

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

SOLAR ENERGY TECHNOLOGIES OFFICE

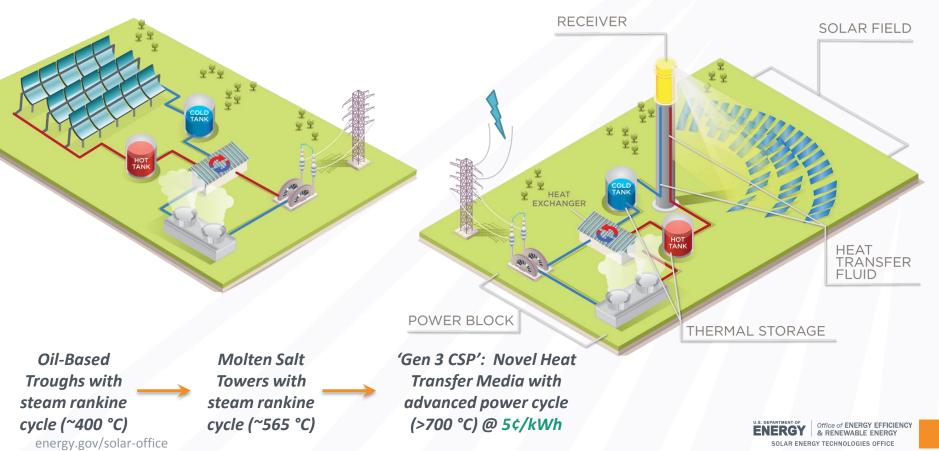
Concentrating Solar Thermal Power Research and Development Overview Dr. Avi Shultz, Program Manager

Thermal Energy Storage Workshop Idaho Falls, ID July 23, 2019

energy.gov/solar-office

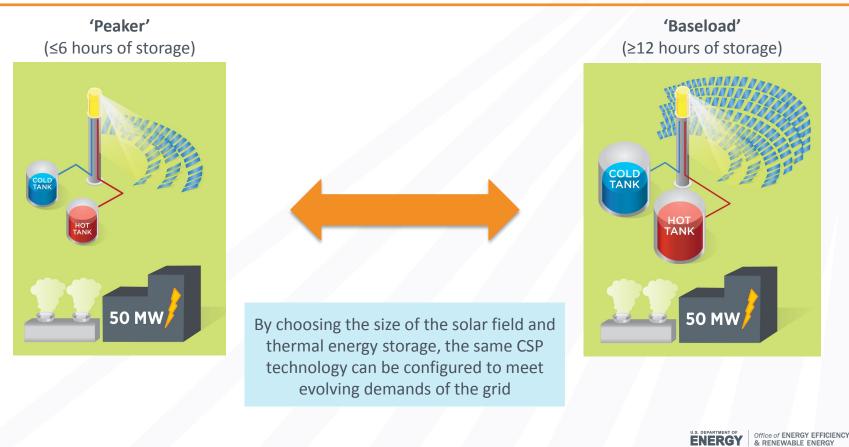
SETO overview

WHAT WE DO

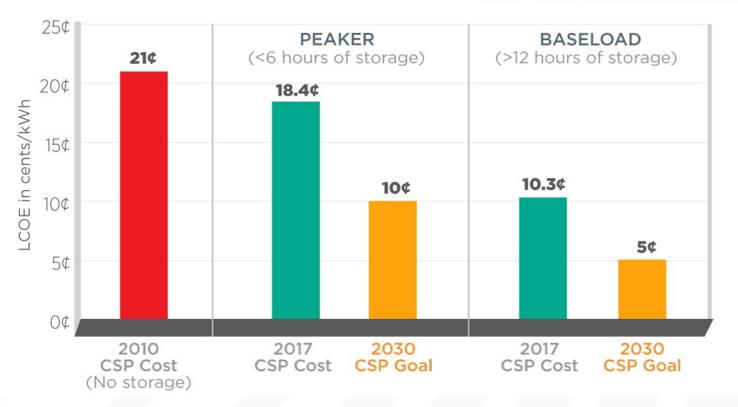

The U.S. Department of Energy's Solar Energy Technologies Office supports early-stage research and development of solar technologies while focusing on grid reliability, resilience, and security.

HOW WE DO IT

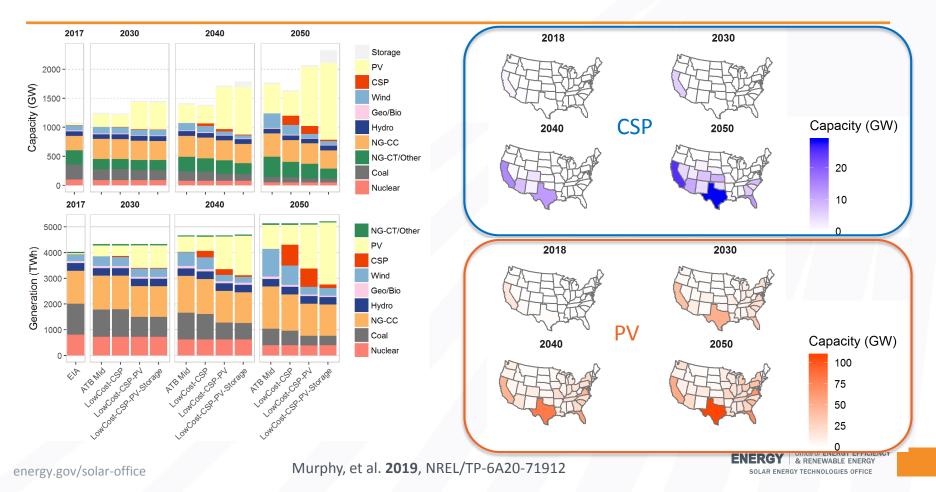
The office uses a competitive solicitation process to addresses critical research gaps, ensuring the solar industry has the technological foundations needed to lower solar electricity costs, ease grid integration, and enhance the use and storage of solar energy.



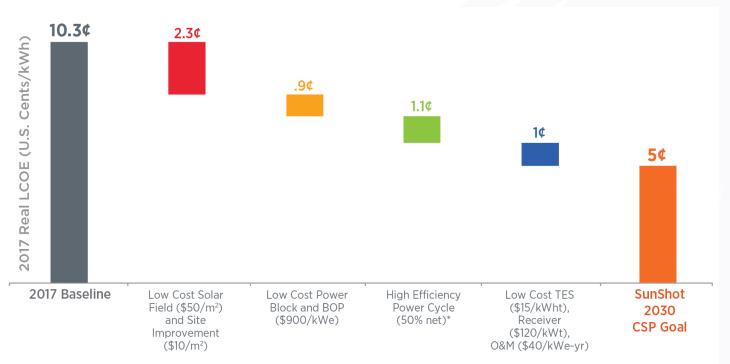
CSP with Storage is Solar Energy On-Demand


3

CSP: Flexible Designs for an Evolving Grid

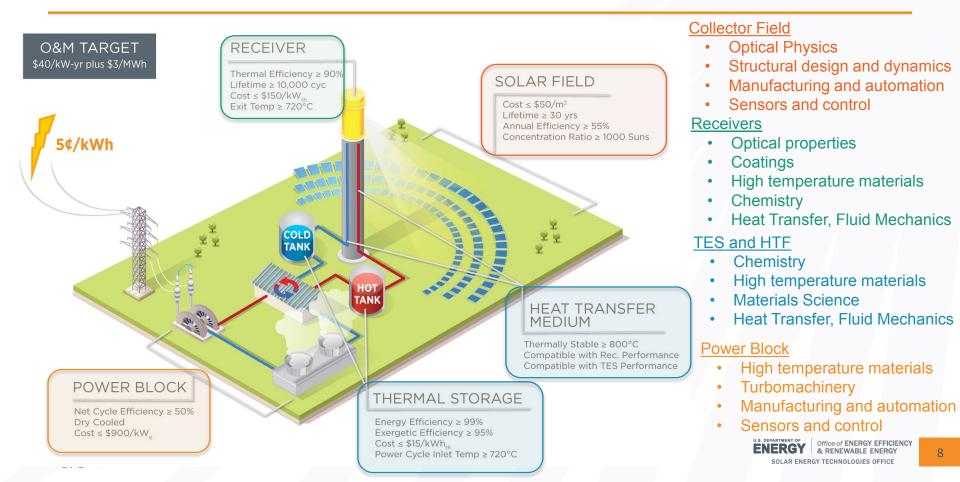

TECHNOLOGIES OFFICE

2030 DOE Levelized Cost of Electricity Targets

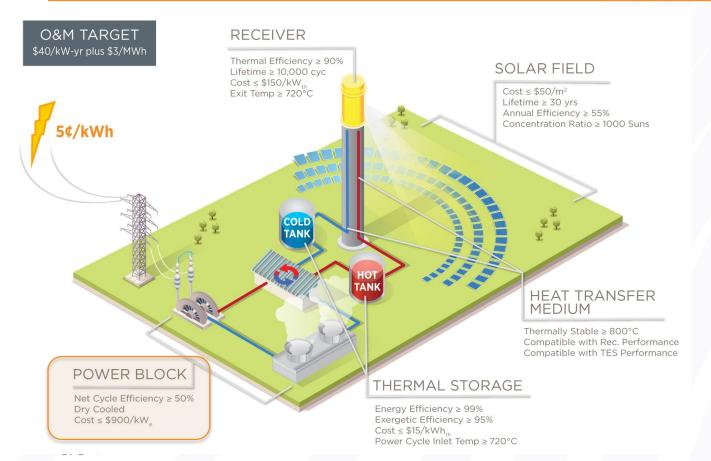


Potential CSP Deployment in the US if DOE CSP and PV 2030 Cost Targets are Achieved

A Pathway to 5 Cents per KWh for Baseload CSP

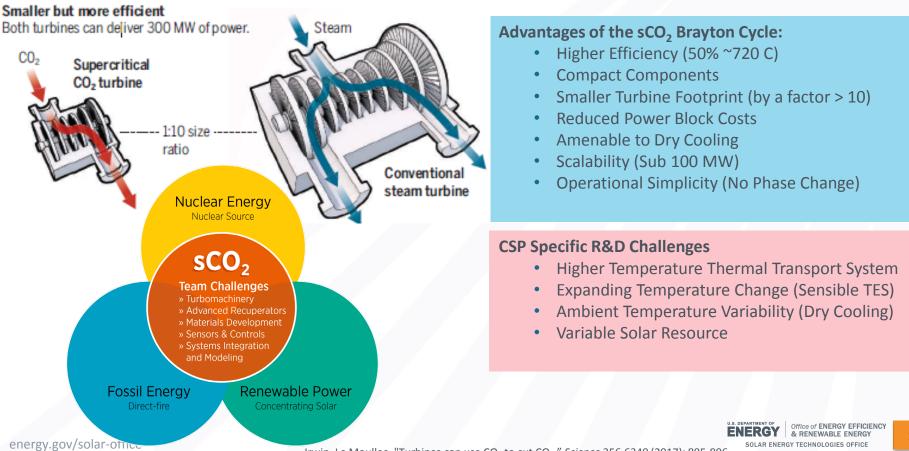


*Assumes a gross to net conversion factor of 0.9

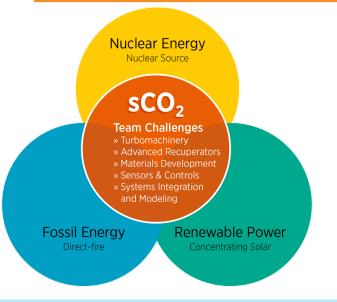


energy.gov/solar-office

CSP Program Technical Targets


CSP Program Technical Targets

U.S. DEPARTMENT OF CONTROL OF ENERGY EFFICIENCY & RENEWABLE ENERGY SOLAR ENERGY TECHNOLOGIES OFFICE

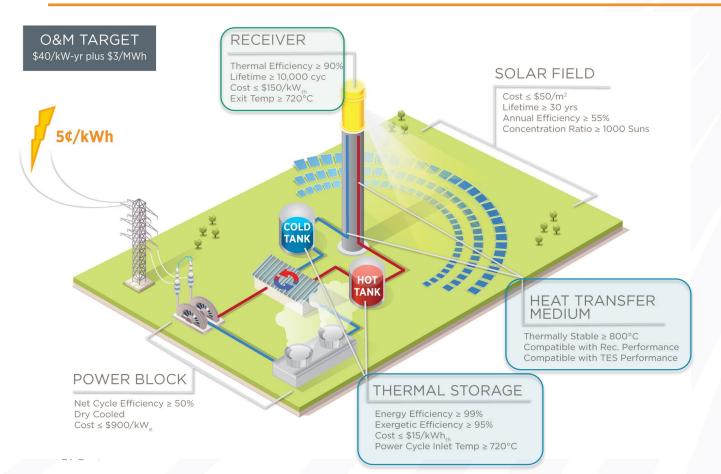

9

Next Generation CSP will Leverage Next Generation Power Cycles

Irwin, Le Moullec. "Turbines can use CO₂ to cut CO₂." Science 356.6340 (2017): 805-806.

Next Generation CSP will Leverage Next Generation Power Cycles

Supercritical CO₂: a dense, compressible fluid


- Compact turbomachinery
- Good compatibility with dry cooling
- Fewer loss mechanisms and parasitics

10 MW_{e} STEP Test Facility

- \$100 M Program managed by FE begun in 2017
- Awarded to Gas Technology Institute, facility located at Southwest Research Institute
- Capable of testing all components of Cycle Integrated with controls & instrumentation
- Resolve issues common to multiple potential heat sources
- Reconfigurable facility capable of 700 °C and 300 bar operation

CSP Program Technical Targets

U.S. DEPARTMENT OF Office of ENERGY EFFICIENCY & RENEWABLE ENERGY SOLAR ENERGY TECHNOLOGIES OFFICE

Gen3 CSP: Raising the Temperature of Solar Thermal Systems

energy.gov/solar-office

SOLAR ENERGY TECHNOLOGIES OFFICE

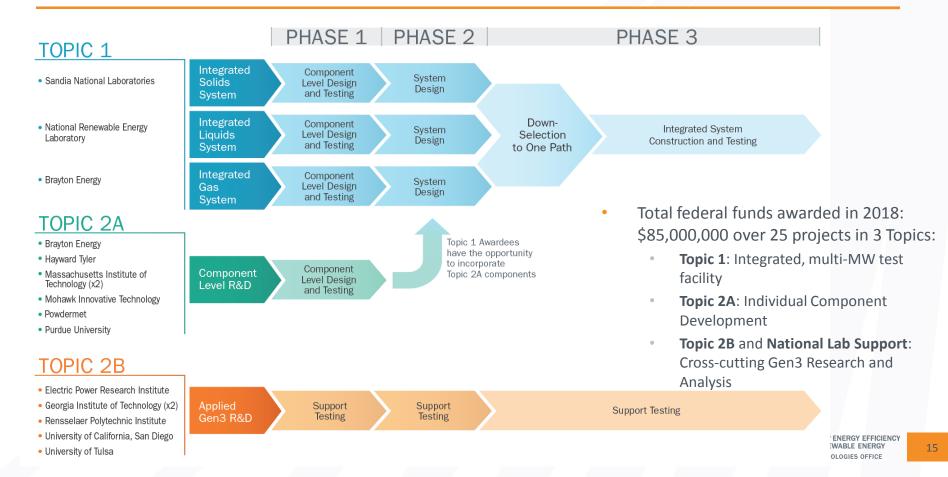
Gen3 CSP Topic 1 Awardees

DOE Award (P1-2): \$9,464,755

NATIONAL RENEWABLE ENERGY LABORATORY

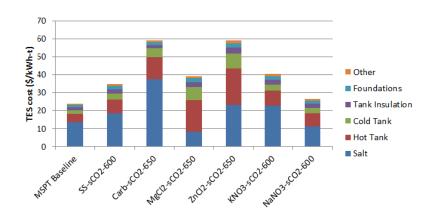
DOE Award (P1-2): \$7,035,309

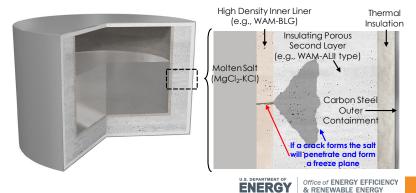
FrBraytonEnergy

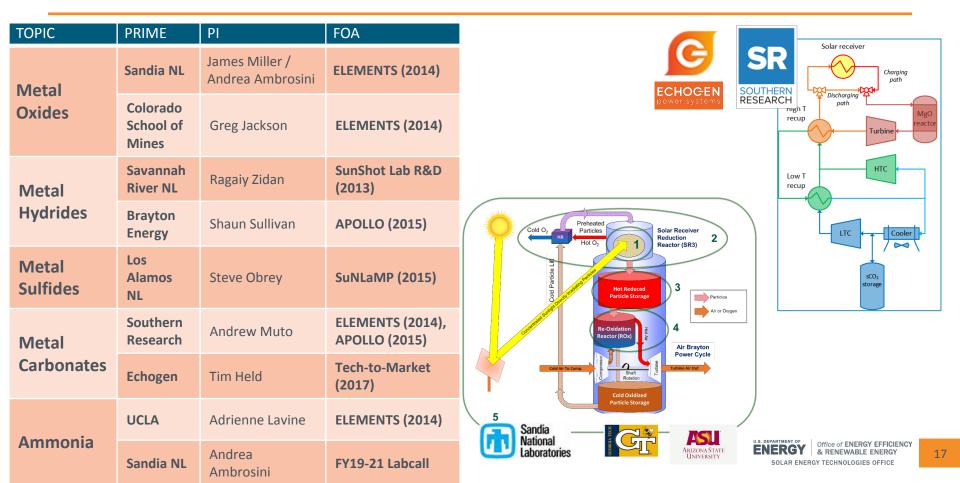

DOE Award (P1-2): \$7,570,647

COLLECT		R THERMA TRANSPO		I KANSE		POWER
SOLID MEDIA	 Thermal Efficiency: Particle Loss Flow Velocity Control and Monitoring 	 Reliability Mechanical and Thermal Efficiency Scalability Insulation 	 Charging and Discharging Particle loss, Efficiency, Scalability 	 Particle Attrition Optimized Performance Character 	 Low Cycle Fatigue Particle Mass Flow Control Ramp Rates & Transients 	
MOLTEN SALT	 Thermal Conductivity Thermal Stability Tube Strength and Durability 	 Pipe Material Compatibility Freeze Recovery Pumps Valves Seals Leak Detect 	 Corrosion Behavior Chemistry Monitoring and control Tank Cost 	 Characterize Material Properties Cost / Supply Chain 	 Material Compatibility w/ salt & CO₂ Freeze Protection Thermal Ramp Rates 	
GAS	 High Pressure Fatigue Absorptivity Control and Thermal Loss Management 	 Recirculator Cost & Operating Power Large Pipes High Cost 	• Storage Concept not Determined	 Low Thermal Conductivity Low Heat Capacity 	 Requires High Area Multiple Heat Exchangers Cascading Temperature 	

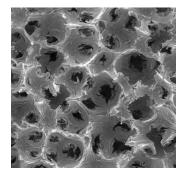
ENERGY & RENEWABLE ENERGY SOLAR ENERGY TECHNOLOGIES OFFICE


14

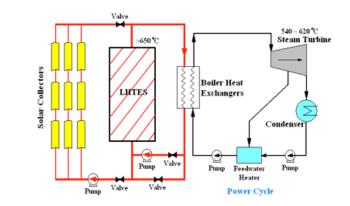

Gen3 CSP Awardees

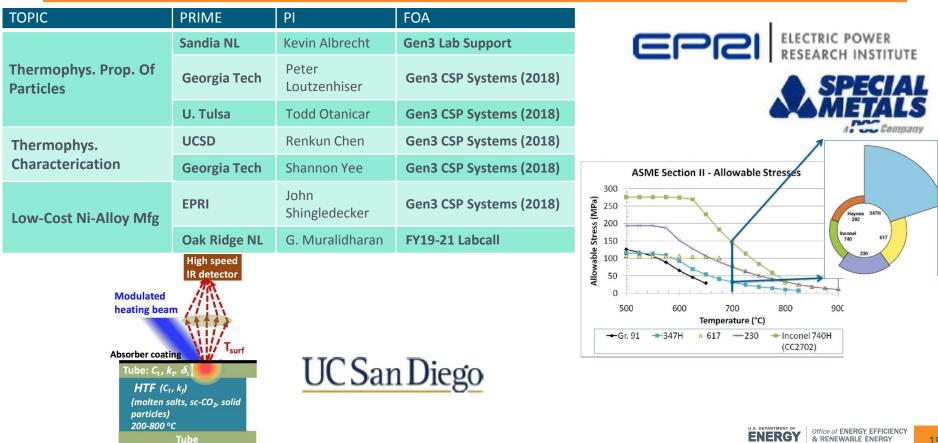

Thermal Energy Storage R&D: Components

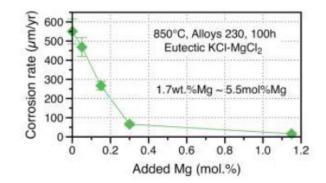
ΤΟΡΙϹ	PRIME	PI	FOA	
Advanced	SolarReserve	Bill Gould	Tech-to-Market (2017)	
Hot Media	MIT	Asegun Henry	Gen3 CSP Systems (2018)	
Insulation	UCSD	Jian Luo	SETO FY18 FOA – SIPS	
	Powdermet	Joseph Hensel	Gen3 CSP Systems (2018)	
Hot Salt Pumps	Hayward Tyler	Benjamin Hardy	Gen3 CSP Systems (2018)	
	MIT	Asegun Henry	Gen3 CSP Systems (2018)	
Integrated Heat Pump	NREL	Joshua McTigue	SETO FY19-21 Labcall	



Thermal Energy Storage R&D: Thermochemical


Thermal Energy Storage R&D: Phase Change Materials


- PI: Dileep Singh
- Developed change materials (PCMs) in combination with new, high thermal conductivity graphite foams funded through SunShot Lab R&D (2012) and APOLLO (2015)
- Currently being developed into Gen3 CSP indirect TES system with Brayton Energy


Thermal Energy Storage R&D: Thermal / Materials

Characterization

Thermal Energy Storage R&D: Thermo-physical and -chemical Characterization of Chloride Salts

Торіс	PRIME	PI	FOA
Thermo-physical and	NREL	Judith Vidal	Gen3 Lab Support (2018)
chemical characterization	Oak Ridge NL	Kevin Robb	Gen3 Lab Support (2018)
	Oak Ridge NL	Bruce Pint	Gen3 Lab Support (2018)
Corrosion Characterization	Oak Ridge NL	Gabriel Veith	Gen3 Lab Support (2018)
	Rensselear Polytechnic Institute	Emily Liu	Gen3 CSP Systems (2018)
	Savannah River NL	Brenda Garcia-Diaz	Gen3 Lab Support (2018)
NL Garcia-Diaz Gen3 Lab Support U. Arizona Dominic Gervaiso SETO FY18 FOA	SETO FY18 FOA		
Corrosion Mitigation	Purdue University	Kenneth Sandhage	SETO FY18 FOA - SIPS
	Purdue Kenneth University Sandhage Banga	SETO FY18 FOA - SIPS	

If salt chemistry $-O_2$, H_2O content - can be controlled, corrosion can be managed

SETO's FY19 Funding Opportunity Announcement was issued on March 26, 2019

Achieving SETO's priorities across the solar energy technology landscape requires sustained, multifaceted innovation. For our FY19 Funding Program, the office intends to support high-impact, early-stage research in the following areas:

- Topic 1: Photovoltaics Research and Development
- Topic 2: Concentrating Solar-Thermal Power Research and Development
- Topic 3: Balance of Systems Soft Costs Reduction
- Topic 4: Innovations in Manufacturing: Hardware Incubator
- Topic 5: Advanced Solar Systems Integration Technologies

energy.gov/solar-office

Topic 2 – Concentrating Solar-Thermal Power Research and Development

Topic 2.1: Firm Thermal Energy Storage (\$11 million)

Concepts that expand the dispatchability and availability of CSP plants to provide value to grid operators. Thermal energy storage (TES) systems of interest include:

- Long-term TES systems that store energy for weekly or seasonal dispatch
- Pumped heat electricity storage for CSP and concepts that enable charging of TES via offpeak grid electricity
- Commercializing TES through projects that pursue near-term market adoption

Topic 2.2: Materials and Manufacturing (\$11 million)

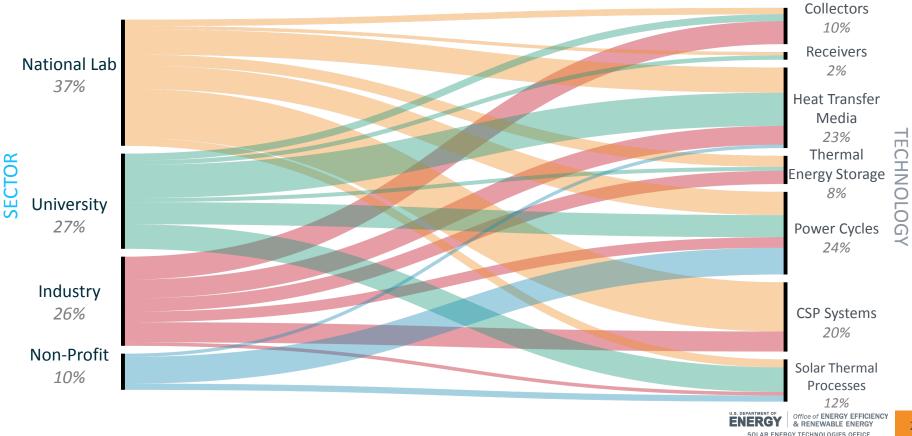
Solutions that reduce the cost of manufacturing CSP components, encourage the commercialization of new CSP technologies, and support the development of an agile, U.S.-based CSP manufacturing sector.

Topic 2.3: Autonomous CSP Collector Field (\$11 million)

Solutions that enable a solar field that can fully operate without any human input, reducing costs and maximizing thermal energy collection efficiency.

Office of ENERGY EFFICIENCY
 & RENEWABLE ENERGY

SOLAR ENERGY TECHNOLOGIES OFFICE

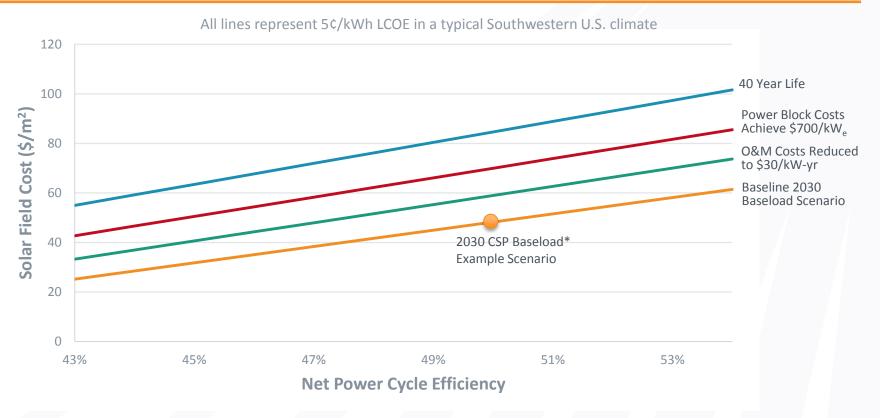

Questions?

Avi Shultz

energy.gov/solar-office


avi.shultz@ee.doe.gov Program Manager, CSP

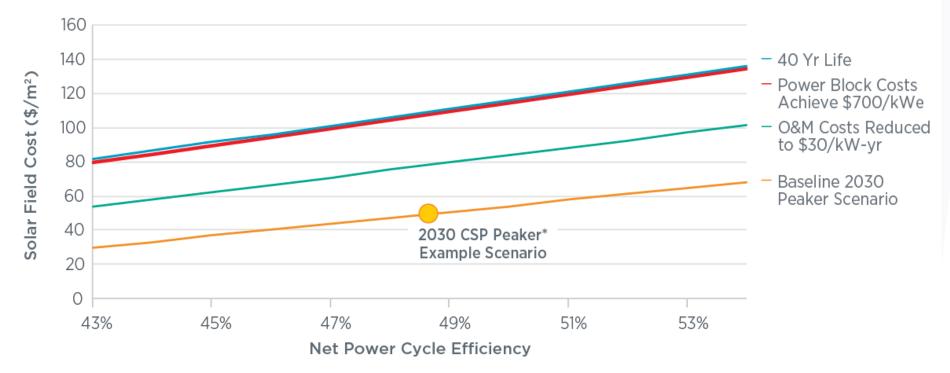
CSP Awardee Breakdown by Funding


24

CSP is Being Deployed Worldwide

SOLAR ENERGY TECHNOLOGIES OFFICE

Pathways to Achieving SunShot 2030 Goals


*Baseload power plant is defined as a CSP plant with greater than or equal to 12 hours of storage

26

U.S. DEPARTMENT OF

Pathways to Achieving SunShot 2030 Goals

All lines represent 10¢/kWh LCOE in a typical Southwestern U.S. climate

*Peaker power plant is defined as a CSP plant with less than 6 hours of storage

27

SETO sCO₂ **Power Cycle Portfolio by Category**

CATEGORY	PROJECT TITLE	PRIME	
	Compression System Design and Testing for sCO ₂ CSP Operation	GE	
	Development of an Integrally-Geared sCO ₂ Compander	Southwest Research Institute	
Turbomachinery	Development of High Efficiency Expander and 1 MW Test Loop	Southwest Research Institute	
rurbomachinery	Physics-Based Reliability Models for sc-CO ₂ Turbomachinery Components	GE	
	Process Gas Lubricated Bearings in Oil-Free Drivetrains	GE	
	High-Temperature Dry-Gas Seal Development and Testing	Southwest Research Institute	
Materials	Lifetime Model Development for Supercritical CO ₂ CSP Systems	Oak Ridge NL	
INIALCI Idis	sCO ₂ Corrosion and Compatibility with Materials	UW-Madison	
	Development and Testing of a Switched-Bed Regenerator	UW-Madison	
Other Components	sCO ₂ Power Cycle with Integrated Thermochemical Energy Storage	Echogen Power Systems	
Other Components	High-Efficiency Hybrid Dry Cooler System for sCO ₂ Power Cycles	Southwest Research Institute	
	Additively Manufactured sCO ₂ Power Cycle Heat Exchangers for CSP	GE	
Technoeconomics	Cycle Modeling, Integration with CSP, and Technoeconomics	NREL	
	High Flux Microchannel Direct sCO ₂ Receiver	Oregon State U.	
Primary Heat	High-Temperature Particle Heat Exchanger for sCO ₂ Power Cycles	Sandia NL	
Exchanger	Various Molten Salt-to-sCO ₂ Heat Exchangers	Purdue / UC Davis / Comprex	
	Fluidized Beds for Effective Particle Thermal Energy Transport	Colorado School of Mines	

Gen3 Topic 2 and Lab Support Awards

CATEGORY	PRIME	PROJECT TITLE	PI	AWARD
Liquid (2A)	Hayward Tyler	Development of High Temperature Molten Salt Pump Technology for Gen3	Benjamin Hardy	\$2,000,000
	MIT	High Temperature Pumps and Valves for Molten Salt	Asegun Henry	\$1,932,414
	Powdermet, Inc	High Toughness Cermets for Molten Salt Pumps	Joseph Hensel	\$1,326,384
	MIT	Ceramic Castable Cement Tanks and Piping for Molten Salt	Asegun Henry	\$1,771,798
	Purdue	Robust High Temperature Heat Exchangers	Kenneth Sandhage	\$1,960,745
	Rensselear Polytechnic Institute	Development of In-Situ Corrosion Kinetics and Salt Property Measurements of salts and containment materials	Li (Emily) Liu	\$1,799,892
	Savannah River NL	Full Loop Thermodynamic Corrosion Inhibition and Sensing in Molten Chloride	Brenda Garcia- Diaz	\$1,000,000
Liquid (2B and Lab Support)	NREL	Molten Chloride Thermophysical Properties, Chemical Optimization, and Purification	Judith Vidal	\$1,000,000
	Oak Ridge National Lab	Enabling High-Temperature Molten Salt CSP through the Facility to Alleviate Salt Technology Risks (FASTR)	Kevin Robb	\$4,300,000
	Oak Ridge National Lab	Progression to Compatibility Evaluations in Flowing Molten Salts	Bruce Pint	\$1,000,000
	Oak Ridge National Lab	Comparison of Protecting Layer Performance for Corrosion Inhibition in Molten Chloride Salts through Interfacial Studies at the Molecular Scale	Sheng Dai	\$955,000
			ENERGY & RENEWABLE	ENERGY 29

energy.gov/solar-office

- 29

SOLAR ENERGY TECHNOLOGIES OFFICE

Gen3 Topic 2 and Lab Support Awards

CATEGORY	PRIME	PROJECT TITLE	PI	Award
Particle (2B and Lab Support)	Georgia Institute of Technology	Advanced Characterization of Particulate Flows for CSP Applications	Peter Loutzenhiser	\$1,352,195
	U. of Tulsa	GEN3D – Experimental and Numerical Development of GEN3 Durability Life Models	Todd Otanicar	\$1,515,687
	Sandia National Labs	Characterization and Mitigation of Radiative, Convective, and Particle Losses in High-Temperature Particle Receivers	Cliff Ho	\$1,031,070
	Sandia National Labs	Quantifying thermophysical properties and durability of particles and materials for direct and indirect heat transfer mechanisms	Kevin Albrecht	\$445,000
Gas (2A)	Brayton Energy	Development of Integrated Thermal Energy Storage Heat Exchangers for CSP Applications	Jim Nash	\$1,181,603
	Mohawk Innovative Technology, Inc	Oil-Free, High Temperature Heat Transfer Fluid Circulator	Hooshang Heshmat	\$1,258,629
Gas (Lab Support)	Idaho National Lab	Creep-fatigue behavior and damage accumulation of a candidate structural material for a CSP thermal receiver	Michael McMurtrey	\$1,000,000
Agnostic (2B and Lab Support)	Georgia Institute of Technology	Thermophysical Property Measurements of Heat Transfer Media and Containment Materials	Shannon Yee	\$1,966,440
	UC San Diego	Non-contact thermophysical characterization of solids and fluids for CSP	Renkun Chen	\$1,180,000
	EPRI	Improving Economics of Gen3 CSP System Components Through Fabrication and Application of High Temperature Ni-Based Alloys	John Shingledecker	\$1,499,901
	Sandia National Labs	Design and Implementation of a 1-3 MWth sCO2 Support Loop for Maturation of Molten Salt, Particulate, and Gas phase Thermal Storage Primary Heat Exchangers	Matthew Carlson	\$3,600,000