July 13, 2021

Adriaan Riet and Paul Humrickhouse

Modeling of AGR-3/4 PIE

Gamma tomographic reconstructions and finite element transport simulations

Precision Gamma Scanner (PGS) Overview

Prior Work – Nonphysical activity outside of ring

ADVANCED REACTOR TECHNOLOGIES

x (cm)

Problems/Changes

- Reconstructed activity observed outside of physical sample
 - Confined activity to within the geometry of the cylinders as measured in PIE metrology
 - PGS fixture may not have perfectly centered ring, centering adjustments necessary
- As the cylinder is not convex, the windowing function used in typical tomographic reconstructions is inappropriate and skews results
 - We use a nonlinear optimization function to find the activity within the cylinder from the scans $||Mf g||_2^2 + \lambda^2 |Lf|_2^2$

The solution is not unique. A Tikhonov regularization parameter is used to reduce nonphysical 'salt and pepper' noise in the final reconstruction

Tikhonov Regularization

- Co-60 scans were used to determine λ
 - clearly showed localized phenomena (flux wire)
- $\lambda = 0.03$ was chosen
 - preserved local information while reducing noise

 $\lambda = 0.5$

Finding the Center

$$\frac{\sum_{x} x \cdot g(x, \phi)}{\sum_{x} g(x, \phi)} = A(\phi)$$

$$A(\phi) = (x_{0,init} + (x_{cor,init} - x_{0,init})\cos(\phi) + y_{cor,init}\sin(\phi))$$

A separate algorithm was used to determine the center of location and center of rotation of the cylinders

- First, the initial center of rotation was estimated by defining the activity-weighted location vector $A(\phi)$ (top right)
- $A(\phi)$ was then curve-fitted to a rotational transform, obtaining initial parameters $(x_{0,init}, x_{cor,init}, y_{cor,init})$
- Then, used nonlinear optimization with (x_0, x_{cor}, y_{cor}) as parameters to minimize the function $||Mf g||^2$
 - *f* found iteratively according to rules listed on the right
- Faster method and resulted in a smoother objective function but tended to underestimate concentrations at cylinder edges.

7

$$f^{k+1} = f^{k} + b^{k} \frac{\sum_{j} \left(\frac{M_{ij}(g_{j} - M_{j}^{T} f^{k})}{\sum_{i=1}^{N} M_{ij}} \right)}{\sum_{j} M_{ij}}$$

$$b^{k+1} = \begin{cases} 0.5b^{k}, & \left\| M f^{k+1} - g \right\|^{2} > \left\| M f^{k} - g \right\|^{2} \\ \min\left(1.1 \ b^{k}, 1.5 \right), & \left\| M f^{k+1} - g \right\|^{2} < \left\| M f^{k} - g \right\|^{2} \end{cases}$$

High concentrations on surfaces suggest the possibility of faster transport between the rings than within the rings

Capsule 3 inner and outer rings Cs-134 concentrations

Inner Ring 3 – Upper (TAVA 1026 K, PCEA)

80 Eu-154 Tomography 100 Concentration [Ci/m³] ٠ Eu-154 Activity [Ci/m³] 60 80 60 40 40 20 20 Lo 0 0.8 1.0 1.2 Radius [cm] 25 50 Ag-110m Tomography

Tomography

Physical Sampling at 13.85 Physical Sampling at 14.65

Inner Ring 7 – Middle (TAVA 1151 K, Matrix)

- Agreement with physical sampling for Ag, Cs, Eu
- Overestimates activity when measured concentrations are near the MDL, as in Ce144

•

Outer Ring 8 – Middle (TAVA 917 K)

- Good agreement with physical sampling for Ag, Cs
- Overestimates activity when measured concentrations are near the MDL, as in Sb125 and Eu154

Tomography

Physical Sampling at 13.40

- PGS tomographic scan reconstructions have been completed using the developed methodologies
- Report forthcoming prior to end of fiscal year
- Tomographic scans in agreement with physical sampling
- Noise floor is higher for PGS than for physical sampling
- Local phenomena is directly observable, highlighting areas not amenable to 1D treatment

FEM (MOOSE) model

- Using MOOSE (Multiphysics Object-Oriented Simulation Environment) to address the possibility of gas-phase transport and short-circuit diffusion to explain anomalous results
 - Explicitly modeling the vapor phase using sorption isotherms (Cs, Sr) where available
 - Investigating possibility of surface transport and GB diffusion, leakage of vapor around the rings
- Thermal modeling is done based on outputs from ABAQUS analysis (INL/EXT-15-35550)
- Model will be used for transport parameter estimation

- Estimate diffusivity using MOOSE Model / 1D Analytical model
- Determine possible magnitude of 1.5 D effects
 - Possible leakage of gas around rings
 - Possibility of surface transport / GB diffusion

Idaho National Laboratory