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Presentation Overview

• Overview of FY21 ART-GCR Methods Activities
• Generation of Equilibrium Core Pebble Bed HTGR Cross Sections
• Prototype Pebble Bed HTGR Startup Capability
• HTTR LOFC Experiment Simulation Results
• Two Examples of Validation Collaborations with Universities.

− Randomly Distributed Pebble Bed Reconstruction
− Validation for NEAMS Tools for Natural Circulation in the Reactor Cavity

• International Collaborations 
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FY21 activities in three focus areas; funded by ART-GCR and Regulatory Development (RD) R&D:
• Experimental Validation Studies (next two presentations today):

− NSTF: Continue matrix testing for the water-based Natural Convection Shutdown Heat Removal Test Facility (NSTF) at 
ANL, along with development of computational models in RELAP5 and Star-CCM+.

• Additional RD R&D funding is used to accelerate test matrix by completing two-phase network and riser-loss 
coefficient parametric cases earlier than planned.

− HTTF: Continue validation of RELAP5-3D for HTGR reactor and plant simulation against benchmarks and experimental 
data from the Oregon State University (OSU) High Temperature Test Facility (HTTF). FY-21 work focuses on assessment 
of PG 27 Loss of Forced Cooling (LOFC) test.

• Core Simulation:
− Pebble bed HTGRs: Develop a methodology for generating equilibrium pebble bed HTGR cross-sections in a consistent 

and efficient manner. The RD-funded activity applies this methodology to start-up and running-in of a pebble bed core.
− HTR-PM benchmark: Prepare Griffin models for the Chinese HTR-PM pebble bed first-critical core benchmark (FY22).
− OECD and IAEA code-to-code benchmarks: Finalize IAEA TECDOC report on HTGR Uncertainties in Modeling (sub-

contract through NCSU).

• International Collaborations: 
− Gen-IV: Participation in various OECD Generation-IV activities.
− Japan bilateral: Under CNWG, various experimental data exchanges and simulation efforts are ongoing.

Overview: ART-GCR Methods, Modeling and Validation 
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Generation of Consistent and Efficient Equilibrium Core Pebble 
Bed HTGR Cross Sections

• The task involves the development of HTGR pebble bed cross sections to preform 
equilibrium core calculations using NEAMS tools.

FY21 Focus:
1. How well do we know the uncertainty in the dependency of the cross sections?

− First, we need to identify the sensitivity of cross sections to different assumptions.
− Then, identify error range of parameters such as fuel and moderator temperature 

produced by thermal-fluid models.
− Objective is to develop a cross-section generation procedure that will introduce a 

comparable error (or lower) to the one from the thermal hydraulic assumption, in 
order to optimize the computational efforts.

2. What methods should we use?
− Deterministic methods can be potentially faster than Monte Carlo codes but rely on 

several approximations to determine an accurate neutron spectrum.
− Modern Monte Carlo methods can model the exact geometry without energy, 

angular, and spatial discretization errors; BUT …
− Obtaining a fine-group structure cross section and modeling the various feedbacks 

can be a challenge.
• Will report on FY21 results and methodology selected in September.

HTR-PM
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Prototype Pebble Bed HTGR Startup Capability

• Developing a methodology that wraps MCNP or Serpent to perform a simulated pebble bed “startup” with 
depletion as isotopic concentrations are migrated through the core.

• Prototype capability will simulate a pebble bed core startup from initial loading to the equilibrium core.
• The initial prototype method will be able to:

− Use up to 3 types of pebbles with varying material definitions that can be mixed in different concentrations (e.g., pure 
graphite pebble, fuel pebble with startup enrichment, fuel pebble with equilibrium enrichment)

− Use different velocities of isotopic migration through the core for different channels of pebble travel
− Specify the number of radial, azimuthal, and axial depletion zones
− Model a single pass fueling scheme
− Produce fast run-times for quick analysis

Future work:
• Representative geometry of pebbles and TRISO particles (will not capture pebble self-shielding or other 

geometric effects)
• Temperature distributions of isotopes as they progress within core
• Multi-pass fueling scheme
• Decay of radioisotopes outside of core
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Core Model

Prototype Start-Up Methodology Workflow

Pebble 
type 1

Pebble 
type 2

Pebble 
type 3

Homogenization

Pebble 
Packing 
Fraction

# Triso per 
pebble

V1, V2, … , Vn

Burnup/
Depletion step

Burnup/
Depletion step

Re-homogenize and 
move isotopes

Discard isotopics
(for now)
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HTTR LOFC Modeling
• First (in a series of three) Loss of Forced Cooling (LOFC) experiments were preformed in 

2010 by JAEA at the High Temperature Test Reactor (HTTR).
• Next two tests will be finalized later in 2021 when HTTR restarts as part of OECD/NEA 

benchmark, with NRC and DOE participating.
• FY21 Objective: Validation of Griffin and MOOSE Modules against HTTR LOFC#1 

dataset.
• Cross Section (XS) generation with 3D heterogeneous Serpent model.
• Multiphysics calculation with MOOSE tools (Griffin, BISON, RELAP-7).

Steady-state Transient (DLOFC)
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DLOFC #1 (9 MW Initial Power)
ALL RESULTS ARE PRELIMINARY AND SUBJECT TO CHANGE

Recriticality time @ 9 hrs 42 min, peak power time @ 10 hrs
50 min. This is ~3h later than measured experimental peak 
power.
Peak power after recriticality: 185 kW (including 57 kW from 
decay heat). Compares reasonably well with measured 
power.
Future focus areas of improvement:
1. More sophisticated VCS model
2. Improved decay heat model
3. More accurate neutron source (additional data recently 

provided by JAEA)
4. Xe-135 initial worth currently about 60% overestimated
5. More accurate power history in Serpent depletion model

(additional data provided by JAEA)

Promising results but will likely still 
change significantly
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Prediction of LOFC #2 (30 MW Initial Power)
ALL RESULTS ARE PRELIMINARY AND SUBJECT TO CHANGE

• Recriticality time @ 10 hrs 20 min; peak 
power time @ 11 hrs 35 min (45 min later 
compared to 9 MW LOFC#1 case).

• Peak power after recriticality: 450 kW 
(including 190 kW from decay heat).

• Results will be reported in September.
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• TAMU Isothermal Versatile Experiments III
− 35 images were taken of various cross-sections of a pebble bed at a spacing distance of 

0.16 inches.
− Pipe inner diameter 5.50 inches, pebble diameter 0.75 inches.
− 1350 pebbles filled to 21.5-inch, reconstruction up to 18 inches.

Random Pebble Bed Reconstruction

Why and how do 
we reconstruct a 
digital version of 
the pebble bed?
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Random Pebble Bed Reconstruction

• Why?
− New high fidelity CFD simulations (NEK5000,STARCC+) require high 

fidelity data for validation and high-fidelity modeling.
− Wall channeling helium flow effects (caused by different packing 

fraction of the pebbles close to the bed wall) require validation:
• Intermediate fidelity tools use porosity distribution functions (right).
• High fidelity tools use molecular dynamics simulators (e.g., LANL 

LAMMPS) to reconstruct pebble distribution in the core.
• How?

− Codes like VGSTUDIO can reconstruct a digital copy of a pebble bed 
based on laser pictures of the experiment.

− This provides validation data for porosity function distributions, and 
molecular dynamics simulators used to create random pebble 
distributions for high fidelity codes.
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Random Pebble Bed Reconstruction Process

1. Laser pictures of facility 
at different depths

3. 3D model of pebble bed2. Picture analysis
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Validation of NEAMS Tools for Natural Circulation in the Reactor 
Cavity in Accident Conditions

• 1/20th Scaled-down VHTR @ UI
− The containment of the RPV and power conversion unit 

(PCU) have 10 exhaust ports for optimization of 
containment ventilation and to detect air ingress into the 
RPV.

− To mimic a point of break, the RPV has six vent locations 
on the side, and 9 penetrations at the top of the RPV.

− A cross vessel connects the RPV to a dummy power 
conversion unit (PCU) vessel.

− The system is equipped with 32 thermocouples, 10 
oxygen sensors and 10 hot wire anemometers.
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Validation for NEAMS Tools for Natural Circulation in the 
Reactor Cavity in Accident Conditions

• Why?
− CFD codes, and even more so intermediate and low fidelity models, need to be validated to assess 

how well they simulate natural circulation in complex geometries such as a HTGR reactor cavity.
− Different mixtures of air and helium could be present in the reactor cavity during a break event, 

depending on the position and the size of the break.
− The codes must be therefore be validated for different fluid conditions, pressure and temperatures in 

order to correctly assess the amount of heat that is removed by convection during a LOFC event.

• How?
− Temperature measurements provided by the UI facility can be used to validate natural circulation 

model in the reactor cavity.
− CFD analysis has been already carried out to better understand the main phenomena during the 

experiment.
− NEAMS/ART supported Pronghorn model development is underway as part of a summer internship at 

INL. The model results will be compared with measurements and CFD to check if the approximations 
made in the lower fidelity models are acceptable.
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Validation for NEAMS Tools for Natural Circulation in the 
Reactor Cavity in Accident Conditions

CFD Results

Measurements

Simplified Pronghorn Model
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• GEN-IV VHTR Computational Methods Validation and Benchmark (CMVB)
− New Project Arrangement currently in DOE signature process! (Japan and Korea already signed). CMVB 

activities expected to start late in 2021.
− Paolo Balestra (INL) and Rui Hu (ANL) were nominated by DOE as new US CMVB representatives.
− Primary Objective: Validation of computational tools and benchmarking of new methods.
− Addresses lack of operating HTGR performance data for validation of NEAMS codes

• Old German data for Pebble Bed type HTGR is not publicly available (Proteus, ANABEK and 
NACOK experiments) – will be shared under CMVB.

• Chinese pebble flow experiments, HTR-PM first-core criticality and HTR-10 Melt-wire experimental 
data will be shared when performed.

− Also addresses lack of scaled integrated experiments for HTGRs and of use of CFD in licensing and 
design.

• Civil Nuclear Working Group (CNWG) bi-lateral agreement with Japan (JAEA)
− HTTR LOFC validation of NEAMS codes (as presented earlier)
− Gas-turbine system work - INL/JAEA are jointly improving the secondary side modeling and started 

hydrogen and electricity market analysis (Shannon Bragg-Sitton).

ART-GCR Methods International Collaborations
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