HTGR Technology Course for the Nuclear Regulatory Commission

May 24 – 27, 2010

Module 10c

Helium Inventory and Purification System

OUTLINE

- HTGR Helium Purification System (HPS) design
 - Functions
 - Requirements
 - Design approach
 - Design description
- Helium Transfer and Storage System (HT&SS) design
 - Functions
 - Design description
- Operating experience
 - Lessons learned for HTGR design

HPS Functions

- Removes chemical and radionuclide impurities from helium coolant
- Pressurizes, depressurizes, and controls the primary helium coolant inventory (in conjunction with Helium Transfer and Storage System)
- Provides purified helium for purges and buffers
- Maintains primary coolant system slightly subatmospheric during refueling/maintenance
- Purifies helium pumped to storage
- Remove H₂O from primary circuit following water ingress event

Summary of HPS Requirements

- Each reactor module shall have an independent helium purification system
- Shall remove H₂O, CO, CO₂, H₂, N₂, O₂, H₂S, CH₄, and higher molecular weight hydrocarbons
- Shall allow depressurization of the Reactor Module (and/or adjacent module) within 24 hours after shutdown
- Shall include one regeneration train for two HPSs
- Shall be sized to process a slipstream of the primary coolant, typically on the order of 1% of the primary loop volume flow rate

HPS Design Approach

- Passive components (filters, packed beds, etc.) with redundancy
 - High reliability
 - High availability
- Modularized components
 - Reduces construction time/cost
 - Allows easier maintenance
- High temperature filter/adsorber module performs adsorption/chemisorption on activated charcoal
 - High temperature filters remove particulates
 - Removes condensable metallic fission products

HPS Design Approach - Continued

- Oxidizer-cooler module oxidizes impurities
 - Converts CO and H₂ to CO₂ and H₂O
 - HT and T_2 oxidized and removed as HTO and T_2 O
 - Condenses water vapor for water ingress event
- Dryer module removes impurities with molecular sieve adsorber
 - Removes CO₂ and H₂O coming from oxidizer-cooler module
- Low-temperature adsorber module includes a lowtemperature heat exchanger and a low temperature adsorber section
 - Removes CH₄, Kr, Xe, N₂, and Ar
 - Removes small quantities of CO, CO₂, and N₂ for air ingress event during refueling/maintenance of primary circuit components

HPS Design Approach - Continued

- Purified helium compressor module includes compressor, filter, pulsation bottles, and an aftercooler
 - Boosts helium pressure for return to primary system
 - Provides cool pure helium for purges
 - Dampens out surges in helium flow
- Regeneration train includes oxidizer, compressor, and dryer modules
 - Operates only when needed for regeneration
 - Regenerates dryers and low temperature adsorbers

Helium Purification Train

Contaminants Removed

Red Section:
Condensable
Radionuclides
& Particulates

Green Section: H₂O, including tritiated H_TO & CO₂

Blue Section: Kr, Xe, N₂

Fort St. Vrain HPS Flow Diagram

OUTLINE

- HTGR Helium Purification System (HPS) design
 - Functions
 - Requirements
 - Design approach
 - Design description

- Helium Transfer and Storage System (HT&SS) design
 - Functions
 - Design description
- Operating experience
 - Lessons learned for HTGR design

Helium Transfer and Storage System Functions

- Provides storage capacity for helium during inventory changes
 - Load changes for GT designs
 - Depressurizations for prismatic refueling, off-line maintenance
- Supplies primary coolant system makeup helium during normal plant operation
- Provides source of high pressure helium for specific plant uses
- Transfers/distributes helium among various plant users
- Works in conjunction with HPS to pressurize, depressurize, and control the primary coolant inventory

Helium Transfer and Storage System

Fort St. Vrain Helium Storage System

OUTLINE

- HTGR Helium Purification System (HPS) design
 - Functions
 - Requirements
 - Design approach
 - Design description
- Helium Transfer and Storage System (HT&SS) design
 - Functions
 - Design description

- Operating experience
 - Lessons learned for HTGR design

Operating Experience/Lessons Learned

- HPS and HT&SS performed well in seven steam-cycle HTGRs
- Specific lessons from FSV
 - HPS overwhelmed by large H₂O ingresses; long times required for dry out of primary coolant circuit
 - Single transfer compressor required taking plant offline for compressor maintenance
- Components performed well except for Ti Getter Beds in FSV
 - FSV used Ti getter beds instead CuO oxidizers/driers for the removal of hydrogen and tritium
 - Ti beds were frequently deactivated by N₂
 - No operational consequences because H₂ and H-3 sorbed on core graphite
- Design recommendations for future HTGRs:
 - Provide suitable drains for removal of standing water
 - Provide backup He transfer compressor
 - Use CuO oxidizer beds/driers for H2 and H-3 removal

Pebble Bed-Specific Operating Experience/Lessons Learned

- AVR and THTR experience with HPS indicated good performance and reliability
- Care must be taken in the design to minimize leaks from large number of equipment and piping items; this has an adverse impact on economics
- PBMR is making use of a scaled down version of an HPS and HT&SS in the Helium Test Facility in South Africa

Summary

- HPS technology well established and demonstrated in operating HTGRs and in-pile loops
- Primary purpose of HPS in an HTGR is to control chemical impurities in the primary coolant
- HPS removes longer-lived noble gases, but little effect on condensable radionuclides (plateout controlling)
- HPS and HT&SS have performed well in seven steam-cycle HTGRs
 - Ti getters in FSV performed poorly: use CuO oxidizer beds instead
 - Provide backup He transfer compressor for good plant availability
- HPS effectively removes tritium from primary coolant, but core graphite more important sink for tritium removal
- No technology development needed for HPS

Suggested Reading

- "Preliminary Safety Information Document for the Standard MHTGR," HTGR-86024, Rev. 13, Stone & Webster Engineering Corp., September 1992
- "Fort St. Vrain Nuclear Generating Station, Final Safety Analysis Report" (updated), USNRC Docket No. 50-267
- "Fort Saint Vrain Gas Cooled Reactor Operational Experience," NUREG/CR-6839 (ORNL/TM-2003/223), Oak Ridge National Laboratory, January 2004
- "Primary Coolant Chemistry of the Peach Bottom and Fort St. Vrain High Temperature Gas-Cooled Reactors," IAEA Conference Proceedings IGGCRI2, December 1980