July 14, 2021

Nidia C. Gallego Senior Scientist Physical Sciences Directorate - ORNL

MSRs: Graphite testing status, ASME support

ART Gas-Cooled Reactor Program Review

DOE MSR Campaign – Long Term Objective/Goals

Objective:

 Assist in the near-term deployment of salt-cooled and salt-fueled molten salt reactors

ADVANCED REACTOR TECHNOLOGIES

• Goals:

- 1. Establish viability
- 2. Facilitate needed research and enabling technology
- 3. Work to reduce cost and accelerate development

The different reactor concepts share common challenges to graphite presence in the core.

Effect of fast neutron irradiation and its relationship with microstructure

- Dimensional changes, structural damage
- Change in mechanical and thermal properties
- Change in chemical resistance to environmental effects

Chemical environment effects and surface reactivity

Gas-cooled reactors

- Chronic oxidation
- Moisture in coolant will cause slow by continuous oxidation during normal operation – will always happen
- Acute oxidation
- Air or water ingress (accident conditions) should never happen

Fluoride salt-cooled reactors

 Chemical Interactions: Salt-graphite interaction that may affect structural or physical properties of graphite

- Salt infiltration in graphite: May cause structural changes, hot spots in graphite
- Wear and erosion
- Tritium control: May accumulate in graphite

One carbon, many graphites

		Class	Density [g/cm³]	Country of origin	Irradiation data	Forming process	Availability
AGC-Campaign	H-451	Medium	1.71	SGL USA	Low dose	Extruded	
	NBG-17	Medium-fine	1.86	SGL (Germany/ France)	Low dose	Vibro-molded	
	NBG-18	Medium	1.87	SGL (Germany/ France)	Low dose	Vibro-molded	
	PCEA	Medium-fine	1.79	GrafTech (USA)	Low dose	Extruded	
	IG-110	Fine < 100	1.76	Toyo (Japan)	Low dose	lso-molded	
	IG-430 (dropped)	Fine < 100	1.80	Toyo (Japan)	Low dose	lso-molded	
	2114 (added)	Superfine < 50		Mersen (France-USA)	Low dose		
MSRE	CGB	Medium	1.86	Union Carbide (USA)		Extruded	
OTHER fine grain graphites	POCO-ZXF-5Q	Microfine < 2	1.78	USA	Low dose	Iso-pressing	
	POCO-AXF-50	Ultrafine < 10	1.78	USA	Low dose	Iso-pressing	
	POCO-TM	Ultrafine < 10	1.82	USA	Few data	lso-pressing	
	G347A	Ultrafine < 10	1.85	Tokai (Japan)	High dose	Iso-pressing	
	IGS743NH	Superfine < 50	1.80	Nippon (Japan)	Low dose	Iso-molded	
	ETU-10	Superfine < 50	1.74	Ibiden (Japan)			

Graphite - Salt Intrusion studies: Highlights

- Developed capabilities for high-pressure salt intrusion studies using FLiNaK (based on ASTM D8091)
- On-going FLiNaK intrusion measurements on selected graphite grades
- Completed porosity characterization of 12 graphite grades using mercury porosimetry
- Correlated mercury porosimetry results with FliNaK intrusion using Washburn equation

ADVANCED REACTOR TECHNOLOGIES

• Published TM describing system and preliminary results

Graphite-Salt Intrusion Studies

An American National Standar

Standard Guide for Impregnation of Graphite with Molten Salt¹

- Gas outlet Sample containment vessel Gas inlets Ball valve Gas outlet Salt containment vessel
- Designed and built high pressure salt intrusion testing system
- The system is designed for operation at temperatures up to 750°C and pressures up to 10 bar
- System approved for FLiNaK
- It includes an all-graphite holder that can accommodate up to six samples
- Include in-situ vacuum of samples prior to salt intrusion, and cooling under gas pressure after removing from salt

Standard Guide ASTM D8091 - limitations

This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Designation: D8091 – 16

An American National Standard

Standard Guide for Impregnation of Graphite with Molten Salt¹

This standard is issued under the fixed designation D8091; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

- Sample size and geometry are not defined
- Equilibration conditions are not defined
- Literature results should be reviewed carefully

Mercury intrusion showed a wide range of porosity distributions for a variety of graphite grades

Pore size distribution from mercury intrusion porosimetry

Graphite grades	Grain size [µm]	Pore diameter [µm]
CGB	Ś	< 0.2
ZXF-5Q	1	0.5
AXF-5Q	5	0.9
TM	10	2
IG-110	10	3.9
2114	13	3.5
ETU-10	15	3.6
NBG-25	60	5.1
PGX	460	5.6 & 30
NBG-17	800	3 & 12 & 51
PCEA	800	64
NBG-18	1600	12

ORNL/TM-2020/1621

Connecting mercury and FLiNaK pressure scales

- Summary of capabilities and results published last year.
- TM Report available at OSTI
- <u>https://www.osti.gov/biblio/165130</u>
 <u>4-progress-report-graphite-salt-intrusion-studies</u>
- An update report will be published by end of FY

Expanding capabilities to handling FLiBe

- Installed and commissioned a 3-glove glovebox for welding of Be-containing static capsules
- Designed and currently building a second salt-intrusion system, to be located inside a glovebox
 - Procured a new 4-glove glovebox for intrusion system
 - Pressure system being built- expect completion by end of FY
 - Kairos will provide FLiBe for system
- Additional characterization of salt-exposed graphite samples to understand the effect of salt on mechanical and structural properties
 - Including LIBS, FTIR, Raman, XRD, Microscopy
- Compression testing and split-disk testing of saltexposed sample

Elemental 3D mapping of salt in graphite was achieved using Laser Induced Breakdown Spectroscopy (LIBS)

- All elements of interest measured in FLINAK exposed graphite samples
- Inert atmospheres maintained using sealed sample chamber
- Multivariate analysis techniques explored to process 3D data

LIBS spectra of graphite exposed to FLiNaK with major emission lines of interest noted.

Depth profile of F, K, Li, and Na relative to C in graphite as measured by LIBS.

ADVANCED REACTOR TECHNOLOGIES

Feasibility Study of Graphite Wear Testing in Molten FLiNaK

Graphite pin

Loaded

with salt

Experimental:

٠

- Graphite pin sliding against 316L SS surface Salt: FLiNaK
- Temperature: 650 oC (up to 1000 oC) ٠
- Gas environment: Ar ٠
- Normal load: 20 N (up to 100 N) ٠
- Rotating speed: 120 rpm (up to 1000 rpm) ٠
- Sliding distance: 1000 m (~2 hrs 30 mins) ٠

In-situ friction measurement combined with posttest wear quantification and surface characterization to investigate:

- Graphite pellet rubbing against the container ٠ alloy in molten FLiNaK salt
- Collision and rubbing between graphite • pellets in molten FLiNaK salt
- Impact of temperature, load, speed, pellet surface roughness, and salt purity.

Initial friction and wear results of graphite pin sliding against 316L SS in molten FLiNaK salt

Observations:

- Molten FLiNaK appears to significantly increased wear losses of both the graphite pin and stainless steel disc.
- Mutual material transfer occurred between the graphite pin and 316L SS disc.
- Salt-reacted compounds were found on the graphite wear scar, possibly as a result of salt intrusion into graphite pores.
- Salt-reacted compounds were also found on the 316L SS worn surface, possibly as a result of tribocorrosion.

Additional tests in molten salt are				
needed to better understand the wear				
mechanism. Dry testing cannot can not				
be used as substitute.				

ADVANCED REACTOR TECHNOLOGIES

Wear Volume	Dry testing	g (Argon)	Testing in FLiNaK Salt		
(mm³)	Test1*	Test2	test1	Test2	
Graphite pin	0.32	0.14	0.29	0.53	
316L SS disc	(0.02)	(0.01)	0.11	0.07	

"()" represents volume increase or deposit (instead of wear loss)

*Dry test1 might have something wrong based on the surface morphology post test...

ASTM and ASME participation

- Participated on the last two quarterly ASME Working Group Meetings
- ASME committee has requested a Task Group to evaluate code gaps on graphite issues related to MSR and prepare a white paper on MSR conditions and graphite material properties affected as result
- Participation on ASTM Graphite committee there is a critical need for the development of Standard procedures to be used to study the effect of molten salt on graphite properties
 - Conducting scoping studies on the effect of salt intrusion on graphite mechanical properties
 - Samples have been prepared and will be tested in the next few weeks.

ADVANCED REACTOR TECHNOLOGIES

Team effort

• ORNL

- Nidia Gallego
- Cristian Contescu
- Ryan Paul
 - Jim Keiser Jun Qu
- Kristian Myhre
- Jisue Moon
- Adam Willoughby
- Ashli Clark
- Many others around ONRL
- INL Graphite team lead by Will Windes

• SNS (VISION)

- Timmy Ramirez-Cuesta
- YQ
 Luke Daemen
 University of Wisconsin
 Raluca Scarlat (UCB)
 Huali Wu
 Various Reactor vendors including Kairos and Flibe Energy