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Takeaway Messages

• As a heat storage material, iron is cheap 

and can operate from 100 to 700/900°C

• Steel cladding can be chosen for helium, 

sodium, lead or salt (fluoride, nitrate or 

chloride) environment—universal storage 

material

• Cast iron sets an upper limit on storage 

costs for sensible heat storage
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Cast Iron Storage for Any Coolant In 

Primary or Secondary Loop
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Cast Iron Storage In Tank Is Similar to 

Hexagonal Fuel Assemblies in Sodium and 

Russian Light Water Reactors

• We know how to 

design hexagonal 

structures in close-

packed arrays

• Lots of practical 

experience with 

different coolants

4

Russian VVER Core



Characteristics of Cast Iron Storage

• Sensible heat storage with cast iron. Clad metal chosen 
for corrosion resistance to primary or secondary reactor 
coolant (sodium, salt, lead or helium) 

• Temperature range from 100 to 700/900°C

• Low cost

• Layout: hexagonal assemblies 10 to 20 meters high in 
close-pack array

• Maximize storage heat capacity with >95% of volume 
in hexagonal solid assemblies

• Minimize primary or secondary coolant fraction to 
minimize cost and maximize safety (sodium case) 
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Cast Iron Constraints

• Peak temperature limit is a tradeoff between 
performance and cost

• Cast iron (iron + carbon) phase change with 
significant expansion 727 °C

• Pure iron phase change at 917°C

• Loose strength at higher temperatures

• Minimizing costs requires design with fabricator where 
minimum-cost design may depend upon fabricator 
facilities—manufacturing cost determines design

6



Cast Iron Storage with Small Temperature Drop 

Across Reactor and Large Temperature Drop 

Across Cast Iron to Minimize Storage Cost

7Sodium or Salt-Cooled Reactor Intermediate Loop



Cast Iron Heat Storage Can Be Placed in 

Series to Minimize Conductive Heat Loses 

in the Vertical Direction
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Integrating Cast Iron With Primary Helium in 

High-Temperature Gas-Cooled Reactor
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Large Pressure Vessels Being Developed 

for Adiabatic Compressed Air Storage

Project Adele system, laboratory section of prestress pressure vessel and schematic of the 

pressure vessel. Courtesy of General Electric, RWE AG, and Zublin

• Primary system 
minimizes 
temperature 
losses

• Fast response to 
variable 
electricity prices

• Steam or 
Brayton cycle
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Size and Cost of Cast Iron Heat-Storage 

System is Reasonable 

• Gigawatt-hour of cast iron with 100°C Delta T

• 80,000 metric tons

• 10,000 m3

• If 15 meters high, Diameter 29 m

• Cast iron capital cost: $500/ton (plus cladding and 

system)

• $40/kWh if 100°C Delta T

• $13/kWh if 300°C Delta T 
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Can the Steel Clad Be Filled with 

Other Heat Storage Materials?

• Potentially other storage materials

• Firebrick, alumina, phase-change, etc.

• Requires thicker steel cladding (container) to 

provide support

• Cast iron with cladding fabrication: Integrated piece

• Cast iron

• Fit cladding over cast iron

• Pull vacuum and heat to bond into single 

structure (other fabrication options exist)
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Conclusions
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• Cast iron storage is compatible with all coolants if 

use appropriate cladding

• Cast iron

– Can be used in primary or secondary loop of reactor

– Minimizes risk by minimizing total inventory of reactive 

coolants such as sodium (reduced inventory)

– Reduces cost if expensive coolant (sodium, many salts)

• Brute force, low technology option

• No detailed engineering studies
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