July 12, 2022

Joshua Kane Data Analysis & Visualization Lead INL, Char. & Adv. PIE Division

X-ray Computed Tomography of Irradiated and Unirradiated AGR-3/4 Compacts

A preliminary examination

What and Why?

• What?

- Performed X-ray CT (XCT) on irradiated AGR-3/4 compacts
 - Apparatus design
 - Imaging results
 - Preliminary analysis
 - Extruded kernels
 - DTF Identification
- Why?
 - Can provide non-destructive 3D perspective to enhance/compliment current PIE
 - <u>Potentially</u> better quantitative measurements of certain features
 - <u>Better</u> means of understanding any spatial distribution(s)

X-ray Computed Tomography (XCT)

Compacts Examined

- AGR-3/4 compacts
 - Compact Dimensions:
 - Length- ~12.5 mm
 - Diameter- ~12.3 mm
 - Particles:
 - ~1898 TRISO-coated driver particles
 - 20 Designed To Fail (DTF) particles
- Examined 2 Irradiated Compacts and 2 Unirradiated Compacts

Irradiated Compact Details:

Compact ID	Capsule #	Compact Position	Burnup (% FIMA)	Fast Neutron Fluence (×10 ²⁵ n/m ² , E>0.18 MeV)	Temperature (°C) ^a
12-4	12	4	4.85	1.19	845
7-1	7	1	14.92	5.28	1276

Radiograph from Hunn, J., Trammell, M. P., Montgomery, F.C., 2011, Data Compilation for AGR-3/4 Designed-to-Fail (DTF) Fuel Compact Lot (LEU03-10TOP2/LEU03-07DTF-OP1)-Z, Oak Ridge National Laboratory, ORNL/TM-2011/124, 2011.

Imaging Challenge

Irradiated Compact:

Compact ID	γ dose (mrem/hr)*	γ dose (mrem/hr)+	β dose (mrem/hr)*	β dose (mrem/hr)⁺
12-4	3,100	350	23,700	3,150
7-1	12,000	800	>50,000	3,900

*- Dose at contact with sample

+- Dose at 30 cm from sample

Possible Challenges

- Minimizing dose to handling personnel and instrumentation
 - Significant γ dose difficult to shield for during sample handling
 - X-ray detector sensitive to γ and any x-rays generated from deaccelerating β particles
- Preventing HFEF contamination from impacting XCT system

Sample Shielding Device

X-ray Imaging Conditions

- Low and high energy scans:
 - ~40 keV X-ray energy
 - ~110 keV X-ray energy
- Source to object distance:
 - 42.03 mm
- Source to detector distance:
 - 245.6 mm
- Radiographs:
 - 5001 over 360 degrees
- Frame averaging:
 - 20 frames per radiograph
- Detector pixel pitch:
 - **-** 75 μm
- Reconstructed pixel size:
 - 10.93 μm

The compromise for X-ray imaging of TRISO fuel

The compromise for X-ray imaging of TRISO fuel: Fueled sample comparison to more ideal surrogate

Zirconia Kernel Surrogate TRISO

AGR-3/4 Unirradiated Compact Z104 ADVANCED REACTOR TECHNOLOGIES

X-ray CT Imaging Results: Compact 7-1

X-ray CT Imaging Results

Extruded Kernels Compact 7-1

Sphericity used as metric to screen extruded kernels:

Kernel Sphericity < 0.964

~33%, 635 of 1924 Kernels in 7-1 possess some degree of extrusion

From cross-sections of adjacent compact, Compact 7-2, extruded kernels resulting from buffer fracture was estimated to be 14.3% of total particles*.

*Stempien, J. D. and Schulthess, J. L. 2020. AGK-5/4 TKISO FUEL COMPACE CETAMOGRAPHY . INL/EAT-20-57010-KeV O. Idano Ivational Laboratory.

ADVANCED REACTOR TECHNOLOGIES

DTF Identification:

Preliminary Comparison: Driver to DTF Particle Size Compact 7-1

Note that equivalent diameters may not be correct, however a relative comparison is still likely valid.

Conclusions & Planned Work

- X-ray CT demonstrated on irradiated AGR-3/4 compacts
 - Provides a means for complimentary analyses to current AGR PIE
 - Enables quantification of spatial variation in features within compact

Remaining in FY2022:

- Planning to further examine and quantify kernel dimensional change, kernel extrusions, and DTF particles.
- Examine a limited number of deconsolidated particles from AGR-5/6/7 experiment

In FY2023:

- Image additional AGR-3/4 compacts at intermediate burnups to provide a broader range of fuel conditions for comparison
- Explore imaging AGR-5/6/7 compact (More challenging due to significantly higher radiation dose)
- Refine reconstruction methodology for "low-energy" CT scans of irradiated compacts
 - Ideally would enable additional information on matrix and potential pores and cracks to be extracted

Thank you for your attention

Contact Information: Joshua Kane Data Analysis & Visualization Lead, CAPIE joshua.kane@inl.gov

William Chuirazzi

X-ray CT Instrument Scientist william.chuirazzi@inl.gov

