July 13, 2021

Paul Demkowicz AGR Program Technical Director

Contributors:

James Sterbentz, Grant Hawkes, Joe Palmer, Dawn Scates, Binh Pham, Mitch Plummer, Michael Davenport

AGR-5/6/7 Irradiation Results and Reporting

AGR-5/6/7 Irradiation

- Final fuel qualification irradiation (AGR-5/6) and performance margin test (AGR-7)
- 425 µm diameter UCO kernels with 15.5% ²³⁵U enrichment
- Target time-average peak fuel temperatures ~1500°C
- Target peak burnup 18% FIMA
- 194 fuel compacts (~570,000 particles) in five capsules
- Irradiation started Feb 2018 in ATR Northeast Flux Trap

AGR-5/6/7 test train axial cross section

AGR-5/6/7 Status

- Large increase in fission gas from Capsule 1 observed in October 2019 (~235 EFPD, peak burnup ~8% FIMA)
- Experiment terminated early (July 2020) after 361 EFPD and peak burnup 15.3% FIMA
 - Primarily to ensure timely shipment to MFC and avoid conflicts with ATR Core Internals Changeout (CIC)
- Expedited shipment from ATR to MFC was not realized in late 2020; experiment shipped to MFC in March/April 2021 (two sections)
- Conflicts at HFEF with ART-AGC work and other DOE programs, as well as facility maintenance outages, have delayed the start of destructive capsule examination
- Capsule 1 PIE remains the top priority

AGR-5/6/7 Operational Issues

- Gas line integrity in Capsule 1 was compromised starting with the 4th cycle (Cycle 164B)
 - M. Nelson, "AGR-5/6/7 Gas System Analysis of Various Anomalies Encountered During Irradiation," ECAR-5114, September 2020
 - J. Palmer, "AGR-5/6/7 Irradiation Summary as of the End of Cycle 167A," Presentation at 2020 ART-GCR Annual Program Review, July 2020
- These issues persisted and worsened throughout the irradiation and including occlusion (abnormally low flow) and breaks (gas flow leaking into and out of gas lines)
- Fission gas leaking from Capsule 1 to the leadout entered other capsules and complicated fission gas R/B analysis for Capsules 2 – 5
- Challenged ability to maintain fuel temperatures in Capsule 1

AGR-5/6/7 Reporting

AGR-5/6/7 Burnup and Fast Fluence

• Burnup (%FIMA)

- Min: 5.7
- Max: 15.3
- Target: Max >18
- Fast fluence (n/cm²)
 - Min: 1.6×10²¹
 - Max: 5.6×10²¹
 - Target: Max >5×10²¹

J. Sterbentz, "JMOCUP Physics Depletion Calculations for the As-Run AGR-5/6/7 TRISO Particle Experiment in ATR Northeast Flux Trap," ECAR-5321, December 2020

Burnup Distribution

Burnup (%FIMA)

- Limited compacts with intermediate burnup (11.5 – 13.5 %FIMA)
- Only Capsules 1 and 5 had burnup <12 %FIMA

AGR-5/6/7 Fuel Temperatures

Thermal model assumes 100% He in Cycle 168A which gives lowest fuel temperatures

Low bias in predicted TC temperatures indicates possibility of higher fuel temperatures

(J. Palmer et al., "Summary of Thermocouple Performance in the Advanced Gas Reactor Experiment AGR-5/6/7 During Irradiation in the Advanced Test Reactor," ANNIMA2021-04-196, June 2021)

Time Averaged Fuel Temperatures

- Fuel temperature time averaging removes low-power PALM cycles (163A and 167A)
- Capsule 1 was relied upon for most of the upper temperature range for AGR-5/6
- Peak time-average temperature: 1432°C
 - Target: 1500 ±50°C
 - AGR-2: 1360°C

AGR-5/6/7 Temperature Distributions

Time-average fuel temperature fractions by range for AGR-5/6/7 capsules 60 163A 162B 164A 164B 165A 166A 166B 167A 168A 60 2009 × 162B 163A 164A 164B 165A 166A 167A 168A 166B 2 2009 2009 2009 Ë 20 <u>.</u> 20 0 60 68 2006-009 20 2006 40 40 600-20 Ĥ 12 68 0 900-1050C 60 40 900-1050C -30% 40 20 Ë Target 30% 68 20 Ê 12 50C 40 0 1050-30% 60 20 1050-1250C Ë 40 68 Target: 30% 13 5 0 C 20 40 4 1250-20 60 Ë 10% 1250-1350C 60 1450C 40 40 ខ្ល 20 20 Ϊ Target: 10% Ë 0 0 50 100 150 200 250 300 350 Ó 50 100 150 300 350 Ó 200 250 Irradiation Time, EFPD Irradiation Time, EFPD

Time-average fuel temperature fraction by range of AGR-5/6

Range_sum Capsule_1 Capsule_2 Capsule_4 Capsule_5

Range_sum Capsule_1 Capsule_2 Capsule_3 Capsule_4 Capsule_5

Fission Gas Release-to-Birth Ratios

Kr-85m R/B in early cycles was stable at ~10⁻⁷ to 10⁻⁶

2019

2018

 Values unreliable from Cycle 166A onward due to leakage from Capsule 1

ADVANCED REACTOR TECHNOLOGIES

2020

Quantifying In-Pile Particle Failure

Approach

- Utilize combined fission gas data streams to analyze for particle failures
 - Gross gamma spectra (peaks related to particle failure)
 - Isotopic gamma spectra peaks
 - R/B data (compare measured R/B with predicted values)

Challenges

- Capsule 1: No gas flow after Cycle 166A (no direct fission gas measurement)
- Capsules 2 5: In-leakage of gas from Capsule 1 impacts R/B analysis
- Uncertainty in starting number of exposed kernels
- Uncertainty in temperature of as-fabricated exposed kernel defects and inpile failures, which impacts fission gas release
- Peaks in gamma spectra often appear to be unrelated to particle failure events

3 Gas can

backstream into

each capsule via gaps at throughtube penetrations

2. Gas enters the leadout

volume

1. Fission gas leaks from

Capsule 1

Particle Failure Analysis

Preliminary estimate of in-pile particle failures

Capsule	# Failures
1	180 – 440 near the end of Cycle 166A; unknown thereafter
2	1 – 4 in Cycle 168A
3	≤15 in Cycle 168A
4	0
5	0

B. Pham et al., "AGR 5/6/7 Irradiation Test Final As-Run Report," INL/EXT-21-###### (DRAFT)

Considerations for Postirradiation Examination

- Implications for Capsule 1 fuel use
 - Most/all compacts are likely highly contaminated with fission products (Cs, Sr, Eu) from failed particles
 - This capsule not useful for evaluating fission product release from intact fuel (capsule mass balance, DLBL, safety testing)
 - Particle gamma counting still useful
 - Particle microanalysis still useful
 - Safety tests to determine particle failure need compacts with zero failures (still probably unsuitable for assessing fission product release from intact fuel)
- Can we screen specific compacts for particle failure and use the "good ones"?
 - Short-duration heating in FACS to assess presence of particle failures (pass/fail)
- Compromised compacts
 - Testing in AMIX to assess impact of oxidation on failed fuel

In-Pile Particle Failure Statistics

95% confidence): ~2 − 4 ×10⁻⁵

 Original experiment specification called for ~500,000 particles irradiated under normal operating conditions (SPC-1749)

- If Capsule 1 fuel is eliminated from consideration due to the operational issues, there are still sufficient particle statistics, but irradiation temperatures are much too low
- Obtaining failure statistics over a representative temperature range will require screening out Capsule 1 compacts with external causes for particle failure

J.T. Maki, "AGR 5/6/7 Irradiation Test Specification," SPC-1749, 2015

Post-Irradiation Safety Testing Statistics

- Original experiment specification called for ~50,000 particles for 1600°C safety testing and ~20,000 particles for testing at 1700 – 1800°C (SPC-1749)
- Capsule 2 5 particle numbers are sufficient, but temperature distribution is problematic
- May require salvaging useable compacts from Capsule 1

J.T. Maki, "AGR 5/6/7 Irradiation Test Specification," SPC-1749, 2015

- AGR-5/6/7 irradiation is complete and PIE is underway
- Reporting is still in progress
- Time-average temperatures: 467 1432°C
- Burnup: 5.7 15.3% FIMA
- Preliminary estimate of particle failure indicate zero failures in Capsules 4 and 5, 1 – 4 in Capsule 2, and as many as 15 in Capsule 3
- Cause of Capsule 1 particle failures is not yet known

Idaho National Laboratory