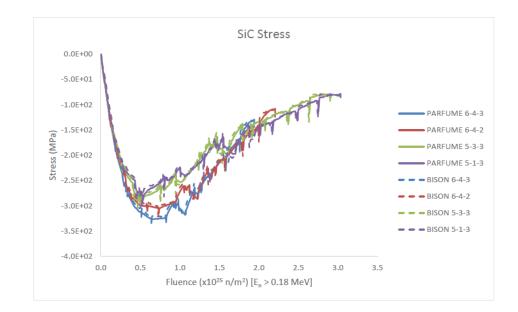
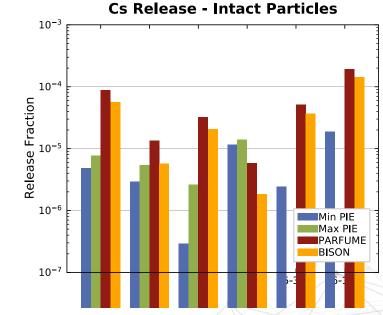
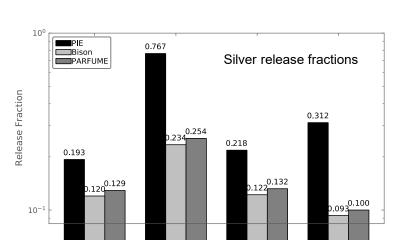
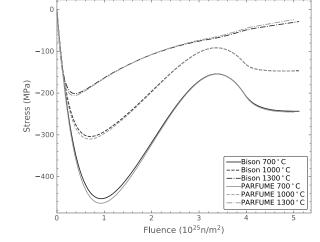
July 12, 2022


William F. Skerjanc


TRISO Fuel Performance Modeling with PARFUME





- Introduction
- Overview of TRISO Fuel Performance Modeling
- TRISO fuel performance code PARFUME
- PARFUME application to support the AGR program
- Current Status and Future Work

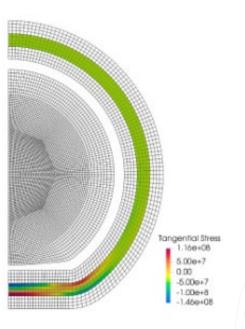
Introduction

- Addresses:
 - Fuel particle failure
 - Structural
 - Thermal
 - Chemical
 - Fission product transport
 - fuel-compact matrix
 - fuel-element graphite
- Assists in the:

angential Stress 1.33e+08

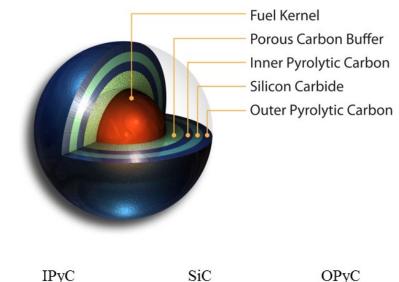
5.00e+7

0.00 -5.00e+7


-1.00e+8

-1.50e+8 -2.00e+8

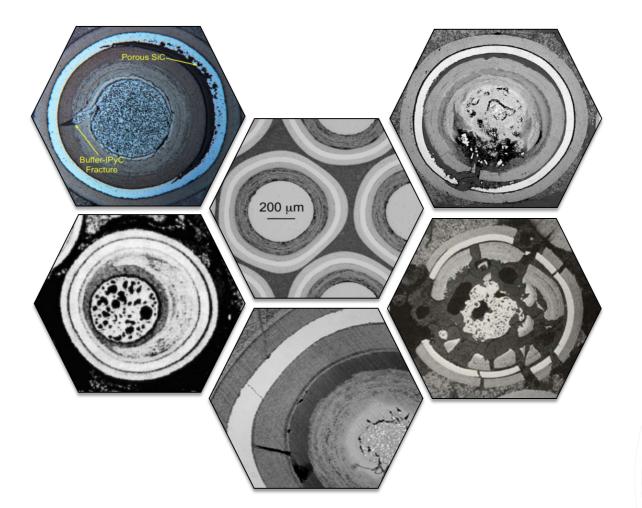
-2.58e+08


- Fuel design
- Fabrication
- Optimization
- Experiment design
- Fuel behavior

- Objective
 - Enhance the understanding of fuel behavior and fission product transport
 - Improve the fuel performance and fission product models
 - Develop advanced models using new methods
 - Provide validated tools to industry

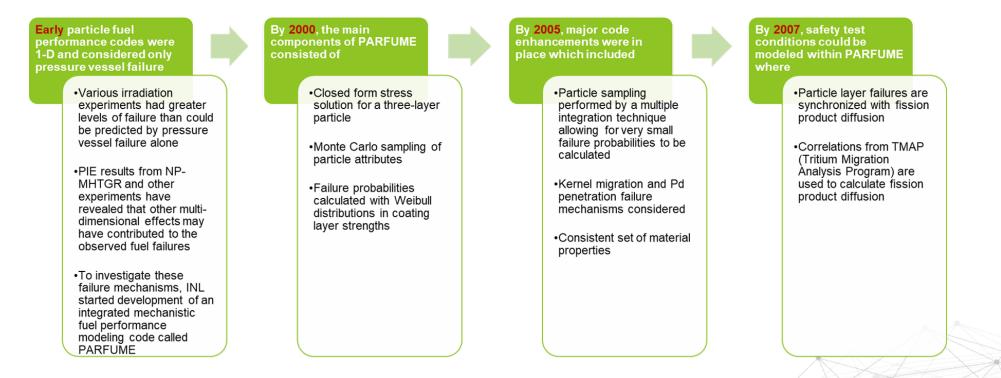
TRISO Fuel Performance Modeling

- Basic fuel particle behavior
 - Several physical phenomena influence the behavior of the particles including fission gas production and irradiation effects
- Applications of fuel performance modeling
 - Optimize particle design
 - Plan irradiation experiments
 - Identify tolerances of specifications
 - Estimate reactor fuel performance
- Existing TRISO fuel performance codes
 - PARFUME: Spherical symmetry to reduce the particle response to a 1D model and uses closedform analytical solution for the stress-straindisplacement relationship.
 - Bison: uses finite element method to solve the basic thermo-mechanics and mass diffusion equations. This avoids the simplifications necessary for a closed form solution.



- 1 Gas pressure is transmitted through the IPyC
- 2 IPyC shrinks, pulling away form the SiC
- 3 OPyC shrinks, pushing in on the SiC

TRISO Failure Modes


- Mechanical
 - Pressure vessel failure
 - Cracking of the IPyC layer
 - Partial debonding of IPyC/SiC and Buffer/IPyC
 - Pressure vessel failure of an aspherical particle
- Thermochemical
 - Amoeba effect
 - Palladium attack of the SiC layer
 - Corrosion of SiC by CO
 - SiC thermal decomposition

PARFUME – PARticle Fuel ModEl

Fuel Performance Code PARFUME

- An integrated mechanistic code that evaluates the thermal, mechanical, and physico-chemical behavior of TRISO fuel particles
- Capable of evaluating fuel particle failure under both irradiation and accident conditions
- Tracks the probability of fuel particle failure given the particle-to-particle statistical variations in physical dimensions and material properties.

Fuel Performance Modeling to Support the AGR Experiments

AGR-1

- Pre-irradiation prediction (EDF-5741)
- Fission product release comparison to in-pile PIE (INL/EXT-14-31975)
- Fission product release comparison to safety test PIE (INL/EXT-14-31976)

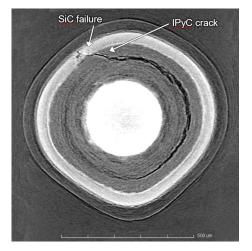
AGR-2

- Pre-irradiation prediction (ECAR-1020)
- Safety test predictions (INL/EXT-14-33082)
- Fission product release comparison to in-pile and safety test PIE (INL/EXT-20-59448)
- Comparison between PARFUME and Bison (INL/EXT-20-59890)

AGR-3/4

- Pre-irradiation prediction (INL/EXT-16-38280)
- Irradiation as-run predictions (INL/EXT-21-65160 Bison)
- Fission product release comparison to in-pile and safety test PIE (FY-22 Bison)

AGR-5/6/7


- Pre-irradiation prediction (INL/EXT-17-43189)
- Fuel performance basis for fuel specification (ECAR-2341)
- Irradiation as-run predictions (INL/EXT-21-64576)
- Safety test predictions (FY-23 PARFUME/Bison)
- Fission product release comparison to in-pile and safety test PIE (FY-26 PARFUME/Bison)

Fuel Performance Modeling to Support the AGR Program

- Additional activities
 - IAEA normal and accident benchmarks (ECAR-728)
 - Assessment of material properties for TRISO fuel particles (INL/EXT-18-44631)
 - Kernel/buffer volume fraction margin (FY-23)
- Modeling improvements
 - Fission product transport model (FY-23 Bison)
 - Thermomechanical buffer layer modeling (TBD Bison)
 - Pyrocarbon creep rate (TBD PARFUME/Bison)

1. A.					
			++++	+++++	
				+++++	

5.0E-04	$K_c = [1 + 2.38(1.9 - p)](2.193 \times 10^{-4} - 4.85 \times 10^{-7}T + 4.0147 \times 10^{-10}T^2)$	
4.0E-04	600°C < T < 1350°C <600°C, K_ = K_(600°C) >1350°C, K_ = K_(1350°C)	
4A) 3.0E-04 57-0T)		$\rho = 1.7$ $\rho = 1.8$
2.0E-04 3.0E-04 1.0E-04 1.0E-04		$\rho = 1.0$ $\rho = 1.9$ $\rho = 2.0$
ອ 1.0E-04		ρ = 2.1
0.0E+00 4	00 500 600 700 800 900 1000 1100 1200 1300 1400 1500 Temperature (°C)	

AGR-5/6/7 predicted fuel particle failure using PARFUME.

There show a predicted rule paralele failure doing fride chills.						
Capsule	5	4				
Average compact temperature (°C)	741	839				
Average compact predicted failure fraction	2.60E-04	1.14E-04				
Total number of TRISO particles	81432	52728				
Predicted number of TRISO particle failures	21	6				
Observed number of TRISO particle failures ¹	0	0				

1. Per AGR-5/67 irradiation as-run report based on the data currently available.

