July 13, 2021

Paul Demkowicz, Ph.D. AGR Program Technical Director

AGR Program Path Forward

AGR Program Timeline

Major Tasks to Completion

- AGR-3/4 PIE and data analysis
- AGR-5/6/7 PIE and data analysis
 - Priority is to understand Capsule 1 behavior
- Oxidation testing
- Reporting

A Decade of Changes in Coated Particle Fuel Development

~2010

- AGR fuel form:
 - 425 µm LEU UCO TRISO particle
 - Cylindrical compact
- Intended for prismatic mHTGR

Impact of modified fuel designs and different operating conditions will have to be evaluated as part of fuel qualification

2021

- Large variety of reactor designs
 - ~1 MWe to ~300 MWe
 - Prismatic, pebble bed
 - Coolant: Helium, Flibe
- Many fuel design variations
 - Kernel composition
 - Kernel size
 - Coating architecture
 - Matrix material
 - Fuel form (compact, pebble)

Coated-Particle-Fueled Reactor Concepts and Fuel Designs

Developer	Description	Fuel design	
X-energy	Xe-100 (200 MWt PB HTGR)	UCO TRISO fuel pebbles	
	Xe-Mobile (1 – 5 MWe microreactor)	UCO TRISO	
Framatome	SC-HTGR (625 MWt)	UCO TRISO fuel compacts	
UltraSafe Nuclear	MMR (15 MWt microreactor)	TRISO particles in SiC matrix ("FCM")	
BWXT	Microreactor (50 MWth)	UCO TRISO compacts	
	BANR ⁶	UN TRISO in SiC matrix	
Kairos Power	KP-FHR (140 MWe salt-cooled SMR)	UCO TRISO fuel pebbles	
	HERMES (50 MWt test reactor)	UCO TRISO fuel pebbles	
Urenco	U-Battery 10 MWt microreactor	UO ₂ TRISO fuel compacts	
Westinghouse	eVinci 7-12 MWt microreactor	TRISO or other	
StarCore Power	20 MWe HTGR	TRISO	
HolosGen	22 MWt scalable microreactor	TRISO in fuel compacts	
Radiant Nuclear	>1 MWe microreactor	TRISO	
ORNL	Transformational Challenge Reactor	UN TRISO in SiC matrix	
NASA	NTP, NEP	Various	

Useful references:

 Advances in Small Modular Reactor Technology Developments. A Supplement to: IAEA Advanced Reactors Information System (ARIS), 2020 Edition, IAEA (<u>https://aris.iaea.org/Publications/SMR_Book_2020.pdf</u>)

• https://www.world-nuclear.org/information-library/nuclear-fuel-cycle/nuclear-power-reactors/small-nuclear-power-reactors.aspx

Kernel	Kernel diameter	Coating architecture	Matrix material	Form	Coolant
UCO UO ₂ UN	425 μm 500 μm 800 μm Other/ unknown	"Standard" TRISO "Modified" TRISO	Graphite and carbonized resin SiC	 Standard cylindrical compacts Standard 60 mm pebbles Modified compacts (different size and packing fraction) Modified pebbles (different diameter; variable density) Custom geometry via AMM 	Helium Flibe

Kernel	Kernel diameter	Coating architecture	Matrix material	Form	Coolant	
UCO UO ₂ UN	425 μm 500 μm 800 μm Other/ unknown	"Standard" TRISO "Modified" TRISO	Graphite and carbonized resin SiC	Standard cylindrical compacts Standard 60 mm pebbles Modified compacts (different size and packing fraction) Modified pebbles (different diameter; variable density) Custom geometry via AMM	Helium Flibe	Z50-pm Z50-pm Terrani et al., J. Nucl. Mater. 547 (2021) 152781

Topical Reports

- "Uranium Oxycarbide (UCO) Tristructural Isotropic (TRISO)-Coated Particle Fuel Performance," Topical Report EPRI-AR-1(NP))-A, 3002019978 (NRC safety evaluation issued Aug 2020)
 - Topical report preparation process was enhanced by engagement with reactor developers and fuel fabricators
 - Prominent objective was to focus on particle performance to emphasize "technology neutral" aspects of current results
- Topical report candidates:
 - Fission product transport in fuel and core materials based primarily on AGR-3/4 data and analysis
 - Empirical evaluation of fission product release from all AGR experiments
 - AGR-5/6/7 fuel performance, including margin testing to ~1450° C time-average temperature

AGR Program Lessons Learned Evaluation

Topical areas:

- Fuel fabrication
- Irradiation
 - AGR-2 and AGR-5/6/7 suffered numerous issues
 - TCs
 - Capsule design
- PIE
- Fuel performance key findings: impacts on future fuel qualification efforts
- Fuel qualification and NRC interactions

Concluding Remarks

- The AGR program is considered a success story by DOE
 - Funding longevity with good results and a defined completion target date
- Core activities remaining are defined
 - AGR-3/4 and AGR-5/6/7 PIE and data analysis
 - Oxidation test program
 - Reporting
- Current DOE direction is that qualification of other TRISO fuel forms will be led by individual vendors

Idaho National Laboratory