

DOE-NE Advanced Reactor Technologies Gas-Cooled Reactor Program 2022 Annual Review Meeting

Contributors

- Vincent Laboure
- Javier Ortensi
- Nicolas Martin
- Paolo Balestra
- Matilda Lindell
- Derek Gaston
- Andrew Hermosillo
- Andrew Hummel
- Gerhard Strydom
- Etc.

2

Content Ontent HTTR Model Overview.

- Cross Section Generation Procedure.
- Steady-State Results.
- 9MW LOFC Transient Results.
- 30 MW LOFC Transient Results.
- Validation of the Serpent Model
- Future Work

3

HTTR Overview

- Graphite moderated, helium cooled prismatic High Temperature Reactor
- Power: 9 or 30 MW
- Large axial thermal gradient (up to 600K from top to bottom)

(a) HTTR core layout with fuel (columns 1-4), control rods (C, R1, R2, R3), replaceable reflectors (RR), and instrumentation (I).

Stack 1	Stack 2	Stack 3	Stack 4
RR	RR	RR	RR
RR	RR	RR	RR
6.7 /2.0	7 .9 /2.0	9.4 /2.0	9.9 /2.0
5.2 /2.5	6.3 /2.5	7 .2 /2.5	7.9 /2.5
4.3 /2.5	5.2 /2.5	5.9 /2.5	6.3 /2.5
3.4 /2.0	3.9 /2.0	4.3 /2.0	4.8 /2.0
3.4 /2.0	3.9 /2.0	4.3 /2.0	4.8 /2.0
RR	RR	RR	RR
RR	RR	RR	RR

(b) Description of the four different HTTR fuel columns/stacks (UO₂ wt.% fuel enrichment / burnable poison wt.% enrichment).

ADVANCED REACTOR TECHNOLOGIES

5

Current INL HTTR Multiphysics Multiscale Model

Benchmark calculation: excess reactivity

- Cold, zero-power operation.
- Matches JAERI results well and experimental data within 2-σ uncertainty.
- Large uncertainty, mostly due to graphite impurities.

24 fuel columns

19 fuel columns

Benchmark calculation: axial neutron flux

- Cold, zero-power operation
- Axial profile matches the experiment and JAERI data relatively well

Future Work

- Study in details the early recriticality for the 9MW LOFC. Probably due to an over estimation of the fuel feedback coefficient.
- Get a better understanding of the Helium flow during the transients to understand if and how natural circulation occurs.
- Model the gaps between blocks
- Use a semi-heterogeneous thermal mesh at the full-core level
- · Further validate the Serpent model
- Perform sensitivity analysis to assess the effect of the parameters uncertainties on the results.

Created with MOOSE generators implemented by Yinbin Miao (ANL)

WP1 LEAD Phenomena Identification and Ranking Table (PIRT) Comparison, Evaluation, and Update

High Level Schedule of WP 1 Tasks

Task	Year 1		Year 2		Year 3		Yea	Year 4		ar 5	Year 6		Year 7	
1.1														
1.2														
1.3														

- Task 1.1 LEAD&LREV The Task Leader (DOE) shall construct a template of PIRT values and populated with values from the Task Leader's PIRT. Update members' knowledge of important or poorly understood thermo-fluid and core safety phenomena
- Task 1.2 Consolidation of PIRTs on Chemistry and Transport (including Water Ingress)
- Task 1.3 SPECS&LREV Construction of a Validation Matrix (Experiments being available and being needed) NEUP report of last 10y coming soon.

SPECS=generate specifications, LREV=literature review, LEAD=Leading Task or WP, DATA=providing data, CALCS=perform calculations

WP2 Computational Fluid Dynamics

High Level Schedule of WP 2 Tasks

Task	Yea	Year 1 Year 2		ar 2	Year 3		Yea	ır 4	Yea	ır 5	Year 6		Year 7	
2.1														
2.2														
2.3														
2.4														

- Task 2.1 LEAD&LREV&SPECS To review the existing guidance reports from OECD/NEA, US NRC, IAEA, etc. and summarize general and specific guidance of using CFD tools in HTGR applications.
- Task 2.2 CALCS Thermal mixing effect and pressure drop in the scaled structure of bottom reflectors and hot gas chamber of the HTR-PM blind calculations
- Task 2.3 LEAD&DATA&CALCS To validate CFD numerical models and measure the capability of CFD numerical models to calculate the radiation and convective heat transfer in the air-cooled RCCS. Texas A&M Air-cooled RCCS experimental facility and other available data
- Task 2.4 CALCS To perform CFD validation studies related to the prismatic core bypass flow

WP3 LEAD Reactor Core Physics and Nuclear Data

Task	Year 1		Tear 1 Year 2		Year 2 Year 3		Year 4		Year 5		Year 6		Year 7		Year 8	
3.1																
3.2																
3.3																
3.4																
3.5																

• Task 3.1 LEAD&SPECS&LREV&CALCS Validate burnup analysis using isotopic data from AGR and HFR-Petten fuel irradiations.

Collect and organize available post irradiation concentration data.

- Task 3.2 LREV&SPECS&CALCS Quantify the uncertainty in key safety parameters due to the random distribution of particles and pebbles in a pebble bed reactor
- Task 3.3 LEAD&LREV&SPECS&CALCS Pebble flow characterization
- Task 3.4 LEAD&LREV&SPECS&CALCS Effect of neutron damage and annealing on thermal and neutronics properties of graphite and matrix carbon
- Task 3.5 LEAD&CALCS Criticality predictions

WP4 Chemistry and Transport

Task	Yea	Year 1 Year 2		Yea	ar 3	Yea	ar 4	Yea	ar 5	Year 6		Year 7		
4.1														
4.2														
4.3														
4.4														

- Task 4.1 LREV&CALCS Radionuclide and dust transport and plate-out in the Primary Loop
- Task 4.2 LEAD&LREV&CALCS Radionuclide and dust transport in the reactor building after a break
- Task 4.3 LREV&CALCS Tritium Transport Models and code
- Task 4.4 LREV&CALCS C-14 Transport Models and Code

Check adaptability of methods developed in SAM for PB-FHR.

WP5 Reactor and Plant Dynamics

Task	Year 1		Year 2		Yea	ar 3	Yea	ar 4	Yea	ar 5	Yea	r 6	Yea	ar 7
5.1														
5.2														
5.3														
5.4														
5.5														
5.6														
5.7														
5.8														

- Task 5.1 LEAD&DATA&CALCS Oregon State University (OSU) High Temperature Test Facility (HTTF)
- Task 5.2 LEAD&DATA&CALCS Argonne National Laboratory (ANL) Natural Circulation Shutdown Heat Removal System (NSTF) Experiments in Air-Cooled Reactor Cavity Cooling Systems (RCCS)
- Task 5.3 CALCS System Studies of the HTR-10 RCCS Experiments
- Task 5.4 LEAD&DATA&CALCS System Studies of the ANL Water-cooled RCCS Experiment
- Task 5.5 CALCS KOREA Hybrid RCCS Experiment
- Task 5.6 CALCS NACOK II Experiments

20

- Task 5.7 LEAD&SPECS&CALCS Code-to-Code Comparisons of operational transients
- Task 5.8 LEAD&SPECS Guidelines for Validation and Application of Systems Analysis Numerical Models

WD#	Contributoro	Yea	r 1	Yea	ar 2	Year	3	Yea	r 4	Yea	r 5	Yea	r 6	Year	r7	Tot	al
VVF#	Contributors	M(py)	F(k\$)	M(py)	F(k\$												
	DOE	0.2	30.0	0.6	90.0	0.1	15.0	0.1	15.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	150
	INET	0.2	30.0	1.0	150.0	0.2	30.0	0.5	75.0	0.0	0.0	0.0	0.0	0.0	0.0	1.9	285
WP1	KAERI	0.0	0.0	0.0	0.0	0.2	30.0	0.1	15.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	45
WP1	JRC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0
	JAEA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0
	Subtotal	0.4	60	1.6	240	0.5	75	0.7	105	0	0	0	0	0	0	3.2	480
	DOE	0.4	60.0	0.6	90.0	1.3	195.0	2.2	330.0	0.0	0.0	0.0	0.0	0.0	0.0	4.5	675
	INET	1.6	240.0	2.9	435.0	2.8	420.0	1.3	195.0	0.0	0.0	0.0	0.0	0.0	0.0	8.6	1,290
WP2	KAERI	0.3	45.0	0.9	135.0	1.4	210.0	1.1	165.0	0.0	0.0	0.0	0.0	0.0	0.0	3.7	555
	JRC	0.2	30.0	0.3	45.0	0.5	75.0	0.2	30.0	0.0	0.0	0.0	0.0	0.0	0.0	1.2	180
	JAEA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0
	Subtotal	2.5	375	4.7	705	6.0	900	4.8	720	0	0	0	0	0	0	18.0	2,700
	DOE	0.1	15.0	0.5	75.0	0.7	105.0	0.4	60.0	0.5	75.0	0.3	45.0	0.0	0.0	2.5	375
	INET	0.2	30.0	0.5	75.0	1.2	180.0	1.1	165.0	0.7	105.0	0.6	90.0	0.0	0.0	4.3	645
WP3	KAERI	0.2	30.0	0.5	75.0	0.5	75.0	0.2	30.0	0.2	30.0	0.2	30.0	0.0	0.0	1.8	270
	JRC	0.2	30.0	0.4	60.0	0.4	60.0	0.2	30.0	0.0	0.0	0.0	0.0	0.0	0.0	1.2	180
	JAEA	0.2	30.0	0.3	45.0	0.3	45.0	0.1	15.0	0.1	15.0	0.1	15.0	0.0	0.0	1.1	165
	Subtotal	0.9	135	2.2	330	3.1	465	2.0	300	1.5	225	1	180	0	0	10.9	1,635
	DOE	0.2	30.0	0.5	75.0	2.5	375.0	2.5	375.0	1.7	255.0	0.5	75.0	0.5	75.0	8.4	1,260
	INET	0.5	75.0	0.6	90.0	2.0	300.0	2.5	375.0	2.2	330.0	1.7	255.0	1.4	210.0	10.9	1,635
WP4	KAERI	0.5	75.0	0.7	105.0	1.1	165.0	1.3	195.0	1.3	195.0	1.2	180.0	1.2	180.0	7.3	1,095
	JRC	0.7	105.0	0.9	135.0	0.9	135.0	0.4	60.0	0.4	60.0	0.4	60.0	0.8	120.0	4.5	675
	JAEA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0
	Subtotal	1.9	285	2.7	405	6.5	975	6.7	1,005	5.6	840	4	570	4	585	31.1	4,665
	DOE	2.3	345	1.0	150	4.2	630	3.2	480	3.2	480	2	330	1	150	17.1	2,565
	INET	0.5	75	1.6	240	2.2	330	3.0	450	3.0	450	2	330	1	150	13.5	2,025
WP5	KAERI	0.4	60	1.0	150	2.4	360	3.2	480	2.7	405	2	240	0	45	11.6	1,740
	JRC	0.3	45	0.6	90	0.7	105	1.0	150	1.5	225	1	180	1	75	5.8	870
	JAEA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Subtotal	3.5	525	4.2	630	9.5	1,425	10.4	1,560	10.4	1,560	1	1,080	3	420	48.0	
	DOE	3.2	480	3.2	480	8.8	1,320	8.4	1,260	5.4	810	3	450	2	225	33.	5,025
	INET	3.0	450	6.6	990	8.4	1,260	8.4	1,260	5.9	885	5	675	2	360	39.2	
Total	KAERI	1.4	210	3.1	465	5.6	840	5.9	885	4.2	630	3	450	2	225	24.7	3,705
	JRC	1.4	210	2.2	330	2.5	375	1.8	270	1.9	285	2	240	1	195	12.7	1,905
	JAEA	0.2	30	0.3	45	0.3	45	0.1	15	0.1	15	0	15	0	0	1.1	
	Total	9.2	1,380	15.4	2,310	25.6	3,840	24.6	3,690	17.5	2,625	12	1,830	7	1,005	111.	16,680

GIFIV Forum Budget.

- 2.5 FTEs per year, to manage the 5 work packages.
- The other Members accepted (and signed) the terms of the agreement
- Different professional figures are needed (from CFD to reactor physics and chemistry) - INL/ANL joining in a collaborative effort.
- Obtaining Data from the other members to validate DoE tools and saving 100s M\$ (and time) of experiments (e.g. HTR-PM operation)

HTTR benchmark calculations with Serpent 2

Annular core with control rods inserted

- Cold start-up operation
- Too high reactivity in all calculated cases
- The newest library, ENDF/B-VIII.0, gives higher reactivity than ENDF/B-VII.1.

John D. Bess & Nozomu Fujimoto, Benchmark Evaluation of Start-Up and Zero-Power Measurements at the High-Temperature Engineering Test Reactor, Nuclear Science and Engineering (2014) 178:3, 414-427, DOI: 10.13182/NSE14-14

HTTR benchmark calculations with Serpent 2

Axial power distribution

• Averaged over 9 - 30 MW

HTTR benchmark calculations with Serpent 2

Radial power distribution

- Power: 30 MW
- Average burnup: 4400 MWd/t

