: 44 of 151
NO	0	0	0	0	0
NO2	0	0	0	0	0
N2O4	0	0	0	0	0
NH3	0	0	0	0	0
HNO3	0	0	0	0	0
NH4NO3	0	0	0	0	0
H2	0	0	0	0.061	0
CO	0	0	0	0.131	0
CO2	0	0	0	0.186	0
H2S	0	0	0	0	0
SO2	0	0	0	0	0
METHANE	0	0	0	0.008	0
METHANOL	0	0	0	0	0
	0	0	0	0	0
ETHYLENE	0	0	0	0	0
C S	0	0 0	0 0	0	0
S UREA	0 0	0	0	0 0	0 0
CARB	0	0	0	0	0
ZNO	0	0	0	0	0
ZNS	0	0	0	0	0
C2H6S	0	0	0	0	0
C4H10S	0	0	0	0	0
PROPANE	0	0	0	0	0
BUTANE	õ	0	0	0	0
PENTANE	õ	Ö	0 0	0	0
HEXANE	0	0	0	0	0
	-	-WAT1 I	REF-WAT2	SYNGAS-1	то-ст
Mole Flow lbmol/hr					
H2O	33949.11 3	391.843	391.843	24791.826	23625.388
02	0	0	0	0	0
N2	0	0	0	76.004	0
AR	0	0	0	0	0
NO	0	0	0	0	0
NO2	0	0	0	0	0
N2O4	0	0	0	0	0
NH3	0	0.049	0.049	3.11	0
HNO3	0	0	0	0	0
NH4NO3	0	0	0	0	0
H2	0	0.002	0.002	22073.308	0
CO	0	0	0	3407.629	0
CO2	0	0.022	0.022	3087.712	0
H2S	0	0	0	0	0
SO2	0	0	0	0	0
METHANE	0	0	0	372.842	0
METHANOL	0	0	0	0	0
ETHANE	0	0	0	0.004	0
ETHYLENE	0	0	0	0	0
С	0	0	0	0	0

NUCLEAR-INTEGRATED HYDROGEN PRODUCTION ANALYSIS	Identifier:	TEV-693	
	Revision:	1	
	Effective Date:	05/15/10	Page: 45 of 151

S UREA CARB ZNO ZNS C2H6S C4H10S PROPANE BUTANE PENTANE HEXANE	REF-STM	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Mole Frac						
H2O		1	1	1	0.461	1
02 N2		0 0	0 0	0 0	0 0.001	0
AR		0	0	0	0.001	0 0
NO		0	0	0	0	0
NO2		0	0	0	0	0
N2O4		0	0	0	0	0
NH3		0	0	0	0	0
HNO3		0	0	0	0	0
NH4NO3		0	0	0	0	0
H2		0	0	0	0.41	0
CO		0	0	0	0.063	0
CO2 H2S		0	0 0	0 0	0.057	0 0
H25 S02		0 0	0	0	0	0
METHANE		0	0	0	0.007	0
METHANOL		Ö	0 0	0	0.007	0
ETHANE		0	0	0	0	0
ETHYLENE		0	0	0	0	0
С		0	0	0	0	0
S		0	0	0	0	0
UREA		0	0	0	0	0
CARB		0	0	0	0	0
ZNO		0	0	0	0	0
ZNS C2H6S		0 0	0 0	0 0	0	0
C4H10S		0	0	0	0	0
PROPANE		õ	0 0	0	0	0
BUTANE		0	0	0	0	0
PENTANE		0	0	0	0	0
HEXANE		0	0	0	0	0
MWMX	18.0)15	18.017	18.017	13.577	18.015
RELHUMID						

NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN PRODUCTION ANALYSIS	Revision:	1	
	Effective Date:	05/15/10	Page: 46 of 151

	TO-HRSG	VENT	ZLD-EX
Temperature F Pressure psi	92.8 14.7 0	104 14.7 0	275 14.7
Vapor Frac Mole Flow Ibmol/hr	33992.016	99.68	1 5998.591
Mass Flow lb/hr	612430.495		
Volume Flow cuft/hr	13280.745	34.276	3.20E+06
Enthalpy MMBtu/hr Dew Temp	-4193.74	-12.278	-614.532
Maca Flaw, lb/br	TO-HRSG	VENT	ZLD-EX
Mass Flow lb/hr H2O	612262.904	1795.76	108046.395
02	22.149		3.909
N2	60.592	0	10.693
AR	1.314	0	0.232
NO	0	0	0
NO2	0	0	0
N2O4	0	0	0
NH3	38.048	0	6.714
HNO3	0	0	0
NH4NO3 H2	0 0.215	0	0 0.038
CO	0.215	0 0	0.038
CO2	45.195	0	7.976
H2S	0	0	0
S02	0	0	0
METHANE	0.076	0	0.013
METHANOL	0	0	0
ETHANE	0	0	0
ETHYLENE	0	0	0
С	0	0	0
S UREA	0 0	0	0 0
CARB	0	0 0	0
ZNO	0	0	0
ZNS	0	0	0
C2H6S	0	0	0
C4H10S	0	0	0
PROPANE	0	0	0
BUTANE	0	0	0
PENTANE	0	0	0
HEXANE	0 TO-HRSG	0 VENT	
Mass Frac	D-UK30		ZLD-EX
H2O	1	1	1
02	0	0	- 0
N2	0	0	0
AR	0	0	0


NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 47 of 151

HNO3 NH4NO3 H2 CO CO2 H2S SO2 METHANE METHANOL ETHANE ETHYLENE C S UREA CARB ZNO ZNS C2H6S C4H10S PROPANE BUTANE PENTANE HEXANE		
Mole Flow Ibmol/hr H2O O2 N2 AR NO NO2 N2O4 NH3 HNO3 NH4NO3 H2 CO CO2 H2S SO2 METHANE METHANE METHANE ETHYLENE	-	ZLD-EX 5997.486 0.122 0.382 0.006 0 0 0 0 0 0 0 0 0 0 0 0 0

NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN PRODUCTION ANALYSIS	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 48 of 151

S UREA CARB ZNO ZNS C2H6S C4H10S PROPANE BUTANE PENTANE HEXANE	TO-HRSG	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Mole Frac H2O		1	1	1
02		0	0	0
N2		0	0	0
AR		0	0	0
NO NO2		0 0	0	0
N2O4		0	0 0	0 0
NH3		0	0	0
HNO3		0	0	0
NH4NO3		0	0	0
H2		0	0	0
CO CO2		0 0	0 0	0 0
H2S		0	0	0
S02		0	0	0
METHANE		0	0	0
METHANOL		0	0	0
ETHANE ETHYLENE		0 0	0 0	0 0
C		0	0	0
S		0	0	0
UREA		0	0	0
CARB ZNO		0 0	0 0	0 0
ZNO		0	0	0
C2H6S		Õ	0	0
C4H10S		0	0	0
PROPANE		0	0	0
BUTANE PENTANE		0 0	0 0	0 0
HEXANE		0	0	0
MWMX	18.0	-	18.015	18.017
RELHUMID				

NILCI FAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN PRODUCTION ANALYSIS	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 49 of 151

NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 50 of 151

	AIR-REF	AIR-REF1	AIR-REF2	EX-1	EX-2
Temperature F Pressure psi	70 14.7			17.7	1238.4 17.7
Vapor Frac Mole Flow Ibmol/hr Mass Flow Ib/hr	1 35608.693 1.03E+06	1.03E+06		39007.232 1.08E+06	1 39007.232 1.08E+06
Volume Flow cuft/hr Enthalpy MMBtu/hr	1.38E+07 -40.344 AIR-REF	-30.425		-753.822	4.02E+07 -966.695 EX-2
Mass Flow lb/hr H2O	6351.491			127210.398	
O2 N2	770660.899		770660.899	771758.021	
AR NO NO2	13239.072 0 0		13239.072 0 0	0	13239.072 0 0
N204 NH3	0	0	0		0
HNO3 NH4NO3	0 0	0	0 0	0	0
H2 CO CO2	7.107 0 465.485	7.107 0 465.485	7.107 0 465.485	-	0 0 153145.658
H2S SO2	0	0	0	0	0 8.012
METHANE METHANOL ETHANE	0 0 0	0 0 0	0 0 0		0 0 0
ETHYLENE C	0	0	0	0	0
S UREA	0	0	0		0
CARB ZNO ZNS	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
C2H6S C4H10S	0	0	0 0	0 0	0 0
PROPANE BUTANE	0 0 0	0 0 0	0	0	0
PENTANE HEXANE	0 AIR-REF	0 AIR-REF1	0 0 AIR-REF2	0 0 EX-1	0 0 EX-2
Mass Frac H2O	0.006	0.006	0.006		0.117
O2 N2	0.23 0.75		0.75	0.712	0.017 0.712
AR NO	0.013 0				0.012 0

		Ident	ifier [.]	TEV-693	
NUCLEAR-INTEGRATI	ED HYDROG	L'NI			
PRODUCTION A		Revis		1	
INODUCTION A		Effec	tive Date:	05/15/10	Page: 51 of 151
		•			
NO2	0	0	0	0	0
NO2 N2O4	0	0	0	0	0
NH3	0	0	0	0	0 0
HNO3	0	0	0	0 0	0
NH4NO3	0	0	0	0	0
H2	0	0	0	0	0
CO	0	0	0	0	0
CO CO2	0		0	0.141	0.141
		0			
H2S	0	0	0	0	0
SO2	0	0	0	0	0
METHANE	0	0	0	0	0
METHANOL	0	0	0	0	0
ETHANE	0	0	0	0	0
ETHYLENE	0	0	0	0	0
C	0	0	0	0	0
S	0	0	0	0	0
UREA	0	0	0	0	0
CARB	0	0	0	0	0
ZNO	0	0	0	0	0
ZNS	0	0	0	0	0
C2H6S	0	0	0	0	0
C4H10S	0	0	0	0	0
PROPANE	0	0	0	0	0
BUTANE	0	0	0	0	0
PENTANE	0	0	0	0	0
HEXANE	0	0	0	0	0
	AIR-REF A	IR-REF1 A	AIR-REF2	EX-1 I	EX-2
Mole Flow lbmol/hr					
H2O	352.561	352.561	352.561	7061.25	7061.25
02	7400.262	7400.262	7400.262	585.118	585.118
N2	27510.359	27510.359	27510.359	27549.523	27549.523
AR	331.408	331.408	331.408	331.408	331.408
NO	0	0	0	0	0
NO2	0	0	0	0	0
N2O4	0	0	0	0	0
NH3	0	0	0	0	0
HNO3	0	0	0	0	0
NH4NO3	0	0	0	0	0
H2	3.526	3.526	3.526	0	0
CO	0	0	0	0	0
CO2	10.577	10.577	10.577	3479.808	3479.808
H2S	0	0	0	0	0
S02	0	0	0	0.125	0.125
METHANE	0	0	0	0	0
METHANOL	0	0	0	0	0
ETHANE	0	0	0	0	0
ETHYLENE	0	0	0	0	0
C	0	0	0	0	0
S	0	0	0	0	0

UREA CARB ZNO ZNS C2H6S C4H10S PROPANE BUTANE PENTANE) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0
HEXANE					
HEXANE Mole Frac H2O O2 N2 AR NO NO2 N2O4 NH3 HNO3 NH4NO3 H2 CO CO2 H2S SO2 METHANE METHANE METHANE ETHYLENE C S UREA CARB ZNO ZNS	AIR-REF 0.01 0.208 0.773 0.009 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AIR-REF1 . 0.01 3 0.208 3 0.773 3 0.009 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AIR-REF2 0.01 0.208 0.773 0.009 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EX-1 0.181 0.015 0.706 0.008 0 0 0 0 0 0 0 0 0 0 0 0 0	0 EX-2 0.181 0.015 0.706 0.008 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ZNS C2H6S C4H10S PROPANE BUTANE PENTANE HEXANE) 0) 0) 0) 0) 0	0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0

NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 53 of 151

	EX-3	EX-4	EX-5	EX-6	EXHAUST
Temperature F Pressure psi	680.8 17.7	17.7	17.7	504.8 17.7	333 17.7
Vapor Frac Mole Flow Ibmol/hr	: 39007.232			1 39007.232	1 39007.232
Mass Flow Ib/hr	1.08E+06				1.08E+06
Volume Flow cuft/hr	2.70E+07				1.87E+07
Enthalpy MMBtu/hr	-1145.434	-1181.278	-1197.012	-1198.928	-1249.957
	EX-3	EX-4	EX-5	EX-6	EXHAUST
Mass Flow lb/hr					
H2O		3 127210.398			
02	18723.078			18723.078	18723.078
N2			771758.021		
AR NO	13239.072			13239.072 0	13239.072 0
NO2	(0	0
N2O4	(0	0
NH3	(0	0
HNO3	() 0	0	0	0
NH4NO3	() 0	0	0	0
H2	() 0	0	0	0
CO	(-	0	0
CO2	153145.658			153145.658	153145.658
H2S)			0	0
SO2	8.012			8.012	8.012
METHANE METHANOL	(0 0	0 0
ETHANE	(0	0
ETHYLENE	(0	0
C	(0	0
S	(0	0
UREA	() 0	0	0	0
CARB	() 0	0	0	0
ZNO	(0	0
ZNS	(0	0
C2H6S	(0	0
C4H10S PROPANE	(0 0	0 0
BUTANE	(0	0
PENTANE	(0	0
HEXANE	(0	0
	EX-3	EX-4	EX-5	EX-6	EXHAUST
Mass Frac					
H2O	0.117			0.117	0.117
02	0.017			0.017	0.017
N2	0.712			0.712	0.712
AR	0.012			0.012	0.012
NO	() 0	0	0	0

daho National Laboratory		0755	Identi	fier:	TEV-693		
NUCLEAR-INTEGRAT		GEN	Revis		1		
PRODUCTION A	ANALYSIS			tive Date:	05/15/10	Page: 5	4 of 151
				live Date.	03/13/10	1 age. 5	+ 01 131
NO2 N2O4	0 0		0 0	0 0		0 0	
NH3	0		0	0		0	
HNO3	0		Ō	0		0	
NH4NO3	0		0	0		0	
H2	0		0	0	0	0	
CO	0		0	0	0	0	
CO2	0.141		0.141	0.141	0.141	0.141	
H2S	0		0	0		0	
SO2	0		0	0		0	
METHANE	0		0	0		0	
METHANOL	0		0	0		0	
ETHANE	0		0	0		0	
ETHYLENE	0		0	0		0	
C S	0 0		0 0	0 0		0 0	
UREA	0		0	0		0	
CARB	0		0	0		0	
ZNO	0		Õ	0		0	
ZNS	0		0	0		0	
C2H6S	0		0	0	0	0	
C4H10S	0		0	0		0	
PROPANE	0		0	0	0	0	
BUTANE	0		0	0		0	
PENTANE	0		0	0		0	
HEXANE	0		0	0	-	0	
	EX-3	EX-4	E	X-5	EX-6	EXHAUST	
Mole Flow Ibmol/hr	7061.05	70	C1 25	7061 25	7061.25	7061.05	
H2O O2	7061.25		61.25	7061.25			
N2	585.118 27549.523		5.118 9.523	585.118 27549.523			
AR	331.408		9.525 1.408	331.408			
NO	0		1.408 0	0		0	
NO2	0		0	0			
N2O4	0		õ	0			
NH3	0		0	0			
HNO3	0		0	0	0	0	
NH4NO3	0		0	0	0	0	
H2	0		0	0	0	0	
CO	0		0	0	0	0	
CO2	3479.808		9.808	3479.808			
H2S	0		0	0	-		
SO2	0.125		0.125	0.125			
METHANE	0		0	0			
METHANOL	0		0	0	-		
ETHANE ETHYLENE	0 0		0 0	0 0			
C	0		0	0			
S	0		0	0			
5	0		0	0	0	0	

NHCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 55 of 151

UREA CARB ZNO ZNS C2H6S C4H10S PROPANE BUTANE PENTANE HEXANE	EX-3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0
Mole Frac						001
H2O		0.181	0.181	0.181	0.181	0.181
02		0.015	0.015	0.015	0.015	0.015
N2		0.706	0.706	0.706	0.706	0.706
AR		0.008	0.008	0.008	0.008	0.008
NO		0.000	0.000	0.000	0.000	0.000
NO2		0	0	0	0	0
N2O4		0	0	0	0	0
NH3		0	0	0	0	0
HNO3		0	0	0	0	0
NH4NO3		0	0	0	0	0
H2		0	0	0	0	0
CO		0	0	0	0	0
CO2		0.089	0.089	0.089	0.089	0.089
H2S		0.089	0.009	0.009	0.009	0.089
S02		Ő	0	0	0	0
METHANE		0	0	0	0	0
METHANOL		0	0	0	0	Ö
ETHANE		0	0	0	0	0
ETHYLENE		0	0	0	0	Õ
C		0	0	0	0	0
S		0	0	0	0	0
UREA		0	0	0	0	0
CARB		0	0	0	0	0
ZNO		0	0	0	0	0
ZNS		0	0	0	0	0
C2H6S		0	0	0	0	0
C4H10S		0	0	0	0	0
PROPANE		0	0	0	0	0
BUTANE		0	0	0	0	0
PENTANE		0	0	0	0	0
HEXANE		0	0	0	0	0

NUCLEAD INTECDATED HUDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 56 of 151

	H2O-RFMR	HOT-H2O	LIQ	NAT-GAS	NG-1
Temperature F Pressure psi Vapor Frac	105 362.59 0	350 359.59 0	347.59	70 314.7 1	94.2 362.59 1
Mole Flow Ibmol/hr Mass Flow Ib/hr Volume Flow cuft/hr	391.917	391.917 7060.989 154.085	0 0 0	9808.941 168536 167819.797	9808.941 168536
Enthalpy MMBtu/hr	-48.255 H2O-RFMR	-46.34 HOT-H2O	LIQ	-321.367 NAT-GAS	-319.412 NG-1
Mass Flow lb/hr					
H2O		7059.169	0	0	0
02	0	0	0	31.38	31.38
N2	0	0	0	3269.135	3269.135
AR	0	0	0	0	0
NO	0	0	0	0	0
NO2	0	0	0	0	0
N2O4	0	0	0	0	0
NH3	0.834	0.834	0	0	0
HNO3	0	0	0	0	0
NH4NO3	0	0	0	0	0
H2	0.005	0.005	0	0	0
CO	0	0	0	0	0
CO2	0.979	0.979	0	1078.967	1078.967
H2S	0	0	0	1.671	1.671
SO2	0 0.002	0 0.002	0	0 147240.507	0
METHANE METHANOL	0.002	0.002	0 0	14/240.50/	147240.507
ETHANE	0	0	0	11058.043	0 11058.043
ETHYLENE	0	0	0	0	0
C	0	0	0	0	0
S	0	0	0	0	0
UREA	0	0	0	0	0
CARB	0	0	0	0	0
ZNO	0 0	0	0	0	Ő
ZNS	0	0	0	0	0
C2H6S	0	0	0	1.828	1.828
C4H10S	0	0	0	26.534	26.534
PROPANE	0	0	0	3978.423	3978.423
BUTANE	0	0	0	1481.983	1481.983
PENTANE	0	0	0	283.02	283.02
HEXANE	0	0	0	84.511	84.511
	H2O-RFMR	HOT-H2O	LIQ	NAT-GAS	NG-1
Mass Frac					
H2O	1	1		0	0
02	0	0		0	0
N2	0	0		0.019	0.019
AR	0	0		0	0
NO	0	0		0	0

Idaho National Laboratory		г.	r 1]
NUCLEAR-INTEGRAT	ευ πλυσο		Identifie		EV-693	
		GEN]	Revision	ı: 1		
PRODUCTION A	NALYSIS		Effective		5/15/10	Page: 57 of 151
				Date. 0.	0/10/10	1 age. 57 01 151
NO2	0	0			0	h
NO2 N2O4	0	0				2
	0	0				2
NH3	0	0				0
HNO3	0	0				0
NH4NO3	0	0				2
H2	0	0				2
CO	0	0		0.00		0
CO2	0	0		0.00		
H2S	0	0				2
S02	0	0		-		2
METHANE	0	0		0.87		
METHANOL	0	0				2
ETHANE	0	0		0.06		
ETHYLENE	0	0			0 (0
C	0	0			0 0	0
S	0	0			0 (0
UREA	0	0			0 0	0
CARB	0	0			0 0	C
ZNO	0	0			0 0	2
ZNS	0	0			0 (C
C2H6S	0	0			0 (0
C4H10S	0	0			0 (0
PROPANE	0	0		0.02	0.024	4
BUTANE	0	0		0.00	0.009	Ð
PENTANE	0	0		0.00	0.002	2
HEXANE	0	0		0.00	0.00	1
	H2O-RFMR	HOT-H2O	LIQ	NAT-GAS	NG-1	
Mole Flow lbmol/hr						
H2O	391.843	391.843	0			2
02	0	0	0	0.98	0.98	1
N2	0	0	0	116.69	99 116.699	9
AR	0	0	0			D
NO	0	0	0		0 0	D
NO2	0	0	0		0 0	0
N2O4	0	0	0			D
NH3	0.049	0.049	0		0 0	D
HNO3	0	0	0		0 (C
NH4NO3	0	0	0			0
H2	0.002	0.002	0		0 (C
СО	0	0	0		0 (2
CO2	0.022	0.022	0	24.51	24.51	7
H2S	0	0	0	0.04		
S02	0	0	0	0.0		0
METHANE	0	0	0	9178.00		
METHANOL	0	0	0	51,0100		0
ETHANE	0	0	0	367.74		
ETHYLENE	0	0	0	507.77		0
C	0	0	0			2
S	0	0	0			5
5	0	0	0		-	-

UREA CARB ZNO ZNS C2H6S C4H10S PROPANE	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0.029 0.294 90.221	0 0 0 0.029 0.294 90.221
BUTANE	0	0	0	25.497	25.497
PENTANE	0	0	0	3.923	3.923
HEXANE	0 0	õ	0	0.981	0.981
	H2O-RFMR HOT	-	-	AT-GAS NG	
Mole Frac					-
H2O	1	1	0	0	0
02	0	0	0	0	0
N2	0	0	0	0.012	0.012
AR	0	0	0	0	0
NO	0	0	0	0	0
NO2	0	0	0	0	0
N2O4	0	0	0	0	0
NH3	0	0	0	0	0
HNO3	0	0	0	0	0
NH4NO3	0	0	0	0	0
H2	0	0	0	0	0
СО	0	0	0	0	0
CO2	0	0	0	0.002	0.002
H2S	0	0	0	0	0
S02	0	0	0	0	0
METHANE	0	0	0	0.936	0.936
METHANOL	0	0	0	0	0
ETHANE	0	0	0	0.037	0.037
ETHYLENE	0	0	0	0	0
C S	0	0	0	0	0
S UREA	0 0	0 0	0 0	0 0	0 0
CARB	0	0	0	0	0
ZNO	0	0	0	0	0
ZNS	0	0	0	0	0
C2H6S	0	0	0	0	0
C4H10S	0	0	õ	0	Ö
PROPANE	0	0	Õ	0.009	0.009
BUTANE	0	0	0	0.003	0.003
PENTANE	0	0	Õ	0	0
HEXANE	0	0	0	0	0
	-			-	-

NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN PRODUCTION ANALYSIS	Revision:	1	
FRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 59 of 151

	NG-2	NG-3	NG-4	NG-5	NG-6
Temperature F Pressure psi Vapor Frac	94.2 362.59 1	329 359.59 1	303.9 356.59 1	303.9 353.59 1	221.6 353.59 0.999
Mole Flow Ibmol/hr Mass Flow Ib/hr Volume Flow cuft/hr	6517.06 111975.318 101334.46	6517.06	6549.886 111975.318 148837.353	6549.638	6941.555 119028.368 139479.274
Enthalpy MMBtu/hr	-212.217 NG-2	-196.485 NG-3	-196.485 NG-4		-242.838 NG-6
Mass Flow lb/hr H2O	0	0	0	0	7059.169
O2 N2	20.849 2172.013	20.849 2172.013	20.849 2172.013		20.849 2172.013
AR NO	0	0	0	0	0
NO2 N2O4 NH3	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0.834
HNO3 NH4NO3	0	0	0	0	0.054
H2 CO	0	0	65.738 912.51	65.738 912.51	65.743 912.51
CO2 H2S	716.866 1.11	716.866 1.11	0 0	0 0	0.979 0
SO2 METHANE	0 97826.593	0 97826.593	0 97565.276	0 97565.276	0 97565.278
METHANOL ETHANE ETHYLENE	0 7346.964 0	0 7346.964 0	0 7347.551 0	0 7347.551 0	0 7347.551 0
C	0	0	0 7.939	0	0
UREA CARB	0 0	0 0	0 0	0 0	0 0
ZNO ZNS	0 0	0 0	0	0	0
C2H6S C4H10S PROPANE	1.215 17.629 2643.264	1.215 17.629 2643.264	0 0 2643.264	0 0 2643.264	0 0 2643.264
BUTANE PENTANE	984.629 188.038	984.629 188.038	995.99 188.038	995.99 188.038	995.99 188.038
HEXANE	56.149 NG-2	56.149 NG-3	56.149 NG-4	56.149 NG-5	56.149 NG-6
Mass Frac H2O	0	0	0	0	0.059
O2 N2 AR	0 0.019 0	0 0.019 0	0 0.019	0 0.019	0 0.018
AR NO	0	0	0 0	0 0	0 0

Idaho National Laboratory		Identi	fier:	TEV-693		
NUCLEAR-INTEGRATED HYDROGEN		EN Revis		1		
PRODUCTION A	NALYSIS			05/15/10	Dage: 6	0 of 151
		Life	live Date.	03/13/10	I age. 0	5 01 151
NO2	0	0	0	0	0	
N2O4	0	0	0	0	0	
NH3	0	0	0	0	0	
HNO3 NH4NO3	0 0	0 0	0 0	0 0	0 0	
H2	0	0	0.001	0.001	0.001	
CO	0	0	0.001	0.008	0.001	
CO2	0.006	0.006	0	0	0	
H2S	0	0	0	0	0	
S02	0	0	0	0	0	
METHANE	0.874	0.874	0.871	0.871	0.82	
METHANOL	0	0	0	0	0	
ETHANE	0.066	0.066	0.066	0.066	0.062	
ETHYLENE	0	0	0	0	0	
C	0	0	0	0	0	
S	0	0	0	0	0	
UREA	0	0	0	0	0	
CARB	0	0	0	0	0	
ZNO ZNS	0 0	0 0	0 0	0	0 0	
C2H6S	0	0	0	0	0	
C4H10S	0	0	0	0	0	
PROPANE	0.024	0.024	0.024	0.024	0.022	
BUTANE	0.009	0.009	0.009	0.009	0.008	
PENTANE	0.002	0.002	0.002	0.002	0.002	
HEXANE	0.001	0.001	0.001	0.001	0	
			IG-4	NG-5	NG-6	
Mole Flow Ibmol/hr						
H2O	0	0	0	0	391.843	
02	0.652	0.652	0.652	0.652	0.652	
N2	77.535	77.535	77.535	77.535	77.535	
AR	0	0	0	0	0	
NO	0	0	0	0	0	
NO2	0	0	0	0	0	
N2O4 NH3	0 0	0 0	0 0	0 0	0 0.049	
HNO3	0	0	0	0	0.049	
NH4NO3	0	0	0	0	0	
H2	0	0	32.61	32.61	32.612	
CO	0	0	32.578	32.578	32.578	
CO2	16.289	16.289	0	0	0.022	
H2S	0.033	0.033	0	0	0	
SO2	0	0	0	0	0	
METHANE	6097.866	6097.866	6081.577	6081.577	6081.577	
METHANOL	0	0	0	0	0	
ETHANE	244.332	244.332	244.351	244.351	244.351	
ETHYLENE	0	0	0	0	0	
С	0	0	0	0	0	
S	0	0	0.248	0	0	

NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 61 of 151

PENTANE 2.606 <	0 0 0 0 0 3 6 6
Mole Frac H2O 0 0 0 0 0.056 O2 0	2
H2O0000.056O200000N20.0120.0120.0120.0120.011	
O2 0	~
N2 0.012 0.012 0.012 0.012 0.011	
NO 0 0 0 0 0	0
	0
	0
NH3 0 0 0 0 0	0
HNO3 0 0 0 0 0	0
NH4NO3 0 0 0 0 0	0
H2 0 0 0.005 0.005 0.005	5
CO 0 0.005 0.005 0.005	5
	0
	0
	0
METHANE 0.936 0.936 0.929 0.929 0.876	-
	0
ETHANE 0.037 0.037 0.037 0.037 0.035	
	0
	0
	0
	0
	0 0
	0
	0
	0
PROPANE 0.009 0.009 0.009 0.009 0.009	-
BUTANE 0.003 0.003 0.003 0.003 0.003	
	0
	0

NUCLEAD INTECDATED HUDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 62 of 151

	NG-7	NG-8	NG-8A	NG-9	NG-10
Temperature F	662	925.1	782.6	806.8	1292
Pressure psi	350.59	350.59	347.59	347.59	344.59
Vapor Frac	1	1	1	1	1
Mole Flow Ibmol/hr	6941.555	40890.665	42398.693	42458.587	42458.587
Mass Flow Ib/hr		730631.091			
Volume Flow cuft/hr	238937.519	1.70E+06	1.59E+06	1.63E+06	2.31E+06
Enthalpy MMBtu/hr	-206.994				-3262.629
Maga Flow lb/br	NG-7	NG-8	NG-8A	NG-9	NG-10
Mass Flow lb/hr H2O	7050 160	619661 903	605079 122	589976.758	590076 759
02	20.849	20.849	20.849	20.849	20.849
N2	2172.013	2172.013	2172.013	2172.013	2172.013
AR	0	21/2.015	21/2.019	0	0
NO	0	0 0	0 0	0	0 0
NO2	0	0	0	0	0
N2O4	0	0	0	0	Ō
NH3	0.834	0.834	0.834	0.834	0.834
HNO3	0	0	0	0	0
NH4NO3	0	0	0	0	0
H2	65.743	65.743	3760.277	5570.834	5570.834
СО	912.51	912.51	22032.74	230.597	230.597
CO2	0.979	0.979	0.979	35574.363	35574.363
H2S	0	0	0	0	0
S02	0	0	0	0	0
METHANE	97565.278	97565.278	97565.278	97084.844	97084.844
METHANOL	0	0	0	0	0
ETHANE	7347.551	7347.551	0	0	0
ETHYLENE C	0 0	0 0	0	0 0	0 0
S	0	0	0	0	0
UREA	0	0	0	0	0
CARB	0	0	0	0	0
ZNO	0	0	0	0	0
ZNS	0	0	0	0	0
C2H6S	0	0	0	0	0
C4H10S	0	0	0	0	0
PROPANE	2643.264	2643.264	0	0	0
BUTANE	995.99	995.99	0	0	0
PENTANE	188.038	188.038	0	0	0
HEXANE	56.149	56.149	0	0	0
	NG-7	NG-8	NG-8A	NG-9	NG-10
Mass Frac		0.047			
H2O				0.807	
02	0				
N2 AR	0.018				
NO	0	0	0	0	0
	0	0	0	0	0

NUCLEAR-INTEGRATED HYDROGEN PRODUCTION ANALYSIS Derivision: Effective Date: 10.57 (0.5/15/10) Page: 63 of 151 NO2 0 0 0 0 0 0 0 N204 0 0 0 0 0 0 0 N204 0 0 0 0 0 0 0 NH3 0 0 0 0 0 0 0 MH4N03 0 0 0 0 0 0 0 METHANDL 0 0 0 0 0 0 0 SO2 0 0 0 0 0 0 0 METHANE 0.82 0.134 0.133 0.133 0.133 0.133 METHANE 0.62 0.01 0 0 0 0 CD2 0 0 0 0 0 0 0 LTHANE 0.622 0.01 0 <td< th=""><th colspan="2">ldaho National Laboratory</th><th>Ider</th><th>ntifier:</th><th>TEV-693</th><th></th></td<>	ldaho National Laboratory		Ider	ntifier:	TEV-693	
PRODUCTION ANALYSIS Effective Date: 05/15/10 Page: 63 of 151 NO2 0 0 0 0 0 0 NO3 0 0 0 0 0 0 H033 0 0 0 0 0 0 M44N03 0.001 0 0.005 0.008 0.008 CO 0.008 0.001 0 0 0 0 K2 0.001 0 0 0 0 0 0 K2 0 0 0 0 0 0 0 0 K2 0 0 0 0 0 0 0 0 K2 0 0 0 0 0 0 0 0 0 K2 0 0 0 0 0 0 0 0 0 K2 0 0 0 0 0 0 <th>NUCLEAR-INTEGRAT</th> <th>ED HYDRO</th> <th></th> <th></th> <th></th> <th></th>	NUCLEAR-INTEGRAT	ED HYDRO				
NO2 0 0 0 0 0 0 0 NO2 0 0 0 0 0 0 0 NA204 0 0 0 0 0 0 0 NH3 0 0 0 0 0 0 0 NH4NO3 0 0 0 0 0 0 0 NH4NO3 0 0 0 0 0 0 0 CO 0.008 0.001 0.005 0.008 0.008 0 CO2 0 0 0 0 0 0 0 SO2 0 0 0 0 0 0 0 C 0 0 0 0 0 0 0 CP 0 0 0 0 0 0 0 C2 0 0 0 0 0	PRODUCTION A	NALYSIS				D (2) (1)
N204 0 0 0 0 0 NH3 0 0 0 0 0 NH4NO3 0 0 0 0 0 HN03 0 0 0 0 0 H2 0.001 0.005 0.008 0.001 CO2 0 0 0 0 0 SO2 0 0 0 0 0 METHANE 0.82 0.134 0.133 0.133 0.133 METHANE 0.662 0.01 0 0 0 ETHANE 0.662 0.01 0 0 0 CARB 0 0 0 0 0 0 CARB 0 0 0 0 0 0 0 ZNS 0 0 0 0 0 0 0 0 PROPANE 0.022 0.065 0.652 0.652			Effe	ective Date:	05/15/10	Page: 63 of 151
N204 0 0 0 0 0 NH3 0 0 0 0 0 NH4NO3 0 0 0 0 0 HN03 0 0 0 0 0 H2 0.001 0.005 0.008 0.001 CO2 0 0 0 0 0 SO2 0 0 0 0 0 METHANE 0.82 0.134 0.133 0.133 0.133 METHANE 0.662 0.01 0 0 0 ETHANE 0.662 0.01 0 0 0 CARB 0 0 0 0 0 0 CARB 0 0 0 0 0 0 0 ZNS 0 0 0 0 0 0 0 0 PROPANE 0.022 0.065 0.652 0.652						
N204 0 0 0 0 0 NH3 0 0 0 0 0 NH4NO3 0 0 0 0 0 HN03 0 0 0 0 0 H2 0.001 0.005 0.008 0.001 CO2 0 0 0 0 0 SO2 0 0 0 0 0 METHANE 0.82 0.134 0.133 0.133 0.133 METHANE 0.662 0.01 0 0 0 ETHANE 0.662 0.01 0 0 0 CARB 0 0 0 0 0 0 CARB 0 0 0 0 0 0 0 ZNS 0 0 0 0 0 0 0 0 PROPANE 0.022 0.065 0.652 0.652						
N204 0 0 0 0 0 NH3 0 0 0 0 0 NH4NO3 0 0 0 0 0 HN03 0 0 0 0 0 H2 0.001 0.005 0.008 0.001 CO2 0 0 0 0 0 SO2 0 0 0 0 0 METHANE 0.82 0.134 0.133 0.133 0.133 METHANE 0.662 0.01 0 0 0 ETHANE 0.662 0.01 0 0 0 CARB 0 0 0 0 0 0 CARB 0 0 0 0 0 0 0 ZNS 0 0 0 0 0 0 0 0 PROPANE 0.022 0.065 0.652 0.652						
N204 0 0 0 0 0 NH3 0 0 0 0 0 NH4NO3 0 0 0 0 0 HN03 0 0 0 0 0 H2 0.001 0.005 0.008 0.001 CO2 0 0 0 0 0 SO2 0 0 0 0 0 METHANE 0.82 0.134 0.133 0.133 0.133 METHANE 0.662 0.01 0 0 0 ETHANE 0.662 0.01 0 0 0 CARB 0 0 0 0 0 0 CARB 0 0 0 0 0 0 0 ZNS 0 0 0 0 0 0 0 0 PROPANE 0.022 0.065 0.652 0.652						
N204 0 0 0 0 0 NH3 0 0 0 0 0 NH4NO3 0 0 0 0 0 HN03 0 0 0 0 0 H2 0.001 0.005 0.008 0.001 CO2 0 0 0 0 0 SO2 0 0 0 0 0 METHANE 0.82 0.134 0.133 0.133 0.133 METHANE 0.662 0.01 0 0 0 ETHANE 0.662 0.01 0 0 0 CARB 0 0 0 0 0 0 CARB 0 0 0 0 0 0 0 ZNS 0 0 0 0 0 0 0 0 PROPANE 0.022 0.065 0.652 0.652						
N204 0 0 0 0 0 NH3 0 0 0 0 0 NH4NO3 0 0 0 0 0 HN03 0 0 0 0 0 H2 0.001 0.005 0.008 0.001 CO2 0 0 0 0 0 SO2 0 0 0 0 0 METHANE 0.82 0.134 0.133 0.133 0.133 METHANE 0.662 0.01 0 0 0 ETHANE 0.662 0.01 0 0 0 CARB 0 0 0 0 0 0 CARB 0 0 0 0 0 0 0 ZNS 0 0 0 0 0 0 0 0 PROPANE 0.022 0.065 0.652 0.652	NO2	0	0	0	0	0
HN03 0 0 0 0 0 H2 0.001 0.005 0.008 0.008 CO 0.008 0.001 0.03 0 0 CO 0.008 0.001 0.03 0 0 CO 0 0 0 0.049 0.049 H2S 0 0 0 0 0 0 SO2 0 0 0 0 0 0 METHANE 0.82 0.134 0.133 0.133 0.133 METHANE 0.82 0.134 0.133 0.133 ETHANE 0.062 0.01 0 0 0 C 0 0 0 0 0 0 CAR 0.062 0.01 0 0 0 0 ZNO 0 0 0 0 0 0 0 ZNS 0 0 0 0 0 0 0 0 PROPANE 0.022 0.004 0						
NH4NO3 0 0 0 0 0 0 H2 0.001 0 0.005 0.008 0.001 CO 0.008 0.001 0.033 0 0 CO2 0 0 0 0.049 0.049 H2S 0 0 0 0 0 SO2 0 0 0 0 0 METHANE 0.82 0.134 0.133 0.133 METHANE 0.82 0.01 0 0 0 ETHANE 0.62 0.01 0 0 0 ETHANE 0.62 0.01 0 0 0 UREA 0 0 0 0 0 0 UREA 0 0 0 0 0 0 0 ZNO 0 0 0 0 0 0 0 ZNS 0 0 0 0	NH3	0	0	0	0	0
H2 0.001 0 0.005 0.008 0.008 CO 0.001 0.03 0 0 0 CO2 0 0 0 0.049 0.049 H2S 0 0 0 0 0 0 SO2 0 0 0 0 0 0 METHANE 0.82 0.134 0.133 0.133 0.133 METHANE 0.82 0.134 0.134 0.133 0.133 METHANOL 0 0 0 0 0 0 ETHANE 0.062 0.01 0 0 0 0 ETHANE 0.062 0.01 0 0 0 0 UREA 0 0 0 0 0 0 0 ZNS 0 0 0 0 0 0 0 0 PENTANE 0.002 0 0 0 0 0 0 0 PENTANE 0.022 0.004 0 0 <td>HNO3</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	HNO3	0	0	0	0	0
CO 0.008 0.001 0.03 0 0 CO2 0 0 0 0 0 SO2 0 0 0 0 0 METHANE 0.82 0.134 0.133 0.133 METHANOL 0 0 0 0 ETHYLENE 0.00 0 0 0 CARB 0 0 0 0 UREA 0 0 0 0 ZNS 0 0 0 0 ZNS 0 0 0 0 QUES 0 0 0 0 PROPANE 0.022 0.004 0 0 QUES 0 0 0 0 PROPANE 0.022 0.004 0 0 QUE 0 0 0 0 NG-7 NG-8 NG-8A NG-9 NG-10 NO2 0 <td>NH4NO3</td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	NH4NO3		0	0	0	0
CO2 0 0 0 0.049 0.049 H2S 0 0 0 0 0 SO2 0 0 0 0 0 METHANE 0.82 0.134 0.133 0.133 METHANE 0.062 0.01 0 0 ETHANE 0.062 0.01 0 0 ETHYLENE 0 0 0 0 0 CARB 0 0 0 0 0 ZNO 0 0 0 0 0 ZNS 0 0 0 0 0 CHAS 0.002 0 0 0 0 BUTANE 0.002 0 0 0 0 NG-7 NG-8 NG-9 NG-1 0 0 NEANE 0 0 0 0 0 0 NC47 NG-8 NG-9 NG-1 0 <td></td> <td></td> <td></td> <td></td> <td>0.008</td> <td>0.008</td>					0.008	0.008
H2S 0 0 0 0 0 SO2 0 0 0 0 0 0 METHANE 0.82 0.134 0.133 0.133 METHANOL 0 0 0 0 0 ETHANE 0.062 0.01 0 0 ETHANE 0 0 0 0 C 0 0 0 0 0 C 0 0 0 0 0 JANG 0 0 0 0 0 ZNO 0 0 0 0 0 ZNO 0 0 0 0 0 CHANS 0 0 0 0 0 ZNO 0 0 0 0 0 0 ZNO 0 0 0 0 0 0 0 BUTANE 0.022 0.04 0 0 0 0 0 PENTANE 0.022 0.652 0.652 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
SO2 0 0 0 0 0 METHANE 0.82 0.134 0.133 0.133 METHANOL 0 0 0 0 ETHANE 0.062 0.01 0 0 ETHANE 0.062 0.01 0 0 ETHANE 0 0 0 0 C 0 0 0 0 C 0 0 0 0 UREA 0 0 0 0 ZNO 0 0 0 0 0 ZNS 0 0 0 0 0 0 C2H6S 0 0 0 0 0 0 BUTANE 0.002 0 0 0 0 0 METANE 0.022 0.052 0.652 0.652 0.652 0.652 0.652 0.652 0.652 0.652 0.652 0.652 0.652						
METHANE 0.82 0.134 0.134 0.133 0.133 METHANOL 0 0 0 0 0 0 ETHANE 0.062 0.01 0 0 0 ETHANE 0 0 0 0 0 ETHYLENE 0 0 0 0 0 C 0 0 0 0 0 UREA 0 0 0 0 0 UREA 0 0 0 0 0 ZNO 0 0 0 0 0 ZNS 0 0 0 0 0 C4HDS 0.022 0.004 0 0 0 BUTANE 0.002 0.001 0 0 0 NG-7 NG-8 NG-9 NG-17 12748.687 32748.687 32748.687 32748.687 32748.687 12748.687 12748.687 12748.687 12748.687 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
METHANOL 0 0 0 0 0 0 ETHANE 0.062 0.01 0 0 0 CTHANE 0 0 0 0 0 C 0 0 0 0 0 C 0 0 0 0 0 UREA 0 0 0 0 0 ZNO 0 0 0 0 0 ZNS 0 0 0 0 0 CHHOS 0 0 0 0 0 PROPANE 0.022 0.004 0 0 0 PROPANE 0.002 0 0 0 0 METANE 0.002 0 0 0 0 NG-7 NG-8 NG-9 NG-10 0 0 ND NG-7 NG-52 77.535 77.535 77.535 77.535 NO						
ETHANE 0.062 0.01 0 0 0 ETHYLENE 0 0 0 0 0 0 C 0 0 0 0 0 0 S 0 0 0 0 0 0 QARE 0 0 0 0 0 0 ZNO 0 0 0 0 0 0 C2H6S 0 0 0 0 0 0 PROPANE 0.022 0.004 0 0 0 BUTANE 0.002 0 0 0 0 NG-7 NG-8 NG-9 NG-1 Mole Flow Ibmol/hr 14340.954 33586.94 32748.687 32748.687 Q2 0.652 0.652 0.652 0.652 0.652 0.652 NO 0 0 0 0 0 0 0 NO 0 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
ETHYLENE 0 0 0 0 0 0 C 0 0 0 0 0 0 S 0 0 0 0 0 0 UREA 0 0 0 0 0 0 ZNO 0 0 0 0 0 0 ZNO 0 0 0 0 0 0 C4H10S 0 0 0 0 0 0 C4H10S 0.002 0 0 0 0 0 BUTANE 0.002 0 0 0 0 0 BUTANE 0.002 0 0 0 0 0 PENPANE 0.002 0 0 0 0 0 NG-7 NG-8 NG-8A 32748.687 32748.687 32748.687 NQ2 0.652 0.652 0.652 0.652 0.652						
C 0 0 0 0 0 0 UREA 0 0 0 0 0 CARB 0 0 0 0 0 ZNO 0 0 0 0 0 ZNS 0 0 0 0 0 C4H10S 0 0 0 0 0 PROPANE 0.022 0.004 0 0 0 BUTANE 0.002 0 0 0 0 NG-7 NG-8 NG-8 NG-9 NG-10 HEXANE 0 0 0 0 0 NO 0 0 0 0 0 0 NC-7 NG-8 NG-9 NG-9 NG-10 NG-10 NO 0 0 0 0 0 0 NO 0 0 0 0 0 0 0 0 0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
S 0 0 0 0 0 UREA 0 0 0 0 0 CARB 0 0 0 0 0 ZNO 0 0 0 0 0 ZNS 0 0 0 0 0 C4H10S 0 0 0 0 0 C4H10S 0.022 0.004 0 0 0 PROPANE 0.022 0.004 0 0 0 PROPANE 0.002 0 0 0 0 PENTANE 0.002 0 0 0 0 Mole Flow Ibmol/hr H20 391.843 34340.954 32586.94 32748.687 32748.687 N2 77.535 77.535 77.535 77.535 77.535 AR 0 0 0 0 0 NO2 0.652 0.652 0.652 0.652 0.652 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
UREA 0 0 0 0 0 CARB 0 0 0 0 0 ZNO 0 0 0 0 0 ZNS 0 0 0 0 0 C2H6S 0 0 0 0 0 PROPANE 0.022 0.004 0 0 0 PROPANE 0.002 0 0 0 0 BUTANE 0.002 0 0 0 0 PENTANE 0.002 0 0 0 0 Mole Flow Ibmol/hr H2O 391.843 34340.954 32748.687 32748.687 N2 77.535 77.535 77.535 77.535 77.535 AR 0 0 0 0 0 NO2 0 0 0 0 0 NO2 0 0 0 0 0 NO4 0.0					-	
CARB 0 0 0 0 0 ZNO 0 0 0 0 0 ZNS 0 0 0 0 0 C2H6S 0 0 0 0 0 C4H10S 0 0 0 0 0 PROPANE 0.022 0.004 0 0 0 BUTANE 0.002 0 0 0 0 PENTANE 0.002 0 0 0 0 Mole Flow bmol/hr 7 NS-8 NG-9 NG-10 H2O 391.843 34340.954 3326.954 32748.687 32748.687 Q2 0.652 0.652 77.535 77.535 77.535 77.535 AR 0 0 0 0 0 0 NO2 0 0 0 0 0 0 NA3 0.049 0.049 0.049 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
ZNO 0 0 0 0 0 ZNS 0 0 0 0 0 C2H6S 0 0 0 0 0 C4H10S 0 0 0 0 0 PROPANE 0.022 0.004 0 0 0 BUTANE 0.002 0 0 0 0 PENTANE 0.002 0 0 0 0 PENTANE 0.002 0 0 0 0 Mole Flow bmol/hr H20 391.843 34340.954 32748.687 32748.687 702 0.652 0.652 0.652 0.652 0.652 N2 77.535 77.535 77.535 77.535 77.535 AR 0 0 0 0 0 0 NO2 0 0 0 0 0 0 0 NQ4 0.049 0.049 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
ZNS 0 0 0 0 0 C2H6S 0 0 0 0 0 C4H10S 0 0 0 0 0 PROPANE 0.022 0.004 0 0 0 BUTANE 0.002 0 0 0 0 PENTANE 0.002 0 0 0 0 MOE NG-N NG-8A NG-9 NG-10 Mole Flow Ibmol/hr 1 10 0 0 0 H2O 391.843 34340.954 33586.94 32748.687 32748.687 O2 0.652 0.652 0.652 0.652 0.652 N2 77.535 77.535 77.535 77.535 77.535 AR 0 0 0 0 0 NO2 0 0 0 0 0 NO2 0 0 0 0 0 NO2 0 0 0 0 0 NH3 0.049 0.049<						
C2H6S 0 0 0 0 0 0 C4H10S 0 0 0 0 0 0 PROPANE 0.022 0.004 0 0 0 BUTANE 0.002 0 0 0 0 PENTANE 0.002 0 0 0 0 MO NG-7 NG-8 NG-8 NG-9 NG-10 H2O 391.843 34340.954 33586.94 32748.687 32748.687 O2 0.652 0.652 0.652 0.652 0.652 N2 77.535 77.535 77.535 77.535 AR 0 0 0 0 NO2 0 0 0 0 0 NA3 0.049 0.049 0.049 0.049 0.049 NH3 0.049 0.049 0.049 0.049 0.049 HA03 0 0 0 0 0						
C4H10S 0 0 0 0 0 PROPANE 0.022 0.004 0 0 0 BUTANE 0.002 0 0 0 0 PENTANE 0.002 0 0 0 0 PENTANE 0.002 0 0 0 0 Mole Flow Ibmol/hr					-	
PROPANE 0.022 0.004 0 0 0 BUTANE 0.008 0.001 0 0 0 PENTANE 0.002 0 0 0 0 HEXANE 0.002 0 0 0 0 NG-7 NG-8 NG-8A NG-9 NG-10 Mole Flow Ibmol/hr 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
BUTANE 0.008 0.001 0 0 0 PENTANE 0.002 0 0 0 0 NG-N NG-N NG-N NG-N NG-N NG-N NG-N NG-N NG-N NG-N Mole Flow Ibmol/hr 391.843 34340.954 33586.94 32748.687 32748.687 O2 0.652 0.652 0.652 0.652 0.652 0.652 N2 77.535 77.535 77.535 77.535 77.535 AR 0 0 0 0 0 NO2 0 0 0 0 0 N2G4 0 0 0 0 0 NA3 0.049 0.049 0.049 0.049 0.049 NH4NO3 0 0 0 0 0 0 H2 32.612 32.578 786.591 8.233 8.233 CO 0 0 0 0						
PENTANE 0.002 0 0 0 0 NG-7 NG-8 NG-8A NG-9 NG-10 Mole Flow Ibmol/hr 33586.94 32748.687 32748.687 H2O 391.843 34340.954 33586.94 32748.687 32748.687 O2 0.652 0.652 0.652 0.652 0.652 N2 77.535 77.535 77.535 77.535 77.535 AR 0 0 0 0 0 NO2 0 0 0 0 0 NQ4 0 0 0 0 0 NQ2 0 0 0 0 0 NQ4 0.049 0.049 0.049 0.049 0.049 NH3 0.049 0.049 0.049 0.049 0 0 0 0 NH4NO3 0 0 0 0 0 0 0 0 0 0						
HEXANE00000NG-7NG-8NG-8NG-9NG-10Mole Flow Ibmol/hr391.8434340.9543358.6932748.68732748.687H2O391.8520.6520.6520.6520.552O20.6520.6520.6520.5520.552N277.53577.53577.53577.53577.535AR00000NO200000NO200000ND440.0490.0490.0490.049HN030.0490.0490.0490.049HN0300000H232.61232.6121865.3282763.475CO32.57832.578786.5918.2338.233CO20.0220.020.022808.328H2S00000SO200000KETHANE6081.5776081.5776051.636051.63METHANOL00000ETHYLENE00000C00000NG-N00000NG-N00000HNO300000CO00000HNO30000 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
NG-7 NG-8 NG-8A NG-9 NG-10 H2O 391.843 34340.954 33586.94 32748.687 32748.687 O2 0.652 0.652 0.652 0.652 0.652 0.652 N2 77.535 77.535 77.535 77.535 77.535 77.535 AR 0 0 0 0 0 0 NO2 0 0 0 0 0 0 NC24 0 0 0 0 0 0 NH3 0.049 0.049 0.049 0.049 0.049 HNO3 0 0 0 0 0 H2 32.612 32.612 1865.328 2763.475 2763.475 CO 32.578 32.578 786.591 8.233 8.233 CO2 0.022 0.022 0.022 808.328 808.328 H2S 0 0 0 0 0 0						
Mole Flow Ibmol/hrH2O391.84334340.95433586.9432748.68732748.687O20.6520.6520.6520.6520.652N277.53577.53577.53577.535AR00000NO00000NO00000NO00000NO00000NO200000ND490.0490.0490.0490.049NH30.0490.0490.0490.049NH30.0490.0490.0490.049HNO300000H232.61232.6121865.3282763.475CO32.57832.578786.5918.2338.233CO20.0220.0220.022808.328808.328H2S00000SO200000METHANE6081.5776081.5776081.5776051.636051.63METHANOL000000ETHANE244.351244.351000CO000000METHANE000000CO000000METHANE244.351244.3510 </td <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td></td>			-	-	-	
H2O391.84334340.95433586.9432748.68732748.687O20.6520.6520.6520.6520.652N277.53577.53577.53577.535AR00000NO00000NO200000N20400000NH30.0490.0490.0490.049HNO300000H232.61232.6121865.3282763.475CO32.57832.578786.5918.2338.233CO20.0220.0220.0220.022808.328H2S000000METHANE6081.5776081.5776081.5776051.636051.63METHANOL000000ETHANE244.351244.351000C000000	Mole Flow Ibmol/hr					
O20.6520.6520.6520.6520.6520.652N277.53577.53577.53577.53577.535AR00000NO00000NO200000N20400000NH30.0490.0490.0490.049HN0300000H232.61232.6121865.3282763.475CO32.57832.578786.5918.2338.233CO200000SO200000METHANE6081.5776081.5776051.636051.63METHANOL00000ETHANE244.351244.351000CO00000O00000O00000O00000O00000CO00000O00000O00000O00000O00000O00000O00000		391.843	34340.954	33586.94	32748.687	32748.687
N2 77.535 77.535 77.535 77.535 77.535 AR 0 0 0 0 0 0 NO 0 0 0 0 0 0 NO 0 0 0 0 0 0 NO2 0 0 0 0 0 0 N2O4 0 0 0 0 0 0 NH3 0.049 0.049 0.049 0.049 0.049 HNO3 0 0 0 0 0 0 NH4NO3 0 0 0 0 0 0 H2 32.612 32.612 1865.328 2763.475 2763.475 CO2 32.578 32.578 786.591 8.233 8.233 CO2 0.022 0.022 808.328 808.328 1425 0 0 0 0 0 0 0 0 0		0.652				
NO00000NO200000N2O400000NH30.0490.0490.0490.049HNO300000NH4NO300000H232.61232.6121865.3282763.4752763.475CO32.57832.578786.5918.2338.233CO20.0220.0220.022808.328808.328H2S00000SO200000METHANE6081.5776081.5776051.636051.63METHANE244.351244.351000ETHANE00000C00000						
NO00000NO200000N2O400000NH30.0490.0490.0490.049HNO300000NH4NO300000H232.61232.6121865.3282763.4752763.475CO32.57832.578786.5918.2338.233CO20.0220.0220.022808.328808.328H2S00000SO200000METHANE6081.5776081.5776051.636051.63METHANE244.351244.351000ETHANE00000C00000	AR	0	0	0	0	0
N20400000NH30.0490.0490.0490.0490.049HN0300000NH4N0300000H232.61232.6121865.3282763.4752763.475CO32.57832.578786.5918.2338.233CO20.0220.0220.022808.328808.328H2S00000SO200000METHANE6081.5776081.5776081.5776051.636051.63METHANE244.351244.351000ETHYLENE00000C000000			0	0	0	0
NH30.0490.0490.0490.0490.049HN0300000NH4N0300000H232.61232.6121865.3282763.4752763.475CO32.57832.578786.5918.2338.233CO20.0220.0220.022808.328808.328H2S00000SO200000METHANE6081.5776081.5776081.5776051.636051.63METHANOL00000ETHANE244.351244.351000C000000	NO2	0	0	0	0	0
HNO300000NH4NO300000H232.61232.6121865.3282763.4752763.475CO32.57832.578786.5918.2338.233CO20.0220.0220.022808.328808.328H2S00000SO200000METHANE6081.5776081.5776081.5776051.636051.63METHANOL00000ETHANE244.351244.351000C000000	N2O4	0	0	0	0	0
NH4NO3 0 0 0 0 0 H2 32.612 32.612 1865.328 2763.475 2763.475 CO 32.578 32.578 786.591 8.233 8.233 CO2 0.022 0.022 0.022 808.328 808.328 H2S 0 0 0 0 0 SO2 0 0 0 0 0 METHANE 6081.577 6081.577 6051.63 6051.63 METHANE 244.351 244.351 0 0 0 ETHYLENE 0 0 0 0 0 0 CTHANE 244.351 244.351 0 0 0 0 C 0 0 0 0 0 0 0	NH3	0.049	0.049	0.049	0.049	0.049
H2 32.612 32.612 1865.328 2763.475 2763.475 CO 32.578 32.578 786.591 8.233 8.233 CO2 0.022 0.022 0.022 808.328 808.328 H2S 0 0 0 0 0 SO2 0 0 0 0 0 METHANE 6081.577 6081.577 6081.577 6051.63 6051.63 METHANE 244.351 244.351 0 0 0 0 ETHYLENE 0 0 0 0 0 0 C 0 0 0 0 0 0						
CO32.57832.578786.5918.2338.233CO20.0220.0220.022808.328808.328H2S00000SO200000METHANE6081.5776081.5776081.5776051.636051.63METHANE244.351244.351000ETHYLENE00000C00000		-	-	-	-	-
CO20.0220.0220.022808.328808.328H2S00000SO200000METHANE6081.5776081.5776051.636051.63METHANOL00000ETHANE244.351244.351000ETHYLENE00000C00000						
H2S00000SO200000METHANE6081.5776081.5776051.636051.63METHANOL00000ETHANE244.351244.351000ETHYLENE00000C00000						
SO2 0 0 0 0 0 METHANE 6081.577 6081.577 6081.577 6051.63 6051.63 METHANOL 0 0 0 0 0 0 ETHANE 244.351 244.351 0 0 0 0 ETHYLENE 0 0 0 0 0 0 0 C 0 0 0 0 0 0 0						
METHANE6081.5776081.5776051.636051.63METHANOL00000ETHANE244.351244.351000ETHYLENE00000C00000						
METHANOL 0<		-	-	-	-	
ETHANE244.351244.351000ETHYLENE00000C00000						
ETHYLENE 0<		-				
C 0 0 0 0 0						
				-	-	
5 0 0 0 0					-	
	5	0	0	0	0	U

PENTANE

HEXANE

Idaho National Laboratory					
		Ident	tifier:	TEV-693	
NUCLEAR-INTEGRATI PRODUCTION A		Revi	sion:	1	
PRODUCTION A	NAL Y 515	Effe	ctive Date:	05/15/10	Page: 64 of 151
I					
UREA	0	0	0	0	0
CARB	0	0	0		0
ZNO	0	0	0		0
ZNO	0	0	0		0
C2H6S	0	0	0		0
C4H10S	0	0	0		0
PROPANE	59.943	59.943	0		
BUTANE	17.136	17.136	0	-	0 0
PENTANE	2.606 0.652	2.606	0	-	0 0
HEXANE	0.652 NG-7 NG-8	0.652	U NG-8A	0 NG-9	0 NG-10
Mole Frac	NG-7 NG-8		NG-8A	NG-9	NG-10
H2O	0.056	0.84	0.792	0.771	0.771
02	0.058	0.84	0.792		0.771
N2	0.011		0.002		0.002
AR		0.002			0.002
NO	0	0	0		
NO2	0 0	0	0 0		0 0
		0			
N2O4	0	0	0		0
NH3	0	0	0	-	0
HNO3	0	0	0	-	0
NH4NO3	0	0	0	-	0
H2	0.005	0.001	0.044		0.065
CO	0.005	0.001	0.019		0
CO2	0	0	0		0.019
H2S	0	0	0	-	0
SO2	0	0	0	-	0
METHANE	0.876	0.149	0.143		0.143
METHANOL	0	0	0		0
ETHANE	0.035	0.006	0		0
ETHYLENE	0	0	0		0
С	0	0	0	-	0
S	0	0	0		0
UREA	0	0	0		0
CARB	0	0	0		0
ZNO	0	0	0		0
ZNS	0	0	0		0
C2H6S	0	0	0		0
C4H10S	0	0	0		0
PROPANE	0.009	0.001	0		0
BUTANE	0.002	0	0	0	0

NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN PRODUCTION ANALYSIS	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 65 of 151

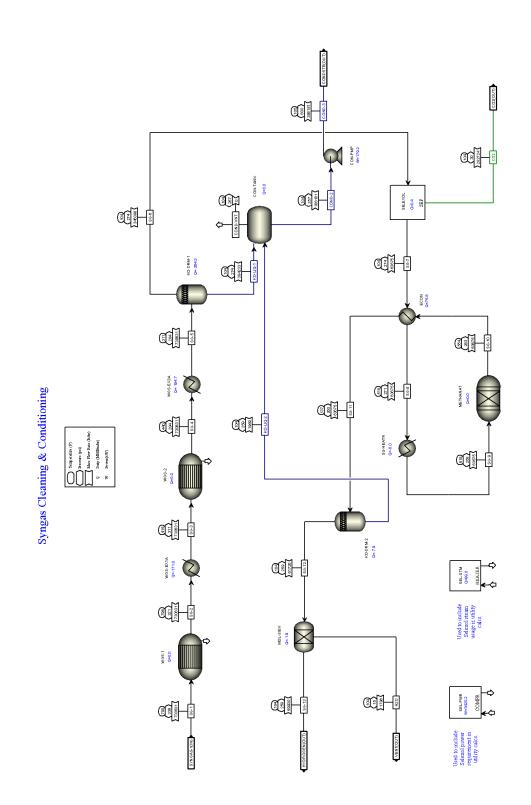
	NG-BURN	S-CAPTUR	SG-1	SG-OUT	STEAM
Temperature F	94.2	70	1598	700	485.2
Pressure psi	362.59		341.59	338.59	600
Vapor Frac	1		1	1	1
Mole Flow Ibmol/hr Mass Flow Ib/hr	3291.881 56560.682		53812.435	53812.435 730631.091	33949.11
Volume Flow cuft/hr	51185.799		3.49E+06		486069.137
Enthalpy MMBtu/hr	-107.195				
	NG-BURN			SG-OUT	STEAM
Mass Flow lb/hr					
H2O	0	0	446631.689	446631.689	611602.723
02	10.531	0	0	0	0
N2	1097.122		2129.142	2129.142	0
AR	0		0	0	0
NO NO2	0 0		0	0	0
N2O4	0	0	0	0	0 0
NH3	0	0	52.96	52.96	0
HNO3	0	0	0	0	0 0
NH4NO3	0	0	0	0	0
H2	0	0	44497.141	44497.141	0
СО	0	0	95449.064	95449.064	0
CO2	362.101	0	135889.567	135889.567	0
H2S	0.561	0	0	0	0
SO2	0	-	0	0	0
METHANE	49413.914 0	0	5981.418 0	5981.418	0
METHANOL ETHANE	0 3711.079	0	0.11	0 0.11	0 0
ETHYLENE	0		0.11	0.11	0
C	0	0	0	0	0
S	0		0	0	0
UREA	0	0	0	0	0
CARB	0	0	0	0	0
ZNO	0	0	0	0	0
ZNS	0	0	0	0	0
C2H6S C4H10S	0.613	0 0	0 0	0 0	0
PROPANE	8.905 1335.159	0	0	0	0 0
BUTANE	497.353	0	0	0	0
PENTANE	94.981	0	0	0	0
HEXANE	28.362	0	0	0	0
	NG-BURN	S-CAPTUR	SG-1	SG-OUT	STEAM
Mass Frac					
H2O	0		0.611		1
02	0	-	0		0
N2	0.019		0.003	0.003	0
AR NO	0 0		0	0	0 0
	0	0	0	0	0

NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN PRODUCTION ANALYSIS	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 66 of 151

UREA CARB ZNO ZNS C2H6S C4H10S PROPANE	0 0 0 0.01 0.099 30.278	0 0 0 0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0
BUTANE	8.557	0		0	0
PENTANE	1.316	0	0	0	0
HEXANE	0.329	0	0	0	0
	NG-BURN	S-CAPTUR	SG-1	SG-OUT	STEAM
Mole Frac					
H2O	0	0	0.461	0.461	1
02	0	0			0
N2	0.012	0		0.001	0
AR	0	0	-	-	0
NO	0	0		0	0
NO2	0	0		0	0
N2O4	0	0		0	0
NH3	0	0		0	0
HNO3	0	0		0	0
NH4NO3	0	0		0	0
H2	0	0		0.41	0
CO	0	0			0
CO2	0.002	0		0.057	0
H2S	0	0	-		0
SO2	0	0	-	-	0
METHANE	0.936	0		0.007	0
METHANOL	0	0			0
ETHANE ETHYLENE	0.037	0 0		0	0 0
C	0 0	0		0 0	0
S	0	1	0		0
S UREA	0	0			0
CARB	0	0		0	0
ZNO	0	0		0	0
ZNS	0	0	-	0	0
C2H6S	0	0		0	0
C4H10S	0	0		0	0
PROPANE	0.009	0		0	0
BUTANE	0.003	0			0
PENTANE	0.005	0	0	0	0
HEXANE	0	0	0	0	0
	Ŭ	0	0	0	Ŭ

NILCI FAD INTECDATED HUDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 67 of 151

	STM-SH	WATER-IN
Temperature F Pressure psi Vapor Frac Mole Flow Ibmol/hr Mass Flow Ib/hr Volume Flow cuft/hr Enthalpy MMBtu/hr	1022 600 1 33949.11 611602.723 873043.482 -3268.49 STM-SH	104.6 600 0 391.917 7060.989 134.733 -48.254 WATER-IN
Mass Flow lb/hr H2O O2 N2 AR NO NO2 N2O4 NH3 HNO3 NH4NO3 H2 CO CO2 H2S SO2 METHANE METHANE METHANOL ETHANE ETHYLENE C S SO2 METHANE ETHYLENE C S SO2 METHANE METHANOL ETHANE ETHYLENE C S S UREA CARB ZNO ZNS C2H6S C4H10S PROPANE BUTANE BUTANE PENTANE HEXANE	611602.723 0 0 0 0 0 0 0 0 0 0 0 0 0	7059.169 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Mass Frac H2O O2	STM-SH	WATER-IN 1 0
N2 AR NO	0 0 0	0 0 0


NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN PRODUCTION ANALYSIS	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 68 of 151

NO2 N2O4 NH3 HNO3 NH4NO3 H2 CO CO2 H2S SO2 METHANE METHANE METHANOL ETHANE ETHYLENE C S UREA CARB ZNO ZNS C2H6S C4H10S PROPANE BUTANE PENTANE HEXANE		
Mole Flow Ibmol/hr H2O O2 N2 AR NO NO2 N2O4 NH3 HNO3 NH4NO3 H2 CO CO2 H2S SO2 METHANE METHANE METHANE ETHYLENE C S	STM-SH 33949.11 0 0 0 0 0 0 0 0 0 0 0 0 0	WATER-IN 391.843 0 0 0 0 0 0 0 0 0 0 0 0 0

NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 69 of 151

UREA CARB ZNO ZNS C2H6S C4H10S PROPANE BUTANE PENTANE HEXANE		0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0
	STM-SH	WATER	-IN
Mole Frac H2O O2 N2 AR NO NO2 N2O4 NH3 HNO3 NH4NO3 H2 CO CO2 H2S SO2 METHANE ETHYLENE C S UREA CARB ZNO ZNS	STM-SH	WATER 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-IN 1 0 0 0 0 0 0 0 0 0 0 0 0 0
C2H6S C4H10S PROPANE BUTANE PENTANE HEXANE		0 0 0 0 0	0 0 0 0 0

NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 70 of 151

NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN PRODUCTION ANALYSIS	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 71 of 151

	CO2	COND-2	COND-3	COND-VNT	H2O
Temperature F Pressure psi Vapor Frac Mole Flow Ibmol/hr Mass Flow Ib/hr Volume Flow cuft/hr Enthalpy MMBtu/hr	104 30 1 6466.603 282723.87 1.29E+06 -1085.797 CO2	257.29 0 21434.816 386181.143 7369.579	7368.831	257.29 1 0.013 0.146 0.309	34.276 -12.278
Mass Flow lb/hr H2O O2 N2 AR NO NO2 NH3 H2 CO CO2 H2S SO2 METHANE ETHANE ETHYLENE METHANOL C	0 0 0 81.988 17.23 282531.577 0 0 59.813 0.001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.002 0 45.596 0.257 0.002 53.548 0 0 0.091 0 0 0 0 0 0 0 0	386081.646 0 0.002 0 45.596 0.257 0.002 53.548 0 0 0 0.091 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.001 0 0 0.021 0.001 0.121 0 0 0.003 0 0.003 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S	0 CO2	0 COND-2	0 COND-3	0 COND-VNT	0 H2O
Mass Frac H2O O2 N2 AR NO NO2 NH3 H2 CO CO2 H2S SO2 METHANE ETHANE ETHYLENE METHANOL C S	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.005 0 0 0 0.14 0.004 0.827 0 0 0.017 0 0 0.017 0 0 0.017 0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NUCLEAD INTECDATED HUDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 72 of 151

	CO2	COND-2	COND-3	COND-VNT	H2O
Mole Flow Ibmol/hr				-	
H2O	1.846	21430.788	21430.788	0	99.68
02	0	0	0	0	0
N2	0	0	0	0	0
AR	0	0	0	0	0
NO	0	0	0	0	0
NO2	0 0	-	0	0 0	0
NH3	-	2.677	2.677	-	0
H2 CO	40.671	0.128	0.128	0.01	0
CO CO2	0.615 6419.742	0 1.217	0 1.217	0	0
				0.003	0
H2S SO2	0 0	0 0	0 0	0 0	0 0
METHANE	3.728		0.006	0	0
ETHANE	0.728	0.006 0	0.008	0	0
ETHYLENE	0	0	0	0	0
METHANOL	0	0	0	0	0
C	0	0	0	0	0
S	0	0	0	0	0
5	CO2	COND-2	COND-3	COND-VNT	-
Mole Frac	602		COND		1120
H2O	0	1	1	0.004	1
02	0	0	- 0	0	0
N2	0	0	0	0.002	0
AR	0	0	0	0	0
NO	0	0	0	0	0
NO2	0	0	0	0	0
NH3	0	0	0	0	0
H2	0.006	0	0	0.772	0
CO	0	0	0	0.002	0
CO2	0.993	0	0	0.209	0
H2S	0	0	0	0	0
SO2	0	0	0	0	0
METHANE	0.001	0	0	0.012	0
ETHANE	0	0	0	0	0
ETHYLENE	0	0	0	0	0
METHANOL	0	0	0	0	0
С	0	0	0	0	0
S	0	0	0	0	0
MWMX	43.721	18.017	18.017	11.101	18.015

NUCLEAD INTECDATED HUDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 73 of 151

	KO-LIQ-1	KO-LIQ-2	SG-1	SG-2	SG-3
Temperature F Pressure psi	104 274.29				415 311.44
Vapor Frac Mole Flow Ibmol/hr Mass Flow Ib/hr Volume Flow cuft/hr Enthalpy MMBtu/hr	0 21326.664 384232.688 7332.154 -2626.39 KO-LIQ-1	0 108.165 1948.602 37.185	1 53812.435 730631.091 1.96E+06 -3018.264	1 53812.435 730631.091 2.25E+06 -3018.252	1 53812.435 730631.091 1.59E+06
Mass Flow lb/hr					
H2O				398314.618	-
O2 N2	0 0.003	0	-	0 2129.142	0 2129.142
AR	0.005			0	0
NO	0	0		0	0
NO2	0	0	0	0	0
NH3	45.596			52.96	52.96
H2	0.276				49903.741
CO	0.003	0			20325.032
CO2	53.67	0			253924.071
H2S SO2	0 0			0 0	0 0
METHANE	0.093				5981.418
ETHANE	0.055			0.11	0.11
ETHYLENE	0	0		0	0
METHANOL	0	0		0	0
С	0	0	0	0	0
S	0	0	0	0	0
	KO-LIQ-1	KO-LIQ-2	SG-1	SG-2	SG-3
Mass Frac					
H2O	1	1		0.545	0.545
02	0	0		0	0
N2 AR	0 0	0		0.003 0	0.003 0
NO	0	0	0	0	0
NO2	0	0		0	0
NH3	0	0		0	0
H2	0	0	0.061	0.068	0.068
СО	0	0	0.131	0.028	0.028
CO2	0	0	0.186	0.348	0.348
H2S	0	0	0	0	0
502	0	0		0	0
METHANE	0	0		0.008	0.008
	0	0	0	0	0
ETHYLENE METHANOL	0 0	0 0	0	0 0	0 0
C	0	0	0	0	0
S	0	0		0	0
-	0	0	0	0	0

Idaho National Laboratory

NUCLEAR-INTEGRATED HYDROGEN	Identifier:	TEV-693	
	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 74 of 151

	KO-LIQ-1	KO-LIQ-2	SG-1	SG-2	SG-3
Mole Flow Ibmol/hr	21222 624	100 101	24701 026	22100.021	22100.021
H2O	21322.624			22109.821	22109.821
02	0 0	0 0	-	0 76.004	0
N2 AR	0	0		76.004	76.004 0
NO	0	0	-	0	0
NO2	0	0	-	0	0
NH3	2.677	0		3.11	3.11
H2	0.137	-		24755.313	24755.313
CO	0.1157	0.001		725.624	725.624
CO2	1.219	0		5769.717	5769.717
H2S	0	0		0	0
S02	0	0		0	0
METHANE	0.006	0	372.842	372.842	372.842
ETHANE	0	0	0.004	0.004	0.004
ETHYLENE	0	0	0	0	0
METHANOL	0	0	0	0	0
С	0	0	0	0	0
S	0	0	0	0	0
	KO-LIQ-1	KO-LIQ-2	SG-1	SG-2	SG-3
Mole Frac					
H2O	1	1		0.411	0.411
02	0	0		0	0
N2	0	0		0.001	0.001
AR	0	0	-	0	0
NO	0	0	-	0	0
NO2	0	0		0	0
NH3	0	0		0	0
H2	0	0		0.46	0.46
CO	0	0		0.013	0.013
CO2	0 0	0		0.107	0.107
H2S SO2	0	0		0	0
METHANE	0	0		0 0.007	0 0.007
ETHANE	0	0		0.007	0.007
ETHYLENE	0	0		0	0
METHANOL	0	0		0	0
C	0	0	-	0	0
S	0	0	-	0	0
мумх	18.017	18.015	-	13.577	13.577

NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 75 of 151

	SG-4	SG-5	SG-6	SG-7	SG-8
Temperature F Pressure psi	440.3 294.29	284.29	274.29	274.29	518 271.29
Vapor Frac Mole Flow Ibmol/hr	1 53812.435				1 26019.168
Mole Flow Ibmol/hr Mass Flow Ib/hr		53812.435 730631.093			63674.534
Volume Flow cuft/hr	1.74E+06			576440.124	1.01E+06
Enthalpy MMBtu/hr	-3188.921				50.405
	SG-4	SG-5	SG-6		SG-8
Mass Flow lb/hr					
H2O	386350.481	386350.481	2217.434	2184.173	2184.173
02	0				0
N2	2129.142				2129.138
AR	0				0
NO	0				0
NO2 NH3	0 52.96			-	0 7.364
H2	51242.508				51160.244
CO	1723.032				1705.799
CO2	283151.442				566.196
H2S	0		0		0
S02	0	0	0	0	0
METHANE	5981.418	5981.418	5981.325	5921.512	5921.512
ETHANE	0.11	0.11	0.11	0.109	0.109
ETHYLENE	0			-	0
METHANOL	0				0
C	0			-	0
S	0 SG-4	0 SG-5	0 SG-6	0 SG-7	0 SG-8
Mass Frac	56-4	36-3	36-0	36-7	30-0
H2O	0.529	0.529	0.006	0.034	0.034
02	0.010				0
N2	0.003	0.003	0.006	0.033	0.033
AR	0	0	0	0	0
NO	0	0	0	0	0
NO2	0		0		0
NH3	0		0	-	0
H2	0.07				0.803
CO CO2	0.002 0.388		0.005 0.817		0.027 0.009
H2S	0.388				0.009
S02	0				0
METHANE	0.008				0.093
ETHANE	0				0
ETHYLENE	0	0	0	0	0
METHANOL	0	0	0	0	0
C	0				0
S	0	0	0	0	0

Idaho National Laboratory

NUCLEAR-INTEGRATED HYDROGEN	Identifier:	TEV-693	
	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 76 of 151

	SG-4	SG-5	SG-6	SG-7	SG-8
Mole Flow Ibmol/hr					
H2O	21445.711				121.24
02	0 76.004	0			0
N2 AR	76.004	76.004			76.004 0
NO	0	0 0		-	0
NO2	0	0		-	0
NH3	3.11	3.11	-		0.432
H2	25419.424	25419.424			25378.616
CO	61.514				60.899
CO2	6433.827				12.865
H2S	0155162)	0 100102/			0
S02	0	0			0 0
METHANE	372.842				369.108
ETHANE	0.004	0.004			0.004
ETHYLENE	0	0			0
METHANOL	0	0	0	0	0
С	0	0	0	0	0
S	0	0	0	0	0
	SG-4	SG-5	SG-6	SG-7	SG-8
Mole Frac					
H2O	0.399	0.399	0.004	0.005	0.005
02	0	0			0
N2	0.001	0.001	0.002	0.003	0.003
AR	0	0	-	-	0
NO	0	0	0	-	0
NO2	0	0	0		0
NH3	0	0	0		0
H2	0.472	0.472			0.975
CO	0.001	0.001			0.002
CO2	0.12	0.12			0
H2S	0	0			0
S02	0	0	-	-	0
METHANE	0.007	0.007			0.014
ETHANE	0	0		-	0
ETHYLENE	0	0	0		0
METHANOL	0	0	0	-	0
C S	0	0 0	0 0	-	0 0
S MWMX	0 13.577	0 13.577	0 10.663	-	0 2.447
INIVINA	13.5//	13.5//	10.003	2.447	2.447

NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 77 of 151

	SG-9	SG-10	SG-11	SG-12	SG-13
Temperature F	518	554	136.8	104	104
Pressure psi	268.29			259.29	259.29
Vapor Frac	1	1	1	1	1
Mole Flow Ibmol/hr	26019.168	25872.072	25872.072	25763.908	25664.228
Mass Flow lb/hr	63674.534	63674.534		61725.932	
Volume Flow cuft/hr	1.02E+06		639494.424		601993.862
Enthalpy MMBtu/hr	50.404			-19.966	-9.599
	SG-9	SG-10	SG-11	SG-12	SG-13
Mass Flow lb/hr	2104 172	2744 022	2744 022	1706 222	0.460
H2O O2	2184.173			1796.222	0.462
N2	0 2129.138	-	-	0 2135.195	0 2135.195
AR	2129.138			2155.195	2155.195
NO	0		-	0 0	0
NO2	0		0	0	0
NH3	7.364		0	0	0
H2	51160.244	50689.512	50689.512	50689.51	50689.51
CO	1705.799	0	0	0	0
CO2	566.196	0		0	0
H2S	0			0	0
SO2	0		•	0	0
METHANE	5921.512			7105.005	7105.005
ETHANE	0.109			0	0
ETHYLENE METHANOL	0 0		-	0	0 0
C	0			0	0
S	0	-	-	0	0
2	SG-9	SG-10	SG-11	SG-12	SG-13
Mass Frac					
H2O	0.034	0.059	0.059	0.029	0
02	0	0	0	0	0
N2	0.033	0.034	0.034	0.035	0.036
AR	0			0	0
NO	0			0	0
NO2	0			0	0
NH3 H2	0 0.803	0 0.796	-	0	0
CO	0.803		0.796 0	0.821 0	0.846 0
CO2	0.027	0	0	0	0
H2S	0.009	0	0	0	0
S02	0	-	-	0	0
METHANE	0.093			0.115	0.119
ETHANE	0			0	0
ETHYLENE	0	0	0	0	0
METHANOL	0			0	0
С	0			0	0
S	0	0	0	0	0

Idaho National Laboratory

NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN PRODUCTION ANALYSIS	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 78 of 151

Mole Flow Ibmol/hr	SG-9	SG-10	SG-11	SG-12	SG-13
H2O	121.24	207.869	207.869	99.705	0.026
02	0	0	0	0	0
N2	76.004	76.22	76.22	76.22	76.22
AR	0	0	0	0	0
NO	0	0	0	0	0
NO2	0	0	0	0	0
NH3	0.432	0	0	0	0
H2	25378.616	25145.104	25145.104	25145.103	25145.103
СО	60.899	0	0	0	0
CO2	12.865	0	0	0	0
H2S	0	0	0	0	0
SO2	0	0	0	0	0
METHANE	369.108	442.879	442.879	442.879	442.879
ETHANE	0.004	0	0	0	0
ETHYLENE	0	0	0	0	0
METHANOL	0	0	0	0	0
C	0	0	0	0	0
S	0	0	0	0	0
	SG-9	SG-10	SG-11	SG-12	SG-13
Mole Frac					
H2O	0.005	0.008		0.004	0
02	0	0	-	0	0
N2	0.003	0.003		0.003	0.003
AR	0	0	0	0	0
NO	0	0	0	0	0
NO2	0	0	0	0	0
NH3	0	0	0	0	0
H2	0.975	0.972	0.972	0.976	0.98
CO	0.002	0		0	0
CO2	0	0	0	0	0
H2S	0	0	0	0	0
SO2	0	0	0	0	0
METHANE	0.014	0.017	0.017	0.017	0.017
ETHANE	0	0	0	0	0
ETHYLENE	0	0	0	0	0
METHANOL	0	0	0	0	0
C S	0	0	0	0	0
	-	•	-	-	0
MWMX	2.447	2.461	2.461	2.396	2.335

NILCI FAD INTECDATED HUDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN PRODUCTION ANALYSIS	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 79 of 151

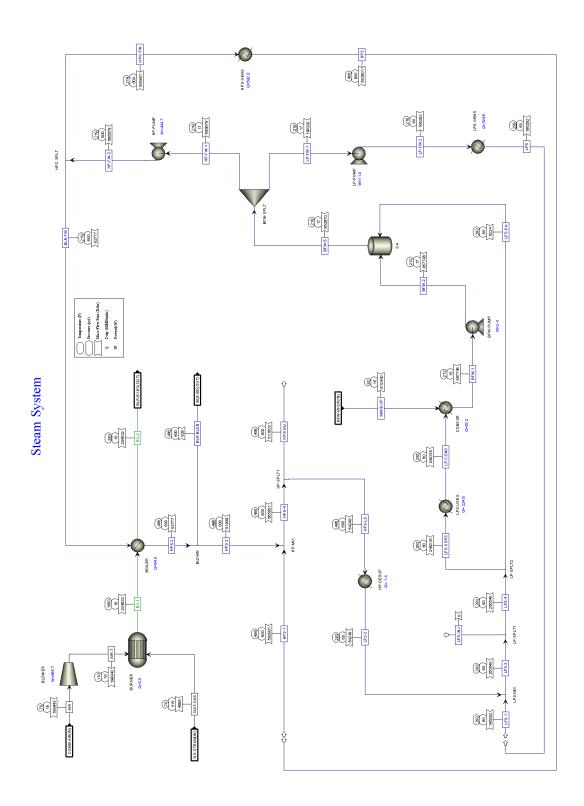
WGS-LIQ1 WGS-LIQ2 ZZDUMMY3 ZZDUMMY4 ZZDUMMY5

Temperature F			77	128.6	212
Pressure psi	321.44	294.29	1	1.26	14.7
Vapor Frac	0	0	1	1	0
Mole Flow Ibmol/hr	0		32485.771	32485.771	32485.771
Mass Flow lb/hr	0	-		910039.499 1.62E+08	
Volume Flow cuft/hr	0	0	1.87E+08		9781.653
Enthalpy MMBtu/hr			-0.007	11.663	-3915.332
Mass Flow lb/hr	WGS-LIQI	WGS-LIQZ		ZZDUMMY4	
H2O	0	0	0	0	585240.263
02	0		0	0	0 Joseph 203
N2	0		-	910039.499	0
AR	0	0	910039.499 0	910039.499	0
NO	0		0	0	0
NO2	0		0	0	0
NH3	0		0	0	0
H2	0		0	0	0
CO	0		0	0	0
CO2	0	-	0	0	Ő
H2S	0		0	0	0
S02	0		0	0	0
METHANE	0	0	0	0	0
ETHANE	0		0	0	0
ETHYLENE	0		0	0	0
METHANOL	0		0	0	0
C	0	0	0	0	0
S	0	0	0	0	0
	WGS-LIO1	WGS-LIO2	ZZDUMMY3	ZZDUMMY4	ZZDUMMY5
Mass Frac	c	Ľ			
H2O			0	0	1
02			0	0	0
N2			1	1	0
AR			0	0	0
NO			0	0	0
NO2			0	0	0
NH3			0	0	0
H2			0	0	0
СО			0	0	0
CO2			0	0	0
H2S			0	0	0
S02			0	0	0
METHANE			0	0	0
ETHANE			0	0	0
ETHYLENE			0	0	0
METHANOL			0	0	0
C			0	0	0
S			0	0	0

NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN PRODUCTION ANALYSIS	Revision:	1	
FRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 80 of 151

Mole Flow Ibmol/hr	WGS-LIQ1	WGS-LIQ2	ZZDUMMY3	ZZDUMMY4	ZZDUMMY5
H2O	0	0	0	0	32485.771
02	0	0		0	0
N2	0	0		32485.771	0
AR	0	0	0		0
NO	0	0	0	0	0
NO2	0	0	0	0	0
NH3	0	0	0	0	0
H2	0	0	0	0	0
СО	0	0	0	0	0
CO2	0	0	0	0	0
H2S	0	0	0	0	0
SO2	0	0	0	0	0
METHANE	0	0	0		0
ETHANE	0	0	0	0	0
ETHYLENE	0	0	0	0	0
METHANOL	0	0	0	0	0
С	0	0	0	0	0
S	0	0	0	0	0
	WGS-LIQ1	WGS-LIQ2	ZZDUMMY3	ZZDUMMY4	ZZDUMMY5
Mole Frac	0	0	0	0	4
H2O O2	0 0	0	0 0	0 0	1 0
N2	0	0	1	1	0
AR	0	0	0	0	0
NO	0	0	0	-	0
NO2	0	0	0		0
NH3	0	0	0	-	0
H2	0	0	0	0	0
CO	0	0	0		0
CO2	0	0	0	0	0
H2S	0	0	0	0	0
S02	0	0	0	0	0
METHANE	0	0	0	0	0
ETHANE	0	0	0	0	0
ETHYLENE	0	0	0	0	0
METHANOL	0	-	0	-	0
С	0	0	0	0	0
S	0	0	0	0	0
MWMX			28.013	28.013	18.015

NUCLEAD INTECDATED HUDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN PRODUCTION ANALYSIS	Revision:	1	
FRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 81 of 151


ZZDUMMY6

Temperature F Pressure psi Vapor Frac Mole Flow Ibmol/hr Mass Flow Ib/hr Volume Flow cuft/hr Enthalpy MMBtu/hr	212 14.7 0.174 32485.771 585240.263 2.74E+06 -3816.347 ZZDUMMY6
Mass Flow Ib/hr H2O O2 N2 AR NO NO2 NH3 H2 CO CO2 H2S SO2 METHANE ETHANE ETHANE ETHYLENE METHANOL C S	585240.263 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Mass Frac H2O O2 N2 AR NO NO2 NH3 H2 CO CO2 H2S SO2 METHANE ETHANE ETHYLENE METHANOL C S	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NUCLEAD INTEGDATED HUDDOGEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN PRODUCTION ANALYSIS	Revision:	1	
	Effective Date:	05/15/10	Page: 82 of 151

Mala Flaw, Jhra	ZZDUMMY6
Mole Flow Ibmo H2O O2 N2 AR NO NO2 NH3	ol/hr 32485.771 0 0 0 0 0 0
H2 CO CO2 H2S SO2	0 0 0 0
METHANE ETHANE ETHYLENE METHANOL	0 0 0 0 0
C S	0 0 ZZDUMMY6
Mole Frac H2O O2 N2 AR NO NO2 NH3 H2 CO CO2 H2S SO2 METHANE ETHANE ETHYLENE METHANOL C	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S MWMX	0 18.015

NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN PRODUCTION ANALYSIS	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 83 of 151

NUCLEAD INTECDATED HUDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN PRODUCTION ANALYSIS	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 84 of 151

	AIR	AIR-1	BFW-1	BFW-2	BFW-5
Temperature F Pressure psi Vapor Frac	70 14.7 1		212 14.7 0	212 17.19 0	218 17.19 0
Mole Flow Ibmol/hr Mass Flow Ib/hr Volume Flow cuft/hr	6928.996		47612.154 857746.286	47612.154 857746.286	47902.126
Enthalpy MMBtu/hr	-7.85 AIR				-5768.16 BFW-5
Mass Flow lb/hr H2O	1235.919	1235.919	857746.286	857746.286	
O2 N2	46078.155		0	0	0
AR NO	2576.154	2576.154	0	0	0
NO2	0	0	0	0	0
NH3 H2	0 1.383	0 1.383	0	0	0
CO CO2	0 90.577	0 90.577	0	0	0 0
H2S SO2	0	0	0	0	0
METHANE METHANOL	0	0	0	0	0
ETHANE ETHYLENE	0	0	0	0	0
C S	0	0	0	0	0 0
Mass Frac	AIR	AIR-1	BFW-1	BFW-2	BFW-5
H2O O2	0.006 0.23	0.006 0.23	1 0	1 0	1 0
N2 AR	0.75 0.013	0.75 0.013	0 0	0 0	0 0
NO NO2	0 0	0 0	0 0	0 0	0 0
NH3 H2	0 0	0 0	0 0	0 0	0 0
CO CO2	0 0	0 0	0 0	0 0	0 0
H2S SO2	0 0	0 0	0 0	0 0	0 0
METHANE METHANOL	0 0	0 0	0 0	0 0	0 0
ETHANE ETHYLENE	0	0	0	0	0
C S	0 0	0 0	0 0	0 0	0 0

NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN PRODUCTION ANALYSIS	Revision:	1	
FRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 85 of 151

	AIR	AIR-1	BFW-1	BFW-2	BFW-5
Mole Flow Ibmol/hr					
H2O	68.604				47902.126
02	1439.996				0
N2	5353.164				0
AR	64.488			-	0
NO	0				0
NO2	0				0
NH3	0	-	-	-	0
H2	0.686				0
CO	0				0
CO2	2.058			-	0
H2S	0				0
S02	0				0
METHANE	0	-		-	0
METHANOL	0				0
ETHANE	0				0
ETHYLENE	0				0
С	0				0
S	0	-	-	-	0
	AIR	AIR-1	BFW-1	BFW-2	BFW-5
Mole Frac					
H2O	0.01				1
02	0.208				0
N2	0.773				0
AR	0.009			-	0
NO	0				0
NO2	0				0
NH3	0				0
H2	0			-	0
CO	0				0
CO2	0				0
H2S	0				0
S02	0				0
METHANE	0				0
METHANOL	0	-		-	0
ETHANE	0				0
ETHYLENE	0				0
С	0	-		-	0
S	0			-	0
MWMX	28.856	28.856	18.015	18.015	18.015

NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 86 of 151

	BLR-BLDN	BLR-FW	EX-1	EX-2	HP-FW-1
Temperature F	486.3	219	1800	330.4	218
Pressure psi	600	600	17.7	17.7	17.19
Vapor Frac	1	0	1	1	0
Mole Flow Ibmol/hr	45.948	4594.832	7204.534	7204.534	37006.284
Mass Flow lb/hr	827.772	82777.188	204531.946	204531.946	666678.575
Volume Flow cuft/hr	637.439	1384.853	9.88E+06	3.45E+06	11170.931
Enthalpy MMBtu/hr	-4.691		-14.671	-98.709	-4456.131
	BLR-BLDN	BLR-FW	EX-1	EX-2	HP-FW-1
Mass Flow lb/hr					
H2O	827.772	82777.188			666678.575
02	0	0			0
N2	0			150049.771	0
AR	0			2576.154	0
NO	0	0	0		0
NO2	0	0	0	0	0
NH3	0			0	0
H2	0			0	0
CO	0	0		0	0
CO2	0				0
H2S	0			0	0
S02	0			0.65	0
METHANE	0			0	0
METHANOL	0		0	0	0
ETHANE	0	0	0	0	0
ETHYLENE	0			0	0
С	0	0	0	0	0
S		0	0	0	0
	BLR-BLDN	BLK-FW	EX-1	EX-2	HP-FW-1
Mass Frac H2O	1	4	0.054	0.054	1
02	1 0				1 0
N2	0			0.139	0
AR	0			0.013	0
NO	0			0.019	0
NO2	0		0	0	0
NH3	0	0	0	0	0
H2	0			0	0
СО	0	0	0	0	0
CO2	0	0	0.061	0.061	0
H2S	0	0	0	0	0
SO2	0	0	0	0	0
METHANE	0	0	0	0	0
METHANOL	0	0	0	0	0
ETHANE	0	0	0	0	0
ETHYLENE	0	0	0	0	0
С	0	0	0	0	0
S	0	0	0	0	0

NUCLEAR-INTEGRATED HYDROGEN	Identifier:	TEV-693	
	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 87 of 151

	BLR-BLDN	BLR-FW	EX-1	EX-2	HP-FW-1
Mole Flow Ibmol/hr					
H2O	45.948		613.307	613.307	37006.284
02	0	0	886.856	886.856	0
N2	0	0	5356.342	5356.342	0
AR	0	0	64.488	64.488	0
NO	0	-	0	0	0
NO2	0	0	0	0	0
NH3	0	0	0	0	0
H2	0	0	0	0	0
CO	0	0	0	0	0
CO2	0	-		283.531	0
H2S SO2	0 0	0	0 0.01	0 0.01	0
		0			0
METHANE METHANOL	0	0	0 0	0 0	0 0
ETHANE	0	0	0	0	0
ETHYLENE	0	0	0	0	0
C	0	0	0	0	0
S	0	0	0	0	0
3	BLR-BLDN	-	EX-1	EX-2	HP-FW-1
Mole Frac	DEIX-DEDIX				
H2O	1	1	0.085	0.085	1
02	0	0	0.123	0.123	0
N2	0	0	0.743	0.743	0
AR	0	0	0.009	0.009	0
NO	0	0	0	0	0
NO2	0	0	0	0	0
NH3	0	0	0	0	0
H2	0	0	0	0	0
СО	0	0	0	0	0
CO2	0	0	0.039	0.039	0
H2S	0	0	0	0	0
S02	0	0	0	0	0
METHANE	0	0	0	0	0
METHANOL	0	0	0	0	0
ETHANE	0	0	0	0	0
ETHYLENE	0	0	0	0	0
С	0	0	0	0	0
S	0	0	0	0	0
MWMX	18.015	18.015	28.389	28.389	18.015

NUCLEAD INTECDATED HUDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 88 of 151

	HP-FW-2	HPG-FW	HPS	HPS-1	HPS-2
Temperature F Pressure psi Vapor Frac	219 600 0	219 600 0	600	486.3 600 1	486.3 600 1
Mole Flow Ibmol/hr Mass Flow Ib/hr Volume Flow cuft/hr Enthalpy MMBtu/hr	37006.284	32411.452 583901.387	32411.452 583901.387 449643.823	32411.452 583901.387 449645.054 -3308.714	4594.832 82777.188
Mass Flow lb/hr		502001 207	502001 207	500001 007	00777 100
H2O O2	666678.575 0	583901.387		583901.387 0	82777.188 0
N2	0	0		0	Ő
AR	0	0		0	0
NO	0	0	0	0	0
NO2 NH3	0 0	0 0	0 0	0 0	0 0
H2	0	0		0	0
CO	0	0	0	0	0
CO2	0	0	0	0	0
H2S SO2	0 0	0 0	0	0 0	0 0
METHANE	0	0	0	0	0
METHANOL	0	0	0	0	0
ETHANE	0	0	0	0	0
ETHYLENE	0	0		0	0
C S	0 0	0 0	0	0 0	0 0
5	HP-FW-2	HPG-FW	HPS		HPS-2
Mass Frac					
H2O	1	1		1	1
02 N2	0	0		0	0
N2 AR	0 0	0 0	0	0 0	0 0
NO	0	0	0	0	0
NO2	0	0	0	0	0
NH3	0	0	0	0	0
H2 CO	0 0	0		0	0
CO2	0	0 0	0	0 0	0 0
H2S	0	0	0	0	0
S02	0	0	0	0	0
METHANE	0	0	0	0	0
METHANOL ETHANE	0 0	0 0	0 0	0 0	0 0
ETHYLENE	0	0	0	0	0
C	0	0		0	0
S	0	0	0	0	0

NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN PRODUCTION ANALYSIS	Revision:	1	
FRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 89 of 151

	HP-FW-2	HPG-FW	HPS	HPS-1	HPS-2
Mole Flow Ibmol/hr					
H2O	37006.284	32411.452	32411.452	32411.452	4594.832
02	0	0	0	0	0
N2	0	0	0	0	0
AR	0	0	0	0	0
NO	0	0	0	0	0
NO2	0	0	0	0	0
NH3	0	0	0	0	0
H2	0	0	0	0	0
СО	0	0	0	0	0
CO2	0	0	0	0	0
H2S	0	0	0	0	0
SO2	0	0	0	0	0
METHANE	0	0	0	0	0
METHANOL	0	0	0	0	0
ETHANE	0	0	0	0	0
ETHYLENE	0	0	0	0	0
С	0	0	0	0	0
S	0	0	0	0	0
	HP-FW-2	HPG-FW	HPS	HPS-1	HPS-2
Mole Frac					
H2O	1	1	1	1	1
02	0	0	0	0	0
N2	0	0	0	0	0
AR	0	0	0	0	0
NO	0	0	0	0	0
NO2	0	0	0	0	0
NH3	0	0	0	0	0
H2	0	0	0	0	0
СО	0	0	0	0	0
CO2	0	0	0	0	0
H2S	0	0	0	0	0
SO2	0	0	0	0	0
METHANE	0	0	0	0	0
METHANOL	0	0	0	0	0
ETHANE	0	0	0	0	0
ETHYLENE	0	0	0	0	0
C	0	0	0	0	0
S	0	0	0	0	0
MWMX	18.015	18.015	18.015	18.015	18.015
ET WEIN	10.015	10.015	10.015	10.015	10.013

NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 90 of 151

	HPS-3	HPS-4	HPS-INJ	HPS-LD	LP-COND
Temperature F Pressure psi Vapor Frac	486.3 600 1	600		600	292.7 60 0
Mole Flow Ibmol/hr Mass Flow Ib/hr Volume Flow cuft/hr Enthalpy MMBtu/hr		665850.803 512750.453	611602.723	54248.08 41774.715	13617.096 245315.79 4262.938 -1621.042 LP-COND
Mass Flow Ib/hr					
H2O O2 N2	81949.417 0 0	0	611602.723 0 0	0	245315.79 0 0
AR	0	0	0	0	0
NO NO2	0 0	0 0	0 0	0	0 0
NH3 H2	0 0		0 0		0 0
CO CO2	0	0 0	0 0	0	0
H2S	0 0	0	0	0	0 0
SO2 METHANE	0 0	0 0	0 0		0 0
METHANOL ETHANE	0 0	0 0	0 0		0 0
ETHYLENE	0	0	0	0	0
C S	0 0	0 0	0 0		0 0
Mass Frac	HPS-3	HPS-4	HPS-INJ	HPS-LD	LP-COND
H2O	1	1	1		1
O2 N2	0 0	0 0	0 0		0 0
AR	0		0		0
NO NO2	0 0	0 0	0 0		0 0
NH3 H2	0 0	0 0	0 0		0 0
CO	0	0	0	0	0
CO2 H2S	0 0	0 0	0 0	0 0	0 0
SO2 METHANE	0 0	0 0	0 0	0 0	0 0
METHANOL	0	0	0	0	0
ETHANE ETHYLENE	0 0	0 0	0 0		0 0
C S	0 0				0 0

NUCLEAD INTECDATED HUDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 91 of 151

	HPS-3	HPS-4	HPS-INJ	HPS-LD	LP-COND
Mole Flow Ibmol/hr					
H2O	4548.884	36960.336	33949.11	3011.226	13617.096
02	0	0	0	0	0
N2	0	0	0	0	0
AR	0	0	0	0	0
NO	0	0		0	0
NO2	0	0	0	0	0
NH3	0	0	0	0	0
H2	0	0	0	0	0
CO	0	0	0	0	0
CO2	0	0		0	0
H2S SO2	0 0	0 0	0	0 0	0 0
			-		
METHANE METHANOL	0 0	0 0	0	0 0	0 0
ETHANE	0	0	0	0	0
ETHYLENE	0	0	0	0	0
C	0	0	0	0	0
S	0	0	0	0	0
5	HPS-3	HPS-4	HPS-INJ	HPS-LD	LP-COND
Mole Frac	TFS-5	11F J - 1	THE S-INJ	TIF J-LD	
H2O	1	1	1	1	1
02	0	0	0	0	0
N2	0	0	0	0	0
AR	0	0	0 0	0	0
NO	0	0	0	0	0
NO2	0	0		0	0
NH3	0	0	0	0	0
H2	0	0	0	0	0
СО	0	0	0	0	0
CO2	0	0	0	0	0
H2S	0	0	0	0	0
S02	0	0	0	0	0
METHANE	0	0	0	0	0
METHANOL	0	0	0	0	0
ETHANE	0	0	0	0	0
ETHYLENE	0	0	0	0	0
С	0	0	0	0	0
S	0	0	0	0	0
MWMX	18.015	18.015	18.015	18.015	18.015

NUCLEAR-INTEGRATED HYDROGEN	Identifier:	TEV-693	
	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 92 of 151

	LP-FW-1	LP-FW-2	LPS	LPS-1	LPS-2
Temperature F Pressure psi Vapor Frac Mole Flow Ibmol/hr Mass Flow Ib/hr Volume Flow cuft/hr Enthalpy MMBtu/hr	218 17.19 0 10895.842 196291.636 3289.082 -1312.028 LP-FW-1	60 0 10895.842 196291.636 3288.734	60 1 10895.842 196291.636 1.41E+06	292.7 60 1 10895.842 196291.636 1.41E+06 -1117.349 LPS-1	389349.857
Mass Flow lb/hr H2O O2 N2 AR NO NO2 NH3 H2 CO CO2 H2S SO2 METHANE METHANOL ETHANE ETHYLENE C		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S Mass Frac H2O O2 N2 AR N0 N02 NH3 H2 CO CO CO2 H2S SO2 METHANE METHANE METHANOL ETHANE ETHYLENE	LP-FW-1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	LP-FW-2	LPS 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	LPS-1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	LPS-2 1 0 0 0 0 0 0 0 0 0 0 0 0 0
C S	0	0	0	0	0

NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 93 of 151

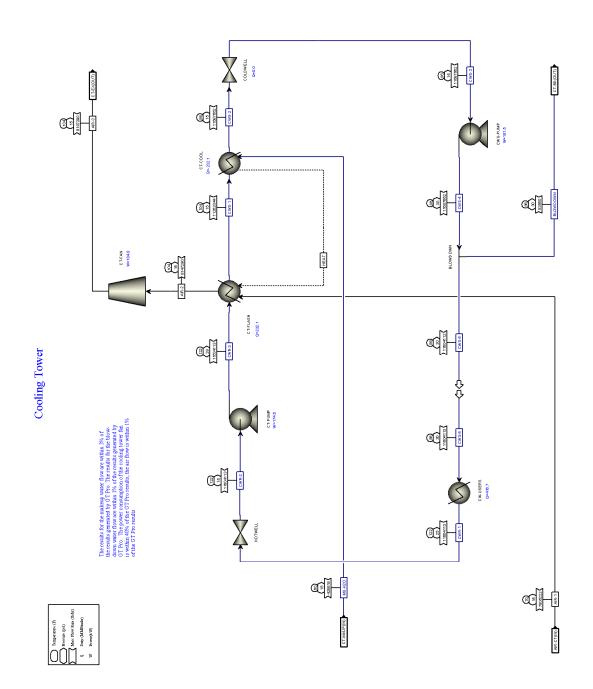
	LP-FW-1	LP-FW-2	LPS	LPS-1	LPS-2
Mole Flow Ibmol/hr	10005 042	10005 042	10005 042	10005 042	2011 226
H2O O2	10895.842 0	10895.842 0	10895.842 0	10895.842 0	3011.226 0
N2	0	0	0	0	0
AR	0	0	0	0	0
NO	0	0	0 0	0	Ő
NO2	0 0	0	0	0	0
NH3	0	0	0	0	0
H2	0	0	0	0	0
СО	0	0	0	0	0
CO2	0	0	0	0	0
H2S	0	0	0	0	0
S02	0	0	0	0	0
METHANE	0	0	0	0	0
METHANOL	0	0	0	0	0
ETHANE ETHYLENE	0 0	0 0	0 0	0 0	0 0
C	0	0	0	0	0
S	0	0	0	0	0
J	-	LP-FW-2	-	-	LPS-2
Mole Frac					
H2O	1	1	1	1	1
02	0	0	0	0	0
N2	0	0	0	0	0
AR	0	0	0	0	0
NO	0	0	0	0	0
NO2	0	0	0	0	0
NH3 H2	0 0	0 0	0 0	0	0 0
CO	0	0	0	0	0
CO2	0	0	0	0	0
H2S	0 0	0	0	0	õ
S02	0	0	0	0	0
METHANE	0	0	0	0	0
METHANOL	0	0	0	0	0
ETHANE	0	0	0	0	0
ETHYLENE	0	0	0	0	0
С	0	0	0	0	0
S	0	0	0	0	0
MWMX	18.015	18.015	18.015	18.015	18.015

NUCLEAD INTECDATED HUDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 94 of 151

	LPS-3	LPS-4	LPS-DA	LPS-INJ	LPS-USRS
Temperature F Pressure psi Vapor Frac Mole Flow Ibmol/hr Mass Flow Ib/hr	292.7 60 1 13907.067 250530 716	292.7 60 1 13907.067 250539.716	60 1 289.972	0	292.7 60 1 13617.096 245315.79
Volume Flow Cuft/hr	1.80E+06	1.80E+06	37493.19	0	1.76E+06
Enthalpy MMBtu/hr	-1426.145	-1426.145	-29.736		-1396.409
Mass Flow lb/hr	LPS-3	LPS-4	LPS-DA		LPS-USRS
H2O	250539.716	250539.716	5223.925		245315.79
O2	0	0	0	0	0
N2	0	0	0	0	0
AR	0	0	0	0	0
NO	0	0	0	0	0
NO2	0	0	0	0	0
NH3	0	0	0	0	0
H2	0	0	0		0
CO	0	0	0		0
CO2	0	0	0	0	0
H2S	0	0	0	0	0
SO2	0	0	0	0	0
METHANE	0	0	0	0	0
METHANOL	0	0	0	0	0
ETHANE	0	0	0	0	0
ETHYLENE	0	0	0	0	0
C	0	0	0	0	0
S	0	0	0	0	0
Mass Frac	LPS-3	LPS-4	LPS-DA		LPS-USRS
H2O	1	1	1		1
O2	0	0	0		0
N2 AR	0	0	0		0 0
NO	0	0	0		0
NO2	0	0	0		0
NH3	0	0	0		0
H2	0	0	0		0
CO	0	0	0		0
CO2	0	0	0		0
H2S	0	0	0		0
S02	0	0	0		0
METHANE	0	0	0		0
METHANOL	0	0	0		0
ETHANE	0	0	0		0
ETHYLENE	0	0	0		0
C	0	0	0		0
S	0	0	0		0

NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 95 of 151

	LPS-3	LPS-4 L	PS-DA	LPS-INJ	LPS-USRS
Mole Flow lbmol/hr H2O	12007.007	12007.007	200 072	0	12017 000
H20 02	13907.067 0	13907.067 0	289.972 0	0 0	13617.096 0
N2	0	0	0	0	0
AR	Ő	0 0	0	0	Ö
NO	0	0	0	0	0
NO2	0	0	0	0	0
NH3	0	0	0	0	0
H2	0	0	0	0	0
CO	0	0	0	0	0
CO2	0	0	0	0	0
H2S	0	0	0	0	0
SO2	0	0	0	0	0
METHANE METHANOL	0 0	0 0	0 0	0 0	0 0
ETHANE	0	0	0	0	0
ETHYLENE	0	0	0	0	0
C	0 0	0	0	0	Ö
S	0	0	0	0	0
	LPS-3	LPS-4 L	.PS-DA	LPS-INJ	LPS-USRS
Mole Frac					
H2O	1	1	1	0	1
02	0	0	0	0	0
N2	0	0	0	0	0
AR	0	0	0	0	0
NO NO2	0 0	0 0	0 0	0 0	0 0
NU2 NH3	0	0	0	0	0
H2	0	0	0	0	0
CO	0 0	0	0	0	Ő
CO2	0	0	0	0	0
H2S	0	0	0	0	0
SO2	0	0	0	0	0
METHANE	0	0	0	0	0
METHANOL	0	0	0	0	0
ETHANE	0	0	0	0	0
ETHYLENE	0	0	0	0	0
С	0	0	0	0	0
S	0	0	0 19.015	0	0 19.015
MWMX	18.015	18.015	18.015		18.015


NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 96 of 151

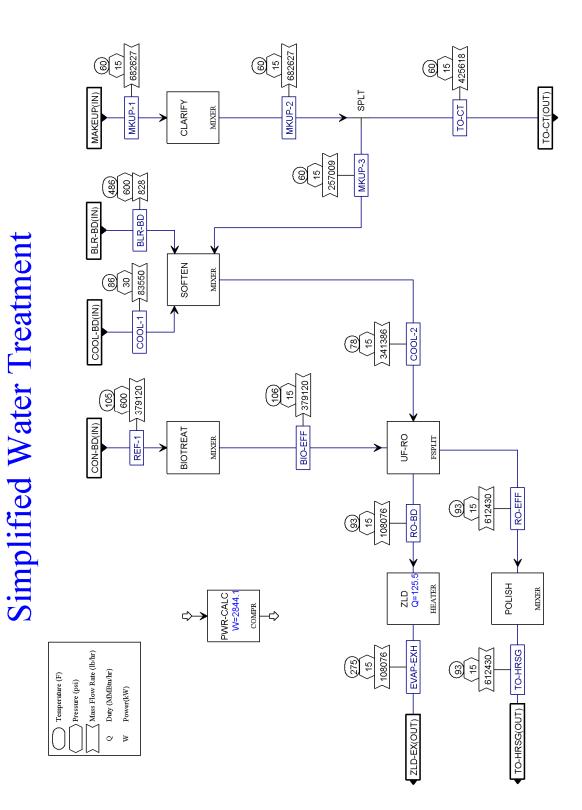
	MAKE-UP	NAT-GAS
Temperature F Pressure psi Vapor Frac Mole Flow Ibmol/hr Mass Flow Ib/hr Volume Flow cuft/hr Enthalpy MMBtu/hr	92.4 14.7 33995.058 612430.499 9864.277 -4170.543 MAKE-UP	7 314.7 0 1 3 267.084 5 4589 4569.499
Mass Flow lb/hr H2O O2 N2 AR NO NO2 NH3 H2 CO CO2 H2S SO2 METHANE METHANE ETHYLENE C S		5 0 0 0 0.854 0 89.014 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29.379 0 0.046 0 0 0 0 0 0.046 0 0 0
Mass Frac H2O O2 N2 AR NO NO2 NH3 H2 CO CO2 H2S SO2 METHANE METHANE ETHYLENE C S		NAT-GAS

NHCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN	Revision:	1	
PRODUCTION ANALYSIS	Effective Date [.]	05/15/10	Page [.] 97 of 151

Mala Flow Ibmal/br	MAKE-UP	NAT-GAS
Mole Flow Ibmol/hr H2O O2 N2 AR NO NO2 NH3 H2 CO CO2 H2S SO2 METHANE METHANE ETHANE ETHYLENE C		3 0 0 0.027 0 3.178 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.668 0 0.001 0 249.904 0 0 10.013 0 0 0
S	(MAKE-UP) 0 NAT-GAS
Mole Frac H2O O2 N2 AR NO NO2 NH3 H2 CO CO2 H2S SO2 METHANE METHANE ETHYLENE C S S MWMX		1 0 0 0.012 0 0.012 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.002 0 0.002 0 0.936 0 0.037 0 0 0 0 0 0 0 0 0 0

NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 98 of 151

NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 99 of 151


	AIR-1	AIR-2	AIR-3	BLOWDOWN	CWR-1
Temperature F	70	104	104.1	86	122
Pressure psi	14.7	14.67	14.7		25
Vapor Frac	1	0.996	0.996		0
Mole Flow lbmol/hr	270488.931	289771.942			644126.149
Mass Flow lb/hr	7.81E+06	8.15E+06	8.15E+06	83549.613	1.16E+07
Volume Flow cuft/hr	1.05E+08	1.19E+08			188117.123
Enthalpy MMBtu/hr	-305.429	-2315.929	-2315.299	-568.888	-78680.561
Dew Temp F	43.078	105.801	105.854	250.315	240.052
Mole Flow lbmol/hr					
H2O	2678.108	22438.315	22438.315	4632.186	644126.149
02	56213.492	56099.578	56099.578		0
N2		208616.832			0
AR	2517.422	2512.01	2512.01		0
NO	0	0	0		0
NO2	0	0	0		0
NH3	0	0	0		0
H2	26.781	26.777	26.777	0	0
CO	0	0	0		0
CO2	80.343	78.43	78.43		0
H2S	0	0	0		0
SO2	0	0	0		0
METHANE	0	0	0		0
ETHANE	0	0	0		0
ETHYLENE	0	0	0 0		0
METHANOL	0	0	0		0 0
C S	0	0	0		0
Mole Frac	U	U	U	U	U
H2O	0.01	0.077	0.077	0.999	1
02	0.208	0.194	0.194		0
N2	0.773	0.72	0.72		0
AR	0.009	0.009	0.009		0
NO	0	0	0		0
NO2	0	0	0		0
NH3	0	0	0		0
H2	0	0	0	0	0
СО	0	0	0	0	0
CO2	0	0	0	0	0
H2S	0	0	0	0	0
S02	0	0	0	0	0
METHANE	0	0	0	0	0
ETHANE	0	0	0	0	0
ETHYLENE	0	0	0	0	0
METHANOL	0	0	0	0	0
С	0	0	0		0
S	0	0	0	0	0
RELHUMID	38.956	99.924	99.924		

NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 100 of 151

	CWR-2	CWR-3	CWS-1	CWS-2	CWS-3
Temperature F	122	122	104	86	86
Pressure psi	14.7	29.39	14.67	14.67	14.7
Vapor Frac	0	0	0	0	0
Mole Flow Ibmol/hr				648468.526	
Mass Flow lb/hr	1.16E+07	1.16E+07	1.13E+07	1.17E+07	1.17E+07
Volume Flow cuft/hr	-78680.561	188116.532		187929.903	
Enthalpy MMBtu/hr Dew Temp F	211.983	-78679.966 249.146	-76437.388 211.973	-79581.678 211.904	-79581.678 211.983
Mole Flow Ibmol/hr	211.905	249.140	211.575	211.504	211.905
H2O	644126,149	644126.149	624365.942	647991.33	647991.33
02	0	0	113.914	113.914	113.914
N2	0	0	355.953	355.953	355.953
AR	0	0	5.412	5.412	5.412
NO	0	0	0	0	0
NO2	0	0	0	0	0
NH3	0	0	0	0	0
H2	0	0	0.004	0.004	0.004
CO	0	0	0	0	0
CO2	0	0	1.913	1.913	1.913
H2S SO2	0 0	0	0	0 0	0
METHANE	0	0	0	0	0 0
ETHANE	0	0	0	0	0
ETHYLENE	0	0	0	0	Ő
METHANOL	0	0	0	0	0
С	0	0	0	0	0
S	0	0	0	0	0
Mole Frac					
H2O	1	1	0.999	0.999	0.999
02	0	0	0	0	0
N2	0	0	0.001	0.001	0.001
AR	0	0	0	0	0
NO NO2	0	0	0	0 0	0 0
NH3	0	0	0	0	0
H2	0	0	0	0	0
CO	0	0	0	0	0
CO2	0	0	0	0	0
H2S	0	0	0	0	0
SO2	0	0	0	0	0
METHANE	0	0	0	0	0
ETHANE	0	0	0	0	0
ETHYLENE	0	0	0	0	0
METHANOL	0	0	0	0	0
C S	0	0	0	0 0	0 0
S RELHUMID	0	0	0	U	0

NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 101 of 151

	CWS-4	CWS-5	CWS-6	MU-H2O
Temperature F	86	86	86	60
Pressure psi	30	30	30	14.7
Vapor Frac	0	0	0	0
Mole Flow Ibmol/hr	648468.526	643832.929	644126.149	23625.388
Mass Flow lb/hr	1.17E+07	1.16E+07		425617.984
Volume Flow cuft/hr	187921.419		186662.662	
Enthalpy MMBtu/hr		-79012.171		
Dew Temp F	250.315	250.315	250.316	211.983
Mole Flow lbmol/hr	647004 00	640050 444	<i></i>	
H2O			644126.149	23625.388
02	113.914	113.1	0	0
N2	355.953	353.408	0	0
AR NO	5.412 0	5.373 0	0	0 0
		0		
NO2 NH3	0 0	0	0 0	0 0
H2	0.004	0.004	0	0
CO	0.004	0.004	0	0
CO2	1.913	1.899	0	0
H2S	1.915	1.099	0	0
S02	0	0	0	0
METHANE	0	0	0	0
ETHANE	0	0	0	0
ETHYLENE	0	0	0	0
METHANOL	0	0	0	0
С	0	0	0	0
S	0	0	0	0
Mole Frac				
H2O	0.999	0.999	1	1
02	0	0	0	0
N2	0.001	0.001	0	0
AR	0	0	0	0
NO	0	0	0	0
NO2	0	0	0	0
NH3	0	0	0	0
H2	0	0	0	0
CO	0	0	0	0
CO2	0	0	0	0
H2S	0 0	0	0	0
SO2	-	0	0	0
METHANE ETHANE	0 0	0	0	0 0
ETHYLENE				
METHANOL	0 0	0 0	0 0	0 0
C	0	0	0	0
S	0	0	0	0
RELHUMID	0	0	0	0

NUCLEAD INTEGDATED HUDDOGEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 103 of 151

	BIO-EFF	BLR-BD	COOL-1	COOL-2	EVAP-EXH
Temperature F Pressure psi Vapor Frac	106.1 14.7 0	486.3 600 1	86 30 0	78.1 14.7 0	275 14.7 1
Mole Flow Ibmol/hr Mass Flow Ib/hr Volume Flow cuft/hr Enthalpy MMBtu/hr	21042.898 379120.155	45.948	4635.597	18947.709 341386.309 7823.069	5998.591 108075.97 3.20E+06 -614.532
	BIO-EFF	BLR-BD		COOL-2	EVAP-EXH
Mass Flow lb/hr H2O O2	379022.477 0	827.772 0	83450.126 26.058	341286.822 26.058	108046.395 3.909
N2 AR	0.002 0	0	71.283 1.545	71.283	10.693 0.232
NO NO2	0	0	0	0	0
NO2 N2O4 NH3	0 44.763	0	0	0	0 6.714
HNO3 NH4NO3	0 0	0	0	0	0.714
H2 CO	0.253 0.002	0	0	0	0.038 0
CO2 H2S	52.569 0	0	0.602 0	0.602 0	7.976 0
SO2 METHANE	0 0 0.089	0	0	0	0 0.013
METHANOL ETHANE	0.089	0	0	0	0.015
ETHYLENE C	0	0	0	0	0
S UREA	0	0	0	0	0
CARB ZNO	0	0	0	0	0
ZNS C2H6S	0	0	0	0	0
C4H10S PROPANE	0	0	0	0	0
BUTANE PENTANE	0	0	0	0	0
HEXANE	0 BIO-EFF	0 BLR-BD	0	0 COOL-2	0 EVAP-EXH
Mass Frac H2O	1	1	0.999	1	
O2 N2	0	0	0.999 0 0.001	0	1 0 0
AR NO	0	0	0.001 0 0	0	0 0

NUCLEAR-INTEGRATED HYDROGEN PRODUCTION ANALYSIS			dentifier:		TEV-693	
		ľ	Revision: Effective Da	1 .te: 05/15/1	0 Pag	e: 104 of 151
NO2	0	0	0	0	0	
N2O4	0	0	0	0	0	
NH3	0	0	0	0	0	
HNO3	0	0	0	0	0	
NH4NO3	0	0	0	0	0	
H2	0	0	0	0	0	
CO CO2	0 0	0 0	0 0	0 0	0 0	
H2S	0	0	0	0	0	
S02	0	0	0	0	0	
METHANE	0 0	0	0	0	0	
METHANOL	0	Ũ	0	0	0	
ETHANE	0	0	0	0	0	
ETHYLENE	0	0	0	0	0	
С	0	0	0	0	0	
S	0	0	0	0	0	
UREA	0	0	0	0	0	
CARB	0	0	0	0	0	
ZNO	0	0	0	0	0	
ZNS	0	0	0	0	0	
C2H6S	0 0	0	0	0	0	
C4H10S PROPANE	0	0 0	0 0	0 0	0 0	
BUTANE	0	0	0	0	0	
PENTANE	0	0	0	0	0	
HEXANE	ů 0	0 0	Ő	0	0	
	BIO-EFF B	LR-BD	COOL-1	COOL-2	EVAP-EXH	
Mole Flow Ibmol/hr						
H2O	21038.945	45.948	4632.186	18944.297	5997.486	
02	0	0	0.814	0.814	0.122	
N2	0	0	2.545	2.545	0.382	
AR	0	0	0.039	0.039	0.006	
NO	0	0	0	0	0	
NO2	0	0	0	0	0	
N2O4	0	0	0	0	0	
NH3 HNO3	2.628 0	0 0	0 0	0 0	0.394 0	
NH4NO3	0	0	0	0	0	
H2	0.125	0	0 0	0	0.019	
CO	0	0	0	0	0	
CO2	1.194	0	0.014	0.014	0.181	
H2S	0	0	0	0	0	
SO2	0	0	0	0	0	
METHANE	0.006	0	0	0	0.001	
METHANOL	0	0	0	0	0	
ETHANE	0	0	0	0	0	
ETHYLENE	0	0	0	0	0	
C	0	0	0	0	0	
S	0	0	0	0	0	

NUCLEAR-INTEGRATED HYDROGEN PRODUCTION ANALYSIS	Identifier:	TEV-693	
	Revision:	1	
	Effective Date:	05/15/10	Page: 105 of 151

UREA CARB ZNO ZNS C2H6S C4H10S PROPANE BUTANE PENTANE HEXANE	C C C C C C C C C C C C C C C C C C C		0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Mole Frac H2O O2 N2 AR NO NO2 N2O4 NH3 HNO3 NH4NO3 H2 CO CO2 H2S SO2 METHANE METHANE ETHYLENE C S			0.001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
UREA CARB ZNO ZNS C2H6S C4H10S PROPANE BUTANE PENTANE HEXANE			0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0
MWMX	18.017	-	18.023	18.017	18.017

NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 106 of 151

	MKUP-1	MKUP-2	MKUP-3	REF-1	RO-BD
Temperature F Pressure psi Vapor Frac	60 14.7 0	14.7	60 14.7 0	104.6 600 0	92.8 14.7 0
Mole Flow Ibmol/hr Mass Flow Ib/hr Volume Flow cuft/hr Enthalpy MMBtu/hr	37891.551	37891.551 682626.908	14266.163 257008.925	21042.898 379120.155 7234.099 -2590.846 REF-1	5998.591 108075.97 2343.661 -740.072 RO-BD
Mass Flow lb/hr H2O	692626 009	697676 009	257008.925	270022 477	108046.395
02	002020.908	002020.908	257008.925	0	3.909
N2	0	0	0	0.002	10.693
AR	0	0	0	0	0.232
NO	0	0	0	0	0
NO2	0	0	0	0	0
N2O4	0	0	0	0	0
NH3	0	0	0	44.763	6.714
HNO3	0	0	0	0	0
NH4NO3	0	0	0	0	0
H2	0	0	0	0.253	0.038
CO	0	0	0	0.002	0
CO2	0 0	0 0	0	52.569	7.976
H2S SO2	0	0	0 0	0	0 0
METHANE	0	0	0	0.089	0.013
METHANOL	0	0	0	0.089	0.015
ETHANE	0	0	0	0	0 0
ETHYLENE	0	0	0	0	0
C	0	0	0	0	0
S	0	0	0	0	0
UREA	0	0	0	0	0
CARB	0	0	0	0	0
ZNO	0	0	0	0	0
ZNS	0	0	0	0	0
C2H6S	0	0	0	0	0
C4H10S	0	0	0	0	0
PROPANE	0	0	0	0	0
BUTANE	0	0	0	0	0
PENTANE	0	0	0	0	0
HEXANE	0	0	0	0	0
Mass Frac	MKUP-1	MKUP-2	MKUP-3	REF-1	RO-BD
H2O	1	1	1	1	1
02	0	0	0	0	0
N2	0	0	0	0	0
AR	0	0	0	0	0
NO	0	0	0	0	0

Idaho National Laboratory					
NUCLEAR-INTEGRATED HYDROGEN PRODUCTION ANALYSIS		Identif	ier:	TEV-693	
		Revisi	on:	1	
		Effecti	ve Date:	05/15/10	Page: 107 of 151
NO2	0	0	0	0	0
N2O4	0	0	0		0
NH3	0	0	0		0
HNO3	0	0	0	0	0
NH4NO3	0	0	0	0	0
H2	0	0	0	0	0
CO	0	0	0	0	0
CO2	0	0	0	0	0
H2S	0	0	0	0	0
SO2	0	0	0	0	0
METHANE	0	0	0	0	0
METHANOL	0	0	0	0	0
ETHANE	0	0	0		0
ETHYLENE	0	0	0		0
C	0	0	0		0
S	0	0	0		0
UREA	0	0	0		0
CARB	0	0	0		0
ZNO	0	0	0		0
ZNS	0	0	0		0
C2H6S	0	0	0		0
C4H10S	0	0	0		0
PROPANE BUTANE	0 0	0 0	0 0		0 0
PENTANE	0	0	0		0
HEXANE	0	0	0		0
HEXANE	MKUP-1 MKUP-	-	(UP-3	-	RO-BD
Mole Flow lbmol/hr		2 10			
H2O	37891.551 3789	91.551	14266.163	21038.945	5997.486
02	0	0	0		0.122
N2	0	0	0		0.382
AR	0	0	0	0	0.006
NO	0	0	0	0	0
NO2	0	0	0	0	0
N2O4	0	0	0		0
NH3	0	0	0		0.394
HNO3	0	0	0		0
NH4NO3	0	0	0		0
H2	0	0	0		0.019
CO	0	0	0		0
CO2	0	0	0		0.181
H2S	0	0	0		0
SO2	0	0	0		0
METHANE	0	0	0		0.001
METHANOL	0 0	0	0		0
ETHANE ETHYLENE	0	0 0	0 0		0 0
C	0	0	0		0
S	0	0	0		0
J	U	0	0	0	v

NUCLEAR_INTEGRATED HVDROGEN	Identifier:	TEV-693	
	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 108 of 151

UREA CARB ZNO ZNS C2H6S C4H10S PROPANE BUTANE PENTANE HEXANE	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Mole Frac				_	_
H2O	1	1	1	1	1
O2 N2	0	0 0	0	0 0	0 0
AR	0	0	0 0	0	0
NO	0	0	0	0	0
NO2	0	0	0	0	0
N2O4	0	0	0	0	0
NH3	0	0	0	0	0
HNO3	0	0	0	0	0
NH4NO3	0	0	0	0	0
H2	0	0	0	0	0
CO	0	0	0	0	0
CO2	0	0	0	0	0
H2S	0	0	0	0	0
SO2	0	0	0	0	0
METHANE METHANOL	0 0	0 0	0 0	0 0	0 0
ETHANOL	0	0	0	0	0
ETHYLENE	0	0	0	0	0
C	0	0	0	0	0
S	0	0	0	0	0
UREA	0	0	0	0	0
CARB	0	0	0	0	0
ZNO	0	0	0	0	0
ZNS	0	0	0	0	0
C2H6S	0	0	0	0	0
C4H10S	0	0	0	0	0
PROPANE	0	0	0	0	0
BUTANE	0	0	0	0	0
PENTANE	0	0	0	0	0
	0 18.015	0 19.015	0 19 01 F	0 19.017	0
MWMX	10.015	18.015	18.015	18.017	18.017

NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 109 of 151

	RO-EFF	то-ст	TO-HRSG	ZZ-PWR-1	ZZ-PWR-2
Temperature F Pressure psi Vapor Frac	92.8 14.7 0	60 14.7 0	14.7	14.7	360.7 50 1
Mole Flow Ibmol/hr Mass Flow Ib/hr Volume Flow cuft/hr Enthalpy MMBtu/hr	33992.016	23625.388 425617.984 7993.456	33992.016 612430.495 13280.745	4619.261 129401.566 1.75E+06	4619.261
	RO-EFF	TO-CT	TO-HRSG	ZZ-PWR-1	ZZ-PWR-2
Mass Flow lb/hr H2O	612262.904	425617.984	612262.904	0	0
02	22.149				0
N2	60.592	0	60.592	129401.566	129401.566
AR	1.314	0			0
NO	0	0			0
NO2	0	0		0	0
N2O4	0	0		0	0
NH3	38.048	0 0	38.048	0	0
HNO3 NH4NO3	0 0	0	0 0	0	0 0
H2	0.215	0		0	0
CO	0.002	0	0.002		0
CO2	45.195	0	45.195		0
H2S	0	0	0	0	0
S02	0	0		0	0
METHANE	0.076	0	0.076	0	0
METHANOL	0	0	0	0	0
ETHANE	0	0	0	0	0
ETHYLENE	0	0	0	0	0
С	0	0	0	0	0
S	0	0	0	0	0
UREA	0	0	0	0	0
CARB	0	0		0	0
ZNO ZNS	0 0	0 0	0	0	0
C2H6S	0	0	0 0	0	0 0
C4H10S	0	0		0	0
PROPANE	0	0	0	0	0
BUTANE	0	0	0	0	0
PENTANE	0	0	0	0	0
HEXANE	0	0	0	0	0
	RO-EFF	TO-CT	TO-HRSG	ZZ-PWR-1	ZZ-PWR-2
Mass Frac					
H2O	1	1			0
02	0	0			0
N2	0	0	0	1	1
AR	0	0	0	0	0
NO	0	0	0	0	0

Idaho	National	Lab	oratory

Idaho National Laboratory						
		Iden	tifier:	TEV-693		
NUCLEAR-INTEGRAT		JEN Rev	ision:	1		
PRODUCTION A	NALYSIS	Effe	ctive Date:	05/15/10	Page: 110 of 15	1
						_
NO2	0	0	0	0	0	
N2O4	0	0	0		0	
NH3	0	0	0	0	0	
HNO3	0	0	0	0	0	
NH4NO3	0	0	0	0	0	
H2	Ő	0	0	0	0 0	
CO	0	0	0	0	0	
CO2	0	0	0	0	0	
H2S					0	
	0	0	0	0		
SO2	0	0	0	0	0	
METHANE	0	0	0	0	0	
METHANOL	0	0	0	0	0	
ETHANE	0	0	0	0	0	
ETHYLENE	0	0	0	0	0	
C	0	0	0	0	0	
S	0	0	0	0	0	
UREA	0	0	0	0	0	
CARB	0	0	0	0	0	
ZNO	0	0	0	0	0	
ZNS	0	0	0	0	0	
C2H6S	0	0	0	0	0	
C4H10S	0	0	0	0	0	
PROPANE	0	0	0	0	0	
BUTANE	0	0	0	0	0	
PENTANE	0	0	0	0	0	
HEXANE	0	0	0	0	0	
	RO-EFF	то-ст	TO-HRSG	ZZ-PWR-1	ZZ-PWR-2	
Mole Flow lbmol/hr						
H2O	33985.756	23625.388	33985.756	0	0	
02	0.692	0	0.692		0	
N2	2.163	0	2.163		4619.261	
AR	0.033	0	0.033		0	
NO	0.055	0	0.055		0	
NO2	0	0	0		0	
N2O4	0	0	0		0	
NH3	2.234	0	2.234		0	
HNO3					0	
NH4NO3	0	0	0			
	0	0	0		0	
H2	0.106	0	0.106		0	
CO	0	0	0		0	
CO2	1.027	0	1.027		0	
H2S	0	0	0		0	
SO2	0	0	0		0	
METHANE	0.005	0	0.005		0	
METHANOL	0	0	0		0	
ETHANE	0	0	0		0	
ETHYLENE	0	0	0		0	
С	0	0	0	0	0	
S	0	0	0	0	0	

NILCI EAD INTECDATED HUDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN PRODUCTION ANALYSIS	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 111 of 151

UREA CARB ZNO ZNS C2H6S C4H10S PROPANE BUTANE PENTANE HEXANE	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 2Z-PWR-1	0 0 0 0 0 0 0 0 0 2Z-PWR-2
Mole Frac H2O O2 N2 AR NO NO2 N2O4 NH3 HNO3 NH4NO3 H2 CO CO2 H2S SO2 METHANE METHANE METHANE ETHYLENE C S UREA CARB ZNO	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ZNS C2H6S C4H10S PROPANE BUTANE PENTANE HEXANE MWMX	0 0 0 0 0 18.017	0 0 0 0 0 0 18.015	0 0 0 0 0 0 18.017	0 0 0 0 0 0 28.013	0 0 0 0 0 0 28.013

NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693		
NUCLEAR-INTEGRATED HYDROGEN PRODUCTION ANALYSIS	Revision:	1		
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 112 of 151	

Appendix B High Temperature Electrolysis Results

The model of the high-temperature steam electrolysis process and results in Appendix B were developed using HYSYS.Plant version 2.2.2 (Build 3806) from Hyprotech Ltd. on a desktop computer running Microsoft Windows XP Professional Version 2002 Service Pack 3.

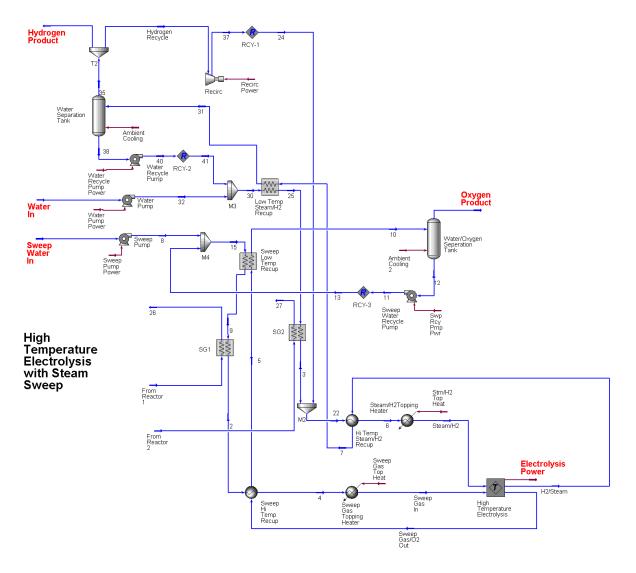


Figure B-1. Flow diagram of HTSE process.

Identifier:	TEV-693	
Revision:	1	
Effective Date:	05/15/10	Page: 113 of 151

1				Case Name: 0	C:\Documents and Setti	ngs\mgq\Desktop\NGNI	P\FY 09 Report\600 M\
2 3	HYPROTEC	INL Calgary, /	Alberta	Unit Set:	NGNP1		
4 5		CANADA		Date/Time:	Thu Oct 01 11:50:20 20	009	
6 7 8	Woi	kbook:	Case (Main)			
9 10				Streams			
10	Name		Steam/H2	Sweep Gas In	H2/Steam	Sweep Gas/O2 Out	15
12	Vapour Fraction		1.0000	1.0000	1.0000	1.0000	0.0000
13	Temperature	(C)	800.00 *	800.00	800.00	800.00	27.029
14	Pressure	(MPa)	5.0000 *	5.0000	5.0000	5.0000	5.2000
15	Molar Flow	(kgmole/h)	5169.3	1551.2	5169.3	3101.9	1551.2
16	Mass Flow	(kg/s)	23.571 *	7.7631	9.7869	21.547	7.7631 *
17	Liquid Volume Flow	(m3/h)	98.90	28.00	132.4	71.62	28.00
18	Heat Flow	(kW)	-2.712e+005	-9.151e+004	-6.830e+004	-8.053e+004	-1.229e+005
19	Molar Enthalpy	(kJ/kgmole)	-1.888e+005	-2.124e+005	-4.757e+004	-9.346e+004	-2.851e+005
20	Name		22	Sweep Water In	24	25	Water In
21	Vapour Fraction		1.0000	0.0000	1.0000	0.1491	0.0000
22	Temperature	(C)	603.79	26.850 *	30.717 *	267.01	26.850 *
23	Pressure	(MPa)	5.1000	0.10132 *	5.1000 *	5.1500	0.10132 *
24	Molar Flow	(kgmole/h)	5169.3	14.749	517.29 *	4652.1	3104.1
25 26	Mass Flow	(kg/s)	23.571	7.3805e-002	0.29162	23.279	15.534
	Liquid Volume Flow	(m3/h)	98.90 -2.828e+005	0.2662	14.92	83.98 -3.365e+005	56.03
27 28	Heat Flow	(kW)	-2.828e+005 -1.969e+005		-5.776 -40.20		-2.460e+005
20 29	Molar Enthalpy Name	(kJ/kgmole)	32	-2.853e+005 41	-40.20	-2.604e+005 31	-2.853e+005 35
29 30	Vapour Fraction		0.0000	0.0000	0.0000	0.8062	1.0000
31	Temperature	(C)	27.299	26.026 *	26.876	157.63	26.000
32	Pressure	(O) (MPa)	5.2000	5.2000 *	5.2000	4.9000	4.9000
33	Molar Flow	(kgmole/h)	3104.1	1548.0 *	4652.1	5169.3	3621.5
34	Mass Flow	(kg/s)	15.534	7.7459	23.279	9.7869	2.0416
35	Liquid Volume Flow	(m3/h)	56.03	27.94	83.98	132.4	104.5
36	Heat Flow	(HU)	-2.459e+005	-1.226e+005	-3.685e+005	-1.088e+005	-177.1
37	Molar Enthalpy	(kJ/kgmole)	-2.851e+005	-2.852e+005	-2.852e+005	-7.580e+004	-176.0
38	Name	(38	37	Hydrogen Product	Hydrogen Recycle	40
39	Vapour Fraction		0.0000	1.0000	1.0000	1.0000	0.0000
40	Temperature	(C)	26.000 *	30.717	26.000	26.000	26.026
41	Pressure	(MPa)	4.9000	5.1000	4.9000	4.9000	5.2000
42	Molar Flow	(kgmole/h)	1547.8	517.29	3104.2	517.29 *	1547.8
43	Mass Flow	(kg/s)	7.7453	0.29162	1.7500	0.29162	7.7453
44	Liquid Volume Flow	(m3/h)	27.94	14.92	89.55	14.92	27.94
45	Heat Flow	(kW)	-1.226e+005	-5.776	-151.8	-25.30	-1.226e+005
46	Molar Enthalpy	(kJ/kgmole)	-2.852e+005	-40.20	-176.0	-176.0	-2.852e+005
47	Name		From Reactor 1	From Reactor 2	26	27	2
48	Vapour Fraction		1.0000	1.0000	1.0000	1.0000	1.0000
49	Temperature	(C)	700.00 *	700.00 *	353.00 *	318.00 *	650.00 *
50	Pressure	(MPa)	7.0000 *	7.0000 *	6.9300	6.9300	5.1000
							1551.2
	Molar Flow	(kgmole/h)	3659.0	24376	3659.0	24376	7 700 1
51 52	Mass Flow	(kg/s)	4.0685	27.105	4.0685	27.105	7.7631
52 53	Mass Flow Liquid Volume Flow	(kg/s) (m3/h)	4.0685 118.1	27.105 786.5	4.0685 118.1	27.105 786.5	28.00
52 53 54	Mass Flow Liquid Volume Flow Heat Flow	(kg/s) (m3/h) (kW)	4.0685 118.1 1.433e+004	27.105 786.5 9.548e+004	4.0685 118.1 7004	27.105 786.5 4.174e+004	28.00 -9.428e+004
52 53 54 55	Mass Flow Liquid Volume Flow Heat Flow Molar Enthalpy	(kg/s) (m3/h)	4.0685 118.1 1.433e+004 1.410e+004	27.105 786.5 9.548e+004 1.410e+004	4.0685 118.1 7004 6891	27.105 786.5 4.174e+004 6164	28.00 -9.428e+004 -2.188e+005
52 53 54 55 56	Mass Flow Liquid Volume Flow Heat Flow Molar Enthalpy Name	(kg/s) (m3/h) (kW)	4.0685 118.1 1.433e+004 1.410e+004 4	27.105 786.5 9.548e+004 1.410e+004 5	4.0685 118.1 7004 6891 3	27.105 786.5 4.174e+004 6164 9	28.00 -9.428e+004 -2.188e+005 10
52 53 54 55 56 57	Mass Flow Liquid Volume Flow Heat Flow Molar Enthalpy Name Vapour Fraction	(kg/s) (m3/h) (kW) (kJ/kgmole)	4.0685 118.1 1.433e+004 1.410e+004 4 1.0000	27.105 786.5 9.548e+004 1.410e+004 5 1.0000	4.0685 118.1 7004 6891 3 1.0000	27.105 786.5 4.174e+004 6164 9 0.9732	28.00 -9.428e+004 -2.188e+005 10 0.8442
52 53 54 55 56 57 58	Mass Flow Liquid Volume Flow Heat Flow Molar Enthalpy Name Vapour Fraction Temperature	(kg/s) (m3/h) (kW) (kJ/kgmole) (C)	4.0685 118.1 1.433e+004 1.410e+004 4 1.0000 780.00	27.105 786.5 9.548e+004 1.410e+004 5 1.0000 728.55	4.0685 118.1 7004 6891 3 1.0000 650.00 *	27.105 786.5 4.174e+004 6164 9 0.9732 267.01	28.00 -9.428e+004 -2.188e+005 10 0.8442 207.14
52 53 54 55 56 57 58 59	Mass Flow Liquid Volume Flow Heat Flow Molar Enthalpy Name Vapour Fraction Temperature Pressure	(kg/s) (m3/h) (kW) (kJ/kgmole) (C) (MPa)	4.0685 118.1 1.433e+004 1.410e+004 4 1.0000 780.00 5.0500	27.105 786.5 9.548e+004 1.410e+004 5 1.0000 728.55 4.9500	4.0685 118.1 7004 6891 3 1.0000 650.00 ° 5.1000	27.105 786.5 4.174e+004 9 0.9732 267.01 5.1500	28.00 -9.428e+004 -2.188e+005 10 0.8442 207.14 4.9000
52 53 54 55 56 57 58 59 60	Mass Flow Liquid Volume Flow Heat Flow Molar Enthalpy Name Vapour Fraction Temperature Pressure Molar Flow	(kg/s) (m3/h) (kW) (kJ/kgmole) (C) (MPa) (kgmole/h)	4.0685 118.1 1.433e+004 1.410e+004 4 1.0000 780.00 5.0500 1551.2	27.105 786.5 9.548e+004 1.410e+004 5 1.0000 728.55	4.0685 118.1 7004 891 3 1.0000 650.00 ' 5.1000 4652.1	27.105 786.5 4.174e+004 6164 9 0.9732 267.01	28.00 -9.428e+004 -2.188e+005 10 0.8442 207.14 4.9000 3101.9
52 53 54 55 56 57 58 59 60 61	Mass Flow Liquid Volume Flow Heat Flow Molar Enthalpy Name Vapour Fraction Temperature Pressure Molar Flow Mass Flow	(kg/s) (m3/h) (kW) (kJ/kgmole) (C) (MPa) (kgmole/h) (kg/s)	4.0685 118.1 1.433e+004 1.410e+004 4 1.0000 780.00 5.0500 1551.2 7.7631	27.105 786.5 9.548e+004 1.410e+004 5 1.0000 728.55 4.9500 3101.9 21.547	4.0685 118.1 7004 6891 3 1.0000 650.00 ° 5.1000 4652.1 23.279	27.105 786.5 4.174e+004 6164 9 0.9732 267.01 5.1500 1551.2 7.7631	28.00 -9.428e+004 -2.188e+005 10 0.8442 207.14 4.9000 3101.9 21.547
52 53	Mass Flow Liquid Volume Flow Heat Flow Molar Enthalpy Name Vapour Fraction Temperature Pressure Molar Flow	(kg/s) (m3/h) (kW) (kJ/kgmole) (C) (MPa) (kgmole/h)	4.0685 118.1 1.433e+004 1.410e+004 4 1.0000 780.00 5.0500 1551.2	27.105 786.5 9.548e+004 1.410e+004 5 1.0000 728.55 4.9500 3101.9	4.0685 118.1 7004 891 3 1.0000 650.00 ' 5.1000 4652.1	27.105 786.5 4.174e+004 6164 9 0.9732 267.01 5.1500 1551.2	28.00 -9.428e+004 -2.188e+005 10 0.8442 207.14 4.9000 3101.9
52 53 54 55 56 57 58 59 60 61 62	Mass Flow Liquid Volume Flow Heat Flow Molar Enthalpy Name Vapour Fraction Temperature Pressure Molar Flow Mass Flow Liquid Volume Flow	(kg/s) (m3/h) (kW) (kJ/kgmole) (kgmole/h) (kg/s) (m3/h)	4.0685 118.1 1.433e+004 1.410e+004 4 1.0000 780.00 5.0500 1551.2 7.7631 28.00	27.105 786.5 9.548e+004 1.410e+004 5 1.0000 728.55 4.9500 3101.9 21.547 71.62	4.0685 118.1 7004 6891 3 1.0000 650.00 ° 5.1000 4652.1 23.279 83.98	27.105 786.5 4.174e+004 9 0.9732 267.01 5.1500 1551.2 7.7631 28.00	28.00 -9.428e+004 -2.188e+005 10 0.8442 207.14 -4.9000 3101.9 21.547 71.62
52 53 54 55 56 57 58 60 61 62 63	Mass Flow Liquid Volume Flow Heat Flow Molar Enthalpy Name Vapour Fraction Temperature Pressure Molar Flow Mass Flow Liquid Volume Flow Heat Flow	(kg/s) (m3/h) (kW) (kJ/kgmole) (kgmole/h) (kg/s) (m3/h) (kW)	4.0685 118.1 1.433e+004 1.410e+004 4 1.0000 780.00 5.0500 1551.2 7.7631 28.00 -9.189e+004	27.105 786.5 9.548e+004 1.410e+004 5 1.0000 728.55 4.9500 3101.9 21.547 71.62 -8.292e+004	4.0685 118.1 7004 6891 3 1.0000 650.00 * 5.1000 4652.1 23.279 83.98 -2.828e+005	27.105 786.5 4.174e+004 9 0.9732 267.01 5.1500 1551.2 7.7631 28.00 -1.016e+005	28.00 -9.428e+004 -2.188e+005 10 0.8442 207.14 4.9000 3101.9 21.547 71.62 -1.042e+005

Appendix B

Identifier:	TEV-693	
Revision:	1	
Effective Date:	05/15/10	Page: 114 of 151

1	2		Case Name:		nac/maa/Dockton/MGM	P\FY 09 Report\600 MV
2	INL				ngs ingqibeskiop i vori	
3 4	Calgary, Calgary, CANADA	Alberta	Unit Set:	NGNP1		
4 5	CARADA		Date/Time:	Thu Oct 01 11:50:20 20	009	
6						
7	Workbook:	Case (Main	i) (continue	ed)		
8 9						
10			Streams (continu	ied)		
11	Name	Oxygen Product	12	6	7	8
12	Vapour Fraction	1.0000	0.0000	1.0000	1.0000	0.0000
13 14	Temperature (C) Pressure (MPa)	27.000 * 4.9000	27.000 4.9000	748.90 5.0500	623.79 4.9500	27.299 5.2000
15	Molar Flow (kgmole/h)	1552.4	1549.5	5169.3	5169.3	14.749
16	Mass Flow (kg/s)	13.793	7.7547	23.571	9.7869	7.3805e-002
17	Liquid Volume Flow (m3/h)	43.65	27.97	98.90	132.4	0.2662
18	Heat Flow (KW)	-279.2	-1.227e+005	-2.742e+005	-7.687e+004	-1168
19	Molar Enthalpy (kJ/kgmole)	-647.4	-2.851e+005	-1.910e+005	-5.354e+004	-2.851e+005
20	Name	11	13	Process Heat 1	Electrolysis Power	Water Pump Power
21	Vapour Fraction	0.0000	0.0000			
22	Temperature (C)	27.026	27.026 *			
23	Pressure (MPa)	5.2000 *	5.2000 *			
24 25	Molar Flow (kgmole/h)	1549.5	1536.4 *			
25 26	Mass Flow (kg/s)	7.7547	7.6893			
26 27	Liquid Volume Flow (m3/h) Heat Flow (kW)	27.97 -1.227e+005	27.74 -1.217e+005	 -4.865e-005	 -2.138e+005	 105.0
28	Molar Enthalpy (kJ/kgmole)	-2.851e+005	-2.851e+005	-4.0056-005	-2.13061005	
29	Name	Recirc Power	Ambient Cooling	Water Recycle Pump	Stm/H2 Top Heat	Sweep Gas Top Heat
30	Vapour Fraction					
31	Temperature (C)					
32	Pressure (MPa)					
33	Molar Flow (kgmole/h)					
34	Mass Flow (kg/s)					
35	Liquid Volume Flow (m3/h)					
36	Heat Flow (KW)	19.52	-1.397e+004	3.074	3070	374.8
37	Molar Enthalpy (kJ/kgmole)					
20	Manaa	Courses Domes Domes	Ameliant Ocaline O			
38 30	Name	Sweep Pump Power	Ambient Cooling 2	Swp Rcy Pmp Pwr		
39	Vapour Fraction	Sweep Pump Power	Ambient Cooling 2	Swp Rcy Pmp Pwr		
39 40	Vapour Fraction Temperature (C)	Sweep Pump Power	Ambient Cooling 2	Swp Rcy Pmp Pwr 		
39	Vapour FractionTemperature(C)Pressure(MPa)					
39 40 41	Vapour FractionTemperature(C)Pressure(MPa)					
39 40 41 42 43 44	Vapour Fraction Temperature (C) Pressure (MPa) Molar Flow (kgmole/h)					
39 40 41 42 43	Vapour Fraction Temperature (C) Pressure (MPa) Molar Flow (kgmole/h) Mass Flow (kg/s)					
39 40 41 42 43 44 45 46	Vapour Fraction Temperature (C) Pressure (MPa) Molar Flow (kgmole/h) Mass Flow (kg/s) Liquid Volume Flow (m3/h)					
39 40 41 42 43 44 45 46 47	Vapour Fraction Temperature (C) Pressure (MPa) Molar Flow (kgmole/h) Mass Flow (kg/s) Liquid Volume Flow (m3/h) Heat Flow (kW)	 0.4988				
39 40 41 42 43 44 45 46	Vapour Fraction Temperature (C) Pressure (MPa) Molar Flow (kgmole/h) Mass Flow (kg/s) Liquid Volume Flow (m3/h) Heat Flow (kW) Molar Enthalpy (kJ/kgmole)	 0.4988 	 -1.883e+004 Composition	 3.079 	Sweep Gas/O2 Out	15
 39 40 41 42 43 44 45 46 47 48 	Vapour Fraction Temperature (C) Pressure (MPa) Molar Flow (kgmole/h) Mass Flow (kg/s) Liquid Volume Flow (m3/h) Heat Flow (kW)	 0.4988	 -1.883e+004 		Sweep Gas/O2 Out 0.00000	15 0.00000
 39 40 41 42 43 44 45 46 47 48 49 50 	Vapour Fraction Temperature (C) Pressure (MPa) Molar Flow (kgmole/h) Mass Flow (kg/s) Liquid Volume Flow (m3/h) Heat Flow (kW) Molar Enthalpy (kJ/kgmole)	 0.4988 Steam/H2	 -1.883e+004 Composition Sweep Gas In	 3.079 H2/Steam		
 39 40 41 42 43 44 45 46 47 48 49 50 	Vapour Fraction Temperature (C) Pressure (MPa) Molar Flow (kgmole/h) Mass Flow (kg/s) Liquid Volume Flow (m3/h) Heat Flow (kW) Molar Enthalpy (kJ/kgmole) Name Comp Mole Frac (Hydrogen)	 0.4988 Steam/H2 0.10000	 -1.883e+004 Composition Sweep Gas In 0.00000	 3.079 H2/Steam 0.70000	0.00000 0.50000 0.50000	0.00000
 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 	Vapour Fraction Temperature (C) Pressure (MPa) Molar Flow (kgmole/h) Mass Flow (kg/s) Liquid Volume Flow (m3/h) Heat Flow (kJ/kgmole) Molar Enthalpy (kJ/kgmole) Name Comp Mole Frac (Hydrogen) Comp Mole Frac (H2O) Comp Mole Frac (Oxygen)	 0.4988 Steam/H2 0.10000 0.90000	 -1.883e+004 Composition Sweep Gas In 0.00000 0.99986	H2/Steam 0.70000 0.30000	0.00000	0.00000 0.99986
 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 	Vapour Fraction Temperature (C) Pressure (MPa) Molar Flow (kgmole/h) Mass Flow (kg/s) Liquid Volume Flow (m3/h) Heat Flow (kW) Molar Enthalpy (kJ/kgmole) Name Comp Mole Frac (Hydrogen) Comp Mole Frac (H2O) Comp Mole Frac (Oxygen) Comp Mole Frac (Oxygen) Comp Mole Frac (CO2)	 0.4988 Steam/H2 0.10000 0.90000 0.00000 0.00000 0.00000	 	H2/Steam H2/Steam 0.70000 0.00000 0.00000	0.00000 0.50000 0.50000 0.00000 0.00000	0.00000 0.99986 0.00014 0.00000 0.00000
 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 	Vapour Fraction Temperature (C) Pressure (MPa) Molar Flow (kgmole/h) Mass Flow (kg/s) Liquid Volume Flow (m3/h) Heat Flow (kU/W) Molar Enthalpy (kJ/kgmole) Name Comp Mole Frac (Hydrogen) Comp Mole Frac (H2O) Comp Mole Frac (CXygen) Comp Mole Frac (Oxtrogen) Comp Mole Frac (CO2) Comp Mole Frac (CO2) Comp Mole Frac (Argon)	 0.4988 Steam/H2 0.10000 0.90000 0.00000 0.00000 0.00000		H2/Steam H2/Steam H2/Steam	0.00000 0.50000 0.50000 0.00000 0.00000 0.00000	0.00000 0.99986 0.00014 0.00000 0.00000 0.00000
 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 	Vapour Fraction Temperature (C) Pressure (MPa) Molar Flow (kgmole/h) Mass Flow (kg/s) Liquid Volume Flow (m3/h) Heat Flow (kW) Molar Enthalpy (kJ/kgmole) Name Comp Mole Frac (Hydrogen) Comp Mole Frac (H2O) Comp Mole Frac (H2O) Comp Mole Frac (Nitrogen) Comp Mole Frac (CO2) Comp Mole Frac (CO2) Comp Mole Frac (Argon) Comp Mole Frac (Hzon) Comp Mole Frac (Hzon) Comp Mole Frac (CO2) Comp Mole Frac (CO2)	 0.4988 0.4988 Steam/H2 0.10000 0.90000 0.00000 0.00000 0.00000 0.00000 0.00000	 	H2/Steam H2/Steam H2/Steam	0.00000 0.50000 0.50000 0.00000 0.00000 0.00000 0.00000	0.00000 0.99986 0.00014 0.00000 0.00000 0.00000 0.00000
 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 56 57 	Vapour Fraction Temperature (C) Pressure (MPa) Molar Flow (kgmole/h) Mass Flow (kgmole/h) Mass Flow (kg/s) Liquid Volume Flow (m3/h) Heat Flow (kW) Molar Enthalpy (kJ/kgmole) Name Comp Mole Frac (Hydrogen) Comp Mole Frac (HzO) Comp Mole Frac (Nitrogen) Comp Mole Frac (Nitrogen) Comp Mole Frac (CO2) Comp Mole Frac (CO2) Comp Mole Frac (Helium) Name Name	 0.4988 0.4988 Steam/H2 0.10000 0.90000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 22	 	H2/Steam H2/Steam H2/Steam 0.70000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.50000 0.00000 0.00000 0.00000 0.00000 0.00000 25	0.00000 0.99986 0.00014 0.00000 0.00000 0.00000 0.00000 Water In
 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 57 58 	Vapour Fraction Temperature (C) Pressure (MPa) Molar Flow (kgmole/h) Mass Flow (kgmole/h) Mass Flow (kg/s) Liquid Volume Flow (m3/h) Heat Flow (kW) Molar Enthalpy (kJ/kgmole) Name Comp Mole Frac (Hydrogen) Comp Mole Frac (H2O) Comp Mole Frac (Cozyen) Comp Mole Frac (Nitrogen) Comp Mole Frac (Co2) Comp Mole Frac (Argon) Comp Mole Frac (Helium) Name Comp Mole Frac (Helium)	 0.4988 Steam/H2 0.10000 0.90000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 22 0.10000		H2/Steam H2/Steam H2/Steam 0.70000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.50000 0.00000 0.00000 0.00000 0.00000 25 0.00002	0.00000 0.99986 0.00014 0.00000 0.00000 0.00000 0.00000 Water In 0.00000 *
 39 40 41 42 43 44 45 46 47 48 49 50 51 55 56 57 58 59 	Vapour Fraction Temperature (C) Pressure (MPa) Molar Flow (kgmole/h) Mass Flow (kg/s) Liquid Volume Flow (m3/h) Heat Flow (kVV) Molar Enthalpy (kJ/kgmole) Name Comp Mole Frac (Hydrogen) Comp Mole Frac (Hydrogen) Comp Mole Frac (Nitrogen) Comp Mole Frac (CO2) Comp Mole Frac (CO2) Comp Mole Frac (CO2) Comp Mole Frac (Helium) Name Comp Mole Frac (Hydrogen) Comp Mole Frac (Hydrogen) Comp Mole Frac (Hydrogen)	 0.4988 Steam/H2 0.10000 0.90000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 22 0.10000 0.90000	 	H2/Steam H2/Steam 0.70000 0.30000 0.000000	0.00000 0.50000 0.00000 0.00000 0.00000 0.00000 25 0.00002 0.99998	0.00000 0.99986 0.00014 0.00000 0.00000 0.00000 0.00000 Water In 0.00000 * 1.00000 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	Vapour Fraction Temperature (C) Pressure (MPa) Molar Flow (kgmole/h) Mass Flow (kg/s) Liquid Volume Flow (m3/h) Heat Flow (kW) Molar Enthalpy (kJ/kgmole) Name Comp Mole Frac (Hydrogen) Comp Mole Frac (Hydrogen) Comp Mole Frac (Co2) Comp Mole Frac (Co2) Comp Mole Frac (Argon) Comp Mole Frac (Argon) Comp Mole Frac (Hydrogen) Comp Mole Frac (Hydrogen) Comp Mole Frac (Hydrogen) Comp Mole Frac (Hydrogen) Comp Mole Frac (H2Q) Comp Mole Frac (Hydrogen) Comp Mole Frac (Hydrogen) Comp Mole Frac (H2Q) Comp Mole Frac (Oxygen)	 0.4988 Steam/H2 0.10000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 22 22 0.10000 0.90000	 	H2/Steam H2/Steam H2/Steam 0.70000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 *	0.00000 0.50000 0.00000 0.00000 0.00000 25 0.00002 0.99998 0.00000	0.00000 0.99986 0.00014 0.00000 0.00000 0.00000 Water In 0.00000 * 1.00000 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61	Vapour Fraction Temperature (C) Pressure (MPa) Molar Flow (kgmole/h) Mass Flow (kg/s) Liquid Volume Flow (m3/h) Heat Flow (kW) Molar Enthalpy (kJ/kgmole) Name Comp Mole Frac (Hydrogen) Comp Mole Frac (H2O) Comp Mole Frac (Oxygen) Comp Mole Frac (CO2) Comp Mole Frac (CO2) Comp Mole Frac (CO2) Comp Mole Frac (Hydrogen) Comp Mole Frac (Hydrogen) Comp Mole Frac (Hydrogen) Comp Mole Frac (Hydrogen) Comp Mole Frac (Hydrogen) Comp Mole Frac (Hydrogen) Comp Mole Frac (H2O) Comp Mole Frac (Coxygen) Comp Mole Frac (Nitrogen) Comp Mole Frac (Noter) Comp Mole Frac (Noter)	 0.4988 Steam/H2 0.10000 0.90000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 22 0.10000 0.90000 0.00000	 	H2/Steam H2/Steam H2/Steam 0.70000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 24 0.00084 * 0.00008 *	0.00000 0.50000 0.00000 0.00000 0.00000 25 0.00002 0.99998 0.00000 0.00000	0.00000 0.99986 0.00014 0.00000 0.00000 0.00000 Water In 0.00000 * 0.00000 * 0.00000 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62	Vapour Fraction Temperature (C) Pressure (MPa) Molar Flow (kgmole/h) Mass Flow (kg/s) Liquid Volume Flow (m3/h) Heat Flow (kU/W) Molar Enthalpy (kJ/kgmole) Name (kU/M) Comp Mole Frac (Hydrogen) Comp Mole Frac (H2O) Comp Mole Frac (CO2) Comp Mole Frac (CO2) Comp Mole Frac (CO2) Comp Mole Frac (Hydrogen) Comp Mole Frac (Hydrogen) Comp Mole Frac (Hydrogen) Comp Mole Frac (CO2) Comp Mole Frac (CO2) Comp Mole Frac (Hydrogen) Comp Mole Frac (Hydrogen) Comp Mole Frac (Hydrogen) Comp Mole Frac (Hydrogen) Comp Mole Frac (CO2) Comp Mole Frac (Hydrogen) Comp Mole Frac (HzO) Comp Mole Frac (Myrogen) Comp Mole Frac (Myrogen) Comp Mole Frac (Nitrogen) Comp Mole Frac (Nitrogen) Comp Mole Frac (Nitrogen) Comp Mole Frac (Nitrogen) Comp Mole Frac (CO2)	 0.4988 Steam/H2 0.10000 0.90000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 22 0.10000 0.00000 0.00000 0.00000	 	H2/Steam H2/Steam H2/Steam 0.70000 0.30000 0.00000 0.00000 0.00000 0.00000 24 0.99916 * 0.000084 * 0.000084 *	0.00000 0.50000 0.00000 0.00000 0.00000 25 0.00002 0.99998 0.00000 0.00000 0.00000	0.00000 0.99986 0.00014 0.00000 0.00000 0.00000 Water In 0.00000 * 0.00000 * 0.00000 * 0.00000 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 60 61	Vapour Fraction Temperature (C) Pressure (MPa) Molar Flow (kgmole/h) Mass Flow (kg/s) Liquid Volume Flow (m3/h) Heat Flow (kW) Molar Enthalpy (kJ/kgmole) Name Comp Mole Frac (Hydrogen) Comp Mole Frac (H2O) Comp Mole Frac (Oxygen) Comp Mole Frac (CO2) Comp Mole Frac (CO2) Comp Mole Frac (CO2) Comp Mole Frac (Hydrogen) Comp Mole Frac (Hydrogen) Comp Mole Frac (Hydrogen) Comp Mole Frac (Hydrogen) Comp Mole Frac (Hydrogen) Comp Mole Frac (Hydrogen) Comp Mole Frac (H2O) Comp Mole Frac (Coxygen) Comp Mole Frac (Nitrogen) Comp Mole Frac (Noter) Comp Mole Frac (Noter)	 0.4988 Steam/H2 0.10000 0.90000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 22 0.10000 0.90000 0.00000	 	H2/Steam H2/Steam H2/Steam 0.70000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 24 0.00084 * 0.00008 *	0.00000 0.50000 0.00000 0.00000 0.00000 25 0.00002 0.99998 0.00000 0.00000	0.00000 0.99986 0.00014 0.00000 0.00000 0.00000 Water In 0.00000 * 0.00000 * 0.00000 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63	Vapour Fraction Temperature (C) Pressure (MPa) Molar Flow (kgmole/h) Mass Flow (kg/s) Liquid Volume Flow (m3/h) Heat Flow (kW) Molar Enthalpy (kJ/kgmole) Name (kJ/kgmole) Comp Mole Frac (Hydrogen) Comp Mole Frac (Hydrogen) Comp Mole Frac (Oxygen) Comp Mole Frac (Nitrogen) Comp Mole Frac (CO2) Comp Mole Frac (Hydrogen) Comp Mole Frac (Hydrogen) Comp Mole Frac (Hydrogen) Comp Mole Frac (Hydrogen) Comp Mole Frac (CO2) Comp Mole Frac (Hydrogen) Comp Mole Frac (Hydrogen) Comp Mole Frac (Hydrogen) Comp Mole Frac (Hydrogen) Comp Mole Frac (Hydrogen) Comp Mole Frac (Mydrogen) Comp Mole Frac (Mydrogen) Comp Mole Frac (Mydrogen) Comp Mole Frac (Mydrogen) Comp Mole Frac (Mydrogen) Comp Mole Frac (CO2) Comp Mole Frac (Mydrogen) Comp Mole Frac (CO2)<	 0.4988 0.4988 Steam/H2 0.10000 0.90000 0.00000 0.00000 0.00000 0.00000 0.00000 22 0.10000 0.90000 0.90000 0.00000 0.00000 0.00000	 	 	0.00000 0.50000 0.00000 0.00000 0.00000 25 0.00002 0.9998 0.00000 0.00000 0.00000	0.00000 0.99986 0.00014 0.00000 0.00000 0.00000 Water In 0.00000 * 0.00000 * 0.00000 * 0.00000 * 0.00000 * 0.00000 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63	Vapour Fraction Temperature (C) Pressure (MPa) Molar Flow (kgmole/h) Mass Flow (kg/s) Liquid Volume Flow (m3/h) Heat Flow (kW) Molar Enthalpy (kJ/kgmole) Name (kJ/kgmole) Comp Mole Frac (Hydrogen) Comp Mole Frac (Hydrogen) Comp Mole Frac (Oxygen) Comp Mole Frac (Nitrogen) Comp Mole Frac (CO2) Comp Mole Frac (Hydrogen) Comp Mole Frac (Hydrogen) Comp Mole Frac (Hydrogen) Comp Mole Frac (Hydrogen) Comp Mole Frac (CO2) Comp Mole Frac (Hydrogen) Comp Mole Frac (Hydrogen) Comp Mole Frac (Hydrogen) Comp Mole Frac (Hydrogen) Comp Mole Frac (Hydrogen) Comp Mole Frac (Mydrogen) Comp Mole Frac (Mydrogen) Comp Mole Frac (Mydrogen) Comp Mole Frac (Mydrogen) Comp Mole Frac (Mydrogen) Comp Mole Frac (CO2) Comp Mole Frac (Mydrogen) Comp Mole Frac (CO2)<	 0.4988 0.4988 Steam/H2 0.10000 0.90000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	 	H2/Steam H2/Steam H2/Steam 0.70000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 24 0.99916 ' 0.00004 ' 0.00000 '	0.00000 0.50000 0.00000 0.00000 0.00000 25 0.00002 0.9998 0.00000 0.00000 0.00000	0.00000 0.99986 0.00014 0.00000 0.00000 0.00000 Water In 0.00000 * 0.00000 * 0.00000 * 0.00000 * 0.00000 * 0.00000 *

Appendix B

51

NUCLEAR-INTEGRATED HYDROGEN **PRODUCTION ANALYSIS**

Identifier:	TEV-693	
Revision:	1	
Effective Date:	05/15/10	Page: 115 of 1

1			Case Name:	C:\Documents and Sett	inas\maa\Desktop\NGN	P\FY 09 Report\600 MV
2 3	INL) Un				
3	HYPROTECH Calgary, A CANADA	лрепа		NGNP1		
5			Date/Time:	ne: Thu Oct 01 11:50:20 2009		
6	Workbook	Cooo (Main) (continue	\d\		
7 8	Workbook:	Case (Main) (continue	ea)		
9		Co	mposition (cont	inued)		
10 11	Name	32	41	30	31	35
12	Comp Mole Frac (Hydrogen)	0.00000	0.00005 *	0.00002	0.70000	0.99916
13	Comp Mole Frac (H2O)	1.00000	0.99995 *	0.99998	0.30000	0.00084
14	Comp Mole Frac (Oxygen)	0.00000	0.00000 *	0.00000	0.00000	0.00000
15	Comp Mole Frac (Nitrogen)	0.00000	0.00000 *	0.00000	0.00000	0.00000
16	Comp Mole Frac (CO2)	0.00000	0.00000 *	0.00000	0.00000	0.00000
17	Comp Mole Frac (Argon)	0.00000	0.00000 *	0.00000	0.00000	0.00000
18	Comp Mole Frac (Helium)	0.00000	0.00000 *	0.00000	0.00000	0.00000
19	Name	38	37	Hydrogen Product	Hydrogen Recycle	40
20	Comp Mole Frac (Hydrogen)	0.00005	0.99916	0.99916	0.99916	0.00005
21	Comp Mole Frac (H2O)	0.99995	0.00084	0.00084	0.00084	0.99995
22	Comp Mole Frac (Oxygen)	0.00000	0.00000	0.00000	0.00000	0.00000
23	Comp Mole Frac (Nitrogen)	0.00000	0.00000	0.00000	0.00000	0.00000
24	Comp Mole Frac (CO2)	0.00000	0.00000	0.00000	0.00000	0.00000
25	Comp Mole Frac (Argon)	0.00000	0.00000	0.00000	0.00000	0.00000
26	Comp Mole Frac (Helium)	0.00000	0.00000	0.00000	0.00000	0.00000
27	Name	From Reactor 1	From Reactor 2	26	27	2
28	Comp Mole Frac (Hydrogen)	* 000000 *	0.00000 *	0.00000	0.00000	0.00000
29	Comp Mole Frac (H2O)	* 000000	* 0.00000 *	0.00000	0.00000	0.99986
30	Comp Mole Frac (Oxygen)	0.00000 *	* 0.00000 *	0.00000	0.00000	0.00014
31	Comp Mole Frac (Nitrogen)	0.00000 *	0.00000 *	0.00000	0.00000	0.00000
32	Comp Mole Frac (CO2)	0.00000 *	0.00000 *	0.00000	0.00000	0.00000
33	Comp Mole Frac (Argon)	0.00000 *	0.00000 *	0.00000	0.00000	0.00000
34 35	Comp Mole Frac (Helium)	1.00000 *	1.00000 *	1.00000	1.00000	0.00000
35 36	Name	4	5	3	9	10
30 37	Comp Mole Frac (Hydrogen)	0.00000	0.00000	0.00002	0.00000	0.00000
38	Comp Mole Frac (H2O) Comp Mole Frac (Oxygen)	0.99986	0.50000	0.99998	0.99986	0.50000
39	Comp Mole Frac (Oxygen)	0.0000	0.00000	0.00000	0.00000	0.00000
40	Comp Mole Frac (CO2)	0.00000	0.00000	0.00000	0.00000	0.00000
41	Comp Mole Frac (Argon)	0.00000	0.00000	0.00000	0.00000	0.00000
42	Comp Mole Frac (Helium)	0.00000	0.00000	0.00000	0.00000	0.00000
43	Name	Oxygen Product	12	6	7	8
44	Comp Mole Frac (Hydrogen)	0.00000	0.00000	0.10000	0.70000	0.00000
45	Comp Mole Frac (H2O)	0.00000	0.99986	0.90000	0.30000	1.00000
46	Comp Mole Frac (Oxygen)	0.99891	0.00014	0.00000	0.00000	0.00000
47	Comp Mole Frac (Nitrogen)	0.00000	0.00000	0.00000	0.00000	0.00000
48	Comp Mole Frac (CO2)	0.00000	0.00000	0.00000	0.00000	0.00000
49	Comp Mole Frac (Argon)	0.00000	0.00000	0.00000	0.00000	0.00000
50	Comp Mole Frac (Helium)	0.00000	0.00000	0.00000	0.00000	0.00000
51	Name	11	13			
52	Comp Mole Frac (Hydrogen)	0.00000	0.00000 *			
53	Comp Mole Frac (H2O)	0.99986	0.99986 *			
54	Comp Mole Frac (Oxygen)	0.00014	0.00014 *			
55	Comp Mole Frac (Nitrogen)	0.00000	0.00000 *			
56	Comp Mole Frac (CO2)	0.00000	0.00000 *			
57	Comp Mole Frac (Argon)	0.00000	0.00000 *			
58	Comp Mole Frac (Helium)	0.00000	0.00000 *			
59			Coolers			
60						
61	Name					
62	Duty (kW)					
63	Feed Temperature (C)					
	Product Temperature (C)			1		
64						
	Hyprotech Ltd.	1.1577	SYS.Plant v2.2.2 (Buil	4 2806)	·	Page 3 of 14

Appendix B

Identifier:	TEV-693	
Revision:	1	
Effective Date:	05/15/10	Page: 116 of 151

1	N				Case Name:	C:\Documents and Setti	nas/maa/D	eskton\NGNP	EX 09 Report\600 MV
2		INL					ngoangqaz	-contoputoru	
3 4	HYPROTECH	Calgary, A	lberta		Unit Set: 1	NGNP1			
4				Date/Time:	Thu Oct 01 11:50:20 20	09			
6									
7	Workb	ook:	Case (Ma	in)	(continue	d)			
8 9				-	•	-			
9 10				н	leat Exchange	s			
11	Name		Sweep Hi Temp R	leci H	li Temp Steam/H2 R				
12	Duty	(kW)	239		8571				
13	UA	(kJ/C-h)	2.021e+00		9.275e+005				
14	LMTD	(C)	42.6		33.27		-		
15 16	Minimum Approach	(C)	20.0		20.00				
17					Heaters				
18	Name		Steam/H2Topping	He S	weep Gas Topping				
19	Duty	(kW)	307		374.8				
20	Feed Temperature	(C)	748.	.9	780.0				
21	Product Temperature	(C)	800.	.0 *	800.0				
22					LNGs				
23 24	Name		Low Temp Steam	1U2 C	G1	SG2	Sween	ow Temp Re	
24 25	UA (Calculated)	(kJ/C-h)	1.007e+00		3.515e+005	1.425e+006	· · · ·	.0w Temp Re .161e+005	
26	LMTD	(KJ/C-II) (C)	114.		75.07 *	135.8 *	0	124.1 *	
27	Exchanger Cold Duty	(kW)	3.197e+00		7329	5.375e+004	2	124e+004	
28	Minimum Approach	(C)	50.0		50.00	50.00		50.00	
29	••				C				
30					Compressors				
31	Name		Recirc						
32	Feed Pressure	(MPa)	4.90						
33	Product Pressure	(MPa)	5.10						
34 35		kgmole/h)	517.						
30 36	Energy	(kW)	19.5	5 *					
37	Adiabatic Efficiency Polytropic Efficiency			5					
38									
39					Expanders				
40	Name								
41	Feed Pressure	(MPa)							
42	Product Pressure	(MPa)							
43		kgmole/h)							
44	Energy	(kW)		_					
45 46	Adiabatic Efficiency Polytropic Efficiency						l		
40 47	Forytropic Enrolency		1						
48					Pumps				
49	Name		Water Pump	N I	Vater Recycle Pump	Sweep Pump	Sweep \	Vater Recyc	
50	Delta P	(kPa)	509		300.0	5099		300.0	
51	Energy	(kW)	105.	.0	3.074	0.4988		3.079	
52	Feed Pressure	(MPa)	0.101		4.900	0.1013 *		4.900	
53	Product Pressure	(MPa)	5.20		5.200	5.200		5.200 *	
54		kgmole/h)	310		1548	14.75		1549	
55 56	Adiabatic Efficiency	(%)	75.0	iu :	75.00 *	75.00 *		75.00 *	
57					Unit Ops				
58	Operation Name	Ope	eration Type		Feeds	Products		Ignored	Calc. Level
59				Stean		H2/Steam			
60	High Temperature Electrolys	Standard	Sub-Flowsheet		p Gas In	Sweep Gas/O2 Ou		No	2500 *
61				Proce	ess Heat 1	Electrolysis Power	r		
62	Electrolysis Input and Outpu							No	500.0 *
63	Efficiency	Spreads	neet	6		Steem# 12		No	500.0 *
64 65	Steam/H2Topping Heater	Heater	-	-	l2 Top Heat	Steam/H2		No	500.0 *
66	Hyprotech Ltd.				6.Plant v2.2.2 (Build	13806)			Page 4 of 14
00	Licensed to: INI								* Specified by user

Licensed to: INL

Identifier:	TEV-693	
Revision:	1	
Effective Date:	05/15/10	Page: 117 of 151

2 3 4 5 5 Workl 6 Workl 7 Workl 8 Workl 9 10 11 Operation Name 12 Sweep Gas Topping Heate 14 T2 15 Sweep Hi Temp Recup 16 T2 17 Sweep Hi Temp Recup 18 Hi Temp Steam/H2 Recup 20 M2 21 M2 22 M3 23 SG1 34 SG1 35 Sweep Low Temp Recup 36 SG2 33 SG2 34 SG1 35 Sweep Nump 40 Sweep Pump 41 Sweep Pump 42 Sweep Pump 43 Sweep Recycle Pum 44 Water/Oxygen Seperation Tank 45 Water/Oxygen Seperation 56 ADJ-1 <		Case Name:	C:\Documents and Settings\mg	q\Desktop\NGNP\F	Y 09 Report\600 MV			
4 Image: mail of the system 6 Image: mail of the system 7 Image: mail of the system 8 Image: mail of the system 9 Image: mail of the system 10 Image: mail of the system 11 Operation Name 12 Sweep Gas Topping Heate 14 T2 15 T2 16 Sweep Hi Temp Recup 17 M2 22 M3 23 M4 26 Recirc 27 Recirc 28 Low Temp Steam/H2 Recup 30 SG1 31 SG1 32 SG2 33 SG2 34 Sweep Low Temp Recup 35 Sweep Pump 40 Sweep Pump 41 Sweep Water Recycle Pum 42 Sweep Water Recycle Pum 43 Sweep Vater Separation Tank 44 Water/Oxygen Seperation 45 Water/Oxygen	INL Calgary, Alberta	Unit Set:	NGNP1					
6 Workl 8 9 10 10 11 Operation Name 12 Sweep Gas Topping Heate 14 T2 15 T2 16 Sweep Hi Temp Recup 17 Sweep Hi Temp Recup 18 Hi Temp Steam/H2 Recup 19 Hi Temp Steam/H2 Recup 20 M2 21 M2 22 M3 24 M4 25 Recirc 26 Recirc 27 Recirc 28 SG1 30 SG1 31 SG1 32 SG2 33 SG2 34 Sweep Low Temp Recup 36 Sweep Pump 41 Sweep Pump 42 Sweep Pump 43 Water Separation Tank 46 Vater Separation Tank 46 Vater/Oxygen Seperation 47 SET-1 <td>CANADA</td> <td></td> <td colspan="3">Date/Time: Thu Oct 01 11:50:20 2009</td>	CANADA		Date/Time: Thu Oct 01 11:50:20 2009					
8 0 10 Operation Name 12 Sweep Gas Topping Heate 14 T2 15 T2 16 Name 17 Sweep Hi Temp Recup 18 Hi Temp Steam/H2 Recup 19 Hi Temp Steam/H2 Recup 20 M2 21 M2 22 M3 23 M3 24 M4 25 M4 26 Recirc 27 Recirc 28 SG1 30 SG1 31 SG1 32 SG2 33 SG2 34 Sweep Low Temp Recup 35 Sweep Pump 40 Sweep Pump 41 Sweep Pump 42 Water Separation Tank 46 Water/Oxygen Seperation 43 SET-1 44 SET-2 55 ADJ-1								
10 Operation Name 11 Operation Name 12 Sweep Gas Topping Heate 14 T2 15 T2 16 Sweep Hi Temp Recup 17 Sweep Hi Temp Recup 18 Hi Temp Steam/H2 Recup 19 Hi Temp Steam/H2 Recup 20 M2 21 M2 22 M3 23 M4 26 Recirc 27 Recirc 28 Low Temp Steam/H2 Recup 30 SG1 31 SG2 33 SG2 34 Sweep Low Temp Recup 35 Sweep Nump 40 Sweep Pump 41 Sweep Water Recycle Pur 42 Water Separation Tank 45 Water/Oxygen Seperation 49 SET-1 40 SET-1 41 SET-2 42 RCY-3 43 SET-2	Workbook: Case (Main) (continued)							
12 Sweep Gas Topping Heate 14 T2 15 T2 16 Sweep Hi Temp Recup 17 Sweep Hi Temp Recup 18 Hi Temp Steam/H2 Recup 20 M2 21 M2 22 M3 23 M4 26 Recirc 27 Recirc 28 SG1 30 SG1 31 SG1 32 SG2 34 SWeep Low Temp Recup 35 Sweep Low Temp Recup 36 Water Recycle Pump 40 Sweep Pump 41 Sweep Pump 42 Sweep Pump 43 Water Separation Tank 46 Water/Oxygen Seperation 44 SET-1 45 SET-1 46 SET-2 56 ADJ-1 57 SE 58 Se 59 SE		Unit Ops (continu	ied)					
13 Sweep Gas Topping Heate 14 T2 16 Sweep Hi Temp Recup 17 Sweep Hi Temp Recup 18 Hi Temp Steam/H2 Recup 20 M2 21 M2 22 M3 23 M4 26 Recirc 27 Recirc 28 Low Temp Steam/H2 Recu 30 SG1 31 SG1 32 SG2 33 SG2 34 Sweep Low Temp Recup 36 Water Pump 37 Water Recycle Pump 41 Sweep Pump 42 Sweep Water Recycle Pur 43 Sweep Rump 44 Water/Oxygen Seperation 45 Water/Oxygen Seperation 46 Fr.1 47 SET-1 48 SET-2 55 ADJ-1 56 Fr.2 57 SE 58	Operation Type	Feeds	Products	Ignored	Calc. Level			
15 T2 16 Sweep Hi Temp Recup 17 Sweep Hi Temp Recup 18 Hi Temp Steam/H2 Recup 20 M2 21 M3 22 M3 23 M4 26 Recirc 27 Recirc 28 Low Temp Steam/H2 Recup 30 SG1 31 SG1 32 SG2 34 Sweep Low Temp Recup 36 Water Pump 39 Water Recycle Pump 40 Sweep Pump 41 Sweep Water Recycle Pur 42 Sweep Water Recycle Pur 44 Water/Oxygen Seperation Tank 45 Water/Oxygen Seperation 49 SET-1 50 RCY-1 51 RCY-2 52 RCY-3 53 SET-1 54 SET-2 55 ADJ-1 56 ADJ-1 57 S 58 ADJ-1 59 </td <td>r Heater</td> <td>4 Sweep Gas Top Heat</td> <td>Sweep Gas In</td> <td>No</td> <td>500.0 *</td>	r Heater	4 Sweep Gas Top Heat	Sweep Gas In	No	500.0 *			
17 Sweep Hi Temp Recup 18 Hi Temp Steam/H2 Recup 20 M2 21 M3 22 M3 23 M4 26 Recirc 27 Recirc 28 Low Temp Steam/H2 Recup 29 Low Temp Steam/H2 Recup 30 SG1 31 SG1 32 SG2 33 SG2 34 Sweep Low Temp Recup 35 Sweep Pump 40 Sweep Pump 41 Sweep Water Recycle Pur 42 Sweep Water Recycle Pur 43 Sweep Water Separation Tank 44 Water/Oxygen Seperation 49 SET-1 50 RCY-3 51 SET-1 52 ADJ-1 56 ADJ-1 57 SE 59 ADJ-1	Тее	35	Hydrogen Product Hydrogen Recycle	No	500.0 *			
Hi Temp Steam/H2 Recup 20 M2 21 M2 22 M3 23 M4 25 M4 26 Recirc 27 Recirc 28 Low Temp Steam/H2 Recu 30 SG1 31 SG1 32 SG2 34 Sweep Low Temp Recup 36 Sweep Low Temp Recup 37 Water Recycle Pump 40 Sweep Pump 41 Sweep Pump 42 Water Separation Tank 46 4 43 Water/Oxygen Seperation 44 SET-1 50 RCY-1 51 RCY-2 52 RCY-3 53 SET-1 54 SET-2 55 ADJ-1 56 6 57 8 58 6 59 6 61 6	Heat Exchanger	2 Sweep Gas/O2 Out	4 5	No	500.0 *			
21 M2 22 M3 24 M4 25 M4 26 Recirc 27 Recirc 28 Low Temp Steam/H2 Recu 30 SG1 31 SG1 32 SG2 34 Sweep Low Temp Recup 36 Water Pump 40 Sweep Pump 41 Sweep Pump 42 Sweep Water Recycle Pur 44 Water/Oxygen Seperation Tank 46 Water/Oxygen Seperation 50 RCY-1 51 RCY-2 52 RCY-3 53 SET-1 54 SET-2 55 ADJ-1 56 SU-1 57 Se 59 Se 60 Se 61 Se 62 Sa 63 Sa	Heat Exchanger	22 H2/Steam	6 7	No	500.0 *			
23 M3 24 M4 25 Recirc 27 Recirc 28 Low Temp Steam/H2 Recu 30 SG1 31 SG1 32 SG2 33 SG2 34 Sweep Low Temp Recup 35 Sweep Pump 40 Sweep Pump 41 Sweep Pump 42 Sweep Water Recycle Pur 44 Water Separation Tank 45 Water/Oxygen Seperation 49 RCY-1 51 RCY-2 52 RCY-3 53 SET-1 56 ADJ-1 56 ADJ-1 57 Se 59 60 61 62 63 64	Mixer	3 24	22	No	500.0 *			
25 M4 26 Recirc 27 Recirc 29 Low Temp Steam/H2 Recu 30 SG1 31 SG2 34 Sweep Low Temp Recup 36 Sweep Low Temp Recup 37 Water Recycle Pump 40 Sweep Pump 41 Sweep Water Recycle Pur 42 Sweep Water Recycle Pur 43 Sweep Water Recycle Pur 44 Water/Oxygen Seperation Tank 45 Water/Oxygen Seperation 47 RCY-1 50 RCY-1 51 RCY-2 52 RCY-3 53 SET-1 54 SET-2 55 ADJ-1 56 60 61 62 63 63 64 63	Mixer	32 41	30	No	500.0 *			
27 Recirc 28 Low Temp Steam/H2 Recu 30 SG1 31 SG2 33 SG2 34 Sweep Low Temp Recup 36 Water Pump 39 Water Recycle Pump 40 Sweep Pump 41 Sweep Pump 42 Sweep Water Recycle Pur 43 Sweep Rump 44 Water/Oxygen Seperation Tank 46 RCY-1 50 RCY-1 51 RCY-2 52 RCY-3 53 SET-1 54 SET-2 55 ADJ-1 56 Sadd 59 Sadd 61 Sadd 62 Sadd 63 Sadd	Mixer	13 8	15	No	500.0 *			
29 Low Temp Steam/H2 Recu 30 SG1 31 SG2 33 SG2 34 Sweep Low Temp Recup 36 Water Pump 39 Water Recycle Pump 40 Sweep Pump 41 Sweep Pump 42 Sweep Water Recycle Pur 43 Sweep Water Recycle Pur 44 Water/Oxygen Seperation Tank 46 RCY-1 51 RCY-2 52 RCY-3 53 SET-1 54 SET-2 55 ADJ-1 56 SET 59 Set 60 Set 61 Set 62 Set 63 Set	Compressor	Hydrogen Recycle Recirc Power	37	No	500.0 *			
31 SG1 32 SG2 33 SG2 34 Sweep Low Temp Recup 35 Sweep Low Temp Recup 36 Water Pump 39 Water Recycle Pump 40 Sweep Pump 41 Sweep Water Recycle Pur 42 Sweep Water Recycle Pur 44 Water Separation Tank 46 RCY-1 50 RCY-1 51 RCY-2 52 RCY-3 53 SET-1 54 SET-2 55 ADJ-1 56 SET 59 60 61 83 63 63 64 53	p LNG	30 7	25 31	No	500.0 *			
32 33 33 SG2 34 Sweep Low Temp Recup 36 Water Pump 37 Water Recycle Pump 40 Sweep Pump 41 Sweep Pump 42 Sweep Water Recycle Pur 43 Sweep Water Recycle Pur 44 Water Separation Tank 46 RCY-1 50 RCY-1 51 RCY-2 52 RCY-3 53 SET-1 54 SET-2 55 ADJ-1 56 60 61 83 62 83 63 84	LNG	From Reactor 1 9	26 2	No	500.0 *			
35 Sweep Low Temp Recup 36 Water Pump 37 Water Recycle Pump 40 Sweep Pump 41 Sweep Water Recycle Pur 42 Sweep Water Recycle Pur 43 Sweep Water Recycle Pur 44 Water Separation Tank 46 Water/Oxygen Seperation 47 RCY-1 50 RCY-1 51 RCY-2 52 RCY-3 53 SET-1 54 SET-2 55 ADJ-1 56 S 59 S 60 8 61 8 62 8 63 8 64 8	LNG	25 From Reactor 2	3 27	No	500.0 *			
36 Water Pump 37 Water Recycle Pump 40 Sweep Pump 41 Sweep Pump 42 Sweep Water Recycle Pur 44 Water Separation Tank 46 Water/Oxygen Seperation 49 RCY-1 50 RCY-1 51 RCY-2 52 RCY-3 53 SET-1 54 SET-2 55 ADJ-1 56 1 61 8 62 8 63 8 64 8	LNG	15 5	9 10	No	500.0 *			
38 Water Recycle Pump 40 Sweep Pump 41 Sweep Pump 42 Sweep Water Recycle Pur 43 Water Separation Tank 46 44 45 Water/Oxygen Seperation 46 6 50 RCY-1 51 RCY-2 52 RCY-3 53 SET-1 54 SET-2 55 ADJ-1 56 57 58 59 60 61 62 63 64 64	Pump	Water In Water Pump Power	32	No	500.0 *			
40 Sweep Pump 41 Sweep Water Recycle Pur 42 Sweep Water Recycle Pur 44 Water Separation Tank 46 47 48 Water/Oxygen Seperation 49 50 50 RCY-1 51 RCY-2 52 RCY-3 53 SET-1 54 SET-2 55 ADJ-1 56 60 61 62 63 64	Pump	38 Water Recycle Pump Pow	40	No	500.0 *			
42 Sweep Water Recycle Pur 43 Sweep Water Recycle Pur 44 Water Separation Tank 46 Water Separation Tank 47 Water/Oxygen Seperation 49 RCY-1 50 RCY-1 51 RCY-2 52 RCY-3 53 SET-1 54 SET-1 55 ADJ-1 56 57 58 59 60 61 62 63 64 Set August Au	Pump	Sweep Water In Sweep Pump Power	8	No	500.0 *			
44 Water Separation Tank 46 46 47 48 48 Water/Oxygen Seperation 49 50 50 RCY-1 51 RCY-2 52 RCY-3 53 SET-1 54 SET-2 55 ADJ-1 56 57 58 59 60 61 62 63 64 57	nr Pump	12 Swp Rcy Pmp Pwr	11	No	500.0 *			
46 47 48 49 50 RCY-1 51 RCY-2 52 RCY-3 53 SET-1 54 55 ADJ-1 56 57 58 59 80 61 62 63		31	38					
47 Water/Oxygen Seperation 49 50 RCY-1 51 RCY-2 52 52 RCY-3 53 53 SET-1 54 54 SET-2 55 55 ADJ-1 56 59 60 61 61 62 63 64 64 64	Separator	Ambient Cooling	35 Ambient Cooling	No	500.0 *			
61 RCY-2 52 RCY-3 53 SET-1 54 SET-2 55 ADJ-1 56 57 58 59 60 61 62 63 64 64	Ti Separator	10 Ambient Cooling 2	12 Oxygen Product Ambient Cooling 2	No	500.0 *			
52 RCY-3 53 SET-1 54 SET-2 55 ADJ-1 56 57 58 59 60 61 62 63 64 64	Recycle	37	24	No	3500 *			
53 SET-1 54 SET-2 55 ADJ-1 56 57 58 59 60 61 62 63 64 64	Recycle	40	41	No	3500 *			
54 SET-2 55 ADJ-1 56 57 58 59 60 61 62 63 64 64	Recycle Set	11	13	No	3500 * 500.0 *			
55 ADJ-1 56 57 58 59 80 81 62 63 84	Set			No No	500.0 *			
56 57 58 59 60 61 62 63 63	Adjust			No	3500 *			
65								
					_			
66 Hyprotech Ltd. Licensed to: INL		HYSYS.Plant v2.2.2 (Build	d 3806)		Page 5 of 14 * Specified by user.			

Identifier:	TEV-693	
Revision:	1	
Effective Date:	05/15/10	Page: 118 of 151

1	No.					Case Name: C	:\Documents and Setti	ngs\mgq\D	esktop\NGNF	VFY 09 Report\600 MV
3	-	-	INL Calgary, A	Nherta		Unit Set: N	IGNP1			
4	HY	PROTECH	CANADA	hiberta						
5	per la					Date/Time: T	Thu Oct 01 11:50:20 20	09		
6			_							
7		Workb	ook:	High Ten	npe	erature Ele	ctrolysis (1	[PL1]		
8				-	-			•		
9 10						Streams				
10	Name			Process In @TP	11	Sweep Gas In @TPL	Cathode @TPL1	Sween	Gas/O2 Out (Gas Products @TPL
12	Vapour F	Fraction		1.00		1.0000	1.0000	Oweep	1.0000	1.0000
13	Tempera		(C)	800.		800.00	800.00 *		800.00	800.00
14	Pressure		(MPa)	5.00		5.0000	5.0000		5.0000	5.0000
15	Molar Flo	l) wc	kgmole/h)	5169	9.3	1551.2	5169.3		3101.9	6720.1
16	Mass Flo	ow	(kg/s)	23.5	71	7.7631	9.7869		21.547	23.571
17	Liquid Vo	olume Flow	(m3/h)	98.	90	28.00	132.4		71.62	176.0
18	Heat Flo		(kW)	-2.712e+0		-9.151e+004	-6.830e+004		053e+004	-5.739e+004
19	Molar En	thalpy (k	J/kgmole)	-1.888e+0		-2.124e+005	-4.757e+004		346e+004	-3.075e+004
20	Name	Fraction		Liquid Products (Anode @TPL1	Molar Flow of Oxyger	Electroly	sis Heating (Electrode Heat @TPI
21 22	Vapour F Tempera		(C)	0.00		1.0000 804.96				
22	Pressure		(MPa)	5.00		5.0000				
23	Molar Flo		(IVIFa) kgmole/h)	0.000		1550.7	1550.7	ļ		
25	Mass Flo		(kg/s)	0.000		13.784	13.784			
26		olume Flow	(m3/h)	0.00	00	43.62	43.62			
27	Heat Flo	w	(kW)	0.00		1.098e+004		2.	138e+005	71.04
28	Molar En	nthalpy (k.	J/kgmole)	-2.975e+0	04	2.549e+004				
29	Name			Process Heat @	TPL	Electrolysis Power @				
30	Vapour F									
31	Tempera		(C)							
32	Pressure		(MPa)							
33	Molar Flo	,	kgmole/h)							
34 35	Mass Flo	olume Flow	(kg/s)							
36	Heat Flo		(m3/h) (kW)	-4.865e-0		-2.138e+005				
37	Molar En		J/kgmole)			-2.1386+003				
38			g)							
39						Unit Ops				
40	Оре	eration Name	Ope	eration Type		Feeds	Products		Ignored	Calc. Level
41					Proc	ess In @TPL1	Liquid Products @	TPL1		
42	Isotherm	al Electrolysis @TP	Conversi	on Reactor	Elec	trolysis Heating @TPI	-		No	500.0 *
43							Electrolysis Heatir			
44	MIX 100	OTD 4	N.4			id Products @TPL1	Sweep Gas/O2 Ou	ut @TPL1		
45 46	MIX-100	WIFLI	Mixer			le @TPL1			No	500.0 *
40 47					Sweep Gas In @TPL1 Gas Products @TPL1		Cathode @TPL1			
48	Electrode	es @TPL1	Compone	ent Splitter		trode Heat @TPL1	Anode @TPL1		No	500.0 *
49	Gas Pro	duct Temperature @	Set						No	500.0 *
50		emperature @TPL1	Set						No	500.0 *
51	Outlet Pr	ressure @TPL1	Set					_	No	500.0 *
52		nperature @TPL1	Set						No	500.0 *
53		nperature Electrolys							No	500.0 *
54		erage ASR @TPL1	Spreadsh	neet			_		No	500.0 *
55 56	ADJ-1@		Adjust						No	3500 *
56 57	ADJ-2@	yırLI	Adjust						No	3500 *
58		Sprea	deho	ot High .	Ton	noraturo	Electrolysi	ം ത	DI 1 Unit	s Set: Electrolysis
59		opiea	dane	ct. mgn	I CII	perature	LICCUOIYSI			Cool. Licetrolysis
60							`			
61						CONNECTIONS	5			
62					1-	nnorted Variabl	00			
63						nported Variabl	63			
64	Cell		Object				riable Description			Value
65	D2	Material Strea	m: Proce	ss In @TPL1		erature				1073.1 K
66	Hyprote Licensed to:				HISI	'S.Plant v2.2.2 (Build	13806)			Page 6 of 14 * Specified by user.
	LICENSED TO:	INL								Specified by User.

Identifier:	TEV-693	
Revision:	1	
Effective Date:	05/15/10	Page: 119 of 151

1			Case Name: C:\Documents and S	ettings\mgq\Desktop\N	GNP\FY 09 Report\600 MV		
3	HY	INL Calgary, Alberta	Unit Set: NGNP1	Unit Set: NGNP1			
4 5	in the second se	CANADA	Date/Time: Thu Oct 01 11:50:20	2009			
6							
7		Spreadsheet: High	Temperature Electrolys	SIS @IPL1	Units Set: Electrolysis		
9			CONNECTIONS				
10 11			Imported Variables				
12 13	Cell	Object	Variable Description		Value		
14	D3	Material Stream: Cathode @TPL1	Temperature		1073.2 K		
15	A8	Material Stream: Process In @TPL1	Pressure		5.0000e+006 N/m2		
16	E2	Material Stream: Process In @TPL1	Comp Mole Frac (H2O)		0.90000		
17	F2	Material Stream: Process In @TPL1	Comp Mole Frac (Hydrogen)		0.10000		
18	G2	Material Stream: Sweep Gas In @TPL1	Comp Mole Frac (Oxygen)		0.00014		
19	E3	Material Stream: Cathode @TPL1	Comp Mole Frac (H2O)		0.30000		
20	F3	Material Stream: Cathode @TPL1	Comp Mole Frac (Hydrogen)		0.70000		
21	G3	Material Stream: Sweep Gas/O2 Out @TF	Comp Mole Frac (Oxygen)		0.50000		
22 23	B11 B12	SpreadSheetCell: Electrolysis Input and O	B2: Number of Cells		1.057e+006		
23 24	B12 B13	SpreadSheetCell: Electrolysis Input and O SpreadSheetCell: Electrolysis Input and O	B3: Cell Area B4: Current Density (Amperes/cm ²)		225.0 cm2 0.6989		
24 25	B13 B16	SpreadSheetCell: Electrolysis input and O SpreadSheetCell: Temp Average ASR@B2	B4: Current Density (Amperes/cm*2) B2: Temp Aver ASR		0.4000		
26	D11	Energy Stream: Electrolysis Heating @T	Heat Flow		2.138e+005 kW		
20	D12	Energy Stream: Electrodysis reading @Th Energy Stream: Electrode Heat @TPL1	Heat Flow		71.04 kW		
28	012				71.011		
29		Expo	rted Variables' Formula Results				
30	Cell	Object	Variable Description		Value		
31	B15	Molar Flow of Oxygen @TPL1	Molar Flow		430.75 gmole/s		
32	B19	Electrolysis Power @TPL1	Power	-2.138e+005 kW			
33 34	B20	Process Heat @TPL1	Heat Flow		-4.865e-005 kW		
35			PARAMETERS				
36							
37			Exportable Variables				
38	Cell	Visible Name	Variable Description	Variable Type	Value		
39	A1	A1: A1 for Gibbs Formation Energy	A1 for Gibbs Formation Energy	Gibbs. Coeff. CA	2.382e+005 J/gmole		
40	A2	A2: A2 for Gibbs Formation Energy	A2 for Gibbs Formation Energy	Gibbs. Coeff. CB	39.95 J/gmole-K		
41	A3	A3: A3 for Gibbs Formation Energy	A3 for Gibbs Formation Energy	Gibbs. Coeff. CC	3.319e-003 kJ/gmol-K		
42	A4	A4: A4 for Gibbs Formation Energy (kJ/gmol-K*	A4 for Gibbs Formation Energy (kJ/gmol-K^3)		-3.532e-008		
43	A5	A5: A5 for Gibbs Formation Energy	A5 for Gibbs Formation Energy	Gibbs. Coeff. CB	-12.85 J/gmole-K		
44	A6	A6: Fa Faraday Number (J/Volt-gmole)	Fa Faraday Number (J/Volt-gmole)		9.649e+004		
45 46	A7	A7: R Universal Gas Constant	R Universal Gas Constant	Entropy	8.314 J/gmole-K		
46 47	A9 B14	A9: Standard Pressure B14:	Standard Pressure	Pressure	1.0132e+005 N/m2		
47 48	B14 B15	B14: B15: Molar Flow	Molar Flow	 Flow	157.2 430.75 gmole/s		
40 49	B15 B17	B17:	WORT FOW	Vapour Fraction	1.0067		
49 50	B17 B18	B17. B18:		Vapour Fraction	1.2862		
51	B19	B19: Power	Power	Power	-2.138e+005 kW		
52	B20	B20: Heat Flow	Heat Flow	Energy	-4.865e-005 kW		
53	D4	D4:		Temperature	-1.3642e-012 K		
54	D6	D6:		Temperature	1073.1 K		
55	D8	D8:			3.501e-007		
56	D9	D9:			2.567e+005		
57	E4	E4:		Vapour Fraction	-0.6000		
58	E5	E5:		Vapour Fraction	0.3336		
59	F4	F4:		Vapour Fraction	0.6000		
60	F5	F5:		Vapour Fraction	-0.6194		
61	G4	G4:		Vapour Fraction	0.4999		
	G5	G5:		Vapour Fraction	-0.8452		
62		H2:			6.875e-003		
62 63	H2	L12.					
62 63 64	H3	H3:			24.67		
62 63		H4:	HYSYS.Plant v2.2.2 (Build 3806)		24.67 24.67 Page 7 of 14		

Identifier:	TEV-693	
Revision:	1	
Effective Date:	05/15/10	Page: 120 of 151

1			Case Name	: C:\Documents and S	Settings\mgq\Desktop\NG	NP\FY 09 Report\600 MV
3	H	INL Calgary, Alberta	Unit Set:	NGNP1		
4	No.	CANADA	Date/Time:	Date/Time: Thu Oct 01 11:50:20 2009		
6						
7		Spreadsheet: High T	emperatu	re Electroly	sis @TPL1 ပ	Jnits Set: Electrolysis
9 10			PARAMET	ERS		
11 12			Exportable Va	ariables		
13	Cell	Visible Name	Variable	Description	Variable Type	Value
14	H5	H5:		·		54.46
15	12	12:			Molar Enthalpy	1.887e+005 J/gmole
16	13	13:			Molar Enthalpy	1.887e+005 J/gmole
17	16	16:			Molar Enthalpy	1.887e+005 J/gmole
18	J2	J2:			Entropy	2.321e+008 J/gmole-k
19	J3	J3:			Entropy	2.321e+008 J/gmole-k
20	K2	K2:				0.7610
21	K3	K3:				1.091
22	K6	К6:			Vapour Fraction	1.0067
23	K7	К7:				0.9333
24			User Varia	bles	1	1
25 26			FORMUL			
27 28	Cell		Formula	A0		Result
29	B14	=B12*B13	. ormana			157.2
30	B15	=B11*B14/(4*A6)				430.75 gmole/s
31	B17	@IF(@ABS(D4)<1e-3,K6,K7)				1.0067
32	B18	=B17+B13*B16				1.2862
33	B19	=-B11*B18*B14/1000				-2.138e+005 kW
34	B20	=B19+D11+D12				-4.865e-005 kW
35	D20	=D2-D3				-1.3642e-012 K
36	D6	=(D2+D3)/2				1073.1 K
37	D8	=1/(2*A6*H4*F4)				3.501e-007
38	D0	=-1/(2*A6*H4*F4*D4)				2.567e+005
39	E4	=E3-E2				-0.6000
40	E5					0.3336
40	 F4	=(E3*@LN(E3)-E3) - (E2*@LN(E2)-E2) =F3-F2				0.6000
41	F5					
42	 G4	=(F3*@LN(F3)-F3) - (F2*@LN(F2)-F2) =G3-G2				-0.6194
43 44	G5					0.4999
44 45		=(G3*@LN(G3)-G3) - (G2*@LN(G2)-G2)				-0.8452
45 46	H2	=G2*A8/A9				6.875e-003
46 47	H3	=G3*A8/A9				24.67
47 48	H4	=H3-H2				24.67
	H5	=(H3*@LN(H3)-H3) - (H2*@LN(H2)-H2)	(D2)			54.46
49	12	=A1 + A2*D2+ A3*D2*2 + A4*D2*3 + A5*D2*@LN				1.887e+005 J/gmole
50	13	=A1 + A2*D3+ A3*D3^2 + A4*D3^3 + A5*D3*@LN				1.887e+005 J/gmole
51	16	=A1 + A2*D6+ A3*D6*2 + A4*D6*3 + A5*D6*@LN		2) 0 5)		1.887e+005 J/gmole
52 53	J2	$= A1^{*}D2 + A2/2^{*}D2^{*}2 + A3/3^{*}D2^{*}3 + A4/4^{*}D2^{*}4 + A3/3^{*}D2^{*}2 + A3/3^{*}D2^{*}2 + A3/3^{*}D2^{*}4 + A3/3^{*}4 + A3/3^{*}4 + A3/3^{*}4 + A3/3^{*}4 + A3/3^{*}4 + A3/3^{*}4$				2.321e+008 J/gmole-k
	J3 = A1*D3 + A2/2*D3^2 + A3/3*D3^3 + A4/4*D3^4 + A5/2*D3^2*(@LN(D3)-0.5)				2.321e+008 J/gmole-k	
54 55	$\frac{K2}{K2} = \frac{1}{(2^*A6)^*(12-A7^*D2^*@LN(E2/(F2^*H2^*0.5)))}$				0.7610	
_				1.091		
56 57						1.0067
57 58	K7	=D9*(A7/2*(D3*2-D2*2)*((E5+F5)*H4 + H5/2*F4)		voot		0.9333
59 60		AB	Spreadsh C	D	E	F
60 61	1	2.382e+005 J/gmole * \$ibbs Formation Energy *	~	Temperature *	y H2O *	⊢ h H2 *
62	2	39.95 J/gmole-K * \$ibbs Formation Energy *	in *	1073.1 K	0.90000	0.10000
62 63		19e-003 kJ/gmol-K ² sibbs Formation Energy *	out *	1073.1 K 1073.2 K *	0.30000	0.10000
63 64	<u> </u>	-3.532e-008 * in Energy (kJ/gmol-K^3) *	Delta *	-1.3642e-012 K	-0.6000	0.70000
65	5	-3.532e-008 in Energy (kJ/gmol-K^3) - -12.85 J/gmole-K * \$ibbs Formation Energy *	Integration Coeff *	-1.30428-012 K	0.3336	-0.6194
66			HYSYS.Plant v2.2.2	(Build 3806)	0.3330	Page 8 of 14
50	Licensed		THOTO, FIGHT VZ.Z.Z	(Dalid 3000)		* Specified by user.

Licensed to: INL

Identifier:	TEV-693	
Revision:	1	
Effective Date:	05/15/10	Page: 121 of 151

1	1			Case Nam	e: C:\Documents and S	Settings\mgq\Desktop\N	IGNP\FY 09	Report\600 MV
3			Unit Set:	NGNP1				
4 5		•	CANADA	Date/Time	: Thu Oct 01 11:50:20	0 2009		
6		•		- (
7 8		Spread	dsheet: High	Temperati	ire Electroly		Units Set:	Electrolysis
9 10				Spreads	heet			
11	6	9.649e+004 *	Number (J/Volt-gmole) *	A∨erage *	1073.1 K			
12	7		Jni∨ersal Gas Constant *	0: 11 11	0.504.007			
13 14	8 9	5.0000e+006 N/m2 1.0132e+005 N/m2 *	Pressure * Standard Pressure *	C isothermal * C a∨erage *	3.501e-007 2.567e+005			
15	10	1.01020100014112		e average	2.0070.000			
16	11	Number of Cells *	1.057e+006 *	Electrolysis Heating *	2.138e+005 kW			
17	12	Cell Area *	225.0 cm2 *	Electrode Heat *	71.04 kW			
18 19	13 14	ensity (Amperes/cm^2) * Current (Amperes) *	0.6989 * 157.2					
20	15	Molar Flow of Oxygen *	430.75 gmole/s					
21		Resistance (ohm*cm^2) *	0.4000 *					
22		Nernst Potential (Volts) *	1.0067					
23		perating Voltage (Volts) *	1.2862				_	
24 25	19 20	Electrolysis Power * Process Heat *	-2.138e+005 kW -4.865e-005 kW					
26	20	G	-4.8056-005 KW		J	К		
27	1	y 02 *	y A *	Delta G *	Integral Delta G dT *	Nernst Voltage	*	
28	2	0.00014	6.875e-003	1.887e+005 J/gmole	2.321e+008 J/gmole-K	0.7610		
29	3	0.50000	24.67	1.887e+005 J/gmole	2.321e+008 J/gmole-K	1.091		
30	4	0.4999	24.67					
31 32	5	-0.8452	54.46	1.007-:005	la séla sursal t	1 0067		
33	6 7			1.887e+005 J/gmole	Isothermal * Average *	1.0067		
34	8				Avelage	0.8555		
34 35	9							
36	10							
37	11							
38 39	12 13							
	14							
40 41	15							
42	16							
43	17							
44	18							
45 46	19 20							
40	20							
48		Sprea	dsheet: Tem	p Average /	ASR @TPL1		Units Set:	Electrolysis
49 50		•			<u> </u>			
51				CONNECT	TIONS			
52 53	Imported Variables							
54	Ce	Cell Object Variable Description Value		/alue				
55	B1		II: Electrolysis Input and O		(ohms*cm*2)		0.2776	
56	A3		n: Process In @TPL1	Temperature			1073.1	
57 58	E1							
59		Exported Variables' Formula Results						
60	Cell Object Variable Description Value							
61								
62 63								
64								
65								
66		rotech Ltd.		HYSYS.Plant v2.2.2	2 (Build 3806)			age 9 of 14
_	Licensed to: INL * Specified by user.							

Identifier:	TEV-693	
Revision:	1	
Effective Date:	05/15/10	Page: 122 of 151

Init Set: NOMP1 Date:Time: NOMP1 Date:Time: Trude 01 11 50 2000 Spreadsheet: Temp Average ASR @TPL1 (continue(unit set: team Date:Time: Team Date:Time: Team Texportable Variable Sectorption Value Colspan="2">Value Temperature Torporture Torporture Value Colspan="2">Value Add A4 Temperature Value Add A4 Temperature Value Add A4 Temperature Value Add A4 Add A4 Add A4 Value Add A4 Value Value Value Add A4 Value Value Value Value Value Value	1		INI	Case Name:	C:\Documents and	Settings\mgq\Desktop\N	IGNP\FY 09 Report\600 M\
Cate/Time Thu Cxt 01 11 50 20 2009 SpreadSheet: Temp Average ASR @TPL1 (Continue(Units Set Excited Set	3	HY	Calgary, Alberta	Unit Set:	NGNP1		
Image: Spreadsheet: Temp Average ASR @TPL1 (continue: Units Set: Electrol) PARAMETERS Exportable Variables Colspan="2">Value Variable Variables Variable Variable Type Value	_		CANADA	Date/Time:	Thu Oct 01 11:50:2	0 2009	
Image: Section of the sectio	6						
Description PARAMETRY 12	-		Spreadsheet: Temp	Average AS	R @TPL1	(continued	Units Set: Electrolysis
International System Exportable Variables 10 Cell Variable Name Variable Description Variable Type Variable Type 16 A6 A6: Temperature 1073.1 K 17 A7 A7 A7 A7 A7 19 A8 A8 Temperature 1073.1 K 19 A7 A7 A7 Temperature 1073.1 K 10 A8 A8 Temperature 1073.1 K 10 A9 A8: Temperature 1073.1 K 11 A10 Temperature 1073.1 K 12 A12 Temperature 1073.1 K 13 A13 A13 A13 A14 Temperature 1073.1 K 14 A14 Temperature 1073.1 K Temperature 1073.1 K 14 A16 Temperature 1073.1 K Temperature 1073.1 K 14 A16 Temperature 1073.1 K Temperature 1073.1 K				PARAMETER	S		
I Cell Variable Name Variable Description Variable Type Value 11 Ad Ad: Ad: Temperature 1073.1 K 12 Ad Ad: Temperature 1073.1 K 12 Ad Ad: Temperature 1073.1 K 12 Ad Ad: Temperature 1073.1 K 13 Ad Ad: Temperature 1073.1 K 14 Ad Ad: Temperature 1073.1 K 15 Ad Ad: Temperature 1073.1 K 16 Ad Ad: Temperature 1073.1 K 17 Temperature 1073.1 K Temperature 1073.1 K 18 Ad: Ad: Temperature 1073.1 K 19 Ad: Ad: Temperature 1073.1 K 1073.1 K Temperature 1073.1 K Temperature 1073.1 K 107 Ad: Ad: Ad: Ad: Ad: 1073.1 K	11			Exportable Varia	ables		
Instruct Temperature 1073 1 K Id A6 A6: Temperature 1073 1 K Id A6 A6: Temperature 1073 1 K Id A7 A7 Temperature 1073 1 K Id A8 A6: Temperature 1073 1 K Id A9 A6: Temperature 1073 1 K Id A9 A6: Temperature 1073 1 K Id A9 A6: Temperature 1073 1 K Id A11 Temperature 1073 1 K Temperature 1073 1 K Id A12 A12 A12 A12 A13 A13: Temperature 1073 1 K Id A16 A16: Temperature 1073 1 K Temperature 1073 1 K Id A16 A16: Temperature 1073 1 K A13 Id A14	_	Cell	Visible Name			Variable Type	Value
10 A6 A6: Temperature 1073.1 K 10 A7 A7: Temperature 1073.1 K 10 A8 A8: Temperature 1073.1 K 10 A0 Temperature 1073.1 K 11 A10 Temperature 1073.1 K 12 A11 A11 A11 Temperature 1073.1 K 12 A12 A12 A12 Temperature 1073.1 K 12 A14 A12 Temperature 1073.1 K 13 A14 A14 Temperature 1073.1 K 14 A14 A14 Temperature 1073.1 K 15 A14 A14 A14 Temperature 1073.1 K 16 A14 A14 A14 A14 A14 A14 A14 A14 A14 A17 A14 A14 <td>14</td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td>	14				•		
Instruct AT <		A5	A5:			Temperature	1073.1 K
18 A8 A8: A8: A8: A8: Temperature 1073.1 K 19 A10 A00 Temperature 1073.1 K 10 A10 A00 Temperature 1073.1 K 11 A11 A11 Temperature 1073.1 K 12 A12 A12 Temperature 1073.1 K 12 A13 A13 A13 A13 A13 13 A14 A14 Temperature 1073.1 K 14 A14 A14 Temperature 1073.1 K 15 A15 A16 Temperature 1073.1 K 16 A16 Temperature 1073.1 K Temperature 1073.1 K 17 A17						Temperature	
19 A9 A13 Temperature 1073 I K 21 A13 A12 A12 A12 A12 A13 Temperature 1073 I K 22 A14 A14 A14 A14 Temperature 1073 I K 23 A15 A15 Temperature 1073 I K Temperature 1073 I K 23 A16 A18 A18 A18 A18 A18 A13 A17 Temperature 1073 I K 24 A19 A17 Temperature 1073 I K Temperature 1073 I K 24 A19 A16 A18 A18 A18 A18 A19 A17 A17 A17 A17 A17 A17 A17 A17 A18	-						
30 A10 A10 A10 Temperature 1073.1 K 21 A12 A12 Temperature 1073.1 K 21 A12 Temperature 1073.1 K 21 A13 A13 A13 Temperature 1073.1 K 21 A14 A14 Temperature 1073.1 K 25 A15 A16 Temperature 1073.1 K 26 A16 Temperature 1073.1 K 27 A17 A17 A17 A17 28 A18 A18 Temperature 1073.1 K 29 A19 A19 A19 A19 A19 A19 29 A19 A19 A19 A19 A10 Temperature 1073.1 K 29 A19 A19 A19 A19 A19 A10 Temperature 1073.1 K 20 A20 A20 A20 A20 A20 A20 A20 A20 A20 A20 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
21 A11 A11: A11: A11: Temperature 1073.1 K 22 A12 A12: Temperature 1073.1 K 23 A13 A13: Temperature 1073.1 K 24 A14 A14: Temperature 1073.1 K 25 A15 A15: Temperature 1073.1 K 26 A16 A16: Temperature 1073.1 K 27 A17 A17: Temperature 1073.1 K 28 A18 A18: A18: Temperature 1073.1 K 29 A14 A18: A19: Temperature 1073.1 K 29 A19 A19: Temperature 1073.1 K 20 A20 A20 A20 A20 A20 A20 31 B4 B4: 0.4000 A19: 32 B4 B4: 0.4000 33 B4 B4: 0.4000 34 B5 B5: 0.4000 35 B6							
22 A12 A12 A12 A12 A12 A12 A12 A13 A13 A14 Temperature 1073.1 K 21 A14 A14 A14 Temperature 1073.1 K 25 A15 A15 A16 Temperature 1073.1 K 25 A16 A16 Temperature 1073.1 K 27 A17 A17 A17 A17 A17 21 A13 A18 Temperature 1073.1 K 22 A20 Temperature 1073.1 K Temperature 1073.1 K 23 A39 A19 A18 Temperature 1073.1 K 24 A20 Temperature 1073.1 K Temperature 1073.1 K 25 B2 B2.1 Temp Aver ASR Temperature 0.4000 Temperature 1073.1 K 26 B3 B3 B3 Temp Aver ASR Temperature 0.4000 27 B4 B4 H1 Temperature <	-						
23 A13 A13: A14: Temperature 1073.1 K 23 A15 A15: Temperature 1073.1 K 23 A16 A16: Temperature 1073.1 K 24 A16 A16: Temperature 1073.1 K 25 A17 Temperature 1073.1 K Temperature 1073.1 K 25 A17 A17 Temperature 1073.1 K Temperature 1073.1 K 26 A19 A19: Temperature 1073.1 K 0.4000 26 A20 A20: A20 A20: A20 A20: A400	_						
2x At4 At4: At4: Importance 1073.1 K 29 At5 At5: Temperature 1073.1 K 27 At7 At7: Temperature 1073.1 K 27 At7 At7: Temperature 1073.1 K 28 At8 Temperature 1073.1 K 29 At9 At9 At9 At9 4 At9 At9 At9 At9 9 A20 40.00 28 B3 B3 B4 0.4000 29 B5 B5: 0.4000 29 B6 B6: 0.4000 29 B7 B7: 0.4000 29 B7 B7: 0.4000 20 B7 B7: 0.4000 30 B10 B10: 0.4000 31 B41 B14: 0.							
29 A15 A15 A15 A15 A15 A16 A17 Temperature 1073.1 K 20 A17 A17 Temperature 1073.1 K Temperature 1073.1 K 20 A18 A18 A18 Temperature 1073.1 K 20 A20 A20 A20 Control Temperature 0.4000 21 B3 B3. 0.4000 0.4000 21 B3 B3. 0.4000 23 B4 B4: 0.4000 24 B5 B5: 0.4000 25 B6 B6: 0.4000 26 B7 B7 0.4000 27 B8 B8: B8: 0.4000 28 B7 B7 0.4000 29 B18 B10: 0.4000 20 B10 B10:							
20 A16 A16: Temperature 1073.1 K 21 A17 A17. A17. A17. Temperature 1073.1 K 21 A18 A18. Temperature 1073.1 K 23 A18 A18. Temperature 1073.1 K 20 A19 A19. A19. A19. A19. 21 B3 B4. A20. 0.4000 21 B3 B3. 0.4000 23 B4 B4: 0.4000 24 B5 B5: 0.4000 25 B6 B6: 0.4000 26 B7 B7: 0.4000 27 B8 B8: 0.4000 28 B6 B6: 0.4000 29 B10 B10: 0.4000 29 B12 B12: B12: B14:	_						
27 A17 A17 A17 A17 A17 A17 A17 A17 A18 Temperature 1073.1 K 20 A18 A18 Temperature 1073.1 K 1073.1 K 20 A19 A19 Temperature 1073.1 K 1073.1 K 21 A20 A20 A20 A20 A000	_						
20 A18 A18: Comparature 1073.1 K 21 A19 A19: Temperature 1073.1 K 23 A20							
22 A19 A19: Component of the section	_						
420 A20: A20: 40.00 11 B2: Temp Aver ASR 0.4000 13 B3: B3: 0.4000 13 B4: B4: 0.4000 13: B4: B4: 0.4000 13: B4: B4: 0.4000 13: B4: B4: 0.4000 13: B5: 0.4000 0.4000 14: B1: 0.4000 0.4000 15: B10: 0.4000 0.4000 15: B12: B12: B12: 0.4000 16: B14:	-						
B3 B3: B3: 0.4000 33 B4 B4: 0.4000 34 B5 B5: 0.4000 35 B6 B6: 0.4000 36 B7 B7: 0.4000 37 B8 B8: 0.4000 38 B9 B9: 0.4000 39 B10 B10: 0.4000 41 B11: 0.4000 42 B13 B12: 0.4000 43 B12 B12: 0.4000 44 B14: B14: 0.4000 45 B16 B16: 0.4000 46 B15 B16: 0.4000 47 B18 B18: 0.4000 48 B19 B19: 0.4000 40	_					· ·	
B4 B4: 0.4000 34 B5 B6: 0.4000 35 B6 B6: 0.4000 36 B7 B7: 0.4000 37 B8 B8: 0.4000 38 B8: 0.4000 39 B9 B9: 0.4000 30 B10 B10: 0.4000 40 B11 B11: 0.4000 41 B12 E12: 0.4000 42 B13 B13: 0.4000 43 B14 B14: E12: 0.4000 44 B15 B15: 0.4000 44 B15 B16: 0.4000 45 B16 B16: 0.4000 46 B19 B19: 0.4000 51 C2<	31	B2	B2: Temp Aver ASR	Temp Aver ASR			0.4000
24 B5 B5: 0.4000 25 B6 B6: 0.4000 26 B7 0.4000 27 B8 B8: 0.4000 28 B8 B8: 0.4000 28 B9 B9: 0.4000 20 B10 0.4000 40 B11 B11: 0.4000 41 B12 B12: 0.4000 42 B13 B13: 0.4000 43 B14 B14: 0.4000 44 B14: 0.4000 45 B16 B16: 0.4000 46 B17 B17: 0.4000 47 B18 B18: B18: B18: B18: B18: B19: 0.4000 45 C2 C2: C2: C3	32	B3	B3:				0.4000
B6 B6: 0.4000 B7 B7: 0.4000 B8 B8: 0.4000 B9 B9: 0.4000 B10 B10: 0.4000 B11 B11: 0.4000 B12 B12: 0.4000 B13 B13: 0.4000 44 B14: 0.4000 45 B14 B14: 0.4000 46 B17 B17: 0.4000 47 B18 B18: B16: 0.4000 48 B14 B14: 0.4000 49 B16 B16: 0.4000 40 B17 B17: 0.4000 41 B18 B18: B18: B18: B19 B19: 0.4000 51 C2 C2: C2:	33	B4	B4:				0.4000
20 B7 B7: 0.4000 37 B8 B8: 0.4000 38 B9 B8: 0.4000 38 B10 B10: 0.4000 38 B10 B10: 0.4000 40 B11 B11: 0.4000 40 B12 B12: B12: 0.4000 41 B12 B12: 0.4000 42 B13 B13: 0.4000 43 B14 B14: B16: 0.4000 44 B15 B16: 0.4000 45 B16 B16: 0.4000 46 B19 B19: 0.4000 47 B18 B18: B18: B18: B18: B18: 51 C2 C2: C2: 19.20 52 C3		B5	B5:				0.4000
31 B8 B8: 0.4000 33 B9 B9: 0.4000 34 B10 0.4000 35 B10 B10: 0.4000 36 B11 B11: 0.4000 41 B12 B12: 0.4000 42 B13 B13: 0.4000 43 B14 B14: 0.4000 44 B15 B15: 0.4000 44 B16 B16: 0.4000 45 B14 B17: 0.4000 46 B17 B17: 0.4000 47 B18 B18: 0.4000 48 B19 B19: 0.4000 49 B20 B20: 19.20 50 C1 C1: Temperature 1073.1 K 51 C2 C2: Temperature 1073.1 K 52 C3 <t< td=""><td></td><td>B6</td><td>B6:</td><td></td><td></td><td></td><td>0.4000</td></t<>		B6	B6:				0.4000
B9 B9: 0.4000 38 B10 B10; 0.4000 41 B11: 0.4000 41 B12 B12; 0.4000 42 B13 B13; 0.4000 43 B14 B14; 0.4000 44 B15 0.4000 45 B16 B16; 0.4000 46 B15 B15; 0.4000 47 B18 B18; 0.4000 48 B19 B19; 0.4000 49 B20 B20; 0.4000 49 B20 B20; 0.4000 40 C1 C1: Temperature 1073.1 K 52 C3 C3; C3; Temperature 1073.1 K 52 C4 C4: Temperature 1073.1 K 53	_						
38 B10 B10: 0.4000 40 B11 B11: 0.4000 41 B12 B12: 0.4000 42 B13 B13: 0.4000 43 B14 B14: 0.4000 44 B15 B15: 0.4000 45 B16 B16: 0.4000 46 B17 B17: 0.4000 47 B18 B18: 0.4000 48 B19 B19: 0.4000 49 B20 B20: 0.4000 49 B20 B20: 0.4000 40 C2 C2: C2: 0.4000 41 C4: 0.4000 52 C4 C4: 0.4000 43 B20: S20: S20:							
40 B11 B11: 0.4000 41 B12 B13: 0.4000 42 B13 B13: 0.4000 42 B13 B13: 0.4000 42 B13 B13: 0.4000 43 B14 B14: 0.4000 44 B15 B15: 0.4000 45 B16 0.4000 46 B17 B17: 0.4000 47 B18 B18: 0.4000 48 B19 B19: 0.4000 49 B20 B20: 0.4000 40 B20 B20: 19.20 51 C1 C1: Temperature 1073.1 K 52 C3 C3: C3: C3: C3: 54 C4: Temperature 1073.1 K C4 55 C6 C6: C6: Temperature 1073.1 K	-						
41 B12 B12: 0.4000 42 B13 B13: 0.4000 43 B14: 0.4000 44 B15 0.4000 45 B16 B16: 0.4000 46 B17 B17: 0.4000 47 B18 B18: 0.4000 48 B19 B19: 0.4000 49 B19 B19: 0.4000 40 B18 B18: 0.4000 41 B19 B19: 0.4000 42 B20 B20: 0.4000 43 B19 B19: 0.4000 44 B20 B20: 0.4000 45 C1 C1: Temperature 1073.1 K 52 C3 C3: Temperature 1073.1 K 53 C4 C4: C4: Temperature 1073.1 K 54 C5 </td <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	_						
42 B13 B13: 0.4000 43 B14 B14: 0.4000 44 B15 B15: 0.4000 45 B16 B16: 0.4000 46 B17 B17: 0.4000 47 B18 B18: 0.4000 48 B19 B19: 0.4000 49 B20 B20: 0.4000 40 B20 B20: 0.4000 41 B19 B19: 0.4000 42 B20 B20: 0.4000 43 B20 B20: 19.20 50 C1 C1: Temperature 1073.1 K 51 C2 C2: Temperature 1073.1 K 52 C3 C3: C3: C4 C4: 53 C4 C4: Temperature 1073.1 K 54 C5 C5: Temperature 1073.1 K	_						
43 B14 B14: 0.4000 44 B15 B15: 0.4000 45 B16 B16: 0.4000 46 B17 B17: 0.4000 47 B18 B18: 0.4000 48 B19 B19: 0.4000 49 B20 B20: 0.4000 49 B20 B20: 0.4000 49 B20 B20: 0.4000 40 C1: Temperature 1073.1 K 51 C2 C2: Temperature 1073.1 K 52 C3 C3: Temperature 1073.1 K 53 C4 C4: Temperature 1073.1 K 54 C5 C5: Temperature 1073.1 K 55 C6 C6: Temperature 1073.1 K 56 C6 C6: Temperature 1073.1 K 57 C8 C8: C9 C9: Temperature </td <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	_						
44 B15 B15: 0.4000 45 B16 B16: 0.4000 46 B17 B17: 0.4000 47 B18 B18: 0.4000 48 B19 B19: 0.4000 49 B20 B20: 19.20 50 C1 C1: Temperature 1073.1 K 51 C2 C2: C2: 1073.1 K 52 C3 C3: Temperature 1073.1 K 53 C4 C4: C4: 1073.1 K 54 C5 C5: Temperature 1073.1 K 55 C6 C6: Temperature 1073.1 K 56 C7 C7: Temperature 1073.1 K 56 C9 C9: C3: C3: Temperature 1073.1 K 56 C9 C9: Temperature 1073.1 K Temperature 1073.1 K 57 C8 C8: C8: Temperature 1073.1 K	-						
45 B16 B16: 0.4000 46 B17 B17: 0.4000 47 B18 B18: 0.4000 48 B19 B19: 0.4000 49 B20 B20: 19.20 50 C1 C1: Temperature 1073.1 K 51 C2 C2: Temperature 1073.1 K 52 C3 C3: Temperature 1073.1 K 53 C4 C4: Temperature 1073.1 K 54 C5 C5: C5: C5: C5: 55 C6: C6: Temperature 1073.1 K 56 C7 C7: Temperature 1073.1 K 57 C8 C8: Temperature 1073.1 K 58 C9 C9: C9: Temperature 1073.1 K 59 C10 C10: Temperature 1073.1 K 59 C10 C10: Temperature 1073.1 K 50 C11							
46 B17 B17: 0.4000 47 B18 B18: 0.4000 48 B19 B19: 0.4000 49 B20 B20: 0.4000 40 B20 B20: 19.20 50 C1 C1: Temperature 1073.1 K 51 C2 C2: Temperature 1073.1 K 52 C3 C3: Temperature 1073.1 K 52 C3 C3: Temperature 1073.1 K 53 C4 C4: Temperature 1073.1 K 54 C5 C5: Temperature 1073.1 K 55 C6 C6: Temperature 1073.1 K 56 C7 C7: Temperature 1073.1 K 57 C8 C8: Temperature 1073.1 K 58 C9 C9: Temperature 1073.1 K 59 C10 <t< td=""><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	_						
47 B18 B18: 0.4000 48 B19 B19: 0.4000 49 B20 B20: 19.20 50 C1 C1: Temperature 1073.1 K 51 C2 C2: Temperature 1073.1 K 52 C3 C3: Temperature 1073.1 K 53 C4 C4: Temperature 1073.1 K 54 C5 C5: Temperature 1073.1 K 55 C6 C6: Temperature 1073.1 K 56 C7 C7: Temperature 1073.1 K 57 C8 C8: Temperature 1073.1 K 58 C9 C9: Temperature 1073.1 K 58 C10 C10: Temperature 1073.1 K 59 C10 C10: Temperature 1073.1 K 59 C10 C10: Temperature 1073.1 K 50 C10 C11: T1: T1: T1: 50 C10	_						
48 B19 B19: 0.4000 49 B20 B20: 19.20 50 C1 C1: Temperature 1073.1 K 51 C2 C2: Temperature 1073.1 K 52 C3 C3: Temperature 1073.1 K 53 C4 C4: Temperature 1073.1 K 54 C5 C5: Temperature 1073.1 K 55 C6 C6: Temperature 1073.1 K 56 C7 C7: Temperature 1073.1 K 57 C8 C8: Temperature 1073.1 K 58 C9 C9: Temperature 1073.1 K 59 C10 C10: Temperature 1073.1 K 59 C10 C10: Temperature 1073.1 K 50 C11 C11: C11: Temperature 1073.1 K 50 C10 C10: Temperature 1073.1 K 51 C11 C11: Temperature 1073.1 K 52							
49 B20 B20: 19.20 50 C1 C1: Temperature 1073.1 K 51 C2 C2: Temperature 1073.1 K 52 C3 C3: Temperature 1073.1 K 53 C4 C4: Temperature 1073.1 K 54 C5 C5: Temperature 1073.1 K 55 C6 C6: Temperature 1073.1 K 56 C7 C7: Temperature 1073.1 K 56 C6 C6: Temperature 1073.1 K 57 C8 C8: Temperature 1073.1 K 58 C9 C9: Temperature 1073.1 K 58 C10 C10: Temperature 1073.1 K 59 C10 C10: Temperature 1073.1 K 59 C10 C10: Temperature 1073.1 K 50 C11 C11: C11: Temperature 1073.1 K <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	_						
50 C1 C1: Temperature 1073.1 K 51 C2 C2: Temperature 1073.1 K 52 C3 C3: Temperature 1073.1 K 53 C4 C4: Temperature 1073.1 K 54 C5 C5: Temperature 1073.1 K 55 C6 C6: Temperature 1073.1 K 56 C7 C7: Temperature 1073.1 K 57 C8 C8: Temperature 1073.1 K 58 C9 C9: Temperature 1073.1 K 59 C10 C10: Temperature 1073.1 K 59 C10 C10: Temperature 1073.1 K 59 C10 C10: Temperature 1073.1 K 50 C10 C10: Temperature 1073.1 K 51 C11 C11: C11: Temperature 1073.1 K 52 C13 C13: C13: Temperature 1073.1 K 52 C14 C14: C14: Temperature	_						
61 C2 C2: Temperature 1073.1 K 52 C3 C3: Temperature 1073.1 K 53 C4 C4: Temperature 1073.1 K 54 C5 C5: Temperature 1073.1 K 55 C6 C6: Temperature 1073.1 K 56 C7 C7: Temperature 1073.1 K 57 C8 C8: Temperature 1073.1 K 58 C9 C9: 1073.1 K Temperature 1073.1 K 58 C9 C9: Temperature 1073.1 K 59 C10 C10: Temperature 1073.1 K 59 C10 C10: Temperature 1073.1 K 50 C11 C11: C11: Temperature 1073.1 K 51 C12 C12: C13 C13: Temperature 1073.1 K 52 C13 C13: C13: Temperature 1073.1 K 52 C13 C13: C14: Temperature 1073.1 K 53 <td></td> <td></td> <td></td> <td></td> <td></td> <td>Temperature</td> <td></td>						Temperature	
52 C3 C3: Temperature 1073.1 K 53 C4 C4: Temperature 1073.1 K 54 C5 C5: Temperature 1073.1 K 56 C6 C6: Temperature 1073.1 K 56 C7 C7: Temperature 1073.1 K 56 C7 C7: Temperature 1073.1 K 57 C8 C8: Temperature 1073.1 K 58 C9 C9: 1073.1 K Temperature 1073.1 K 58 C9 C9: Temperature 1073.1 K 59 C10 C10: Temperature 1073.1 K 59 C11 C11: C11: Temperature 1073.1 K 60 C11 C11: C12: Temperature 1073.1 K 61 C12 C12: C13: C13: C13: C13: C13: C14: 1073.1 K 63 C14 C14: C14: Temperature 1073.1 K 64 C15 C15: C16: T	51	C2	C2:				1073.1 K
54 C5 C5: Temperature 1073.1 K 56 C6 C6: Temperature 1073.1 K 56 C7 C7: Temperature 1073.1 K 57 C8 C8: Temperature 1073.1 K 57 C8 C8: Temperature 1073.1 K 58 C9 C9: Temperature 1073.1 K 59 C10 C10: Temperature 1073.1 K 50 C11 C11: Temperature 1073.1 K 51 C12 C12: Temperature 1073.1 K 52 C13 C13: Temperature 1073.1 K 52 C13 C13: Temperature 1073.1 K 53 C14 C14: Temperature 1073.1 K 54 C15 C15: Temperature 1073.1 K 56 C16 C16: Temperature 1073.1 K		C3				Temperature	1073.1 K
55 C6 C6: Temperature 1073.1 K 56 C7 C7: Temperature 1073.1 K 57 C8 C8: Temperature 1073.1 K 58 C9 C9: Temperature 1073.1 K 59 C10 C10: Temperature 1073.1 K 60 C11 C11: Temperature 1073.1 K 61 C12 C12: Temperature 1073.1 K 62 C13 C13: Temperature 1073.1 K 63 C14 C14: Temperature 1073.1 K 64 C15 C15: Temperature 1073.1 K						-	
56 C7 C7: Temperature 1073.1 K 57 C8 C8: Temperature 1073.1 K 58 C9 C9: Temperature 1073.1 K 59 C10 C10: Temperature 1073.1 K 60 C11 C11: Temperature 1073.1 K 61 C12 C12: Temperature 1073.1 K 62 C13 C13: Temperature 1073.1 K 63 C14 C14: Temperature 1073.1 K 64 C15 C15: Temperature 1073.1 K							
57 C8 C8: Temperature 1073.1 K 58 C9 C9: Temperature 1073.1 K 59 C10 C10: Temperature 1073.1 K 60 C11 C11: Temperature 1073.1 K 61 C12 C12: Temperature 1073.1 K 62 C13: C13: Temperature 1073.1 K 63 C14 C14: Temperature 1073.1 K 64 C15 C15: Temperature 1073.1 K							
58 C9 C9: Temperature 1073.1 K 59 C10 C10: Temperature 1073.1 K 59 C11 C11: Temperature 1073.1 K 60 C11 C11: Temperature 1073.1 K 61 C12 C12: Temperature 1073.1 K 62 C13 C13: Temperature 1073.1 K 63 C14 C14: Temperature 1073.1 K 64 C15 C15: Temperature 1073.1 K 66 C16 C16: Temperature 1073.1 K							
59 C10 C10: Temperature 1073.1 K 60 C11 C11: Temperature 1073.1 K 61 C12 C12: Temperature 1073.1 K 62 C13 C13: Temperature 1073.1 K 63 C14 C14: Temperature 1073.1 K 64 C15 C15: Temperature 1073.1 K 65 C16 C16: Temperature 1073.1 K							
60 C11 C11: Temperature 1073.1 K 61 C12 C12: Temperature 1073.1 K 62 C13 C13: Temperature 1073.1 K 63 C14 C14: Temperature 1073.1 K 64 C15 C15: Temperature 1073.1 K 65 C16 C16: Temperature 1073.1 K	_						
61 C12 C12: Temperature 1073.1 K 62 C13 C13: Temperature 1073.1 K 63 C14 C14: Temperature 1073.1 K 64 C15 C15: Temperature 1073.1 K 65 C16 C16: Temperature 1073.1 K	-						
62 C13 C13: Temperature 1073.1 K 63 C14 C14: Temperature 1073.1 K 64 C15 C15: Temperature 1073.1 K 65 C16 C16: Temperature 1073.1 K							
63 C14 C14: Temperature 1073.1 K 64 C15 C15: Temperature 1073.1 K 65 C16 C16: Temperature 1073.1 K							
64 C15 C15: Temperature 1073.1 K 65 C16 C16: Temperature 1073.1 K							
66 C16 C16: Temperature 1073.1 K	-						
						-	
66 Hyprotech Ltd. HYSYS.Plant v2.2.2 (Build 3806) Page 10 of 1	_			HYSYS Plant v2.2.2 (Bi	ild 3806)	romporatoro	Page 10 of 14

Licensed to: INL

Identifier:	TEV-693	
Revision:	1	
Effective Date:	05/15/10	Page: 123 of 151

2	Sec.	INL	Case Name:	C:\Documents and	Settings\mgq\Desktop\N	GNP\FY 09 Report\600 M\
3	HY	Calgary, Alberta	Unit Set:	NGNP1		
4 5		CANADA	Date/Time:	Thu Oct 01 11:50:2	2009	
6					(
7 8		Spreadsheet: Temp Ave	erage AS	R@IPL1	(continued	Units Set: Electrolysis
9			PARAMETER	,		
10 11						
12		Exp	oortable Varia	ables		
13	Cell	Visible Name	Variable Des	cription	Variable Type	Value
14	C17	C17:			Temperature	1073.1 K
15 16	C18 C19	C18: C19:			Temperature Temperature	1073.1 K 1073.1 K
17	D1	D1:				0.4000
18	D2	D2:				0.4000
19	D3	D3:				0.4000
20	D4	D4:				0.4000
21	D5	D5:				0.4000
22 23	D6 D7	D6:				0.4000
23 24	D7 D8	D7: D8:				0.4000
24	D9	D9:				0.4000
26	D10	D10:				0.4000
27	D11	D11:				0.4000
28	D12	D12:				0.4000
29	D13	D13:				0.4000
30	D14	D14:				0.4000
31 32	D15	D15:				0.4000
33	D16 D17	D16: D17:				0.4000
34	D18	D18:				0.4000
35	D19	D19:				0.4000
36	E1	E1:			Temperature	1073.1 K
37	E2	E2:			Temperature	1073.1 K
38	E3	E3:			Temperature	1073.1 K
39 40	E4	E4:			Temperature	1073.1 K
40	E5 E6	E5: E6:			Temperature Temperature	1073.1 K 1073.1 K
42	E7	E7:			Temperature	1073.1 K
43	E8	E8:			Temperature	1073.1 K
44	E9	E9:			Temperature	1073.1 K
45	E10	E10:			Temperature	1073.1 K
46	E11	E11:			Temperature	1073.1 K
47	E12	E12:			Temperature	1073.1 K
48 49	E13 E14	E13: E14:			Temperature Temperature	1073.1 K 1073.1 K
49 50	 F1	F1:				0.4000
51	F2	F2:				0.4000
52	F3	F3:				0.4000
53	F4	F4:				0.4000
54	F5	F5:				0.4000
55	F6	F6:				0.4000
56 57	F7 F8	F7: F8:				0.4000
57 58	F0 F9	F8.				0.4000
59	F10	F10:				0.4000
60	F11	F11:				0.4000
61	F12	F12:				0.4000
62	F13	F13:				0.4000
63	F14	F14:				0.4000
64 65	F15	F15:			 Tomporaturo	0.4000 2.7285e-014 K
00	F16 Hyprote	F16:	6.Plant v2.2.2 (Bu		Temperature	Page 11 of 14

Identifier:	TEV-693	
Revision:	1	
Effective Date:	05/15/10	Page: 124 of 151

1 2			Case Name: C:\Documents and Settings\mgq\Desktop\NG	NP\FY 09 Report\600 M\
3	HEY	INL Calgary, Alberta	Unit Set: NGNP1	
4 5		CANADA	Date/Time: Thu Oct 01 11:50:20 2009	
6				
7 8		Spreadsheet: Temp Ave	erage ASR @TPL1 (continue، س	nits Set: Electrolysis
9 10			User Variables	
11			FORMULAS	
12 13	Cell	F	ormula	Result
14	A4	=A3+F16		1073.1 K
15	A5	=A4+F16		1073.1 K
16	A6	=A5+F16		1073.1 K
17	A7	=A6+F16		1073.1 K
18	A8	=A7+F16		1073.1 K
19	A9	=A8+F16		1073.1 K
20 21	A10 A11	=A9+F16 =A10+F16		1073.1 K 1073.1 K
21	A11 A12	=A10+F16 =A11+F16		1073.1 K 1073.1 K
22	A12 A13	=A12+F16		1073.1 K
24	A14	=A13+F16		1073.1 K
25	A15	=A14+F16		1073.1 K
26	A16	=A15+F16		1073.1 K
27	A17	=A16+F16		1073.1 K
28	A18	=A17+F16		1073.1 K
29	A19	=A18+F16		1073.1 K
30	A20		D7+D9+D11+D13+D15+D17+D19+F2+F4+F6+F8+F10+F12+F1	40.00
31	B2	@if(E15==A3,F15,(1/3*F16*(B3+A20+B20+F15))/(E15-A	(3))	0.4000
32	B3	@EXP(10300/A3)*0.00003973+(B1-0.463)		0.4000
33	B4	@EXP(10300/A4)*0.00003973+(B1-0.463)		0.4000
34 35	B5 B6	@EXP(10300/A5)*0.00003973+(B1-0.463) @EXP(10300/A6)*0.00003973+(B1-0.463)		0.4000
36	B7	@EXP(10300/A7)*0.00003973+(B1-0.463)		0.4000
37	B8	@EXP(10300/A8)*0.00003973+(B1-0.463)		0.4000
38	B9	@EXP(10300/A9)*0.00003973+(B1-0.463)		0.4000
39	B10	@EXP(10300/A10)*0.00003973+(B1-0.463)		0.4000
40	B11	@EXP(10300/A11)*0.00003973+(B1-0.463)		0.4000
41	B12	@EXP(10300/A12)*0.00003973+(B1-0.463)		0.4000
42	B13	@EXP(10300/A13)*0.00003973+(B1-0.463)		0.4000
43	B14	@EXP(10300/A14)*0.00003973+(B1-0.463)		0.4000
44	B15	@EXP(10300/A15)*0.00003973+(B1-0.463)		0.4000
45 46	B16 B17	@EXP(10300/A16)*0.00003973+(B1-0.463)		0.4000
40 47	B17 B18	@EXP(10300/A17)*0.00003973+(B1-0.463) @EXP(10300/A18)*0.00003973+(B1-0.463)		0.4000
48	B10 B19	@EXP(10300/A19)*0.00003973+(B1-0.463)		0.4000
49	B20		D8+D10+D12+D14+D16+D18+F1+F3+F5+F7+F9+F11+F13)	19.20
50	C1	=A19+F16	·····	1073.1 K
51	C2	=C1+F16		1073.1 K
52	C3	=C2+F16		1073.1 K
53	C4	=C3+F16		1073.1 K
54	C5	=C4+F16		1073.1 K
55	C6	=C5+F16		1073.1 K
56 57	C7 C8	=C6+F16 =C7+F16		1073.1 K 1073.1 K
58	C9	=C8+F16		1073.1 K
59	C10	=C9+F16		1073.1 K
60	C11	=C10+F16		1073.1 K
61	C12	=C11+F16		1073.1 K
62	C13	=C12+F16		1073.1 K
63	C14	=C13+F16		1073.1 K
64	C15	=C14+F16		1073.1 K
65	C16	=C15+F16		1073.1 K
66	Hyprote	ch Ltd. HYSYS	S.Plant v2.2.2 (Build 3806)	Page 12 of 14

Identifier:	TEV-693	
Revision:	1	
Effective Date:	05/15/10	Page: 125 of 151

Difference Casery, Alteria (ANDA) Duri Set: NOMP1 Def Time The Cabery Alteria (Control of the Cabery Alteria) Def Time The Cabery Alteria (Control of the Cabery Alteria) Def Time The Cabery Alteria (Control of the Cabery Alteria) Def Time The Cabery Alteria (Control of the Cabery Alteria) Def Time The Cabery Alteria (Control of the Cabery Alteria) Def Time The Cabery Alteria (Control of the Cabery Alteria) Def Time The Cabery Alteria (Control of the Cabery Alteria) Def Time The Cabery Alteria (Control of the Cabery Alteria) Def Time The Cabery Alteria (Control of the Cabery Alteria) Def Time The Cabery Alteria (Control of the Cabery Alteria) Def Time The Cabery Alteria (Control of the Cabery Alteria) Def Time The Cabery Alteria (Control of the Cabery Alteria) Def Time Def	1			Case Name: C:\Documents and Settings\mgq\Desktop\NG	NP\FY 09 Report\600 MV	
Date Time Thu Oct D1 11 50 20 2009 Spreadsheet: Temp Average ASR @TPL1 (continuer units set Destroyens Colin Continuer Units Set Destroyens Colin Colin Tormain Termain Termain Colin Colin Tormain Termain Termain Colin Colin Co	3		INL Calgary, Alberta	Unit Set: NGNP1		
Spreadsheet: Temp Average ASR @TPL1 (continue: Units Set: Electroyeis Cell Formula Result Colspan="2">Colspan="2">Result Colspan="2">Colspan="2" Colspan="2" Colspan="2"	4		CANADA	Date/Time: Thu Oct 01 11:50:20 2009		
Spreadsheet: Temp Average ASR @TPL1 (continue: Units Set: Detertoyeas FORMULAS Cell Result Colspan="2">Colspan="2">Result Cell Result Cell Result Cell Result Cell Result Cell Result Tormal Result Cell Cell <th colspan<="" th=""><th>5 6</th><th></th><th></th><th></th><th></th></th>	<th>5 6</th> <th></th> <th></th> <th></th> <th></th>	5 6				
FORMULAS Cell Formula Result C17 =C16+F16 1073 1 K C18 =C17+F16 1073 1 K C19 =C16+F16 0.4000 C2 @EXP(10300LC)*C0000373+(B1-0.463) 0.4000 C3 @EXP(10300LC)*C000373+(B1-0.463) 0.4000 C6 @EXP(10300LC)*C000373+(B1-0.463) 0.4000 C6 @EXP(10300LC)*C000373+(B1-0.463) 0.4000 C7 @EXP(10300LC)*C000373+(B1-0.463) 0.4000 D11 @EXP(10300LC)*C000373+(B1-0.463) 0.4000 D12 @EXP(10300LC)*C000373+(B1-0.463) 0.4000 D13 @EXP(10300LC)*C000373+(B1-0.463) 0.4000 D14 @EXP(10300LC)*C000373+(B1-0.463) 0.4000 D15 @EXP(10300LC)*C000373+(B1-0.463) 0.4000 D16 @EXP(10300LC)*C000373+(B1-0.463) 0.4000 D16 @EXP(10300LC)*C000373+(B1-0.463) 0.400	7		Spreadsheet: Temp Ave	erage ASR @TPL1 (continuec	Jnits Set: Electrolysis	
Description FORMULAS Cell Formals Result C18 -C17+F16 1073.1 K C18 -C17+F16 1073.1 K C19 -C16+F16 1073.1 K C10 @EXP(1300C)*0.00003973+(61-0.463) 0.4000 D1 @EXP(1300C)*0.00003973+(61-0.463) 0.4000 D5 @EXP(1300C)*0.00003973+(61-0.463) 0.4000 D6 @EXP(1300C)*0.00003973+(61-0.463) 0.4000 D7 @EXP(1300C)*0.00003973+(61-0.463) 0.4000 D8 @EXP(1300C)*0.00003973+(61-0.463) 0.4000 D11 @EXP(1300C)*0.00003973+(61-0.463) 0.4000 D11 @EXP(1300C)*0.00003973+(61-0.463) 0.4000 D11 @EXP(1300C)*0.00003973+(61-0.463) 0.4000 D11 @EXP(1300C)*0.00003973+(61-0.463) 0.4000 D14 @EXP(1300C)*10.00003973+(61-0.463) 0.4000 D14 @EXP(1300C)*10.00003973+(61-0.463) 0.4000 D14 @EXP(1300C)*10.00003973+(61-0.463) 0.4000 D14 @EXP(1300C)*10.00003973+(61-0.463) 0.4000 <	8 9		· · ·	<u> </u>		
2 C17 =C16+F16 1073.1 K 2 C18 =C17+F16 1073.1 K 0 C18 =C17+F16 1073.1 K 0.1 @EXP(10300C2170.0000373+(B1-0.453) 0.4000 0.3 @EXP(10300C2170.0000373+(B1-0.453) 0.4000 0.5 @EXP(10300C2170.0000373+(B1-0.453) 0.4000 0.6 @EXP(10300C2170.0000373+(B1-0.453) 0.4000 0.6 @EXP(10300C2170.0000373+(B1-0.453) 0.4000 0.7 @EXP(10300C2170.0000373+(B1-0.453) 0.4000 0.9 @EXP(10300C2170.0000373+(B1-0.453) 0.4000 0.10 @EXP(10300C1370.0000373+(B1-0.453) 0.4000 0.11 @EXP(10300C1370.0000373+(B1-0.453) 0.4000 0.13 @EXP(10300C1370.0000373+(B1-0.453) 0.4000 0.14 @EXP(10300C1370.0000373+(B1-0.453) 0.4000 0.15 @EXP(10300C1370.0000373+(B1-0.453) 0.4000 0.16 @EXP(10300C1370.0000373+(B1-0.453) 0.4000 0.16 @EXP(10300C1370.0000373+(B1-0.453) 0.4000 0.16 @EXP(10300C1370.0000373+(B1-0.453) <th>10</th> <th></th> <th></th> <th></th> <th></th>	10					
C18 c17+F19 1073.1 K C19 c124F16 1073.1 K C11 QEEXP(1300027) 0000373/H51-0.463) 0.4000 C2 QEEXP(1300027) 0000373/H51-0.463) 0.4000 D3 QEEXP(1300027) 0000373/H51-0.463) 0.4000 D5 QEEXP(1300027) 0000373/H51-0.463) 0.4000 D7 QEEXP(1300027) 0000373/H51-0.463) 0.4000 D7 QEEXP(1300027) 0000373/H51-0.463) 0.4000 D7 QEEXP(1300027) 0000373/H51-0.463) 0.4000 D11 QEEXP(1300027) 0000373/H51-0.463) 0.4000 D11 QEEXP(1300027) 0000373/H51-0.463) 0.4000 D11 QEEXP(1300027) 0000373/H51-0.463) 0.4000 D11 QEEXP(1300027) 0000373/H51-0.463) 0.4000 D14 QEEXP(1300027) 0000373/H51-0.463) 0.4000 D14 QEEXP(1300027) 0000373/H51-0.463) 0.4000 D14 QEEXP(1300027) 10000373/H51-0.463) 0.4000 D16 QEEXP(1300021) 10000373/H51-0.463) 0.4000 D16 QEEXP(1300021) 10000373/H51-0.463) 0.4000 D17<	11			Formula		
C (1) +C18+F18 1073.1 K D1 @EXP(10300C17)*0.0003973+(B1-0.483) 0.4000 D2 @EXP(10300C17)*0.0003973+(B1-0.483) 0.4000 D3 @EXP(10300C17)*0.0003973+(B1-0.483) 0.4000 D4 @EXP(10300C17)*0.0003973+(B1-0.483) 0.4000 D5 @EXP(10300C17)*0.0003973+(B1-0.483) 0.4000 D7 @EXP(10300C17)*0.0003973+(B1-0.483) 0.4000 D9 @EXP(10300C17)*0.0003973+(B1-0.483) 0.4000 D11 @EXP(10300C17)*0.0003973+(B1-0.483) 0.4000 D12 @EXP(10300C17)*0.0003973+(B1-0.483) 0.4000 D13 @EXP(10300C17)*0.0003973+(B1-0.483) 0.4000 D14 @EXP(10300C17)*0.0003973+(B1-0.483) 0.4000 D15 @EXP(10300C17)*0.0003973+(B1-0.483) 0.4000 D16 @EXP(10300C17)*0.0003973+(B1-0.483) 0.4000 D16 @EXP(10300C17)*0.0003973+(B1-0.483) 0.4000 D16 @EXP(10300C17)*0.0003973+(B1-0.483) 0.4000 D17 @EXP(10300C17)*0.0003973+(B1-0.483) 0.4000 D18 @EXP(10300C17)*0.0003973+(B1-0.483)						
D1 gEXR(10300C170.0003373(E1-0.463) 0.4000 D2 gEXR(10300C170.0003373(E1-0.463) 0.4000 D3 gEXR(10300C170.0003373(E1-0.463) 0.4000 D5 gEXR(10300C170.0003373(E1-0.463) 0.4000 D6 gEXR(10300C170.0003373(E1-0.463) 0.4000 D7 gEXR(10300C170.0003373(E1-0.463) 0.4000 D7 gEXR(10300C170.0003373(E1-0.463) 0.4000 D7 gEXR(10300C170.0003373(E1-0.463) 0.4000 D10 gEXR(10300C170.0003373(E1-0.463) 0.4000 D11 gEXR(10300C170.0003373(E1-0.463) 0.4000 D11 gEXR(10300C170.0003373(E1-0.463) 0.4000 D11 gEXR(10300C170.0003373(E1-0.463) 0.4000 D11 gEXR(10300C170.0003373(E1-0.463) 0.4000 D13 gEXR(10300C170.0003373(E1-0.463) 0.4000 D14 gEXR(10300C170.0003373(E1-0.463) 0.4000 D16 gEXR(10300C170.0003373(E1-0.463) 0.4000 D16 gEXR(10300C170.0003373(E1-0.463) 0.4000 D17 gEXR(10300C170.0000373(E1-0.463) 0.4000	14					
D2 @EXP(10300C370.00003973(E10.465) 0.4000 D4 @EXP(10300C370.00003973(E10.465) 0.4000 D5 @EXP(10300C370.00003973(E10.465) 0.4000 D6 @EXP(10300C370.00003973(E10.465) 0.4000 D7 @EXP(10300C370.00003973(E10.465) 0.4000 D7 @EXP(10300C370.00003973(E10.463) 0.4000 D10 @EXP(10300C370.00003973(E10.463) 0.4000 D11 @EXP(10300C370.00003973(E10.463) 0.4000 D11 @EXP(10300C370.00003973(E10.463) 0.4000 D12 @EXP(10300C370.00003973(E10.463) 0.4000 D13 @EXP(10300C170.00003973(E10.463) 0.4000 D14 @EXP(10300C170.00003973(E10.463) 0.4000 D15 @EXP(10300C170.00003973(E10.463) 0.4000 D16 @EXP(10300C170.00003973(E10.463) 0.4000 D16 @EXP(10300C170.00003973(E10.463) 0.4000 D16 @EXP(10300C170.00003973(E10.463) 0.4000 D17 @EXP(10300C170.00003973(E10.463) 0.4000 D18 @EXP(10300C170.00003973(E10.463) 0.4000 <td>15</td> <td></td> <td></td> <td></td> <td></td>	15					
2 02 05 04 05×110300C470 00003973+(81-0.463) 0.4000 D5 05×110300C470 00003973+(81-0.463) 0.4000 D6 05×110300C470 00003973+(81-0.463) 0.4000 D7 05×110300C470 00003973+(81-0.463) 0.4000 D8 05×110300C470 00003973+(81-0.463) 0.4000 D9 05×110300C470 00003973+(81-0.463) 0.4000 D10 05×110300C470 00003973+(81-0.463) 0.4000 D11 05×110300C470 00003973+(81-0.463) 0.4000 D12 05×110300C470 00003973+(81-0.463) 0.4000 D13 05×110300C470 00003973+(81-0.463) 0.4000 D14 05×110300C470 00003973+(81-0.463) 0.4000 D15 05×110300C470 00003973+(81-0.463) 0.4000 D16 05×110300C470 00003973+(81-0.463) 0.4000 D17 05×110300C470 00003973+(81-0.463) 0.4000 D18 05×110300C470 00003973+(81-0.463) 0.4000 D19 05×110300C170 00003973+(81-0.463) 0.4000 E11 0173 1 K 05×11 E2 =5×116	16					
D gb:RX(10300C3)*0:0003373:41:0.463) 0.4000 D gb:RX(10300C13)*0:0003373:41:0.463) 0.4000 E sb:R1:130:13:13:13:13:13:13:13:13:13:13:13:13:13:	17					
DB © EXP(13000CF)*00003973*(B1-0.463) 0.4000 D1 © EXP(10300CF)*00003973*(B1-0.463) 0.4000 D10 © EXP(10300CF)*0.00003973*(B1-0.463) 0.4000 D11 © EXP(10300CF)*0.00003973*(B1-0.463) 0.4000 D11 © EXP(10300CF)*0.00003973*(B1-0.463) 0.4000 D11 © EXP(10300CF)*0.00003973*(B1-0.463) 0.4000 D12 © EXP(10300CF)*0.00003973*(B1-0.463) 0.4000 D13 © EXP(10300CF)*0.00003973*(B1-0.463) 0.4000 D16 © EXP(10300CF)*0.00003973*(B1-0.463) 0.4000 D17 © EXP(10300CF)*0.00003973*(B1-0.463) 0.4000 D18 © EXP(10300CF)*0.00003973*(B1-0.463) 0.4000 D19 © EXP(10300CF)*0.00003973*(B1-0.463) 0.4000 D18 © EXP(10300CF)*0.00003973*(B1-0.463) 0.4000 D18 © EXP(10300CF)*0.00003973*(B1-0.463) 0.4000 D18 © EXP(10300CF)*0.00003973*(B1-0.463) 0.4000 E 24 =E14*F16 1073.1 K E 54 =E2*F16 1073.1 K E 54 =E2*F16 1073.1 K	18	D4				
D7 ©EXP(13300CF)*0.0003973*(81-0.463) 0.4000 D8 @EXP(10300C3)*0.00003973*(81-0.463) 0.4000 D10 @EXP(10300C1)*0.0003973*(81-0.463) 0.4000 D11 @EXP(10300C1)*0.0003973*(81-0.463) 0.4000 D12 @EXP(10300C1)*0.0003973*(81-0.463) 0.4000 D13 @EXP(10300C1)*0.0003973*(81-0.463) 0.4000 D14 @EXP(10300C1)*0.0003973*(81-0.463) 0.4000 D15 @EXP(10300C1)*0.0003973*(81-0.463) 0.4000 D16 @EXP(10300C1)*0.0003973*(81-0.463) 0.4000 D17 @EXP(10300C1)*0.0003973*(81-0.463) 0.4000 D18 @EXP(10300C1)*0.0003973*(81-0.463) 0.4000 D19 @EXP(10300C1)*0.0003973*(81-0.463) 0.4000 D11 @EXP(10300C1)*0.0003973*(81-0.463) 0.4000 D18 @EXP(10300C1)*0.0003973*(81-0.463) 0.4000 D18 @EXP(10300C1)*0.0003973*(81-0.463) 0.4000 E1 ===1+F16 1073.1 K E2 ==E1+F16 1073.1 K E3 ===2+F16 1073.1 K E4	19	D5	@EXP(10300/C5)*0.00003973+(B1-0.463)		0.4000	
D8 ©EXP(13000CF)*0.0003973+(B1-0.463) 0.4000 D10 @EXP(10300CF)*0.0003973+(B1-0.463) 0.4000 D11 @EXP(10300CF)*0.0003973+(B1-0.463) 0.4000 D12 @EXP(10300CF)*0.0003973+(B1-0.463) 0.4000 D13 @EXP(10300CF)*0.0003973+(B1-0.463) 0.4000 D14 @EXP(10300CF)*0.0003973+(B1-0.463) 0.4000 D15 @EXP(10300CF)*0.0003973+(B1-0.463) 0.4000 D16 @EXP(10300CF)*0.0003973+(B1-0.463) 0.4000 D17 @EXP(10300CF)*0.0003973+(B1-0.463) 0.4000 D18 @EXP(10300CF)*0.0003973+(B1-0.463) 0.4000 D19 @EXP(10300CF)*0.0003973+(B1-0.463) 0.4000 D19 @EXP(10300CF)*0.0003973+(B1-0.463) 0.4000 E 21 ===1+16 1073.1 K E 22 ==E1+16 1073.1 K E 23 ==E1+16 1073.1 K E 24 ==E1+16 1073.1 K E 15 ==E4+16 1073.1 K E 16 ==E3+16 1073.1 K E 17 ==E3+16 1073.1 K	20	D6	@EXP(10300/C6)*0.00003973+(B1-0.463)		0.4000	
DB @EXP(10300C9)*0.0003373+(B1-0.483) 0.4000 D101 @EXP(10300C11)*0.0000373+(B1-0.483) 0.4000 D113 @EXP(10300C12)*0.0000373+(B1-0.483) 0.4000 D114 @EXP(10300C14)*0.0000373+(B1-0.483) 0.4000 D114 @EXP(10300C14)*0.0000373+(B1-0.483) 0.4000 D116 @EXP(10300C14)*0.0000373+(B1-0.483) 0.4000 D116 @EXP(10300C14)*0.0000373+(B1-0.483) 0.4000 D117 @EXP(10300C14)*0.0000373+(B1-0.483) 0.4000 D118 @EXP(10300C14)*0.0000373+(B1-0.483) 0.4000 D119 @EXP(10300C14)*0.00003973+(B1-0.483) 0.4000 D119 @EXP(10300C14)*0.00003973+(B1-0.483) 0.4000 D116 @EXP(10300C14)*0.00003973+(B1-0.483) 0.4000 D118 @EXP(10300C14)*0.00003973+(B1-0.483) 0.4000 D119 @EXP(10300C14)*0.00003973+(B1-0.483) 0.4000 D119 @EXP(10300C14)*0.00003973+(B1-0.483) 0.4000 E11 =E14+F16 1073.1 K D119 @EXP(10300C14)*0.0003973+(B1-0.483) 0.4000 E110 =E12+F16	21	D7	@EXP(10300/C7)*0.00003973+(B1-0.463)		0.4000	
D10 @EXP(10300C11P0.00003973+(B1-0.463) 0.4000 D11 @EXP(10300C12P0.00003973+(B1-0.463) 0.4000 D13 @EXP(10300C13P0.00003973+(B1-0.463) 0.4000 D14 @EXP(10300C13P0.00003973+(B1-0.463) 0.4000 D15 @EXP(10300C13P0.00003973+(B1-0.463) 0.4000 D16 @EXP(10300C13P0.00003973+(B1-0.463) 0.4000 D17 @EXP(10300C13P0.00003973+(B1-0.463) 0.4000 D18 @EXP(10300C13P0.00003973+(B1-0.463) 0.4000 D19 @EXP(10300C13P0.00003973+(B1-0.463) 0.4000 D19 @EXP(10300C13P0.00003973+(B1-0.463) 0.4000 E12 =E14F16 1073.1 K E2 =E14F16 1073.1 K E3 =E24F16 1073.1 K E4 =E34F16 1073.1 K E5 =E4+F16 1073.1 K E6 =E34F16 1073.1 K E12 =E14F16 1073.1 K E14 =E14F16 1073.1 K E15 =E4+F16 1073.1 K E16 =E34F16	22	D8	@EXP(10300/C8)*0.00003973+(B1-0.463)		0.4000	
D11 @EXP(10300C11)*0.00003973+(81-0.43) 0.4000 D13 @EXP(10300C13)*0.00003973+(81-0.43) 0.4000 D14 @EXP(10300C13)*0.00003973+(81-0.43) 0.4000 D16 @EXP(10300C16)*0.00003973+(81-0.43) 0.4000 D17 @EXP(10300C16)*0.00003973+(81-0.43) 0.4000 D17 @EXP(10300C16)*0.00003973+(81-0.43) 0.4000 D18 @EXP(10300C16)*0.00003973+(81-0.43) 0.4000 D19 @EXP(10300C16)*0.00003973+(81-0.43) 0.4000 D19 @EXP(10300C16)*0.00003973+(81-0.43) 0.4000 E1 =C19+F18 1073.1 K E2 =E1+F16 1073.1 K E3 =E2+F16 1073.1 K E4 =E3+F16 1073.1 K E5 =E4+F16 1073.1 K E6 =E6+F16 1073.1 K E1 =E19+F16 1073.1 K E1 =E10+F16 1073.1 K E1 =E10+F16 1073.1 K E1 =E10+F16 1073.1 K E1 =E10+F16 1073.1 K <	23					
D12 @EXP(10300/C13/*0.0003973+(B1-0.463) 0.4000 D13 @EXP(10300/C13/*0.0003973+(B1-0.463) 0.4000 D15 @EXP(10300/C13/*0.0003973+(B1-0.463) 0.4000 D16 @EXP(10300/C13/*0.0003973+(B1-0.463) 0.4000 D17 @EXP(10300/C13/*0.00003973+(B1-0.463) 0.4000 D18 @EXP(10300/C13/*0.00003973+(B1-0.463) 0.4000 D19 @EXP(10300/C13/*0.00003973+(B1-0.463) 0.4000 D11 EE =E2+F16 1073.1 K D11 EE =E2+F16 1073.1 K D11 EE =E4+F16 1073.1 K D11 EE =E7+F16 1073.1 K D11 EE =E7+F16 1073.1 K D11 EE =E7+F16 1073.1 K D11 =E1+F16 1073.1	24					
D13 @EXP(10300/C13/*0.0003973+(B1-0.463) 0.4000 D14 @EXP(10300/C13/*0.0003973+(B1-0.463) 0.4000 D16 @EXP(10300/C13/*0.0003973+(B1-0.463) 0.4000 D17 @EXP(10300/C13/*0.00003973+(B1-0.463) 0.4000 D18 @EXP(10300/C13/*0.00003973+(B1-0.463) 0.4000 D19 @EXP(10300/C13/*0.00003973+(B1-0.463) 0.4000 D19 @EXP(10300/C13/*0.00003973+(B1-0.463) 0.4000 D19 @EXP(10300/C13/*0.00003973+(B1-0.463) 0.4000 E1 -C18+716 1073.1 K E2 =E1+F16 1073.1 K E3 =E2+F16 1073.1 K E4 =E3+F16 1073.1 K E5 =E6+F16 1073.1 K E6 =E5+F16 1073.1 K E1 =E1+F16 1073.1 K	25					
D14 @EXP(10300/C14 ¹⁰ 0.0003973+(B1-0.463) 0.4000 D15 @EXP(10300/C15 ¹⁰ 0.0003973+(B1-0.463) 0.4000 D17 @EXP(10300/C15 ¹⁰ 0.0003973+(B1-0.463) 0.4000 D18 @EXP(10300/C15 ¹⁰ 0.0003973+(B1-0.463) 0.4000 D19 @EXP(10300/C15 ¹⁰ 0.0003973+(B1-0.463) 0.4000 D19 @EXP(10300/C15 ¹⁰ 0.0003973+(B1-0.463) 0.4000 E1 -C18+F16 1073 1 K E2 =E1+F16 1073 1 K E3 =E2+F16 1073 1 K E4 =E3+F16 1073 1 K E5 =E4+F16 1073 1 K E6 =E5+F16 1073 1 K E7 =E6+F16 1073 1 K E16 =E7+F16 1073 1 K E17 =E16 1073 1 K E18 =E7+F16 1073 1 K E19 =E9+F16 1073 1 K E11 =E10+F16 1073 1 K E12 =E14+F16 1073 1 K E13 =E12+F16 1073 1 K E14 =E13+F16	26					
D15 @EXP(10300/C15)*0.00003973+(B1-0.463) 0.4000 D16 @EXP(10300/C15)*0.00003973+(B1-0.463) 0.4000 D17 @EXP(10300/C15)*0.00003973+(B1-0.463) 0.4000 D18 @EXP(10300/C15)*0.00003973+(B1-0.463) 0.4000 D19 @EXP(10300/C15)*0.00003973+(B1-0.463) 0.4000 E1 =C19+F16 1073.1 K E2 =E1+F16 1073.1 K E3 =E2+F16 1073.1 K E4 =E3+F16 1073.1 K E6 =E5+F16 1073.1 K E7 =E6+F16 1073.1 K E1 E1 =E1+F16 1073.1 K E1 E5 =E4+F16 1073.1 K E1 E6 =E5+F16 1073.1 K E1 E1 =E1+F16 1073.1 K E1 =E1+F16 1073.1 K 1073.1 K	27					
D16 @EXP(10300/C10)*0.00003973+(B1-0.463) 0.4000 D17 @EXP(10300/C10)*0.00003973+(B1-0.463) 0.4000 S118 @EXP(10300/C10)*0.00003973+(B1-0.463) 0.4000 S119 @EXP(10300/C10)*0.00003973+(B1-0.463) 0.4000 S119 @EXP(10300/C10)*0.00003973+(B1-0.463) 0.4000 S119 @EXP(10300/C10)*0.00003973+(B1-0.463) 1073.1 K S12 =E2+F16 1073.1 K S12 =E2+F16 1073.1 K S12 E4 =E3+F16 1073.1 K S12 E5 =E4+F16 1073.1 K S13 =E12+F16 1073.1 K 1073.1 K S14 =E13+F16 1073.1 K 1073.1 K <	28					
D17 @EXP(10300/C17)*0.00003973+(B1-0.463) 0.4000 2 D18 @EXP(10300/C18)*0.00003973+(B1-0.463) 0.4000 4 E1 =C19+F16 1073.1 K 5 E2 =E1+F16 1073.1 K 6 E3 =E2+F16 1073.1 K 7 E4 =E3+F16 1073.1 K 8 E5 =E4+F16 1073.1 K 9 E5 =E4+F16 1073.1 K 10 E5 =E4+F16 1073.1 K 10 E6 =E5+F16 1073.1 K 10 E7 =E6+F16 1073.1 K 10 E1 E8 =E7+F16 1073.1 K 10 E1 E1 =E10+F16 1073.1 K 11 E8 =E7+F16 1073.1 K 1073.1 K 12 E1 =E11+F16 1073.1 K 1073.1 K 13 E12 =E12+F16 1073.1 K 1073.1 K 14 E11 =E13+F16 1073.1 K 1073.1 K 15 E14 =E13+F16 1073.1 K 1073.1 K 16 E14 =E13+F16 1073.1 K 1073.1 K 1	29		• • • • • •			
D18 @EXP(10300/C18)*0.0003973+(B1-0.463) 0.4000 2 D19 @EXP(10300/C19)*0.0003973+(B1-0.463) 0.4000 2 E1 =C19+F18 1073.1 K 5 E2 =E1+F16 1073.1 K 6 E3 =E2+F16 1073.1 K 7 E4 =E3+F16 1073.1 K 8 E5 =E4+F16 1073.1 K 9 E6 =E5+F16 1073.1 K 10 E6 =E5+F16 1073.1 K 10 E8 =E7+F16 1073.1 K 10 E8 =E7+F16 1073.1 K 11 E8 =E7+F16 1073.1 K 11 E10+F16 1073.1 K 1073.1 K 11 E11 =E10+F16 1073.1 K 1073.1 K 12 E11+F16 1073.1 K 1073.1 K 1073.1 K 12 E14 =E13+F16 1073.1 K 1073.1 K 14 =E13+F16 1073.1 K 1073.1 K 1073.1 K 15 F1	30 31					
D19 @EXP(10300/C19)*0.0003973+(81-0.463) 0.4000 I = C19+F16 1073.1 K I E2 = E1+F16 1073.1 K I E3 =E2+F16 1073.1 K I E4 =E3+F16 1073.1 K I E4 =E3+F16 1073.1 K I E5 =E4+F16 1073.1 K I E6 =E5+F16 1073.1 K I E8 =E7+F16 1073.1 K I E11 =E10+F16 1073.1 K I E12 =E11+F16 1073.1 K I E13 =E12+F16 1073.1 K I E14 =E13+F16 1073.1 K I E14 =E14-F16 1073.1 K I E14 =E12+F16 1073.1 K I E14 =E12+F16	32					
E1 = C19+F16 1073.1 K E2 =E1+F16 1073.1 K E3 =E2+F16 1073.1 K E4 =E3+F16 1073.1 K E5 =E4+F16 1073.1 K E6 =E5+F16 1073.1 K E6 =E5+F16 1073.1 K E7 =E6+F16 1073.1 K E9 =E3+F16 1073.1 K E10 =E9+F16 1073.1 K E11 =E10+F16 1073.1 K E12 =E9 =E3+F16 1073.1 K E13 =E12+F16 1073.1 K 1073.1 K E14 =E10+F16 1073.1 K 1073.1 K E13 =E12+F16 1073.1 K 1073.1 K E14 =E13+F16 1073.1 K 1073.1 K E14 =E13+F16 1073.1 K 0.4000 F1 @EXP(10300/E2)*0.0003973+(B1-0.463) 0.4000 F2 @EXP(10300/E3)*0.0003973+(B1-0.463) 0.4000 F5 @EXP(10300/E5)*0.0003973+(B1-0.463) 0.4000 F6 @EXP(10300/E5)*0.00003973+(B1-0.463) 0.4000	33					
E E2 =E1+F16 1073.1 K 8 E3 =E2+F16 1073.1 K 9 E4 =E3+F16 1073.1 K 10 E5 =E4+F16 1073.1 K 10 E5 =E4+F16 1073.1 K 10 E7 =E6+F16 1073.1 K 10 E7 =E6+F16 1073.1 K 10 E8 =E7F+16 1073.1 K 11 E8 =E7F+16 1073.1 K 12 E9 =E8+F16 1073.1 K 15 E12 =E11+F16 1073.1 K 15 E12 =E11+F16 1073.1 K 16 E13 =E12+F16 1073.1 K 16 F11 @EXP(10300/E1/10.0003873+(B1-0.463) 0.4000 17 Z+14 =E13+F16 0.4000 17 GEXP(10300/E3/10.0003873+(B1-0.463) 0.4000 17 @EXP(10300/E1/10.0003873+(B1-0.463) 0.4000 18 F4 @EXP(10300/E1/10.00003873+(B1-0.463) 0.4000	34					
E3 =E2+F16 1073.1 K 7 E4 =E3+F16 1073.1 K 10 E5 =E4+F16 1073.1 K 10 E6 =E5+F16 1073.1 K 10 E6 =E5+F16 1073.1 K 10 E7 =E6+F16 1073.1 K 10 E8 =E7+F16 1073.1 K 10 E9 =E8+F16 1073.1 K 10 E10 =E9+F16 1073.1 K 10 E11 =E10+F16 1073.1 K 10 E11 =E10+F16 1073.1 K 10 E11 =E13+F16 1073.1 K 10 E14 =E13+F16 1073.1 K 10 @EXP(10300/E1)*0.0003973+(B1-0.463) 0.4000 10 F1 @EXP(10300/E2)*0.00003973+(B1-0.463) 0.4000 11 F4 #E13+F16 0.4000 12 F5 @EXP(10300/E3)*0.00003973+(B1-0.463) 0.4000 13 F6 @EXP(10300/E3)*0.00003973+(B1-0.463) 0.4000	35					
E4 =E3+F16 1073.1 K B E5 =E4+F16 1073.1 K B E6 =E5+F16 1073.1 K C E7 =E6+F16 1073.1 K C E7 =E6+F16 1073.1 K C E9 =E8+F16 1073.1 K C E9 =E8+F16 1073.1 K C E9 =E8+F16 1073.1 K C E10 =E10+F16 1073.1 K C E11 =E12+F16 1073.1 K C E12 =E11+F16 1073.1 K C E13 =E12+F16 1073.1 K C E14 =E13+F16 1073.1 K C E14 =E12+F16 1073.1 K C E12 =E11+F16 1073.1 K C E14 =E13+F16 1073.1 K C E14 =E12+F16 0.4000 F1 @EXP(10300/E3)*0.0003973+(B1-0.463) 0.4000 F3 @EXP(10300/E3)*0.00003973+(B1-0.463) 0.4000 C F5 @EXP(10300/E3)*0.00003973+(B1-0.463)	36					
B E5 =E4+F16 1073.1 K 0 E6 =E5+F16 1073.1 K 0 E7 =E6+F16 1073.1 K 10 E7 =E6+F16 1073.1 K 11 E8 =E7+F16 1073.1 K 12 E9 =E3+F16 1073.1 K 14 E11 =E10+F16 1073.1 K 15 E12 =E11+F16 1073.1 K 16 E13 =E12+F16 1073.1 K 16 E14 =E13+F16 1073.1 K 17 E14 =E13+F16 1073.1 K 18 F1 @EXP(10300/E1)*0.0003973+(B1-0.463) 0.4000 19 F2 @EXP(10300/E3)*0.0003973+(B1-0.463) 0.4000 10 F3 @EXP(10300/E3)*0.0003973+(B1-0.463) 0.4000 10 F5 @EXP(10300/E3)*0.0003973+(B1-0.463) 0.4000 10 F7 @EXP(10300/E3)*0.0003973+(B1-0.463) 0.4000 10 F7 @EXP(10300/E3)*0.00003973+(B1-0.463) 0.4000	37					
0 E7 =E6+F16 1073.1 K 11 E8 =E7+F16 1073.1 K 12 E9 =E8+F16 1073.1 K 13 E10 E59+F16 1073.1 K 14 E11 =E10+F16 1073.1 K 15 E12 =E11+F16 1073.1 K 16 E13 =E12+F16 1073.1 K 16 E13 =E12+F16 1073.1 K 17 E14 =E13+F16 1073.1 K 18 F1 @EXP(10300/E1)*0.0003973*(B1-0.463) 0.4000 19 F2 @EXP(10300/E2)*0.0003973*(B1-0.463) 0.4000 10 F3 @EXP(10300/E2)*0.0003973*(B1-0.463) 0.4000 10 F4 @EXP(10300/E3)*0.0003973*(B1-0.463) 0.4000 10 F5 @EXP(10300/E5)*0.0003973*(B1-0.463) 0.4000 10 F6 @EXP(10300/E5)*0.0003973*(B1-0.463) 0.4000 10 F7 @EXP(10300/E3)*0.0003973*(B1-0.463) 0.4000 10 F7 @EXP(10300/E3)*0.0003973*(B1-0.463) 0.4000 10 F10 @EXP(10300/E1)*0.0003973*(B1-0.463) 0.4000 10 F11 @EXP(10300/E1)*0.0003973*(B1-0.463) 0.4000 17 F10 @EXP(10300/E1)	38					
E8 =E7+F16 1073.1 K 2 E9 =E8+F16 1073.1 K 3 E10 =E9+F16 1073.1 K 4 E11 =E10+F16 1073.1 K 5 E12 =E11+F16 1073.1 K 6 E13 =E12+F16 1073.1 K 7 E14 =E13+F16 1073.1 K 8 F1 @EXP(1030/E1)*0.0003973*(B1-0.463) 0.4000 9 F2 @EXP(1030/E3)*0.0003973*(B1-0.463) 0.4000 16 F4 @EXP(1030/E3)*0.0003973*(B1-0.463) 0.4000 17 F4 @EXP(10300/E3)*0.0003973*(B1-0.463) 0.4000 16 @EXP(10300/E3)*0.0003973*(B1-0.463) 0.4000 17 F6 @EXP(10300/E3)*0.0003973*(B1-0.463) 0.4000 16 F7 @EXP(10300/E3)*0.0003973*(B1-0.463) 0.4000 17 F10 @EXP(10300/E3)*0.0003973*(B1-0.463) 0.4000 16 F7 @EXP(10300/E3)*0.0003973*(B1-0.463) 0.4000 17 F10 @EXP(10300/E10)*0.0003973*(B1	39	E6	=E5+F16		1073.1 K	
2 E9 =E8+F16 1073.1 K 3 E10 =E9+F16 1073.1 K 4 E11 =E10+F16 1073.1 K 5 E12 =E11+F16 1073.1 K 6 E13 =E12+F16 1073.1 K 7 E14 =E13+F16 1073.1 K 8 F1 @EXP(10300/E1)*0.0003973+(B1-0.463) 0.4000 9 F2 @EXP(10300/E3)*0.0003973+(B1-0.463) 0.4000 9 F2 @EXP(10300/E3)*0.0003973+(B1-0.463) 0.4000 10 F4 @EXP(10300/E3)*0.0003973+(B1-0.463) 0.4000 10 F4 @EXP(10300/E3)*0.0003973+(B1-0.463) 0.4000 10 F4 @EXP(10300/E5)*0.0003973+(B1-0.463) 0.4000 10 F5 @EXP(10300/E5)*0.0003973+(B1-0.463) 0.4000 10 F7 @EXP(10300/E5)*0.0003973+(B1-0.463) 0.4000 10 F7 @EXP(10300/E5)*0.0003973+(B1-0.463) 0.4000 10 F11 @EXP(10300/E10)*0.0003973+(B1-0.463) 0.4000 1	40	E7	=E6+F16		1073.1 K	
8 E10 =E9+F16 1073.1 K 44 E11 =E10+F16 1073.1 K 5 E12 =E11+F16 1073.1 K 6 E13 =E12+F16 1073.1 K 7 E14 =E13+F16 1073.1 K 9 F1 @EXP(10300/E1)*0.0003973+(B1-0.463) 0.4000 9 F2 @EXP(10300/E2)*0.0003973+(B1-0.463) 0.4000 9 F3 @EXP(10300/E3)*0.0003973+(B1-0.463) 0.4000 10 F4 @EXP(10300/E3)*0.0003973+(B1-0.463) 0.4000 10 F4 @EXP(10300/E5)*0.00003973+(B1-0.463) 0.4000 10 F7 @EXP(10300/E5)*0.0003973+(B1-0.463) 0.4000 10 F7 @EXP(10300/E5)*0.0003973+(B1-0.463) 0.4000 10 F7 @EXP(10300/E10)*0.0003973+(B1-0.463) 0.4000 10 @EXP(10300/E10)*0.0003973+(B1-0.463) 0.4000 10 @EXP(10300/E10)*0.0003973+(B1-0.463) 0.4000 10 @EXP(10300/E10)*0.0003973+(B1-0.463) 0.4000 11 @EXP(10300/E10)*0.0003973+(B1-0.463) 0.4000 12 @EXP(10300/E10)	41	E8	=E7+F16		1073.1 K	
44 E11 =E10+F16 1073.1 K 45 E12 =E11+F16 1073.1 K 46 E13 =E12+F16 1073.1 K 47 E14 =E13+F16 1073.1 K 48 F1 @EXP(10300/E1)*0.0003973*(B1-0.463) 0.4000 49 F2 @EXP(10300/E2)*0.0003973*(B1-0.463) 0.4000 40 F3 @EXP(10300/E3)*0.0003973*(B1-0.463) 0.4000 41 F4 @EXP(10300/E3)*0.0003973*(B1-0.463) 0.4000 42 F5 @EXP(10300/E5)*0.0003973*(B1-0.463) 0.4000 44 F7 @EXP(10300/E5)*0.0003973*(B1-0.463) 0.4000 45 F8 @EXP(10300/E5)*0.0003973*(B1-0.463) 0.4000 46 F7 @EXP(10300/E5)*0.0003973*(B1-0.463) 0.4000 47 F10 @EXP(10300/E1)*0.0003973*(B1-0.463) 0.4000 48 F11 @EXP(10300/E1)*0.0003973*(B1-0.463) 0.4000 49 F11 @EXP(10300/E1)*0.0003973*(B1-0.463) 0.4000 49 F11 @EXP(10300/E1)*0.0003973*(B1-0.463) 0.4000 40 F11 @EXP(10300/E1)*0.00039	42	E9	=E8+F16		1073.1 K	
5 E12 =E11+F16 1073.1 K 66 E13 =E12+F16 1073.1 K 77 E14 =E13+F16 1073.1 K 87 F1 @EXP(10300/E1)*0.00003973+(B1-0.463) 0.4000 98 F2 @EXP(10300/E2)*0.00003973+(B1-0.463) 0.4000 91 F2 @EXP(10300/E3)*0.00003973+(B1-0.463) 0.4000 91 F4 @EXP(10300/E3)*0.00003973+(B1-0.463) 0.4000 91 F4 @EXP(10300/E3)*0.00003973+(B1-0.463) 0.4000 92 F6 @EXP(10300/E3)*0.00003973+(B1-0.463) 0.4000 93 F6 @EXP(10300/E3)*0.00003973+(B1-0.463) 0.4000 94 F7 @EXP(10300/E3)*0.00003973+(B1-0.463) 0.4000 95 F8 @EXP(10300/E1)*0.00003973+(B1-0.463) 0.4000 96 F9 @EXP(10300/E1)*0.00003973+(B1-0.463) 0.4000 97 F10 @EXP(10300/E1)*0.00003973+(B1-0.463) 0.4000 96 F11 @EXP(10300/E1)*0.00003973+(B1-0.463) 0.4000 97 F10 @EXP(10300/E1)*0.00003973+(B1-0.463) 0.4000 96 F11 <td>43</td> <td>E10</td> <td>=E9+F16</td> <td></td> <td>1073.1 K</td>	43	E10	=E9+F16		1073.1 K	
8 E13 =E12+F16 1073.1 K 77 E14 =E13+F16 1073.1 K 8 F1 @EXP(10300/E1)*0.0003973+(B1-0.463) 0.4000 9 F2 @EXP(10300/E2)*0.0003973+(B1-0.463) 0.4000 9 F3 @EXP(10300/E3)*0.0003973+(B1-0.463) 0.4000 10 F4 @EXP(10300/E3)*0.0003973+(B1-0.463) 0.4000 11 F4 @EXP(10300/E5)*0.0003973+(B1-0.463) 0.4000 12 F5 @EXP(10300/E5)*0.0003973+(B1-0.463) 0.4000 13 F6 @EXP(10300/E5)*0.0003973+(B1-0.463) 0.4000 14 F7 @EXP(10300/E1)*0.0003973+(B1-0.463) 0.4000 15 F8 @EXP(10300/E1)*0.0003973+(B1-0.463) 0.4000 16 F9 @EXP(10300/E1)*0.0003973+(B1-0.463) 0.4000 17 F10 @EXP(10300/E1)*0.00003973+(B1-0.463) 0.4000 16 F11 @EXP(10300/E1)*0.00003973+(B1-0.463) 0.4000 17 F10 @EXP(10300/E1)*0.00003973+(B1-0.463) 0.4000 16 F11 @EXP(10300/E1)*0.00003973+(B1-0.463) 0.4000 17	44					
17 E14 =E13+F16 1073.1 K 18 F1 @EXP(10300/E1)*0.00003973+(B1-0.463) 0.4000 19 F2 @EXP(10300/E2)*0.00003973+(B1-0.463) 0.4000 10 F3 @EXP(10300/E3)*0.00003973+(B1-0.463) 0.4000 11 F4 @EXP(10300/E3)*0.00003973+(B1-0.463) 0.4000 12 F5 @EXP(10300/E3)*0.00003973+(B1-0.463) 0.4000 12 F5 @EXP(10300/E5)*0.00003973+(B1-0.463) 0.4000 13 F6 @EXP(10300/E5)*0.00003973+(B1-0.463) 0.4000 14 @EXP(10300/E5)*0.00003973+(B1-0.463) 0.4000 15 F8 @EXP(10300/E5)*0.00003973+(B1-0.463) 0.4000 16 F9 @EXP(10300/E1)*0.00003973+(B1-0.463) 0.4000 17 F10 @EXP(10300/E1)*0.00003973+(B1-0.463) 0.4000 18 F11 @EXP(10300/E12)*0.00003973+(B1-0.463) 0.4000 19 F12 @EXP(10300/E13)*0.00003973+(B1-0.463) 0.4000 10 F13 @EXP(10300/E13)*0.0003973+(B1-0.463) 0.4000 11 @EXP(10300/E13)*0.0003973+(B1-0.463) 0.4000 12 <td>45</td> <td></td> <td></td> <td></td> <td></td>	45					
18 F1 @EXP(10300/E1)*0.0003973*(B1-0.463) 0.4000 19 F2 @EXP(10300/E2)*0.0003973*(B1-0.463) 0.4000 10 F3 @EXP(10300/E3)*0.0003973*(B1-0.463) 0.4000 11 F4 @EXP(10300/E4)*0.0003973*(B1-0.463) 0.4000 12 F5 @EXP(10300/E5)*0.0003973*(B1-0.463) 0.4000 13 F6 @EXP(10300/E5)*0.0003973*(B1-0.463) 0.4000 14 F7 @EXP(10300/E5)*0.0003973*(B1-0.463) 0.4000 15 F8 @EXP(10300/E5)*0.0003973*(B1-0.463) 0.4000 16 F7 @EXP(10300/E5)*0.00003973*(B1-0.463) 0.4000 16 F7 @EXP(10300/E1)*0.00003973*(B1-0.463) 0.4000 16 F8 @EXP(10300/E1)*0.00003973*(B1-0.463) 0.4000 17 F10 @EXP(10300/E10)*0.00003973*(B1-0.463) 0.4000 17 F10 @EXP(10300/E10)*0.00003973*(B1-0.463) 0.4000 18 F11 @EXP(10300/E11)*0.00003973*(B1-0.463) 0.4000 19 F12 @EXP(10300/E12)*0.00003973*(B1-0.463) 0.4000 19 F13 @EXP(10300/E13)*0.00003973*(B1-0.463)	46					
19 F2 @EXP(10300/E2)*0.0003973*(B1-0.463) 0.4000 10 F3 @EXP(10300/E3)*0.0003973*(B1-0.463) 0.4000 11 F4 @EXP(10300/E5)*0.0003973*(B1-0.463) 0.4000 12 F5 @EXP(10300/E5)*0.0003973*(B1-0.463) 0.4000 13 F6 @EXP(10300/E5)*0.0003973*(B1-0.463) 0.4000 14 F7 @EXP(10300/E6)*0.0003973*(B1-0.463) 0.4000 15 F8 @EXP(10300/E6)*0.0003973*(B1-0.463) 0.4000 16 F7 @EXP(10300/E6)*0.0003973*(B1-0.463) 0.4000 16 F7 @EXP(10300/E1)*0.0003973*(B1-0.463) 0.4000 16 F8 @EXP(10300/E1)*0.0003973*(B1-0.463) 0.4000 17 F10 @EXP(10300/E1)*0.0003973*(B1-0.463) 0.4000 18 F11 @EXP(10300/E1)*0.0003973*(B1-0.463) 0.4000 19 F12 @EXP(10300/E11)*0.0003973*(B1-0.463) 0.4000 10 F11 @EXP(10300/E13)*0.0003973*(B1-0.463) 0.4000 10 F13 @EXP(10300/E13)*0.0003973*(B1-0.463) 0.4000 10 F14 @EXP(10300/E13)*0.0003973*(B1-0.463) 0.4000 14 @EXP(10300/E13)*0.0003973*(B1-0.463) 0.4000 15 @EXP(10300/E13)*0.00003973*(B1-0.463)	47					
0 F3 @EXP(10300/E3)*0.0003973*(B1-0.463) 0.4000 01 F4 @EXP(10300/E4)*0.0003973*(B1-0.463) 0.4000 02 F5 @EXP(10300/E5)*0.0003973*(B1-0.463) 0.4000 03 F6 @EXP(10300/E6)*0.0003973*(B1-0.463) 0.4000 04 F7 @EXP(10300/E6)*0.0003973*(B1-0.463) 0.4000 05 F8 @EXP(10300/E6)*0.0003973*(B1-0.463) 0.4000 05 F8 @EXP(10300/E3)*0.0003973*(B1-0.463) 0.4000 06 F9 @EXP(10300/E3)*0.0003973*(B1-0.463) 0.4000 07 F10 @EXP(10300/E1)*0.0003973*(B1-0.463) 0.4000 08 F11 @EXP(10300/E1)*0.0003973*(B1-0.463) 0.4000 09 FXP(10300/E1)*0.0003973*(B1-0.463) 0.4000 0.4000 09 F11 @EXP(10300/E13)*0.0003973*(B1-0.463) 0.4000 09 F12 @EXP(10300/E13)*0.0003973*(B1-0.463) 0.4000 01 F14 @EXP(10300/E13)*0.0003973*(B1-0.463) 0.4000 02 F13 @EXP(10300/E13)*0.0003973*(B1-0.463) 0.4000	48					
1 F4 @EXP(10300/E4)*0.0003973+(B1-0.463) 0.4000 22 F5 @EXP(10300/E5)*0.0003973+(B1-0.463) 0.4000 33 F6 @EXP(10300/E6)*0.0003973+(B1-0.463) 0.4000 44 F7 @EXP(10300/E6)*0.0003973+(B1-0.463) 0.4000 55 @EXP(10300/E8)*0.0003973+(B1-0.463) 0.4000 56 @EXP(10300/E8)*0.0003973+(B1-0.463) 0.4000 57 @EXP(10300/E8)*0.0003973+(B1-0.463) 0.4000 56 F8 @EXP(10300/E8)*0.0003973+(B1-0.463) 0.4000 57 F10 @EXP(10300/E10)*0.0003973+(B1-0.463) 0.4000 58 F11 @EXP(10300/E11)*0.0003973+(B1-0.463) 0.4000 59 @EXP(10300/E12)*0.0003973+(B1-0.463) 0.4000 59 F12 @EXP(10300/E12)*0.0003973+(B1-0.463) 0.4000 59 F12 @EXP(10300/E13)*0.0003973+(B1-0.463) 0.4000 50 F13 @EXP(10300/E14)*0.0003973+(B1-0.463) 0.4000 50 F14 @EXP(10300/E15)*0.0003973+(B1-0.463) 0.4000 50 F15 @EXP(10300/E15)*0.0003973+(B1-0.463) 0.4000 51 @EXP(10300/E15)*0.0003973+(B1-0.463) 0.4000 51 @EXP(10300/E15)*0.0003973+(B1-0.463) 0.4000 51 @EXP(49 50					
22 F5 @EXP(10300/E5)*0.0003973*(B1-0.463) 0.4000 33 F6 @EXP(10300/E5)*0.0003973*(B1-0.463) 0.4000 44 F7 @EXP(10300/E7)*0.0003973*(B1-0.463) 0.4000 55 F8 @EXP(10300/E3)*0.00003973*(B1-0.463) 0.4000 56 F9 @EXP(10300/E3)*0.00003973*(B1-0.463) 0.4000 57 F10 @EXP(10300/E10)*0.00003973*(B1-0.463) 0.4000 58 F9 @EXP(10300/E10)*0.00003973*(B1-0.463) 0.4000 59 @EXP(10300/E11)*0.00003973*(B1-0.463) 0.4000 58 F11 @EXP(10300/E12)*0.00003973*(B1-0.463) 0.4000 59 F12 @EXP(10300/E12)*0.00003973*(B1-0.463) 0.4000 50 F12 @EXP(10300/E13)*0.00003973*(B1-0.463) 0.4000 50 F13 @EXP(10300/E14)*0.00003973*(B1-0.463) 0.4000 51 @EXP(10300/E15)*0.00003973*(B1-0.463) 0.4000 52 F16 =(E15-A3)/50 2.7285e-014 K 4	51					
33 F6 @EXP(10300/E6)*0.0003973*(B1-0.463) 0.4000 44 F7 @EXP(10300/E3)*0.0003973*(B1-0.463) 0.4000 45 F8 @EXP(10300/E3)*0.00003973*(B1-0.463) 0.4000 46 F9 @EXP(10300/E3)*0.00003973*(B1-0.463) 0.4000 47 F10 @EXP(10300/E3)*0.00003973*(B1-0.463) 0.4000 48 F11 @EXP(10300/E11)*0.00003973*(B1-0.463) 0.4000 49 F12 @EXP(10300/E12)*0.00003973*(B1-0.463) 0.4000 49 F12 @EXP(10300/E13)*0.00003973*(B1-0.463) 0.4000 40 F13 @EXP(10300/E13)*0.00003973*(B1-0.463) 0.4000 40 F14 @EXP(10300/E13)*0.00003973*(B1-0.463) 0.4000 41 F14 @EXP(10300/E13)*0.00003973*(B1-0.463) 0.4000 42 F15 @EXP(10300/E14)*0.0003973*(B1-0.463) 0.4000 43 F16 =(E15-A3)/50 2.7285e-014 K	52					
44 F7 @EXP(10300/E7)*0.0003973*(B1-0.463) 0.4000 55 F8 @EXP(10300/E8)*0.0003973*(B1-0.463) 0.4000 56 F9 @EXP(10300/E1)*0.0003973*(B1-0.463) 0.4000 57 F10 @EXP(10300/E1)*0.00003973*(B1-0.463) 0.4000 58 F11 @EXP(10300/E1)*0.00003973*(B1-0.463) 0.4000 59 F12 @EXP(10300/E11)*0.00003973*(B1-0.463) 0.4000 59 F12 @EXP(10300/E12)*0.00003973*(B1-0.463) 0.4000 59 F12 @EXP(10300/E13)*0.00003973*(B1-0.463) 0.4000 59 F13 @EXP(10300/E13)*0.00003973*(B1-0.463) 0.4000 50 F14 @EXP(10300/E13)*0.00003973*(B1-0.463) 0.4000 51 F14 @EXP(10300/E15)*0.00003973*(B1-0.463) 0.4000 52 F15 @EXP(10300/E15)*0.00003973*(B1-0.463) 0.4000 52 F16 =(E15-A3)/50 2.7285e-014 K 54 HYSYS.Plant v2.2.2 (Build 3806) Page 13 of 14	53					
55 F8 @EXP(10300/E8)*0.0003973+(B1-0.463) 0.4000 56 F9 @EXP(10300/E9)*0.0003973+(B1-0.463) 0.4000 57 F10 @EXP(10300/E10)*0.00003973+(B1-0.463) 0.4000 58 F11 @EXP(10300/E10)*0.00003973+(B1-0.463) 0.4000 59 F12 @EXP(10300/E11)*0.00003973+(B1-0.463) 0.4000 59 F12 @EXP(10300/E12)*0.00003973+(B1-0.463) 0.4000 50 F13 @EXP(10300/E13)*0.00003973+(B1-0.463) 0.4000 51 @EXP(10300/E13)*0.00003973+(B1-0.463) 0.4000 52 F14 @EXP(10300/E15)*0.00003973+(B1-0.463) 0.4000 52 F15 @EXP(10300/E15)*0.00003973+(B1-0.463) 0.4000 52 F16 =(E15-A3)/50 0.4000 53 F16 =(E15-A3)/50 2.7285e-014 K 54 HYSYS.Plant v2.2.2 (Build 3806) Page 13 of 14	54					
F9 @EXP(10300/E9)*0.0003973+(B1-0.463) 0.4000 77 F10 @EXP(10300/E10)*0.00003973+(B1-0.463) 0.4000 88 F11 @EXP(10300/E10)*0.00003973+(B1-0.463) 0.4000 99 F12 @EXP(10300/E12)*0.00003973+(B1-0.463) 0.4000 90 F13 @EXP(10300/E12)*0.0003973+(B1-0.463) 0.4000 90 F14 @EXP(10300/E13)*0.00003973+(B1-0.463) 0.4000 91 F14 @EXP(10300/E13)*0.00003973+(B1-0.463) 0.4000 92 F15 @EXP(10300/E15)*0.00003973+(B1-0.463) 0.4000 93 F16 =(E15-A3)/50 0.4000 94 F16 =(E15-A3)/50 2.7285e-014 K 95 F16 F16 HYSYS.Plant v2.2.2 (Build 3806) Page 13 of 14	55					
77 F10 @EXP(10300/E10)*0.0003973+(B1-0.463) 0.4000 88 F11 @EXP(10300/E11)*0.0003973+(B1-0.463) 0.4000 89 F12 @EXP(10300/E12)*0.0003973+(B1-0.463) 0.4000 80 F13 @EXP(10300/E13)*0.00003973+(B1-0.463) 0.4000 81 F14 @EXP(10300/E13)*0.00003973+(B1-0.463) 0.4000 82 F15 @EXP(10300/E15)*0.0003973+(B1-0.463) 0.4000 83 F16 =(E15-A3)/50 2.7285e-014 K ***********************************	56					
99 F12 @EXP(10300/E12)*0.0003973*(B1-0.463) 0.4000 90 F13 @EXP(10300/E13)*0.0003973*(B1-0.463) 0.4000 91 F14 @EXP(10300/E14)*0.0003973*(B1-0.463) 0.4000 92 F15 @EXP(10300/E15)*0.0003973*(B1-0.463) 0.4000 93 F16 =(E15-A3)/50 2.7285e-014 K 94	57	F10	@EXP(10300/E10)*0.00003973+(B1-0.463)		0.4000	
0 F13 @EXP(10300/E13)*0.00003973+(B1-0.463) 0.4000 01 F14 @EXP(10300/E13)*0.00003973+(B1-0.463) 0.4000 02 F15 @EXP(10300/E15)*0.00003973+(B1-0.463) 0.4000 03 F16 =(E15-A3)/50 2.7285e-014 K 04 5 5 5 06 Hyprotech Ltd. HYSYS.Plant v2.2.2 (Build 3806) Page 13 of 14	58		@EXP(10300/E11)*0.00003973+(B1-0.463)		0.4000	
Bit F14 @EXP(10300/E14)*0.0003973+(B1-0.463) 0.4000 22 F15 @EXP(10300/E15)*0.0003973+(B1-0.463) 0.4000 23 F16 =(E15-A3)/50 2.7285e-014 K 24	59					
22 F15 @EXP(10300/E15)*0.00003973+(B1-0.463) 0.4000 33 F16 =(E15-A3)/50 2.7285e-014 K 34	60					
33 F16 =(E15-A3)/50 2.7285e-014 K 34	61					
34 35 36 Hyprotech Ltd. Hyprotech Ltd. HYSYS.Plant v2.2.2 (Build 3806)	62					
Hyprotech Ltd. HYSYS.Plant v2.2.2 (Build 3806) Page 13 of 14	63	F16	=(E15-A3)/50		2.7285e-014 K	
Hyprotech Ltd. HYSYS.Plant v2.2.2 (Build 3806) Page 13 of 14	64					
	-	Llummete	ab I ta UVOVa		Degs 42 of 44	
	66			D. FIGHT V2.2.2 (DUIIU 3000)		

Identifier:	TEV-693	
Revision:	1	
Effective Date:	05/15/10	Page: 126 of 151

2				Case Name:	C:\Documents and	Settings\mgq\Desktop\N	GNP\FY 09 Report\600 M\
	HYPROTECH	INL Calgary, Alberta		Unit Set:	NGNP1		
4 5		CANADA		Date/Time:	Thu Oct 01 11:50:2	0 2009	
6 7	Sprea	dsheet: T	Гетр	Average A	SR @TPL1	(continue	Units Set: Electrolysis
8				Spreadsh	eet		
10 11	Α	В		C	D	E	F
12 1	ASR @ 1100 K		2776 *	1073.1 K	0.4000	1073.1 K	0.4000
3 2	Temp Average ASR	0.4	4000	1073.1 K	0.4000	1073.1 K	0.4000
4 3	1073.1 K	0.4	4000	1073.1 K	0.4000	1073.1 K	0.4000
54	1073.1 K		4000	1073.1 K	0.4000	1073.1 K	0.4000
5	1073.1 K		4000	1073.1 K	0.4000	1073.1 K	0.4000
7 6	1073.1 K		4000	1073.1 K	0.4000	1073.1 K	0.4000
3 7	1073.1 K		4000	1073.1 K	0.4000	1073.1 K	0.4000
8	1073.1 K		4000	1073.1 K	0.4000	1073.1 K	0.4000
9	1073.1 K		4000	1073.1 K	0.4000	1073.1 K	0.4000
1 10			4000	1073.1 K	0.4000	1073.1 K	0.4000
2 11 3 12			4000	1073.1 K	0.4000	1073.1 K	0.4000
			4000	1073.1 K	0.4000	1073.1 K	0.4000
			4000	1073.1 K	0.4000	1073.1 K	0.4000
5 14 5 15			4000	1073.1 K	0.4000	1073.1 K	0.4000
			4000	1073.1 K	0.4000	1073.2 K delta T	
16 17			4000 4000	1073.1 K 1073.1 K	0.4000	deita i	2.7205e-014 K
17 18			4000	1073.1 K	0.4000		
19			4000	1073.1 K	0.4000		
20			9.20	1073.1 K	0.4000		
3 4 5 6 7 8 9 9 0 1 1 2 3 4 5 6 7 7 8 9 9 0 0 1 1 2 3 4 5 5 6 7 7 8 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0							
7 8 8 9 1 2 2 8 8 4 4 5 5 5 8 8 9 0 1 1 2 2 8 8 8 9 0							

NUCLEAD INTECDATED HUDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 127 of 151

Appendix C 55%/45% Debt to Equity Results

Table C-1. HTSE connected to a 600MWt HTGR IRR results for 55%/45% debt-to-equity ratio.

	TCI -30	% HTGR	Т	CI	TCI +50	% HTGR
	IRR	\$/kg	IRR	\$/kg	IRR	\$/kg
	\$1,000,	417,985	\$1,307,	917,985	\$1,820,	417,985
	3.66	\$1.50	1.83	\$1.50	-0.20	\$1.50
HTSE	12.27	\$3.25	9.48	\$3.25	6.54	\$3.25
	18.30	\$5.00	14.69	\$5.00	10.96	\$5.00
	12.00	\$3.18	12.00	\$4.04	12.00	\$5.48

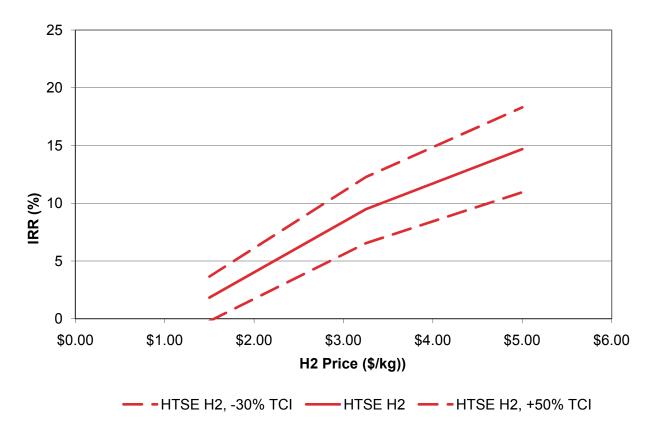


Figure C-1. HTSE connected to a 600 MWt HTGR IRR economic results for 55%/45% debt-to-equity ratio.

NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN PRODUCTION ANALYSIS	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 128 of 151

Appendix D Cost Estimate Support Data Recapitulation

Appendix D is a cost estimate of the nuclear assisted production of ammonia using high temperature steam electrolysis without an air separation unit. The cost estimate was performed by a team of cost estimators at the INL. The capital cost of hydrogen production can be found by summing the HTGR, Rankine power cycle, and HTSE costs for the production of 7.51 kg/s of hydrogen.

NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN PRODUCTION ANALYSIS	Revision:	1	
FRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 129 of 151

Summary
ASU
ia w/c
Ammon
HTSE
NGNP

Project Name: NGNP Process Integration Process: HTSE Ammonia w/o ASU Estimate Number: MA36-O

Client: M. Patterson Prepared By: B. Wallace, R. Honsinger, J. Martin Estimate Type: Class 5

	Subtotal From Detail					
Process Component	Sheets	Engineering %	Engineering	Contingency %	Contingency	Total Cost
ligh Temperature Gas Reactor (HTGR)	S 4,201,101,415	%0	- 5	%0	\$ \$	4,201,101,415
tankine Power Cycle	S 615,345,051	10% \$	\$ 61,534,505	18% \$	\$ 121,838.320 \$	798,717,876
ligh Temperature Steam Electrolysis (HTSE)	S 363,429,475	10% \$	\$ 36,342,947	18% \$	\$ 71,959.036 \$	471,731,458
12 Generation	S 17.287.060	10% \$	\$ 1,728,706	18%	\$ 3,422,838 \$	22,438,603
CO2 Generation	S 15,022,364	10% \$	\$ 1,502,236	18%	\$ 2,974,428 \$	19,499,029
Nethanation	S 9,518,338	10% \$	\$ 951,834	18% \$	\$ 1,884,631 \$	12,354,803
mmonia Synthesis	S 297,160,814	\$ %01	\$ 29,716,081	18%	\$ 58,837,841 \$	385,714,736
Jrea Synthesis	S 288,347,019	10% \$	\$ 28,834,702	18%	\$ 57,092,710 \$	374,274,430
itric Acid Synthesis	S 272,169,749	10% \$	\$ 27,216,975	18%	\$ 53,889,610 \$	353,276,334
mmonium Nitrate Synthesis	S 173,948,476	10% \$	\$ 17,394,848	18%	S 34,441,798 \$	225,785,122
Steam Turbines	\$ 49,012,114	10% \$	\$ 4,901,211	18%	S 9,704,398 \$	63.617.723
leat Recovery Steam Generator (HRSG)	- \$	10% \$	- S	18%	s s	
Cooling Towers	\$ 5,735,762	10%	\$ 573,576	18%	\$ 1,135,681 \$	7,445,019
Tatal Cast HTCE Ammania MCH						0 001 010 10
					A	R+C'0CR'CCR'0
Total Cost Rounded to the Nearest \$10M					\$	6,940,000,000

Remarks	S
Checked By: Show	
C.17	
Approved By:	

Page 1 of 1

NUCLEAR-INTEGRATED HYDROGEN
PRODUCTION ANALYSIS

Rev. 03-04-10		
Battelle Energy	Alliance, LLC	
CO	ST ESTIMATE SUPPORT DATA RECAPITULAT	TION
Project Title:	NGNP Process Integration – HTSE Ammonia without ASU	
Estimator:	B. W. Wallace/CEP, R. R. Honsinger/CEP, J. B. Martin/CCT	
Date:	April 20, 2010	
Estimate Type:	Class 5	
File:	MA36-0	
Approved By:	Amta	Page 1 of 9

I. <u>**PURPOSE**</u>: Brief description of the intent of how the estimate is to be used (i.e., for engineering study, comparative analysis, request for funding, proposal, etc.).

It is expected that the capital costs identified in these estimates will be used in a model producing an economic analysis for each specific integrated application and subsequently will be considered in a related feasibility study.

- II. <u>SCOPE OF WORK</u>: Brief statement of the project's objective. Thorough overview and description of the proposed project. Identify work to be accomplished, as well as any specific work to be excluded.
 - A. Objective:

Develop Class 5 estimates as defined by the Association for Advancement of Cost Engineering (AACEi) that will identify the current capital cost associated with high-temperature gas reactors (HTGRs) integrated with a nuclear ammonia without an air separation unit process.

B. Included:

- The scope of work required to achieve this objective includes the following:
- 1. Engineering
- 2. The allowance provided for the HTGR represents a complete and operable system. All elements required for construction of this nuclear reactor capability, including an initial steam generator, security systems, contingency, and owner's costs are included in the turn-key allowance. Owner's costs are included only in the case of the reactor capability. It is considered that the total value represents all inside of battery limits (ISBL) elements, outside of battery limits (OSBL) elements, site development, and all ancillary control and operational functions and capabilities.
- 3. Construction of a new integrated refinery capability to produce ammonia that consists of the following:
 - a. Overnight island-type costs for HTGRs
 - b. High-temperature steam electrolysis (HTSE) hydrogen production unit
 - c. H₂ combustor (N₂ generation)
 - d. Natural gas combustor (CO₂ generation)
 - e. Methanation
 - f. Ammonia synthesis
 - g. Urea synthesis
 - h. Nitric acid synthesis

CO	ST ESTIMATE SUPPORT DATA RECAPITULA	ΓΙΟΝ
	– Continued –	
Project Title:	NGNP Process Integration – HTSE Ammonia without ASU	
Project Title: File:	MA36-O	Page 2 of 9

- i. Ammonium nitrate synthesis
- j. Steam turbines, internal to process
- k. Heat recovery steam generator, internal to process
- 1. Cooling towers, internal to process
- m. Allowances for Balance of Plant (BOP)/offsite/OSBL, including the following:
 - (1.) Site development/improvements
 - (2.) Provisions for general and administrative buildings and structures
 - (3.) Provisions for OSBL piping
 - (4.) Provisions for OSBL instrumentation and control
 - (5.) Provisions for OSBL electrical
 - (6.) Provisions for facility supply and OSBL water systems
 - (7.) Provisions for site development/improvements
 - (8.) Project/construction management.

C. <u>Excluded</u>:

This scope of work specifically excludes the following elements:

- 1. Licensing and permitting costs
- 2. Operational costs
- 3. Land costs
- 4. Sales taxes
- 5. Royalties
- 6. Owner's fees and owner's costs, except those included for the HTGR
- 7. The allowance provided for the HTGR capability excludes all costs associated with materials development, or costs that would not be appropriately associated with an nth of a kind (NOAK) reactor/facility.
- III. <u>ESTIMATE METHODOLOGY</u>: Overall methodology and rationale of how the estimate was developed (i.e., parametric, forced detail, bottoms up, etc.). Total dollars/hours and rough order magnitude (ROM) allocations of the methodologies used to develop the cost estimate.

Consistent with the AACEi Class 5 estimates, the level of definition and engineering development available at the time they were prepared, their intended use in a feasibility study, and the time and resources available for their completion, the costs included in this estimate have been developed using parametric evaluations. These evaluations have used publicly available and published project costs to represent similar islands utilized in this project. Analysis and selection of the published costs used have been performed by the project technical lead and Cost Estimating. Suitability for use in this effort was determined considering the correctness and completeness of the data available, the manner in which total capital costs were represented, the age of the previously performed work, and the similarity to the capacity/trains required by this project. The specific sources, selected and used in this cost estimate, are identified in the capital costs using escalation factors identified in the Chemical Engineering Price Cost Index. Scaling of the published island costs has been

CO	ST ESTIMATE SUPPORT DATA RECAPITULAT	TION
	– Continued –	
Project Title:	NGNP Process Integration – HTSE Ammonia without ASU	
File	MA36-0	Page 3 of 9

accomplished using the six-tenths capacity factoring method. Costs included for the HTGR, power cycles, and HTSE, have been identified and provided by the respective BEA subject matter experts. The total cost for each of these items has been linearly calculated from the respective base unit costs. Any normalization to provide for geographic factors was considered using geographic factors available from RS Means Construction Cost Data references. Cost-estimating relationships have been used to identify allowances to complete the costs.

It was identified to the Next Generation Nuclear Plant (NGNP) Process Integration team that the methodology employed by NGNP to develop the nuclear capability included constituents of parametric modeling, vendor quotes, actual costs, and proprietary costing databases. These preconceptual design estimates were reviewed by NGNP Project Engineering for credibility with regard to assumptions and bases of estimate and performed multiple studies to reconcile variations in the scope and assumptions within the three estimates.

BOP/OSBL costs were determined by the project team, considering data provided by Shell Gasifier IGCC Base Case report NETL 2000, *Conceptual Cost Estimating Manual* Second Edition by John S. Page, and additional adjusted sources. Because the allowances identified did not show significant variability, the allowances identified in the NETL 2000 report were chosen for this effort in order to minimize the mixing of data sources.

- IV. <u>BASIS OF THE ESTIMATE</u>: Overall explanation of sources for resource pricing and schedules.
 - A. <u>Quantification Basis</u>: The source for the measurable quantities in the estimate that can be used in support of earned value management. Source documents may include drawings, design reports, engineers' notes, and other documentation upon which the estimate is originated.

All islands and capacities have been provided to Cost Estimating by the project respective expert.

- B. <u>Planning Basis</u>: The source for the execution and strategies of the work that can be used to support the project execution plan, acquisition strategy, schedules, and market conditions and other documentation upon which the estimate is originated.
 - 1. All islands and HTGRs represent NOAK projects.
 - 2. Projects will be constructed and operated by commercial entities.
 - 3. All projects, with the exception of the Steam-Assisted Gravity Drainage Project, will be located in the U.S. Gulf Coast refinery region.
 - 4. Costs are presented as overnight costs.
 - 5. The cost estimate does not consider or address funding or labor resource restrictions. Sufficient funding and labor resources will be available in a manner that allows optimum usage of the funding and resources as estimated and scheduled.

roject Tit ile:	le:	- Continued - NGNP Process Integration - HTSE Ammonia without ASU MA36-O Page 4 of 9
C.	ear inci	st Basis: The source for the costing on the estimate that can be used in support of ned value management, funding profiles, and schedule of values. Sources may lude published costing references, judgment, actual costs, preliminary quotes or er documentation upon which the estimate is originated.
	1.	All costs are represented as current value costs. Factors for forward-looking escalation and inflation factors are not included in this estimate.
	2.	Where required, published cost factors, as identified in the Chemical Engineering Plant Cost Index, will be applied to previous years' values to determine current year values.
	3.	Geographic location factors, as identified in RS Means Construction Cost Data reference manual, were considered for each source cost.
	4.	The cost provided for the HTGR reflects internal BEA cost data that was developed for the HTGR and presented to the NGNP Process Integration team by L. Demmick. Considered in the cost is a pre-conceptual cost estimate prepared by three separate contractor teams. All contractor teams proposed 4-unit NOAK plants with thermal power levels between 2,000 MW _t and 2,400 MW _t at a cost of roughly \$4B, including owner's cost. This equates to \$1,667 to \$2,000 per kW _t . For the purposes of this report, the nominal cost of an HTGR will be set at the upper end of this range, \$2,000 per kW _t . This is a complete turnkey cost and includes engineering and construction of a NOAK HTGR, the power cycle, and contingency. The total HTGR cost for each process is calculated linearly as \$1,708,333 per MWth of required capacity, excluding the cost of the power cycles.
	5.	The cost included for the power cycle was provided by the INL project team expert. The power cycle cost is based on the definition of a 240-MWe capacity and \$618,176 per MWe. The total power cycle cost for each process is calculated linearly as \$618,176 per MWe of required capacity. BOP, engineering, and contingency costs are added to the base cost.
	6.	The cost included for HTSE was provided by the INL project team expert. The total HTSE cost for each process is calculated linearly as \$36,120,156 per kg/s of required capacity. BOP, engineering, and contingency costs are added to the base cost.
	7.	Apt, Jay, et al., <i>An Engineering-Economic Analysis of Syngas Storage</i> , NETL, July 2008.
	8.	AACEi, Recommended Practices, website, visited November 16, 2009, http://www.aacei.org/technical/rp.shtml.
	9.	Brown, L. C., et al., "Alternative Flowsheets for the Sulfur-Iodine Thermochemical Hydrogen Cycle," <i>General Atomics</i> , February 2003.
		CEPCI, Chemical Engineering Magazine, "Chemical Engineering Plant Cost Index," November 2009: 64.
		Choi, 1996, Choi, Gerald N., et al, <i>Design/Economics of a Once-Through</i> <i>Natural Gas Fischer-Tropsch Plant with Power Co-Production</i> , Bechtel, 1996. Dooley, J., et al, <i>Carbon Dioxide Capture and Geologic Storage</i> , Battelle,
	12.	April 2006.

	– Continued –
Project Title:	NGNP Process Integration – HTSE Ammonia without ASU
File:	MA36-O Page 5 of 9
13.	Douglas, Fred R., et al., Conduction Technical and Economic Evaluations – as Applied for the Process and Utility Industries, AACEi, April 1991.
14.	FLUOR/UOP, 2004, Mak, John Y., et al., Synthesis Gas Purification in Gasification to Ammonia/Urea Complex, FLUOR/UOP, 2004.
15.	Friedland, Robert J., et al., <i>Hydrogen Production Through Electrolysis</i> , NREL, June 2002.
16.	Gray, 2004, Gray, David, et al, Polygeneration of SNG, Hydrogen, Power, and Carbon Dioxide from Texas Lignite, MTR-04, 2004-18, NETL, December 2004
17.	Harvego, E. A., et al., Economic Analysis of a Nuclear Reactor Powered High-Temperature Electrolysis Hydrogen Production Plant, INL, August 2008.
18.	Harvego, E. A., et al., Economic Analysis of the Reference Design for a Nuclear-Driven High-Temperature-Electrolysis Hydrogen Production Plant, INL, January 2008.
19.	Ivy, Johanna, Summary of Electrolytic Hydrogen Production, NREL September 2004.
20.	Ibsen, Kelly, et al., Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment, NREL, May 2006.
21.	Klett, Michael G., et al., <i>The Cost of Mercury Removal in an IGCC Plant</i> , NETL, September 2002.
22.	Kreutz, 2008, Kreutz, Thomas G., et al, "Fischer-Tropsch Fuels from Coal and Biomass," 25 th Annual International Pittsburgh Coal Conference, Pittsburgh, Princeton University, October 2008.
23.	Loh, H. P., et al., <i>Process Equipment Cost Estimation</i> , DOE/NETL-2002/1169, NETL, 2002.
24.	NETL, 2000, Shelton, W., et al., <i>Shell Gasifier IGCC Base Cases</i> , PED-IGCC-98-002, NETL, June 2000.
25.	NETL, 2007a, Van Bibber, Lawrence, Baseline Technical and Economic
	Assessment of a Commercial Scale Fischer-Tropsch Liquids Facility,
	DOE/NETL-207/1260, NETL, April 2007.
26.	NETL, 2007b, Woods, Mark C., et al., <i>Cost and Performance Baseline for</i>
77	Fossil Energy Plants, NETL, August 2007.
27.	NREL, 2005, Saur, Genevieve, Wind-To-Hydrogen Project: Electrolyzer Capital Cost Study, NREL, December 2008.
28.	O'Brien, J. E., et al., High-Temperature Electrolysis for Large-Scale Hydrogen and Syngas Production from Nuclear Energy – System Simulation and
	Economics, INL, May 2009.
29.	O'Brien, J. E., et al., Parametric Study of Large-Scale Production of Syngas via
	High-Temperature Co-Electrolysis, INL, January 2009.
30.	Page, John S., Conceptual Cost Estimating Manual – 2 nd ed., Houston: Gulf
	Publishing Company, 1996.
31.	Pietlock, Bernard A., et al., <i>Developing Location Factors by Factoring- as Applied in Architecture, Engineering, Procurement, and Construction</i> , AACEi, October 2006.

Fil

V.

VI.

<u> </u>	ST ESTIMATE SUPPORT DATA RECAPITULATION
<u></u>	– Continued –
oject Title:	NGNP Process Integration – HTSE Ammonia without ASU
le:	MA36-O Page 6 of 9
32.	Ramsden, Todd, et al., Current (2005) Hydrogen Production from Central Grid Electrolysis, NREL, May 2008.
33.	Ramsden, Todd, et al., Longer-Term (2025) Hydrogen Production from Central Grid Electrolysis, NREL, May 2008.
34.	Richardson Construction Estimating Standards, <i>Process Plant Cooling Towers</i> , Cost Data Online, September 16, 2009, website, visited December 15, 2009, http://www.costdataonline.com/.
35.	Sohal, M. S., et al., Challenges in Generating Hydrogen by High Temperature Electrolysis Using Solid Oxide Cells, INL, March 2008.
36.	Steinberg, Meyer, Conversion of Coal to Substitute Natural Gas (SNG), HCE, 2005.
37.	Udengaard, 2008, Udengaard, Niels R., et al., Convert Coal, petcoke into valuable SNG, Haldor Topsoe, April 2008.
38.	van der Ploeg, H. J., et al., <i>The Shell Coal Gasification Process for the US Industry</i> , Shell, October 2004.
39.	WorleyParsons, 2002, Rameshni, Mahin, Cost Effective Options to Expand SRU Capacity Using Oxygen, WorleyParsons, May 2002.
	TE QUALITY ASSURANCE : <i>A listing of all estimate reviews that have taken the actions taken from those reviews.</i>
cost estim on the per make up th	of the cost estimate was held on January 14, 2010, with the project team and the ators. This review allowed for the project team to review and comment, in detail, ceived scope, basis of estimates, assumptions, project risks, and resources that his cost estimate. Comments from this review have been incorporated into this oreflect a project team consensus of this document.
demonstra	TIONS : Condition statements accepted or supposed true without proof of tion; statements adding clarification to scope. An assumption has a direct total estimated cost.

General Assumptions:

- A. All costs are represented in 2009 values.
- B. Costs that were included from sources representing years prior to 2009 have been normalized to 2009 values using the Chemical Engineering Plant Cost Index. This index was selected due to its widespread recognition and acceptance and its specific orientation toward work associated with chemical and refinery plants.
- C. Capital costs are based on process islands. The majority of these islands are interchangeable, after factoring for the differing capacities, flowsheet-to-flowsheet.
- D. All chemical processing and refinery processes will be located in the U.S. Gulf Coast region.
- E. All costs considered to be BOP costs that can be specifically identified have been factored out of the reported source data and added into the estimate in a manner consistent with that identified in the NETL 2000 IGCC Base Cost report. Inclusion of the source costs in this manner normalizes all reported cost information to the bare-erected costs.

CO	ST ESTIMATE SUPPORT DATA RECAPITULAT	<u>FION</u>
	– Continued –	
Project Title:	NGNP Process Integration – HTSE Ammonia without ASU	
Project Title: File:	MA36-O	Page 7 of 9

HTGR:

- A. The linearly scalable cost included for an HTGR reflects an NOAK reactor with a 750°C-operating temperature.
- B. HTGR is considered to be linearly scalable, by required capacity, per the direction of the project team. This allows the process integration feasibility studies to showcase the financial analysis of the process without the added burden of integer quantity 600-MWth HTGRs.
- C. The allowance represents a turnkey condition for the reactor and its supporting infrastructure.
- D. A high-temperature, high-pressure steam generator is included in the cost represented for HTGR.
- E. A contingency allowance is included in the HTGR cost, but is not identified as a separate line item in this estimate. This allowance was identified and included by the NGNP HTGR project team.
- F. Total cost range, including contingency, for HTGR is -50%, +100%.
- G. Cost included for the power cycle reflects NOAK research and manufacturing developments to allow for assumed high pressures and temperatures.
- H. The power cycle is considered to be linearly scalable, by required capacity, per the direction of the project team. This allows the process integration feasibility studies to showcase the financial analysis of the process.
- I. The cost included for HTSE reflects NOAK research and manufacturing developments, which will increase the expected lifespan of the electrolysis cells.
- J. The HTSE is considered to be linearly scalable, by required capacity, per the direction of the project team. This allows the process integration feasibility studies to showcase the financial analysis of the process.

HTSE Ammonia without Air Separation Unit

Some estimated island costs are based on figures from a verbal conversation with Casale, a leading world vendor of process industry services. These costs were used in cases where other acceptable costs were not available.

VII. <u>CONTINGENCY GUIDELINE IMPLEMENTATION</u>:

<u>Contingency Methodologies:</u> *Explanation of methodology used in determining overall contingency. Identify any specific drivers or items of concern.*

At a project risk review on December 9, 2009, the project team discussed risks to the project. An 18% allowance for capital construction contingency has been included at an island level based on the discussion and is included in the summary sheet. The contingency level that was included in the island cost source documents and additional threats and opportunities identified here were considered during this review. The contingency identified was considered by the project team and included in Cost and Performance Baseline for Fossil Energy Plants DOE/NETL-2007/1281 and similar reports. Typically, contingency allowance provided in these reports ranged from 15% to 20%. Since much of

CO	ST ESTIMATE SUPPORT DATA RECAPITULAT	<u>FION</u>
	– Continued –	
Project Title:	NGNP Process Integration – HTSE Ammonia without ASU	
File:	MA36-O	Page 8 of 9

the data contained in this estimate has been derived from these reports, the project team has also chosen a level of contingency consistent with them.

While the level of contingency provided for the HTGR capability is not identified as a line item, the cost data provided to the NGNP Process Integration team was identified as including an appropriate allocation for contingency. No additional contingency has been added to this element.

- A. <u>Threats</u>: Uncertain events that are potentially negative or reduce the probability that the desired outcome will happen.
 - 1. The singularly largest threat to this estimate surrounds the lump sum cost included for the HTGR reactor(s). This is followed by the HTSE process, where applicable. While the overriding assumption is that these elements will be NOAK, currently, a complete HTGR has not been commissioned and the HTSE has been successfully developed in an integrated laboratory-scale model, but has not been completed in either pilot plant or production scales.
 - 2. The level of project definition/development that was available at the time the estimate was prepared represents a substantial risk to the project and is likely to occur. The high level at which elements were considered and included has the potential to include additional elements that are within the work scope but not sufficiently provided for or addressed at this level.
 - 3. The estimate methodology employed is one of a stochastic parametrically evaluated process. This process used publicly available published costs that were related to the process required, costs were normalized using price indices, and the cost was scaled to provide the required capacity. The cost-estimating relationships that were used represent typical costs for BOP allowances, but source cost data from which the initial island costs were derived were not completely descriptive of the elements included, not included, or simply referred to with different nomenclature or combined with other elements. While every effort has been made to correctly normalize and factor the costs for use in this effort, the risk exists that not all of these were correctly captured due to the varied information available.
 - 4. This project is heavily dependent on metals, concrete, petroleum, and petroleum products. Competition for these commodities in today's environment due to global expansion, uncertainty, and product shortages affects the basic concepts of the supply and demand theories, thus increasing costs.
 - 5. Impacts due to large quantities of materials, special alloy materials, fabrication capability, and labor availability could all represent conditions that may increase the total cost of the project.

CO	ST ESTIMATE SUPPORT DATA RECAPITULA	TION
	– Continued –	
Project Title:	NGNP Process Integration – HTSE Ammonia without ASU	
File:	MA36-O	Page 9 of 9

- B. **Opportunities**: Uncertain events that could improve the results or improve the probability that the desired outcome will happen.
 - 1. Additional research and work performed with both vendors and potential owner/operators for a specific process or refinery may identify efficiencies and production means that have not been available for use in this analysis.
 - 2. Recent historical data may identify and include technological advancements and efficiencies not included or reflected in the publicly available source data used in this effort.

Note: Contingency does not increase the overall accuracy of the estimate; it does, however, reduce the level of risk associated with the estimate. Contingency is intended to cover the inadequacies in the complete project scope definition, estimating methods, and estimating data. Contingency specifically excludes changes in project scope, unexpected work stoppages (e.g., strikes, disasters, and earthquakes) and excessive or unexpected inflation or currency fluctuations.

VIII. OTHER COMMENTS/CONCERNS SPECIFIC TO THE ESTIMATE:

None.

NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN PRODUCTION ANALYSIS	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 139 of 151

					Detail Item Repol	rt - High Temperat	Detail Item Report - High Temperature Gas Reactor (HTGR)	ITGR)				
Project Name: Process: Estimate Number:	NGNP Process Integration HTSE Ammonia w/o ASU MA36-O	ess Inte onia w/	egration to ASU						Client: Prepared By: Estimate Type:		M. Patterson B. Wallace, R. Honsinger, J. Martin Class 5	r, J. Martin
Sources Considered:												
Source	Reported Capacity		Reporte d Trains	Report Cost Year	Reported Cost	Reporting Year Cost Per Train	Normalized Cost Per Train using CEPCI Index	Capacity Required	rrains A Reqd.	Capacity per Train	Factored Cost per Train from Normalized Cost	Total Current Cost for Required Trains
INL Internal Cost Data (INL 2009)	-	MWth		2009	\$ 1,708,333	\$ 1,708,333	\$ 1,708,333	2,459	dWf h		\$ 4,201,101,415	\$ 4,201,101,415
Source Selected:		H		Π								
Source	Reported Capacity		Reported Trains	Report Cost Year	Reported Cost	Reporting Year Cost Per Train	Normalized Cost Per Train using CEPCI Index	Capacity Required	Trains Reqd.	Capacity per Train	Factored Cost per Train from Normalized Cost	Total Current Cost for Required Trains
INL Internal Cost Data (INL 2009)	1	MWth		2009	\$ 1.708,333	\$ 1,708,333	\$ 1,708,333	2,459	MVVÆ h		\$ 4,201,101,415	\$ 4,201,101,415
Balance of Plant:												
Description	% of Total Cost	Cost		Ħ							Cost Per Train	Total Cost
Water Systems Owl/Structural/Buildings Piping Control and Instrumentation	%00.0 %00.0 %00.0										66 66 66 66 1 1 1 1	မ္မေနာ့မ္မာန္
	%-00:0						Total Balance of Plant Total Balance of Plant Plus the Selected Source	ant ant Plus the S	elected Souro		\$ \$ 4,201,101,415	\$ 4,201,101,415
Basis of Estimate Notes: Single source cost point. This cost has been privided by the subcontraded subject matter expert L. Demick to the NL NGNP Process Integration team. This cost represents a complete turnkey cost. The cost of an HTGR	as been provide	ed by th	e subcontra	cted subje	ct matter expert L.	Demick to the INL 1	NGNP Process Integ	jration team.	This cost repr	esents a complete l	tumkey cost. The co	st of an HTGR
reactor, as provided by L. Demick, is	:\$2,000,000 per	r MWth	required. T	nis cost us	ed has been reduc	ed to \$1,708,333 p	er MWth to exclude	the cost of pc	wer cycles.			

Page 1 of 13

NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN PRODUCTION ANALYSIS	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 140 of 151

				Ō	tail Item Report - F	Rankine Cycle - Ca	Detail Item Report - Rankine Cycle - Case 11, Supercritical PC Case	al PC Case						
Project Name: Process : Estimate Number:	NGNP Process Integration HTSE Ammonia w/o ASU MA36-O	ress Inf nonia v	tegration //o ASU						Client: Prepared By: Estimate Typ	Client: Prepared By: Estimate Type:		M. Patterson B. Wallace, R Class 5	M. Patterson B. Wallace, R. Honsinger, J. Martin Class 5	, J. Martin
Sources Considered:														
Source	Reported Capacity	t, e	Reporte d Trains	Report Cost Year	Reported Cost	Reporting Year Cost Per Train	Normalized Cost Per Train using CEPCI Index	Capacity Required		Trains Reqd.	Capacity per Train	-	Factored Cost per Train from Vormalized Cost	Total Current Cost for Required Trains
INL Internal Cost Data (INL 2009)	240	MWe	~	2009	\$ 148,362,255	\$ 148,362,255	\$ 148,362,255	618	MWe	5	176	MWe	\$ 123,069,010	\$ 615,345,051
												\parallel		
Summary:]					1	1]	1		
Source	Reported Capacity	t ed	Reported Trains	Report Cost Year	Reported Cost	Reporting Year Cost Per Train	Normalized Cost Per Train using CEPCI Index	Capacity Required		Trains Reqd.	Capacity per Train		Factored Cost per Train from Normalized Cost	Total Current Cost for Required Trains
INL Internal Cost Data (INL 2009)	240	MWe	1	2009	\$ 148,362,255	\$ 148,362,255	\$ 148,362,255	879	MWe	5	176	MWe s	\$ 123,069,010	\$ 615,345,051
Balance of Plant:														
Description	% of Total Cost	Cost		Π								Ħ	Cost Per Train	Total Cost
Water Systems Civil/Structural/Buildings Pining	%00:0 %00:0													
Control and Instrumentation Electrical Systems	%00:0 %00:0	0.0.0												
							Total Balance of Plant Total Balance of Plant Plus the Selected Source	ant ant Plus the	Selected	d Source			\$ 123.069.010	\$ 615.345.051
Basis of Estimate Notes:		1		1				22	20000	5		1	2000	
Single source cost. The reported costs are from the INL project learn expert. The reported cost represents a Rankine power cycle, excluding the steam generator. The cost is based on information found in NETL 2007b, which has been adjusted and customized for this project based new cost has been adjusted and customized for this project team expert. The allowances take and exclanation found in NETL 2007b, which this project by the INL project team expert. The allowances itsted under Balance of Plant are based on NETL 2000. These allowance values are comparable to additional published estimate power such as Page 1996. The advances frame been experted and customized for this project based on NETL 2000. These allowance values are comparable to additional published estimate power cycles exists are provided in the reported cost for the Ranking power cycle cost cost for the advances frame Bowance Plantames and exclanation and prover cycle in the Ranking power cycle cost power cycle cost for the publicing that are included in the Ranking power cycle cost for the Ranking power cycle cost power cycle cost for the publicing that are included in the reported cost for the Ranking power cycle cost bower cycle cost for the reported cost for the Ranking power cycle cost for the reported cost for the Ranking power cycle cost was reported cost for the reported cost for the Ranking power cycle cost.	sts are from th or this project t 16. The allowar ter and electric	e INL pi oy the Ir noes har xal syste	oject team e VL project tex ve been adju ms BOP allo	xpert. Th am expert isted and - wances a	e reported cost repr . The allowances lis customized for this pre ire included in the re	esents a Rankine p ted under 'Balance project based on es	ower cycle, excludii • of Plant' are based stimator judgment. T Rankine power cycl	ng the stean on NETL 20 The reduced le.	n genera 00. The civil/stru	ttor. The c se allowai ctural/buili	iost is base nce values i dings allowe	d on infc are com, ance acc	ormation found in N parable to addition counts for the build	ETL 2007b, which al published ngs that are include

NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN PRODUCTION ANALYSIS	Revision:	1	
FRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 141 of 151

Project Name: Process :	NGNP Process Integration HTSE Ammonia w/o ASU	ss Inteç nia w/o	Iration ASU	ŏ	tail Item Report -	Detail Item Report - High Temperature Steam Electrolysis (HTSE)	· Steam Electrolys	is (HTSE)	Client: Prepared Bv:	BY:	Ξ. Ξ.	M. Patterson B. Wallace, R. Honsinger, J. Martin	, J. Martin
Estimate Number: Sources Considered:	MA36-0								Estimate Type:	Type:	C	Class 5	
Source	Reported Capacity		Reported Trains	Report Cost Year	Reported Cost	Reporting Year Cost Per Train	Normalized Cost Per Train using CEPCI Index	Capacity Required		Trains C Reqd.	Capacity per Train	Factored Cost per Train from Normalized Cost	Total Current Cost for Required Trains
INL Feasibility Study (INL 2009)	1.00	s/b/	-	2009	\$ 36,120,156	\$ 36,120,156	\$ 36,120,156	7.51	s/64			\$ 271,216,026	\$ 271,216,03
		+	\parallel	\parallel					╢	╫	╫		
		++	\parallel	\parallel					╢	╢	╫		
Source Selected:			1						-				
Source	Reported Capacity		Reported Trains	Report Cost Year	Reported Cost	Reporting Year Cost Per Train	Normalized Cost Per Train using CEPCI Index	Capacity Required		Trains C Reqd.	Capacity per Train	Factored Cost per Train from Normalized Cost	Total Current Cost for Required Trains
INL Feasibility Study (INL 2009)	1.00	kg/s	-	2009	\$ 36,120,156	\$ 36,120,156	\$ 36,120,156	7.51	s/04	-		\$ 271,216,026	\$ 271,216,026
Balance of Plant:													
Description	% of Total Cost	ost	Ħ	Ħ								Cost Per Train	Total Cost
Water Systems	7.10%	+										\$ 19,256,338	\$ 19,256,338
Civil/Structural/Buildings	9.20%	H		H								\$ 24,951,874	\$ 24,951,87
Piping Control and Instrumentation	7.10% 2.60%											\$ 7.051.617	\$ 7.051.61
Electrical Systems	8.00%	\parallel		Ħ								\$ 21,697,282	\$ 21,697,28
		╉					Total Balance of Plant Total Balance of Plant Plue the Selected Serree	ant Diric the 4	Coloctod C	O IFOC		\$ 92,213,449 © 362,420,475	\$ 92,213,449 ¢ 363,420,475
Rationale for Selection:		1	1	1					o naisalad	20 ID		011071000 4	11,071,000 0
Single source cost. The reported costs are from the INL project team expert. The allowances listed under Balance of Plant' are based on NETL 2000. These allowance values are comparable to additional published estimating guides, such as Page 1986.	ts are from the I	INL proje	ect team ex	pert. The	allowances listed	under 'Balance of F	lant' are based on h	VETL 2000.	These allor	vance val	nes are com	parable to additional p	ublished estimatir

Page 3 of 13

NUCLEAD INTECDATED HUDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN PRODUCTION ANALYSIS	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 142 of 151

	Client: M. Patterson Prepared By: B. Wallace, R. Honsinger, J. Martin Estimate Type: Class 5		st Factored Cost Total Current Cost g Capacity Trains Capacity per Per Train from For Required Required Reqd. Train Normalized Cost Trains	5 236,902 [b/hr 1 236,902 [b/hr \$ 12,900,791 \$ 12,900,791		st Factored Cost Total Current Cost G Capacity Der PerTrain from for Required Required Reqd. Train	15 236,902 Ib/hr 1 236,902 Ib/hr \$ 12,900,791 \$ 12,900,791		Cost Per Train Total Cost	\$ 915,956 \$ 915,956	\$ 1,186,873 \$ 1,186,873	\$	421 \$	\$ 1,032,063 \$	\$ 4,386,269 \$ 4,386 \$ 47,000 \$ 47,000	 	Single source cost point. The allowances listed under Balance of Plant' are based on NETL 2000. These allowance values are comparable to additional published estimating guides, such as Page 1996.	
ation	Client: Prepared By: Estimate Type:		Trains Reqd.	lb/hr 1		Trains Reqd.	lb/hr 1								otal Balance of Plant	אומורב מו בומון בתאניוה אנוא אוויכים	e comparable to additional published estimati	
Detail Item Report - N2 Generation			Norm: Reporting Year Per T Reported Cost Cost Per Train CEF	\$13,317,500 \$ 13,317,500 \$		Norm: Reporting Year Per T Reported Cost Cost Per Train CEF	\$13,317,500 \$ 13,317,500 \$								Total B		n NETL 2000. These allowance values an	
	tegration //o ASU		Report Reported Cost Trains Year Re	1 2007		Report Reported Cost Trains Year Re	1 2007									-	ance of Plant' are based or	
	NGNP Process Integration HTSE Ammonia w/o ASU MA36-O		Reported Capacity	239,265 lb/hr		Reported Capacity	239,265 lb/hr		% of Total Cost	7.10%	9.20%	7.10%	2.60%	8.00%			vances listed under 'Bala	
	Project Name: Process: Estimate Number:	Sources Considered:	Source	N2 Generator Cost (Wood 2009)	Source Selected:	Source	N2 Generator Cost (Wood 2009)	Balance of Plant:	Description	Water Systems	Civil/Structural/Buildings	Piping	Control and Instrumentation	Electrical Systems		Rationale for Selection:	Single source cost point. The allow	

NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN PRODUCTION ANALYSIS	Revision:	1	
FRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 143 of 151

			MA36-0						Estimate Type:	Type:	10	Class 5	*8:11011.01 .A	B. Wallace, R. Honsinger, J. Martin Class 5
Sources Considered:														
Source	Reported Capacity		Reported Trains	Report Cost Year	Reported Cost	Reporting Year Cost Per Train	Normalized Cost Per Train using CEPCI Index	Capacity Required		Trains Reqd.	Capacity per Train		Factored Cost per Train from Normalized Cost	Total Current Cost for Required Trains
CO2 Compression - Subcritical Princeton Report (Kreutz 2008)	10	MM	~	2007	\$ 6,310,000	\$ 6,310,000	\$ 6,149,067	2	MΜ	-	2	\$ MM	2,329,179	\$ 2,329,179
CO2 Compression - Supercritical Princeton Report (Kreutz 2008)	13	MW	-	2007	\$ 9,520,000	\$ 9,520,000	\$ 9,277,198	0.3	Ŵ		0.3 M	\$ MW	987,887	\$ 987,887
CO2 Generation CO2 Generator (Wood 2009)	184,095 It	b/hr	-	2007	\$ 8,102,200	\$ 8,102,200	\$ 7,895,558	184,021	lb/hr	-	184,021 lb	lb/hr \$	7,893,654	\$ 7,893,654
Source Selected:		-							1	1				
Source	Reported Capacity		Reported Trains	Report Cost Year	Reported Cost	Reporting Year Cost Per Train	Normalized Cost Per Train using CEPCI Index	Capacity Required		Trains Reqd.	Capacity per Train		Factored Cost per Train from Normalized Cost	Total Current Cost for Required Trains
Kreutz 2008: Combined Suboritical and Supercritical Processes	Supercritical F	Processe	Se									\$	11,210,720	\$ 11,210,720
Balance of Plant:														
Description	% of Total Cost	ost										č	Cost Per Train	Total Cost
Water Systems	7.10%	+	T									6	795.961	\$ 795.961
Civil/Structural/Buildings	9.20%											60	1,031,386	\$ 1,031,386
Piping Control and Instrumentation	7.1U%												795,961	\$ /95,961 \$
Electrical Systems	8.00%	+										• ••	836,858	\$ 836,858
							Total Balance of Plant	nt :				φ.	3,811,645	\$ 3,811,645
		_					Total Balance of Plant Plus the Selected Source	int Plus the (Selected	Source		⇔	15,022,364	\$ 15,022,364
Rationale for Selection:														
Single source cost point. The only CO2 generation source considered was Wood 2009. This cost was supplemented with CO2 compression costs from Kreutz 2008 to represent a full island cost. Both subortical and supercritical access costs wave included index the CO2 formares source sorts.	CO2 Compres	ource co	nsidered w	vas Wood	2009. This cost w	as supplemented w lance of Plant' are h	tith CO2 compression	n costs from	Kreutz 2 wance v	008 to rel	present a full	island cos to addition	t. Both subcrit	ical and supercritic
process costs were included under the (ac Dage 1006	CO2 Compres	sion hea	adıng. Ihe	e allowanc	es listed under 'Ba	lance of Plant' are b	based on NETE 2000). I hese allo	owance v	alues are	comparable.	to additior	ial published e	stimating guides, s

Detail Item Report - CO2 Generation

Page 5 of 13

NILCI EAD INTECDATED HUDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN PRODUCTION ANALYSIS	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 144 of 151

					Det	Detail Item Report - Methanation	ethanation					
Project Name: Process : Estimate Number:	NGNP Process Integration HTSE Ammonia wo ASU MA36-O	ess Inte onia <i>wi</i> (ASU					σ£ŭ	Client: Prepared By: Estimate Type:		M. Patterson B. Wallace, R. Honsinger, J. Martin Class 5	r, J. Martin
Sources Considered:												
Source	Reported Capacity		Reporte d Trains	Report Cost Year	Reported Cost	Reporting Year Cost Per Train	Normalized Cost Per Train using CEPCI Index	Capacity Required	Trains Reqd.	Capacity per Train	Factored Cost per Train from Normalized Cost	Total Current Cost for Required Trains
DOE FE Report (DOE 1978)	1,000	tpd	~	1978	\$ 1,467,000	\$ 1,467,000	\$ 3,432,834	3,360 th	tpd 1	3,360 tpd	\$ 7,103,237	\$ 7,103,237
Source Selected:												
Source	Reported Capacity		Reported Trains	Report Cost Year	Reported Cost	Reporting Year Cost Per Train	Normalized Cost Per Train using CEPCI Index	Capacity Required	Trains Reqd.	Capacity per Train	Factored Cost per Train from Normalized Cost	Total Current Cost for Required Trains
DOE FE Report (DOE 1978)	1,000	tpd	1	1978	\$ 1,467,000	\$ 1,467,000	\$ 3,432,834	3,360 t	tp d	3,360 tpd	\$ 7,103,237	\$ 7,103,237
Balance of Plant:												
Description	% of Total Cost	Cost									Cost Per Train	Total Cost
Water Systems	7.10%										\$ 504,330	\$
Civil/Structural/Buildings	9.20%										\$ 653,498	\$
Piping	7.10%										\$ 504,330	60 (
Control and Instrumentation Electrical Systems	%00% 8:00%										\$ 184,084 \$ 568,259	\$ 104,064 \$ 568,259
							Total Balance of Plant	ц			\$ 2,415,101	\$ 2,415,101
Rationale for Selection:							Total Balance of Plant Plus the Selected Source	nt Plus the Se	lected Sourc		\$ 9,518,338	\$ 9,518,338
Single source island cost identified by the project technical lead. The allowances listed under Balance of Plant are based on NETL 2000. These allowance values are comparable to additional published estimating guides, such Page 1896.	the project tec	chnical le	ad. The all	owances	listed under 'Baland	ce of Plant' are base	ed on NETL 2000. T	hese allowand	e values are	comparable to ad	ditional published esti	mating guides, such

NUCLEAD INTECDATED HUDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN PRODUCTION ANALYSIS	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 145 of 151

					Detail It	Detail Item Report - Ammonia Synthesis	onia Synthesis							
Project Name: Process: Estimate Number:	NGNP Process Integration HTSE Ammonia w/o ASU MA36-0	ess Inte onia w/	gration o ASU						Client: Prepare Estimat	Client: Prepared By: Estimate Type:	~	M. Patterson B. Vvallace _r R Class 5	M. Patterson B. Wállace, R. Honsinger, J. Martin Class 5	r, J. Martin
Sources Considered:														
Source	Reported Capacity		Reporte d Trains	Report Cost Year	Reported Cost	Reporting Year Cost Per Train	Normalized Cost Per Train using CEPCI Index	Capacity Required	ë ⊄	Trains Reqd.	Capacity per Train		Factored Cost per Train from Normalized Cost	Total Current Cost for Required Trains
Vendor - Verbal 2009	360	tpd	-	2009	\$ 44,000,000	\$ 44,000,000	\$ 44,000,000	3,360	tpq	2	1,680	tpd \$	110,880,901	\$ 221,761,801
Economics Ammonia Coal Gasification (Morel 1977)		tpd	1	1977	\$ 50,748,000		69	3,360	tpq	2	1,680	tpd \$	109,546,276	\$ 219,092,551
Stamicarbon, Middle East Fertilizer Symposium, March 2009	4,297	tpd	+	2008	\$ 800,000,000	\$ 800,000,000	\$ 779,596,498	3,360	tpq	5	1,680	tpd \$	443,768,260	\$ 887,536,519
Ammonia, Chem Systems, 1998	1,653	tpd	1	1998	\$ 160,000,000	\$ 160,000,000	\$ 210,320,924	3,360		2		tpd \$	212,375,463	\$ 424,750,926
Source Selected:														
	Reported		Reported	Report Cost		Reporting Year	Normalized Cost Per Train using	Capacity	≥	Trains	Capacity per			Total Current Cost for Required
Source	Capacity		Trains	Year	Reported Cost	Cost Per Train	CEPCI Index	Required	ed	Reqd.	Train		Normalized Cost	Trains
Vendor - Verbal 2009	360	tpd	-	2009	\$ 44,000,000	\$ 44,000,000	\$ 44,000,000	3,360	tpq	2	1,680	tpd \$	110,880,901	\$ 221,761,801
Balance of Plant:														
Description	% of Total Cost	Cost		Ħ								ŭ	Cost Per Train	Total Cost
Water Svstems	7.10%	+										69	7.872.544	\$ 15.745.088
Civil/Structural/Buildings	9.20%	Ħ										\$	10,201,043	\$ 20,402,086
Piping	7.10%	+										€ 0 (7,872,544	\$ 15,745,088
Control and instrumentation Electrical Systems	8.00%	+										e eo	2,662,305 8,870,472	\$ 17.740.944
		t					Total Balance of Plant	int					37,699,506	\$ 75,399,012
							Total Balance of Plant Plus the Selected Source	ant Plus the	Selecte	d Source		\$	148,580,407	\$ 297,160,814
Rationale for Selection:														
The verbal cost was selected as recommended by the project team expert. The Stamicarbon information shows a roughly 350% increase in prices between 2008 and 2008 emphasizing the importance of using the most recent Information available. The allowances listed under Balance of NETL 2000. These allowance values are commarzable to additional outlished estimating outders. Such as Paas 1986.	ommended by the stristed under 'B	he proje Balance	ct team exp of Plant' an	ert. The S 3 based of	Stamicarbon informs NETL 2000. Thes	ation shows a rough	nly 350% increase in s are comparable to	n prices betw additional p	veen 20 ublishe	03 and 201 d estimatin	38 emphasiz a auides. su	ing the im ch as Pac	nportance of usin ae 1996.	ig the most recent
												ĺ		

Page 7 of 13

NHCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN PRODUCTION ANALYSIS	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 146 of 151

					Detai	Detail Item Report - Urea Synthesis	a Synthesis							
Project Name: Process: Estimate Number:	NGNP Process Integration HTSE Ammonia w/o ASU MA36-O	ess Int onia w	egration vo ASU					<u>с</u> тш	Client: Prepared By: Estimate Type:	d By: Type:	200	M. Patterson B. Wallace, F Class 5	M. Patterson B. Wallace, R. Honsinger, J. Martin Class 5	J. Martin
Sources Considered:														
Source	Reported Capacity	גס	Reporte d Trains	Report Cost Year	Reported Cost	Reporting Year Cost Per Train	Normalized Cost Per Train using CEPCI Index	Capacity Required		Trains Reqd.	Capacity per Train		Factored Cost per Train from Normalized Cost	Total Current Cost for Required Trains
Vendor - Verbal 2009	625	tpd	F	2009	\$ 85.000.000	\$ 85.000.000	\$ 85.000.000	2.939	to q	-	2.939 t	tpd \$	215.184.342	\$ 215.184.342
Perry's Chemical Engineering Handbook, 7th Edition		tpd	-			\$ 8,800,000	\$ 12,240,152		ta pd	-			_	\$ 61,388,719
PNNL Stamicarbon, Middle East Fertilizer Swmnstium March 2009	4681 3.582	to d		2009	\$ 182,000,000 \$ 550 000 000	\$ 182,000,000 \$ 550,000,000	\$ 182,000,000 \$ 535,972,592	2,939 2,939	ta ta		2,939 t 2,939 t	tpd \$	137,653,721 475,978,115	\$ 137,653,721 \$ 475,978,115
	H			Η.						H				Ш
Source Selected:														
Source	Reported Capacity	νγ	Reporte d Trains	Report Cost Year	Reported Cost	Reporting Year Cost Per Train	Normalized Cost Per Train using CEPCI Index	Capacity Required		Trains Reqd.	Capacity per Train		Factored Cost per Train from Normalized Cost	Total Current Cost for Required Trains
Vendor - Verbal 2009	625	tpd	-	2009	\$ 85,000,000	\$ 85,000,000	\$ 85,000,000	2,939	tpd	-	2,939 t	tpd \$	215,184,342	\$ 215,184,342
Balance of Plant:														
Description	% of Total Cost	Cost	Π	Ħ									Cost Per Train	Total Cost
Water Systems Civil/Structural/Buildings Ploing	7.10% 9.20% 7.10%												15,278,088 19,796,959 15,278,088	5 15,278,088 5 19,796,959 5 15,278,088
Control and Instrumentation Electrical Systems	2.60%											\$	5,594,793 17,214,747	5 594,793 17,214,747
							Total Balance of Plant Total Balance of Plant Plus the Selected Source	int Plus the S	elected (Source		€0 €0	73,162,676 288,347,019	5 73,162,676 5 288,347,019
Rationale for Selection:		1		1										
The verbal cost was selected as recommended by the project learn expert. The Stamicarbon information shows a roughly 350% increase in prices between 2003 and 2008 emphasizing the importance of using the most recent information available. The advances listed under Datance of Plant are based on NETL 2000. These advances values are comparable to additional published estimating guides, such as Fage 1950.	mmended by the listed under 'E	he proj: Balance	ect team exp e of Plant' ar	oert. The S e based o	stamicarbon informs n NETL 2000. Thes	ation shows a rough se allowance values	rly 350% increase in sare comparable to .	prices betwe additional pul	en 2003 blished ∈	and 2008 stimating	emphasizii guides, suc	ng the in ch as Pag	nportance of usin; ge 1996.	the most recent

NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN PRODUCTION ANALYSIS	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 147 of 151

Project Name: NGNP Process Integration Process: HTSE Ammonia Wio ASU Estimate Number: MA36-O MA36-O Sources Considered: Reported Reported Ferrifizer Namual Ferrifizer Manual Source Selected: 33-9 tpd 1 Ferrifizer Manual Source Selected: Approved Reported Reported Source Selected: Capacity Trains	SU Su aiorted Report 1 1994 1 1998	Reported Cost 15,200,000	Leborting Year L Cost Per Train	Normalized Cost Per Train using	010	Client: Prepared By: Estimate Type:		M. Patterson B. Wallace, R. Honsinger, J. Martin Class 6	sr, J. Martin
Reported Copacity 334 tpd 334 tpd 334 capacity Copacity Copacity Capacity		Reported Cost \$ 6.600,000 \$ 15,200,000	eporting Year cost Per Train 6 600 0000 15,200,000	Vormalized Cost Per Train using					
Ince Reported Reported Capacity Control Contro Control Control Control Control Control Control Control Control		Reported Cost 5 6 600 000 5 15,200 000	eporting Year cost Per Train 6,600,000 15,200,000	Vormalized Cost Per Train using					
Fighreening 334 tpd toon 334 tpd 359 tpd 359 tpd Reported Capacity	1 1998	6,600,000 15,200,000	6,600,000	CEPCI Index	Capacity Required	Trains Regd.	Capacity per Train	Factored Cost per Train from Normalized Cost	Total Current Cost for Required Trains
Reported Capacity				\$ 9,180,114 \$ 19,980,488	5,192 5,192	ی ی pq ta	865 tr 865 tr	tpd \$ 16,252,129 tpd \$ 33,851,959	\$ 97,512,774 \$ 203,111,753
Reported Capacity	-								
Reported Capacity						_		_	
	Report ported Cost ains Year	Reported Cost	l Reporting Year Cost Per Train	Normalized Cost Per Train using CEPCI Index	Capacity Required	Trains Reqd.	Capacity per Train	Factored Cost per Train from Normalized Cost	Total Current Cost for Required Trains
Fertilizer Manual 359 tpd 1	1 1998	\$ 15,200,000	\$ 15,200,000	\$ 19,980,488	5,192	tpd 6	865 tp	tpd \$ 33,851,959	\$ 203,111,753
Balance of Plant:									
Description % of Total Cost								Cost Per Train	Total Cost
Water Systems 7.10%								\$ 2,403,489	\$ 14,420,934
tructural/Buildings								\$ 3,114,380	\$ 18,686,281
Control and Instrumentation 2.60%								\$ 2,700,709	÷ 67
Electrical Systems 8.00%					-			\$ 2,708,157	\$ 16,248,940
				lotal Balance of Plant Total Balance of Plant Plus the Selected Source	nt nt Plus the S	elected Sour	8	\$ 11,509,666 \$ 45,361,625	\$ 69,057,996 \$ 272,169,749
Rationale for Selection:									
The Entilitier Manual was calarled for haine holds the newest vote route new securities. The idde from Danck Chemical Environation Handhouk is haved on earlier idde from Dataers and Timmarhaus making is used	bet noint and the	most concentrative T	ha data from Darn/	e Chamical Engined	sring Handho	olv ie haead	on earlier data fron	n Datans and Timmarhs	making it avan
The Ferritor Markuta selected for the new cost of an ure most consevate. The data not refry: Chemical Engineering reations to besed on reating and market set in the engineering reating and the selection reating and the set is addressed in reating and the set is addressed on reating and the set is a	ist point and the re based on NE	TL 2000. These allow	rie data irom Perry rance values are coi	s Unemical Enginee mparable to additio	aring manapo nal published	ok is pased estimating (on eanier data iror luides, such as Pa	n Peters and Timmerni ge 1996.	aus, making it even
						Rimpillaco		go 1000.	

NILCI EAD INTECDATED HUDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 148 of 151

				Detail Item F	Report - Ammoniu	Detail Item Report - Ammonium Nitrate Synthesis	6				
Project Name: Process: Estimate Number:	NGNP Process Integration HTSE Ammonia w/o ASU MA36-O	s Integration ia w/o ASU					010	Client: Prepared By: Estimate Type:		M. Patterson B. Wallace, R. Honsinger, J. Martin Class 5	, J. Martin
Sources Considered:											
Source	Reported Capacity	Reported Trains	Report Cost Year	Reported Cost	Reporting Year Cost Per Train	Normalized Cost Per Train using CEPCI Index	Capacity Required	Trains Reqd.	Capacity per Train	Factored Cost per Train from Normalized Cost	Total Current Cost for Required Trains
Perry's Chemical Engineering Handbook, 7th Edition Fertilizer Manual EPA Report	334 tp 1.395 tp 1.200 tp	tpd 1 1	1994 1998 1981	\$ 6,000,000 \$ 35,000,000 \$ 9,480,000	\$ 6,000,000 \$ 35,000,000 \$ 9,480,000	\$ 8,345,558 \$ 46,007,702 \$ 13,434,154	3,779 3,779 3,779	3 3 3 that that that that that that that tha	1,260 tpd 1,260 tpd 1,260 tpd	\$ 18,507,052 \$ 43,270,765 \$ 13,831,044	\$ 55.521.157 \$ 129.812.295 \$ 41.493.133
Source Selected:											
Source	Reported Capacity	Reported Trains	Report Cost Year	Reported Cost	Reporting Year Cost Per Train	Normalized Cost Per Train using CEPCI Index	Capacity Required	Trains Reqd.	Capacity per Train	Factored Cost per Train from Normalized Cost	Total Current Cost for Required Trains
Fertilizer Manual	1,395 tp	tpd 1	1998	\$ 35,000,000	\$ 35,000,000	\$ 46,007,702	3,779	tpd 3	1,260 tpd	\$ 43,270,765	\$ 129,812,295
Balance of Plant:											
Description	% of Total Cost	st								Cost Per Train	Total Cost
Water Systems Civil/Structural/Buildings	7.10% 9.20%									\$ 3,072,224 \$ 3,980,910	\$ 9,216,673 \$ 11,942,731
Piping Control and Instrumentation	7.10%									\$ 3,072,224 \$ 1,125,040	\$ 9,216,673 \$ 3,375,120
Electrical Systems	%nn:0					Total Balance of Plant Total Balance of Plant Plus the Selected Source	Int Int Plus the Se	elected Sourc		\$ 5,461,061 \$ 14,712,060 \$ 57,982,825	p 10, 364, 964 \$ 44, 136, 180 \$ 173, 948, 476
Rationale for Selection:											
The Fertilizer Manual was selected for being both the newest cost point and the most conservative. The data from Perty's Chemical Engineering Handbook is based on earlier data from Petiers and Timmenhaus, making it even less desirable. The allowances listed under Balance of Plant' are based on NETL 2000. These allowance values are comparable to additional published estimating guides, such as Page 1996.	r being both the n under 'Balance o	newest cost poi of Plant' are bas	nt and the r sed on NETI	nost conservative. 2000. These allov	The data from Perny vance values are cu	√s Chemical Engine∉ omparable to additio	ering Handbo nal published	ok is based o estimating g	n earlier data from uides, such as Pag	Peters and Timmerha 9 1996.	us, making it even

Detail Item Report - Steam Turbines

NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN PRODUCTION ANALYSIS	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 149 of 151

Source Considence: Reported Capacity Reported Expension Reported Reported Reported Source Reported Reported Reported Source Reported Reported Reported Source Reported Reported Source Reported Reported Source Reported Reported Source Reported Source Reported Source Reported Reported Source Reported Source Reported So								Prepare Estimati	Prepared By: Estimate Type:	ш О	B. Wallace Class 5	B. Wallace, R. Honsinger, J. Martin Class 5	r, J. Martin
Reported SourceReported Cost													
Steam Turtine and HFSG Fill Fil	eported apacity	Reported Trains		Reported Cost	Reporting Year Cost Per Train	Normalized Cost Per Train using CEPCI Index	Capacit Require		ains eqd.	Capacity pe Train		tored Cost Train from nalized Cost	Total Current Cost for Required Trains
Similacic Base Gases (NELL-2000) 193 Num 1 193 5 50,671,000 5 50,671,000 5 64,91,744 159 MV 1 150													
Steam Turbino Stant Tu	+	-	1999	\$ 50,671,000	\$ 50,671,000	\$ 66,419,744	159	NΜ	-	_		59,899,366	\$ 59,899,36
Nincli Descent Report Z0013 401 Nincli T 2006 \$ 74,51,000 \$ 66,700,000 \$ 76,610,000	Ħ							H	Ħ				
Fillendec Report (Neutr. 2008) 215 MW 1 2001 5 65,00,000 5 64,3615,000 5 64,3615,000 5 64,3615,000 5 64,3615,000 5 64,3615,000 5 64,3615,000 5 64,3615,000 5 64,3615,000 5 64,3615,000 5 64,3615,000 5 64,3615,000 5 64,3615,000 5 44,515,000 5<	1		2006	\$ 74,651,000				ΜM	, _ -		\$ \/\	25,233,335	\$ 25,233,3
Carbon Source Selector: 230 NV 1 2006 5 44,515,000 5 4	+	-	2007	\$ 66,700,000				Ň	_		\$	46,806,721	\$ 46,806,7
Source Selected: Reported Reported Cost Reported Cost Reported Case of Tail Normalized Cost Tails Year Fa Shell IISCC Power Plant with CO2 230 MM 1 2005 \$ 44,515,000 \$ 45,619,856 159 MM 1 156 MV \$ Shell IISCC Power Plant with CO2 230 MM 1 2005 \$ 44,515,000 \$ 45,619,856 159 MV 1 156 MV \$ Shell IISCC Power Plant with CO2 230 M 1 2005 \$ 44,515,000 \$ 45,619,856 159 MV 1 156 MV \$ Capacity For Netter Stell 230 N 1 2005 \$ 44,515,000 \$ 45,619,856 159 MV 1 150 MV \$ Control \$ Control S		1		44,515,000	\$ 44,515,000	\$	159	MW	1			36,576,204	\$ 36,576,204
Reported SourceReported CapacityReported TrainsReported CapacityReported TrainsReported TrainReported TrainReported TrainReport TrainPer TrainReport TrainPer TrainSourceCapacityTrainsYearReported CostCapacityRequiredReqd.TrainsNorSourceCapacityTrainsYearReported CostCapacityReqd.TrainsNorSolute SoluteNor12006\$ 44,515,000\$ 44,515,000\$ 45,619,856159Nov1156NovSolute Solute230Nov12006\$ 44,515,000\$ 44,515,0													
Stantilic CC Power Plant with CO2 Control of the control	eported	Reported Trains		Reported Cost	Reporting Year Cost Per Train	Normalized Cost Per Train using	Capacit		ains	Capacity pe Train		tored Cost Train from	Total Current Cost for Required Trains
Shall IGCC Power Plant with C02 300 MW 1 150 150 150 150 150 150	apacity		- 40	Itebalted cost				t					
Balance of Plant: Description % of Total Cost Not Control							159	MW	-	159 N		36,576,204	\$ 36,576,204
Description % of Total Cost Notest Systems Control Cont													
Water Systems 7 10% 7 10% 8 9	Total Cost										Cos	st Per Train	Total Cost
ConvEstmental 9 20%	7 1006										4	2 506 010	\$ 2 FOR 01
Pping 7.10% 7.10% 1	9.20%										\$	3,365,011	\$ 3,365,01
Control and Instrumentation 260% 2 80% Electrical Systems 8 00% 9 Electrical Systems 8 00% 9 Electrical Systems 8 00% 9 Rationale for Selection: 7 total Balance of Plant Plus the Selected Source \$	7.10%										⇔	2,596,910	\$ 2,596,91
Electrical Systems 8 00% 8 101 Electrical Systems 8 00% 8 101 Electrical Systems 9 101 Electrical Systems 9 101 Electrical Selected Source 8 101 Electrical Electrical Selected Source 8 101 Electrical Electrica	2.60%										⇔	950,981	\$ 950,98
Rationale for Selection:	8.00%										\$	2,926,096	\$ 2,926,096
Rationale for Selection:						Total Balance of Pla	Int at Diversion	1.11.14.1			€-> €	12,435,909	\$ 12,435,900
Rationale for Selection:						I otal Balance of Pla	UL FIUS THE C	elected	Source		<i>~</i>	49,012,114	\$ 48'012'114
Shell IGCC PowerPlant with CO2 Canture (NET 2007b) is a recently reported cost point that closely reflects this projects requirements. The Princeton Report (Kreutz 2008) source for the stear	FT 2007b)	is a recently	reported or	ost point that closely	v reflects this project	ffs requirements Th	e Princeton F	Senort (1	reut7 20	08) source fo	r the stear	n turbine cost	point is the NFTI
are now compared with the second provide construction of the second s	alance of PI	lant' are base	d on NETL	2000. These allow	value values are co	mparable to addition	al published	estimati	ng guides	i, such as Pa	ge 1996.		
2007b report. The allowances listed under Balance of Plant' are based on NETL 2000. These allowance values are comparable to additional published estimating guides, such as Page 1996.	alance of Pl	lant' are base	d on NETL	2000. These allow	vance values are co	mparable to addition	al published	estimati	ig guides	, such as Pa	ge 1996.		
Shell IGCC PowerPlant with CO2 Capture (NE 2007b report. The allowances listed under 'Ba		pported 0 MVV 0 MVV 0 MVV 0 MVV 0 MVV 1096 1006 0.007b 1006	ported Reported Reported Trains pacity Trains MWW 1 MWW 1 MWW 1 MWW 1 Trains ported Reported ported Reported provided Trains 10%6 10%	ported Reported Cost pecty Trains Year MWV 1 1999 MWV 1 2000 MWV 1 2000 MWV 1 2000 MWV 1 2000 MVV 1 2000 information Performance Performan	Ported ported Ported	Ported Reported Reported Cost Per Train Ported Trains Year Reported Cost Fer Train PMW 1 1999 \$ 50,671,000 \$ 50,671,000 \$ 50,671,000 PMW 1 1999 \$ 74,551,000 \$ 66,700,000 \$ 66,700,000 MWW 4 2006 \$ 74,551,000 \$ 44,515,000 \$ 44,515,000 MWW 1 2006 \$ 44,515,000 \$ 64,700,000 \$ 66,700,000 MWW 1 2006 \$ 44,515,000 \$ 44,515,000 \$ 44,515,000 Perted Reported Reported Cost Reporting Year \$ 10,000 \$ 14,515,000 MWW 1 2006 \$ 44,515,000 \$ 44,515,000 \$ 14,515,000 MWW 1 2006 \$ 44,515,000 \$ 14,515,000 \$ 14,515,000 MWW 1 2006 \$ 44,515,000 \$ 14,515,000 \$ 14,515,000 MWW 1 2006 \$ 44,515,000 \$ 14,515,000 \$ 14,515,000	Ported Report Normalized Cost Cost Per Train using ppted Reported Cost Cost Per Train using pmW 1 199 \$ 50,671,000 \$ 66,700,000 \$ 64,998,666 mWW 1 2006 \$ 44,515,000 \$ 19,52,550 \$ 191,25,957 mWW 1 2006 \$ 66,700,000 \$ 64,398,666 \$ 44,515,000 \$ 45,519,005 mWW 1 2006 \$ 44,515,000 \$ 44,515,000 \$ 44,515,000 \$ 45,519,856 mWW 1 2006 \$ 44,515,000 \$ 44,515,000 \$ 45,519,856 mWW 1 2006 \$ 44,515,000 \$ 44,515,000 \$ 45,519,856 mWW 1 2006 \$ 44,515,000 \$ 44,515,000 \$ 45,519,856 mported Reported Reported Cost Reporting Yeer Per Train Cost Per Train momalized Cost Year Reporting Yeer Per Train Cost Per Train momalized Year Reporting Yeer Per Train Cost Per Train	Ported ported pricity Report Train Report (CEPCI Index Reporting (CEPCI Index) Normalized Cost (CEPCI Index) Cost (CEPCI Index) Requires (CEPCI Index) 0 MW 1 1989 \$ 50,671,000 \$ 66,419,744 150 0 MW 1 2006 \$ 74,515,000 \$ 66,700,000 \$ 66,419,744 150 0 MW 1 2006 \$ 44,515,000 \$ 66,700,000 \$ 66,700,000 \$ 150 0 MW 1 2006 \$ 44,515,000 \$ 44,515,000 \$ 44,515,000 \$ 45,619,856 150 0 MW 1 2006 \$ 44,515,000 \$ 44,515,000 \$ 44,515,000 \$ 45,619,856 150 0 MW 1 2006 \$ 44,515,000 \$ 44,515,000 \$ 45,519,856 150 0 MW 1 2006 \$ 44,515,000 \$ 45,519,856 150 0 MW 1 2006 \$ 44,515,000 \$ 45,519,856 150 0 MW 1 2006 \$	Ported Report Report Report Report Report Cast Reporting Year Normalized Cost Tain using Case true Reputed Reputed Reputed Reputed Reputed Reputed Reputed Reputed Reputed Reported Cest Fail using Reputed Reputed Reputed Reputed Reported R	Ported Boticy Report Trains Report Cost Report Report Required Required Required Required Required Required Trains Required 0 MW 1 199 5 50,671,000 5 66,419,744 19 MV 1 0 MW 1 1999 5 50,671,000 5 66,419,744 19 MV 1 0 MW 1 1999 5 50,671,000 5 66,100,00 5 66,100,00 5 66,100,00 5 66,100,00 5 66,100,00 5 66,100,00 5 44,515,000 5 44,515,000 5 45,619,856 159 MW 1	ported Report of Cost Reported Cost<	Instruction Report of Report of Protect Report of Cost Per Train Normalized Cost Reporting Vear Normalized Cost Reporting Vear Normalized Cost Reporting Vear Report of Report of Protect Capacity per Required Fail Normalized Report of Protect Report of Reporting Vear Normalized Cost Reporting Vear Report of Report of Protect Report of Protect Protect Report of Protect Report of Protect Report of Protect Protect Report of Protect Protect Report of Protect Protect <td></td>	

Detail Item Report - HRSG

NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN PRODUCTION ANALYSIS	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 150 of 151

Amound of the part		MA36-0	н і SE Аштопіа Wo ASU MA36-O						Client: Prepared By: Estimate Type	Client: Prepared By: Estimate Type:	Ξ m Ö	M. Patterson B. Wallace, R. Honsinger, J. Martin Class 6	nger, J. Martin	
	Sources Considered:													
Simple Not 1 199 5 50,671,000 5 50,671,000 5 50,671,000 5 50,671,074 5 10,174 MW 1 2010 5155,913 B/hr 3 2006 5 50,671,000 5 9,471,852 MW 1 - - - MW 1	Source	Reported Capacity	Reported Trains		Reported Cost	Reporting Year Cost Per Train	Normalized Cost Per Train using CEPCI Index	Capaci Require		Trains Regd.	Capacity per Train	Factored Cost per Train from Normalized Cost	st Total Current Cost m for Required ost Trains	nt Cost ired
NETL 2000) 159 MV 1 1989 5 50,671,000 5 50,671,9744 - MV 1 2011 2013 5155 MV 1 2 2000 5 5,047,1974 - MV 1 - - MV 1 - MV	Steam Turbine and HRSG													
FIL 2017al 515.94s Inhu 3 2006 \$ 2158.05 % 5 Pun 1 2008) 355 Min 3 2006 \$ \$ \$ \$ Min 1 Min 1 2008) 555 Min 1 2006 \$ \$ \$ \$ \$ Min 1 1 Min 1	Shell IGCC Base Cases (NETL 2000)	Ħ	1	1999	\$ 50,671,000	\$ 50,671,000			NΜ	-	- W	\$ MM	69	ľ
ETL 2007al 5:155,983 thr 3 2006 \$ 2/351:000 \$ 9:42:1852 thrw 1 2 2006) 355 MW 1 2:007 \$ 5:2:000.00 \$ 9:45:3:772 thrw 1 i 2006) 8:45:301.00 \$ 2:000.000 \$ 2:000.000 \$ 2:3:207:558 thrw 1 2001 Reported Reported Reported Reported \$ 4:5:291.000 \$ 2:3:207:558 thrw 1 i <td>HRSG</td> <td>+</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>t</td> <td></td> <td></td> <td></td> <td></td>	HRSG	+								t				
2008) 355 Miv 1 2007 \$ \$ 200000 \$ \$ 0.002100 \$ \$ 0.0021000 \$ \$ 0.0021000 \$ \$ 0.00210000000 \$ \$ 0.002100000000 \$ \$ 0.002100000000000 \$ \$ 0.002100000000000000000000 \$ \$ 0.0021000000000000000000000000000000000	-	-	۲ 3	2006	\$ 27,581,000	\$ 9,193,667	\$ 9,421,852	•	lb/hr	-	/q -	lb/hr \$	\$	ľ
offm CO2 8,438,000 Ib/n 2 3 3 3 3 1 Ib/n 1	-	-	1 1	2007	\$ 52,000,000	\$ 52,000,000	\$ 50,673,772		NΜ	-	- W	MWV \$	\$ 1	1
Reported Capacity Reported Trains Reported Vear Reporting Vear Reporting Vear Normalized Cost Reporting Vear Required Trains Required Reporting Required vifficO2 8,336,000 Ib/hr 2 2006 \$ 22,645,500 \$ 23,207,558 - Ib/hr 1 vifficO2 8,45,291,000 \$ 22,645,500 \$ 23,207,558 - Ib/hr 1 vifficO3 8,0104 0 1 2 1 1 1 vifficO3 8,0104 2 2 23,207,558 - Ib/hr 1 vifficO3 8,0104 9 1 0 1 1 vifficO3 8 0 1 1 1 1 1 vifficO4 1 1 1 1 1 1 1 vifficO4 1 1 1 1 1 1 1	it with CO2	38.000 lb/h		_		22,645,500			lb/hr	-	- ql	lb/hr \$	69	
Reported Capacity Reported Trains Reported Vear Reported Reported Cost Normalized Cost Capacity Reported Trains With CO2 8.438.000 Ib/hr 2 2006 \$ 45.291.000 \$ 22.645.500 \$ 23.207.558 - Ib/hr 1 % of Total Cost 10% 2 2006 \$ 22.645.500 \$ 23.207.558 - Ib/hr 1 00 Ib/hr 2 2006 \$ 22.645.500 \$ 23.207.558 - Ib/hr 1 10% 2 10% 2 2006 \$ 23.207.558 - Ib/hr 1 0 2.006 \$ 45.291.000 \$ 22.645.500 \$ 23.207.558 - Ib/hr 1 10% 1.0% 1 0 1 1 1 1 0 2.00% 1 1 1 1 1 1 0 2.00% 1 1 1 1 1 1	Source Selected:													
Capacity Trains Veal Reported Cost Cost Per Train Reported Required Reduired		Reported	Reported			Reporting Year	Normalized Cost Per Train using	Capaci		rains	Capacity per	Factored Cost	st Total Current Cost	nt Cost ired
vith CO2 8,438,000 Ib/hr 2 2006 \$ 45,291,000 \$ 22,645,500 % of Total Cost 7 70% 7 7	Source	Capacity	Trains		Reported Cost	Cost Per Train	CEPCI Index	Require		Regd.	Train	-		"
% of Total Cost % 7.10% 7.10% 9.20% 9.20% 0n 2.00% 8.00% 1	it with CO2	38,000 lb/h		2006					lb/hr	-	- ID/	lb/hr \$	\$ -	1
% of Total Cost % of Total Cost 7 10% 9 20% 0 7 10% 2 80% 8 00%	Balance of Plant:													
01 2 50% 01 2 50% 01 2 50% 01 2 50% 01 2 50% 01 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1		of Total Cost										Cost Per Train	n Total Cost	ost
on 2.80% 10% 10% 10% 10% 10% 10% 10% 10% 10% 1														
on <u>7.10%</u> 8.00% 8.00%	Water Systems	/.10%										÷+++		1
on 2.60% 1.60\% 1.70\% 1.60\% 1.70\% 1.70\% 1.70\% 1.70\% 1.70\% 1.70\% 1.70\% 1.7	civirati ucturalraururrigs Pining	3.20%										e es	e es	
8.00%	Control and Instrumentation	2.60%										• 60	• 60	'
	Electrical Systems	8.00%										\$	\$ -	-
_							Total Balance of Pla	ant				\$	69 -	1
Rationale for Selection:							Total Balance of Pla	ant Plus the	Selecteo	Source		\$	\$	1
	Rationale for Selection:													
Shell IGCC PowerPlant with CO2 Capture (NET - 2007b) is a recently reported cost point that dosely reflects this projects requirements. The Princeton Report (Kreutz 2008) source for the steam turbine cost point is the NETL	Shell IGCC PowerPlant with CO2 Capture ((NET_ 2007b) is a recently	reported or	ost point that closel	y reflects this projec	ts requirements. Th	le Princeton	Report (Kreutz 20	08) source for	the steam turbine o	ost point is the N	ΞĽ
2000 hepdt. The allowance sits a duration of Part are based on NETL 2000. These automative structures are provided in the provided and and an and an and a structure are based on NETL 2000 hepdt. The allowance sits and and a structure structures are able and and a structure are areaded by a structure are based on NETL 2000. These and and a structure are based on NETL 2000. These and are are compared by a dotter and a structure are based on NETL 2000. These and are are compared by a dotter are based as a structure are areaded and are are areaded and a structure areaded and a structure are areaded and a structure areaded and a struct	2007b report. The allowances listed under	Balance of P	lant' are base	d on NETL	2000. These allow	ance values are col	mparable to addition	nal published	d estimat	ing guide	s, such as Pag	je 1996.		1

Page 12 of 13

NUCLEAD INTECDATED HVDDOCEN	Identifier:	TEV-693	
NUCLEAR-INTEGRATED HYDROGEN PRODUCTION ANALYSIS	Revision:	1	
PRODUCTION ANALYSIS	Effective Date:	05/15/10	Page: 151 of 151

	J. Martin		Total Current Cost for Required Trains	4,280,419			Total Current Cost for Required Trains	4,280,419		Total Cost	303,910	303,910	111,291 342,434	1,455,343 5,735,762		der 'Balance of Pla]
	M. Patterson B. Wallace, R. Honsinger, J. Martin Class 5		Factored Cost To per Train from Normalized Cost	\$ 856,084 \$			Factored Cost Tc per Train from Normalized Cost	\$ 856,084 \$		Cost Per Train	\$ 60,782 \$ \$ 78.760 \$	\$ 60,782 \$	\$ 22,258 \$ \$ 68,487 \$	\$ 291,069 \$ \$ 1 147 152 \$	*	allowances listed unc	
			Capacity per Train	32,171 gpm			Capacity per Train	32,171 gpm								ooling towers. The	
	Client: Prepared By: Estimate Type:		rains Reqd.	gpm 2			rrains Reqd.	gpm 5						elected Source		the building of c	
	011		t g Capacity Required	8 160,853 (st Gapacity Required	8 160,853 (Plant Plant Plus the S	22	larly engaged in	
ling Towers			Normalized Cost Per Train using CEPCI Index	\$ 922,368			Normalized Cost Per Train using CEPCI Index	\$ 922,366						Total Balance of Plant Total Balance of Plant Plus the Selected Source	2233	am a vendor regul age 1996.	
Detail Item Report - Cooling Towers			Reporting Year Cost Per Train	\$ 922,368			Reporting Year Cost Per Train	\$ 922,368								railable cost data fro g guides, such as P	
Detai			Reported Cost	\$ 4,611,840			Reported Cost	\$ 4,611,840								ised on publically av published estimatin	
			Report Cost Year	2009			Report Cost Year	2009								al costs ba additional	
	ntegration w/o ASU		Reported Trains	ω			Reported Trains	5								ilculated capit- comparable to	
	NGNP Process Integration HTSE Ammonia w/o ASU MA36-O		Reported Capacity	182,142 gpm			Reported Capacity	182,142 gpr		% of Total Cost	7.10%	7.10%	2.60% 8.00%			le current data. Cé vance values are c	
	Project Name: Process: Estimate Number:	Sources Considered:	Source	Cooling Tower Depot		Source Selected:	Source	Cooling Tower Depot	Balance of Plant:	Description	Water Systems Civil/Sterictura/Reinidings	Piping	Control and Instrumentation Electrical Systems		Rationale for Selection:	Single source cost. Publically available current data. Calculated capital costs based on publically available cost data from a vendor regularly engaged in the building of cooling towers. The allowances listed under 'Balance of Pl are based on NETL 2000. These allowance values are comparable to additional published estimating guides, such as Page 1996.	