HTGR Technology Course for the Nuclear Regulatory Commission

May 24 – 27, 2010

Module 10b

Steam Cycle Power Conversion System

Outline

- Functions and requirements
- SCPCS configuration
- Key SCPCS components
- Steam cycle performance
- Experience

SCPCS Functions and Requirements

• Key SCPCS functions for normal operation

- Transfer reactor heat to secondary circuit
- Generate electricity for
 - Process user
 - Supply to grid
 - Reactor module house load
- Provide process steam for end user
- Support cogeneration

• Key SCPCS functions for off-normal operation

- Residual heat removal during shutdown/maintenance
- Provide potential residual heat removal path during accidents (non-safety)
- Specific functions and requirements must be defined for each individual application

Outline

- Functions and requirements
- SCPCS configuration
- Key SCPCS components
- Steam cycle performance
- Experience

HTGR SCPCS Configuration Addresses Three Main Areas

- Basic steam cycle primary loop
- Basic secondary Rankine cycle
- Generic process steam and cogeneration configuration

Example Modular HTGR Steam Cycle Primary Loop Configurations

Conventional Rankine Cycle Primary and Secondary Loop Configuration

aho National Laboratory

Process Steam Supply Considerations

- Process steam pressure/temperature
- Process steam quantity
- Operating flexibility
 - Response to varying user steam demands
 - Flexibility for varying steam vs. electricity production
- Operational interaction between steam supply units and process users
- Process steam contamination concerns
- Feedwater quality control
- Process steam reliability concerns
 - Availability
 - Service interruption

Generic Process Steam Cogeneration Configuration

Modular Steam Supply System Conformed to Applications

- Match to plant steam demand
- Optimized for customer priorities
 - Nominal steam
 - Minimum steam
 - House electric
 - Grid capacity
- Steam reliability requirements

GFB = Gas-fired boiler stby = Module in standby

AREVA

Outline

- Functions and requirements
- SCPCS configuration
 - Key SCPCS components
 - Primary circulator
 - Steam generator
 - Steam turbine
 - Condenser
 - Electrical generator
 - Reboiler
 - Steam generator isolation valves
 - Steam/water dump system
- Steam cycle performance
- Experience

Primary Circulator Considerations

Circulator functions and requirements

- Circulate primary coolant
 - Normal operation
 - Maintenance
 - Some accidents (when SG is available as heat sink)
- Variable speed
- Pressurized and depressurized operation
- Suppress natural convection and reverse flow

• Options

- Electric drive
- Submerged motor (most current designs)
- External motor with shaft seal
- Bearings (magnetic, oil, other)
- Impeller type

Typical Circulator Arrangement

Steam Generator Considerations

• Steam generator functions and requirements

- Transfer heat from primary to secondary coolant
- Produce steam at required temperature and pressure
- Remove decay heat from primary coolant during shutdown and maintenance
- Remove decay heat from primary coolant during some accidents (when available)
- Provide primary coolant boundary
- Control radionuclide releases
 - Circulating activity
 - Role in tritium control
- Minimize water ingress into primary circuit (together with protection system which initiates isolation, etc.)

Options

- Heat exchanger geometry
 - Shell and tube HX (water on tube side)
 - Helical coil tube bundle
- Upflow or downflow
- Reheat or no-reheat

Typical Modular HTGR Steam Generator Configurations

Key Elements of HTGR Steam Generator Technology

- Helical coil tube bundle
- Thick wall tubes
- Radial support plates
- Common tubing materials

ho National Laboratory

- 2.25 Cr 1 Mo
- 800 H

HTGR Steam Generator Reliability Considerations

- HTGR steam generator applications demand high reliability
 - HTGR cannot operate with sustained steam/water ingress into primary circuit
- Steam generator leakage is easily detectable
- Steam generator environment is very benign
 - Inert gas on shell side
 - High purity water on once-through tube side
 - Good thermal margins for materials
- Steam generator design is very robust
- HTGR operating experience has been good
- Steam generator leak mitigation capability based on conservative assumptions
 - Isolation
 - Steam/Water Dump System
 - Robust reactor design

Idaho National Laboratory

PWR SG Tube

Steam Turbine Considerations

• Steam turbine functions and requirements

- Convert steam energy into mechanical energy
- Reduce main steam to desired pressure/temperature for process applications
- Options
 - Standard fossil plant multi-stage steam turbine
 - Standard fossil plant back-pressure steam turbine
- No significant considerations unique to HTGR applications

Condenser Considerations

• Condenser functions and requirements

- Condense turbine exhaust steam
- Transfer waste heat to circulating water system
- Collect condensate from turbine, reboilers, etc.
- Maintain feedwater quality
- Options
 - Standard fossil plant condenser

• No significant considerations unique to HTGR applications

Electrical Generator Considerations

- Generator functions and requirements
 - Convert mechanical energy to electrical energy

• Options

- Standard fossil plant generator
- Air-cooled or hydrogen-cooled
- No significant considerations unique to HTGR applications

Reboiler Considerations

• Reboiler functions and requirements

- Produce process steam from secondary steam heat
- Pressure boundary between secondary and process steam loops
- Minimize transfer of radionuclides from secondary loop to process steam
- Minimize transfer of impurities from process feedwater to secondary loop

• Options

- Standard process industry equipment
- Wide variety of potential configurations depending on application
 - Shell and tube HX
 - Plate HX
 - Multi-stage or hybrid HX

Steam/Water Isolation Valve Considerations

- Isolation valve functions and requirements
 - Separate SG from feedwater system for maintenance
 - Separate SG from main steam system for maintenance
 - Limit water ingress in case of steam generator leak
 - Maintain primary coolant boundary in event of steam generator leak
- Options
 - Standard industry equipment

Steam/Water Dump System Considerations

- Isolation valve functions and requirements
 - Limit water ingress in case of steam generator leak
 - Accept water inventory from steam generator and feedwater nozzle
 - Maintain primary coolant boundary in event of steam generator leak
- Options
 - Standard industry components

Steam/Water Dump System Configuration

- Dump valves actuated by protection system
 - High moisture
- Driving force
 - Gravity
 - Steam pressure

o National Laboratory

Outline

- Functions and requirements
- SCPCS configuration
- Key SCPCS components
- Steam cycle performance
- Experience

Sample HTR Steam Cycle Operating Conditions

Reactor Outlet/SG Inlet Temp	750°C
SG He Outlet Temperature	314°C
Reactor Inlet Temp	322°C
SG Water Inlet Temperature	200°C
SG Steam Outlet Temperature	541°C
Steam Outlet Pressure	17.2 MPa

"Modern" fossil steam conditions (e.g., pulverized coal)

daho National Laboratory

Outline

- Functions and requirements
- SCPCS configuration
- Key SCPCS components
- Steam cycle performance
- Experience

Overall Steam Cycle Experience

- Most past HTGRs used conventional steam cycle power conversion system
- HTGR steam cycle conditions and hardware are similar to previous generation fossil-fired Rankine systems (e.g., pulverized coal)
- Steam cycle power generation is mature technology
 - Used successfully around the world
- Process steam distribution and use has been widely used for many years
- Remaining issue is coupling of HTGR steam system to process heat application
 - SC/C 2240 MWt (HTGR concept)
 - Midland (PWR)

HTGR Circulator Experience

- Good circulator performance in Magnox, AGRs, and HTGRs
- Except for bearing lubricant leakage into primary coolant
 - Oil in Peach Bottom-1
 - Ingress from Fort St. Vrain water-lubricated bearings

• Experience base for current circulator concepts

- Aerodynamic experience adequate
- Magnetic bearing experience
 - Industry experience adequate for moderate size machine
- Submerged motor experience available
- Power supply industrially available
- Electrical penetration experience available
- NGNP circulator will be FOAK
 - Vendor experience adequate for required extrapolation
 - Circulator of required size within experience base
 - Air testing of prototype would be performed

ARFVA

HTGR Steam Generator Experience

- Past HTGRs have used steam generators in primary circuit
- HTGR steam generators have performed well
 - Good thermal performance
 - Few leaks

• Many years of successful AGR steam generator experience

- Early failures attributed to design and infant mortality
- Experience improved over time
- Overall failure rates modest

• Relevance of PWR steam generator experience

- HTGR environment much more benign
- Essentially no shell side corrosion or deposits
- HTGR steam generators more robust than PWR steam generators
- PWRs still being built

Rankine Cycle Component Experience

• Steam turbine

- High pressure multi-stage steam turbines in wide use around the world
- Back pressure and extraction turbines used in many process applications
- Actual turbine for specific HTGR cogeneration application will likely be custom ordered based on mature technology

Condenser

- Broad experience exists
- Size consistent with numerous existing applications

Electrical generator

- Broad experience exists
- Size consistent with numerous existing applications

Reboiler Experience

- Reboiler is new component for HTGR applications
- Reboilers used extensively in process industries
 - Separate process streams
 - Recover excess heat from process streams
 - Reevaporate condensed process fluids
- Existing units are tailored to the specific applications
- HTGR process steam supply reboilers will be customized units based on established technology

Summary

• Steam cycle power conversion system must

- Transfer heat from primary circuit
- Generate electricity for internal and external use
- Provide process steam at necessary conditions
- Past HTGRs used conventional steam cycle successfully
- HTGR steam cycle technology is comparable to past generation of coal-fired steam cycle systems
- Planned system is based on solid technology experience

