July 14, 2022

Lu Cai Scientist Idaho National Laboratory

Pebble Oxidation Behavior

GAS-COOLED REACTORS

- Goal and Objectives
- Introduction and Experimental Methods

- Oxidation Results
 - Oxidation Rate
 - -Uniform Oxidation?
- Conclusion and Future Work

Goal and Objectives

Goal

Mechanisms and Analysis

- Data analysis and interpretation
- Understanding the damage mechanisms is key to interpreting data

ADVANCED REACTOR TECHNOLOGIES

 To understand oxidation degradation of matrix graphite and its mechanism, and to support fuel vendor (Kairos Power) for fuel qualification and licensing

Objectives

- To perform oxidation testing in kinetic-controlled regime (finished)
- To provide guidance on standardization of oxidation testing of matrix graphite (ongoing)
- To study the irradiation effects on the oxidation of matrix graphite (ongoing)
- To study the oxidation effects on material properties (ongoing)

- Goal and Objectives
- Introduction and Experimental Methods

- Oxidation Results
 - Oxidation Rate
 - -Uniform Oxidation?
- Conclusion and Future Work

Introduction

The fuel pebbles consist of a fuel region with fuel particles inside partially graphitized carbon matrix and a thin fuel-free carbon matrix shell to protect the fuel region from degradation and damage during handling and operation. The shell is made of a partially graphitized carbon matrix (matrix graphite).

- Oxidation concerns:
 - Acute oxidation (extremely unlikely case of air ingress)
 - Chronic oxidation

• This study is to study oxidation degradation and its mechanism of matrix graphite.

Experimental Methods

Designation: D7542 - 21

Standard Test Method for Air Oxidation of Carbon and Graphite in the Kinetic Regime

Sample Geometries:

Vertical Furnace

- Goal and Objectives
- Introduction and Experimental
- Oxidation Results
 - -Oxidation Rate
 - -Uniform Oxidation?
- Conclusion and Future Work

Oxidation Results – Kairos Pebble and Cylinder vs. A3

Oxidation Rate (OR_w) normalized by Weight Temperature range: 450°C – 700°C

 $OR = A \times exp(-E_a/RT)$

Each temperature has two samples with the same geometry.

Sample	Geometry	Ea (kJ/mol)	A (g h ⁻¹ g ⁻¹)
A3	Cylinder	179.55	3.2E+9
Kairos	Cylinder	139.12	4.6E+6
Kairos	Pebble	141.95	5.2E+6
Kairos	Combined	142.79	6.5E+6

Excellent response in kinetic-controlled regime

Oxidation Results – Kairos Pebble and Cylinder vs. A3 (Cont.)

Oxidation Rate (OR_a) normalized by surface area

Sample	Geometry	Ea (kJ/mol)	A (g h ⁻¹ m ⁻²)
A3	Cylinder	179.46	1.7E+13
Kairos	Cylinder	139.32	3.4E+10
Kairos	Pebble	141.85	5.8E+10
Kairos	Combined	139.87	4.0E+10

Graphite Grade	Ea (kJ/mol)	A (g h ⁻¹ m ⁻²)
─ ▲─ Unpurified PCEA	156	2.38E+11
-♦- IG-110	194	3.09E+13
	211	1.89E+14
− ▲ − Purified PCEA	198	2.20E+13
−▲ − BAN	213	1.31E+14
	188	3.71E+12
	190	4.17E+12

Pebble oxidized at 700°C to 10wt% loss; about 4.7% surface loose powder

The E_a and A of Kairos matrix graphite are lower than for A3 and other types of nuclear-grade graphite \rightarrow preferential binder oxidation?

Ref: Journal of Nuclear Materials Volume 545, March 2021, 152648 ADVANCED REACTOR TECHNOLOGIES

Oxidation Results –Geometrical Effects

Sample	Geometry	Ea (kJ/mol)	A (g h ⁻¹ g ⁻¹)
Kairos	Disk quadrant (TGA)	147.22	1.8E+7
Kairos	Cylinder	139.12	4.6E+6
Kairos	Pebble	141.95	5.2E+6
Kairos	Combined	142.74	7.4E+6

ADVANCED REACTOR TECHNOLOGIES

The geometrical effects (cylinder vs. pebble) are minor—merely contributing somewhat to scattering.

Uniform Oxidation?- Optical Microscope

Outer severe-oxidation zone

600°C Sample #20

Artificial dense edge due to sample preparation

Uniform Oxidation?- X-ray computed tomography (XCT)

XCT confirms outer oxidation zone penetrates all exposed surfaces of the sample

- Goal and Objectives
- Introduction and Experimental
- Oxidation Results
 - -Oxidation Rate
 - -Uniform Oxidation?
- Conclusion and Future Work

Conclusion and Future Work

Conclusions:

• The oxidation rate of the Kairos matrix graphite follows the Arrhenius equation at temperatures of 450–700°C. The optical microscope study shows an outer-surface oxidation zone for samples oxidized, and XCT confirms that the outer oxidation zone penetrates all exposed surfaces of the sample. The outer-oxidation zone is about 4.5 mm for the cylinder samples (D=H=25.4 mm) oxidized at 600°C from both optical images and XCT.

• Compared to the A3 matrix graphite, Kairos matrix graphite has a lower oxidation rate at high temperatures but may have a higher oxidation rate at low temperatures.

• Kairos matrix graphite has a lower E_a and A than either A3 matrix graphite or nucleargrade graphite and may experience preferential binder oxidation.

• For oxidation in a vertical furnace, the geometrical effects—cylinder (D=H=25.4mm) vs. pebble (D~40 mm)—are small, and only somewhat contribute to scattering.

Future work will focus on how irradiation affects oxidation, and how oxidation impacts material properties of matrix graphite.