Cast-Iron Hexagons With Cladding for Heat Storage in Sodium, Salt, Lead and Helium Cooled Reactors

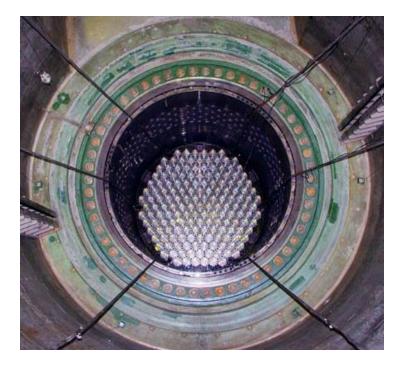
Charles Forsberg (<u>cforsber@mit.edu</u>) Department of Nuclear Science and Engineering Massachusetts Institute of Technology

Piyush Sabharwall (piyush.sabharwall@inl.gov) Idaho National Laboratory, Idaho Falls, ID

Takeaway Messages

- As a heat storage material, iron is cheap and can operate from 100 to 700/900°C
- Steel cladding can be chosen for helium, sodium, lead or salt (fluoride, nitrate or chloride) environment—universal storage material
- Cast iron sets an upper limit on storage costs for sensible heat storage

Cast Iron Storage for Any Coolant In Primary or Secondary Loop



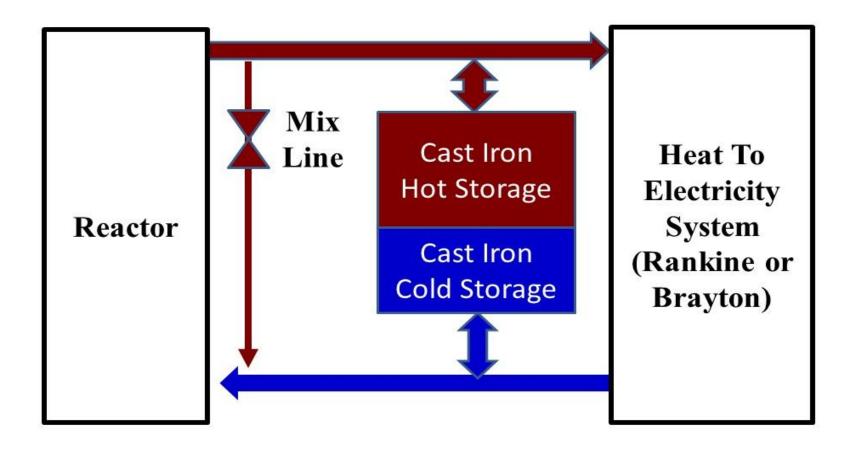
Cast iron hexagons up to 20 meters high, Hundreds of hexagons

- Vertical coolant flow channels
 - Width dependent upon coolant
 - Tabs on assemblies to space array
 - Corrosion Resistant Wrapper

Cast Iron Storage In Tank Is Similar to Hexagonal Fuel Assemblies in Sodium and Russian Light Water Reactors

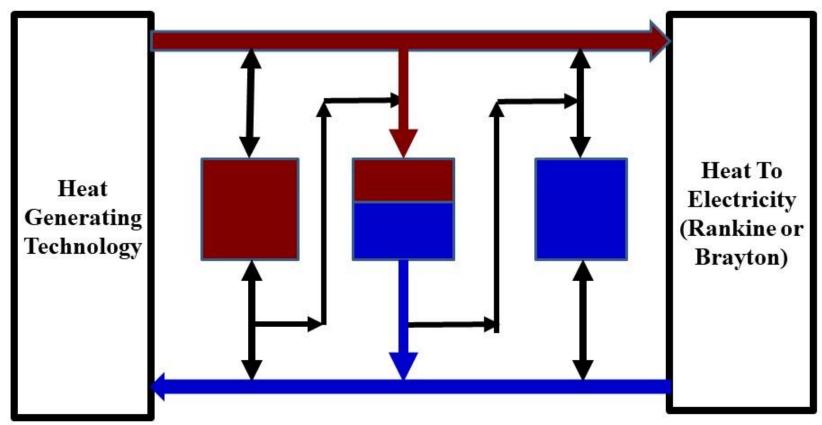
- We know how to design hexagonal structures in closepacked arrays
- Lots of practical experience with different coolants

Russian VVER Core

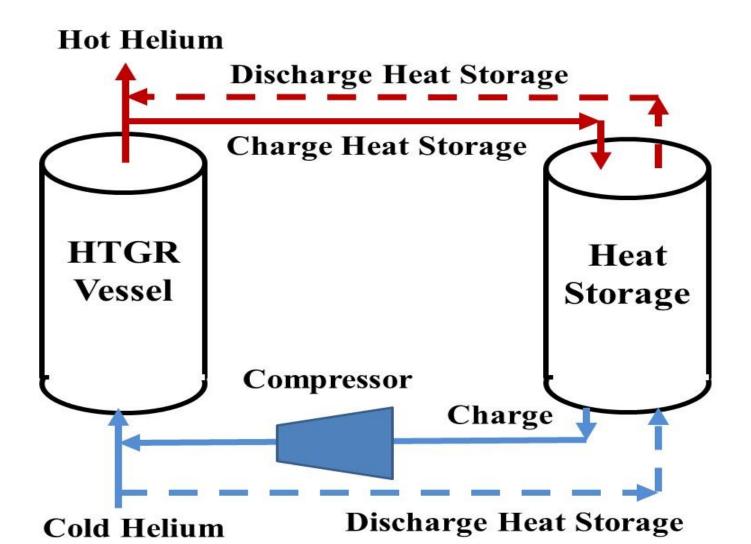

Characteristics of Cast Iron Storage

- Sensible heat storage with cast iron. Clad metal chosen for corrosion resistance to primary or secondary reactor coolant (sodium, salt, lead or helium)
- Temperature range from 100 to 700/900°C
- Low cost
- Layout: hexagonal assemblies 10 to 20 meters high in close-pack array
 - Maximize storage heat capacity with >95% of volume in hexagonal solid assemblies
 - Minimize primary or secondary coolant fraction to minimize cost and maximize safety (sodium case)

Cast Iron Constraints

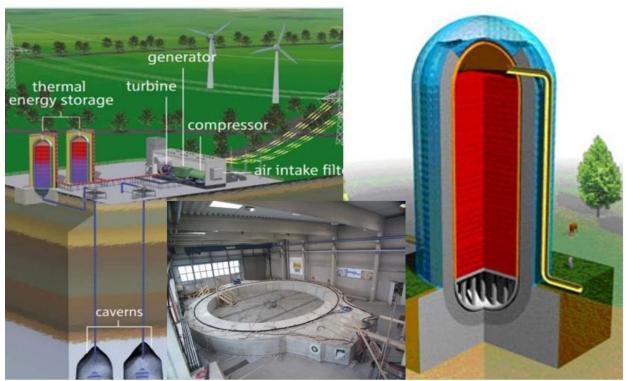

- Peak temperature limit is a tradeoff between performance and cost
 - Cast iron (iron + carbon) phase change with significant expansion 727 °C
 - Pure iron phase change at 917°C
 - Loose strength at higher temperatures
- Minimizing costs requires design with fabricator where minimum-cost design may depend upon fabricator facilities—manufacturing cost determines design

Cast Iron Storage with Small Temperature Drop Across Reactor and Large Temperature Drop Across Cast Iron to Minimize Storage Cost



Sodium or Salt-Cooled Reactor Intermediate Loop

Cast Iron Heat Storage Can Be Placed in Series to Minimize Conductive Heat Loses in the Vertical Direction



Integrating Cast Iron With Primary Helium in High-Temperature Gas-Cooled Reactor

Large Pressure Vessels Being Developed for Adiabatic Compressed Air Storage

- Primary system minimizes temperature losses
- Fast response to variable electricity prices
- Steam or
 Brayton cycle

Project Adele system, laboratory section of prestress pressure vessel and schematic of the pressure vessel. Courtesy of General Electric, RWE AG, and Zublin

Size and Cost of Cast Iron Heat-Storage System is Reasonable

- Gigawatt-hour of cast iron with 100°C Delta T
 - 80,000 metric tons
 - 10,000 m³
 - If 15 meters high, Diameter 29 m
- Cast iron capital cost: \$500/ton (plus cladding and system)
 - \$40/kWh if 100°C Delta T
 - \$13/kWh if 300°C Delta T

Can the Steel Clad Be Filled with Other Heat Storage Materials?

- Potentially other storage materials
 - Firebrick, alumina, phase-change, etc.
 - Requires thicker steel cladding (container) to provide support
- Cast iron with cladding fabrication: Integrated piece
 - Cast iron
 - Fit cladding over cast iron
 - Pull vacuum and heat to bond into single structure (other fabrication options exist)

Conclusions

- Cast iron storage is compatible with all coolants if use appropriate cladding
- Cast iron
 - Can be used in primary or secondary loop of reactor
 - Minimizes risk by minimizing total inventory of reactive coolants such as sodium (reduced inventory)
 - Reduces cost if expensive coolant (sodium, many salts)
- Brute force, low technology option
- No detailed engineering studies

References

- 1. C. W. Forsberg, "Sodium-Steel Heat Storage for Variable Energy Output from Nuclear and Solar Power Systems," *Transactions of the 2018 American Nuclear Society Winter Meeting held in Orlando, Florida: 11-15 November 2018.*
- C. W. Forsberg, "Variable and Assured Peak Electricity from Base-Load Light-Water Reactors with Heat Storage and Auxiliary Combustible Fuels", *Nuclear Technology* March 2019. <u>https://doi.org/10.1080/00295450.2018.1518555</u>
- 3. C. Forsberg and P. Sabharwall, *Heat Storage Options for Sodium, Salt and Helium Cooled Reactors to Enable Variable Electricity to the Grid and Heat to Industry with Base-Load Operations*, ANP-TR-181, Center for Advanced Nuclear Energy, Massachusetts Institute of Technology, INL/EXT-18-51329, Idaho National Laboratory
- Charles Forsberg, Stephen Brick, and Geoffrey Haratyk, "Coupling Heat Storage to Nuclear Reactors for Variable Electricity Output with Base-Load Reactor Operation, *Electricity Journal*, 31, 23-31, April 2018, <u>https://doi.org/10.1016/j.tej.2018.03.008</u>
- 5. C. Forsberg, K. Dawson, N. Sepulveda, and M. Corradini, *Implications of Carbon Constraints* on (1) the Electricity Generating Mix for the United States, China, France and the United Kingdom and (1) Future Nuclear System Requirements, MIT-ANP-TR-184 (March 2019)