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Outline

• Objectives/Background

• Experiment design

• Particle failure fraction analysis

– Increase in irradiated particle failure response compared to that of 
unirradiated

– External factors most likely caused more failures than anticipated

• Oxide formation kinetics

– Similar oxide growth rate between irradiated and unirradiated particles

• Microstructure examination

– Crystalline oxide structures observed in all samples

• FITT Update
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Objectives

• Measure TRISO particle failure fraction as a function of oxidizing 
conditions

– Provide data to support Air/Moisture-Ingress Experiment (AMIX) test 
plan development

• Compare oxidation behavior of the SiC layer in unirradiated 
and irradiated TRISO particles

– Analyze differences in oxidation kinetics between unirradiated and 
irradiated SiC

– Observe oxidation microstructure in individual TRISO particles
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FITT: Furnace for Irradiated TRISO Testing

• Flexible, intentionally-simple, cost-
effective capability to heat small 
batches of irradiated TRISO particles up 
to 1700oC over times >1500 h outside a 
hot cell

– Closed-bottom ceramic tube in box furnace 
containing 10–30 particles under flowing inert gas 
or oxidizing environments (up to 21% O2)

– Installed in the Irradiated Fuels Examination 
Laboratory (IFEL) radiological facility at ORNL 
where AGR hot cell work is performed

– Intended to support integral release/oxidation tests 
in the Core Conduction Cooldown Test Facility 
(CCCTF), Fuel Accident Condition Simulator 
(FACS), and AMIX systems

Image of FITT system in IFEL hood 
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TRISO Particle Sample Selection
• Irradiated particles from AGR-2 Compact 5-4-2 had outer pyrolytic carbon 

(OPyC) layer “burned back” to expose SiC

– Exposed SiC layer to initiate oxidation                                                                               
growth at t = 0

– Not expected to influence failure                                                                                        
fraction based on previous post-burn                                                                                            
failure fraction measurements [1]

– Resulting oxide thickness                                                                                       
extrapolated to be <0.01 μm [2]

[1] Hunn, J.D., F.C. Montgomery, and P.J. Pappano. 2010. Data Compilation for AGR-2 UCO Variant Compact Lot LEU09-OP2-Z, ORNL/TM-2010/017, Revision 1. Oak Ridge: Oak Ridge 
National Laboratory.
[2] Cao, Fangcheng, D, Zhang, Q. Chen, H. Li, and H. Wang. 2020. “Evaluation of Oxidation Performance of TRISO Fuel Particles for Postulated Air-Ingress Accident of HTGR.” Journal of 
Chemistry 2020, Article ID 6568987: 8 pages. doi: 10.1155/2020/6568987.
[3] Stempien, John D, J.D. Hunn, R.N. Morris, T.J. Gerczak, and P.A. Demkowicz. 2021. "AGR-2 TRISO Fuel Post-Irradiation Examination Final Report,“ INL/EXT-21-64279-Rev000. Idaho Falls: Idaho 
National Laboratory

• Unirradiated particles from 
Compact LEU09-OP2-Z002

– Subjected to a similar burn back 
process as Compact 5-4-2

Time-averaged, volume-averaged (TAVA) temperature 
versus burnup for AGR-1 and AGR-2 UCO Compacts [3]

AGR-2 
Compact 

5-4-2
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Experimental Approach

• Ten irradiated particles and ten 
unirradiated particles loaded into a SiC 
cup separated by a partition

• Once at temperature, the flow gas was 
switched from Argon to oxidant.

– Dispersed ~1” above the SiC cup at 50 
mL/min (internal volume of system was 
~321 mL)

• Refreshes system atmosphere every ~6 min

• Sample location temperature confirmed 
with separate thermal profiling test

• Hach Orbisphere K-M1100 Oxygen 
Sensor 

– Measured oxygen concentration from 
system exhaust

– Confirmed no oxygen starvation during 
2% O2 exposure

Temperature 
(°C)

Atmosphere
Exposure Times 

(h)

1200
21% O2

(balance N2)
400

1400
21% O2

(balance N2)
50, 100, 200, 400

1400
2% O2

(balance He)
400

Conditions of six oxidation tests performed 

[1] Presser and Nickel, "Silica on Silicon Carbide", Critical 

Reviews in Solid State and Materials Sciences, 33:1, 2008, 1–99.

SiC oxidation 
response. 
Figure 
extrapolated 
from data 
taken from 
Presser and 
Nickel [1]

21% O2

2% O2
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Irradiated TRISO particle failure fraction increased with exposure 
time and temperature

• Failed SiC layer would be indicated by 
137Cs release

• No low 137Cs particles detected by IMGA

• Complete failure resulted in particle 
consumption by system and lack of recovery

• Evidence of particle fragments/debris at 
bottom of SiC cup

Particle failure during various oxidation tests

21% O2
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External factors from experimental approach influencing particle 
failure fraction

Particle failure during various oxidation tests

• No trend observed in failure rate 
of unirradiated particles
– Suggested variables besides oxidizing 

conditions promoted particle failure

– Previously observed in inert heating tests of 
burned back Compact 5-4-2 particles [1]

• Possible factors biasing particle 
failure

– Nitric acid exposure during burn back 
process

– SiC cup interaction with particles

– SiC shell damage from handling

– Variations in oxygen flow rate

– Temperature gradients

[1] Gerczak, T.J., Z.M. Burns, D.J. Skitt, R.N. Morris, and J.D. Hunn, 2020. AGR 2 loose particle heating tests in the furnace for irradiated TRISO 
testing, ORNL/TM-2020/1715-R0. Revision 0. Oak Ridge: Oak Ridge National Laboratory.

21% O2
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Irradiated particle failure fraction increased with longer 
oxidation exposure times

• Failure fraction increased from 200 h to 400 h of exposure, as 
well as from 1200°C to 1400°C

• Higher failure rate observed 
in FITT than historic KORA tests 
at 1400 °C [1]
– KORA experienced first TRISO failure 

(10% of particles) after 397 h of 
exposure to air

KORA results of heating LEU UO2 TRISO in air [1]

[1] International Atomic Energy Agency. 1997. Fuel performance and fission product behaviour in gas cooled reactors. IAEA-TECDOC-
978. Vienna: International Atomic Energy Agency.
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Oxide Thickness Analysis

• Increased oxidation response 
for prolonged exposures at 
1400°C, 21% O2

• Decreasing pO2 only reduced 
average oxidation rate at 
1400°C by 5–15%

– Supported by prior studies for 
low pO2 oxidation of SiC at 
similar exposures [1,2]

Effect of pO2 on SiC oxidation rate [2]

21% O22% O2

1627 °C

[1] Narushima, T., T. Goto, T. Hirai, and Y. Iguchi. 1997. “High-Temperature Oxidation of Silicon Carbide and Silicon Nitride.” 
Materials Transactions, JIM 38 (10): 821–835.
[2] Goto, T., Homma, H. 2002. “High-temperature active/passive oxidation and bubble formation of CVS SiC in O2 and CO2

atmospheres.” J. of European Ceramics Society, 22 (2002) 2749-2756.
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1400°C Oxidation Kinetics
• Deal-Grove model 

gives non-physical fit 
for long exposure times 
(x = B(t/x) – A)

• Parabolic oxidation 
rate used instead       
(x2 = Bt)

– Previous parabolic 
rate studies typically 
observed at < 48h 
timescale [1,2]

• Longer (400 h) 
exposures resulted in 
deviation from 
parabolic oxide 
growth

[1] Cao, Fangcheng, D, Zhang, Q. Chen, H. Li, and H. Wang. 2020. “Evaluation of Oxidation Performance of TRISO Fuel Particles for Postulated Air-Ingress Accident of HTGR.” Journal of 

Chemistry 2020, Article ID 6568987: 8 pages. doi: 10.1155/2020/6568987.

[2] Liu, Rongzheng, B. Liu, K. Zhang, M. Liu, Y. Shao, C. Tang, 2014. “High temperature oxidation behavior of SiC coating in TRISO coated particles.” Journal of Nuclear Materials 453, 107-114.
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Parabolic rate constant, B, for various exposure ranges

• Deviation from parabolic growth observed at 1400°C, 400 h
– Attributed decomposition and complexity of oxide structures at longer exposure times [3]

• Rate constant for 1400°C, 50-200 h range similar to literature on 
unirradiated TRISO oxidation at 1300°C

• Single observation for rate constant at 1200°C in agreement with literature

Unirradiated Irradiated

Exposure B (𝜇m2/h) R2 B (𝜇m2/h) R2

50–100 h, 1400oC 0.055 0.998 0.039 0.963

50–200 h, 1400oC 0.062 0.996 0.055 0.970

50–400 h, 1400oC 0.120 0.928 0.143 0.889

0–48 h, 1300oC (Literature) [1,2] 0.042–0.058

0–48 h, 1400oC (Literature) [1,2] 0.121–0.126

400 h, 1200oC 0.018 0.015

0-48 h, 1200oC (Literature) [1,2] 0.017–0.036

[1] Cao, Fangcheng, D, Zhang, Q. Chen, H. Li, and H. Wang. 2020. “Evaluation of Oxidation Performance of TRISO Fuel Particles for Postulated Air-Ingress Accident of HTGR.” Journal of 

Chemistry 2020, Article ID 6568987: 8 pages. doi: 10.1155/2020/6568987.

[2] Liu, Rongzheng, B. Liu, K. Zhang, M. Liu, Y. Shao, C. Tang, 2014. “High temperature oxidation behavior of SiC coating in TRISO coated particles.” Journal of Nuclear Materials 453, 107-114.

[3] Costello, J.A., and R.E. Tressler. 1986. “Oxidation Kinetics of Silicon Carbide Crystals and Ceramics in Dry Oxygen.” Journal of the American Ceramics Society 69 [9]: 674–681.
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Surface Oxide Structural Differences at 1400°C

1400°C, 50 h 1400°C, 200 h

• 50–100 h

– Unirradiated oxide surfaces showed 
coarser microstructures than that of 
the irradiated particles

• 200–400 h

– Similar topography between 
irradiated and unirradiated samples

Unexposed Compact 5-4-2 
particle SiC layer
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400 h surface layer observations varying temperature and O2 concentration

• 1200°C, 400 h oxide topography differences between particle types 
align with observations from 50 h and 100 h exposures at 1400°C

1200°C, 21% O2 1400°C, 21% O2 1400°C, 2% O2

Unirradiated 
Sample

Irradiated 
Sample
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Non-uniform secondary oxide

• Certain particles had a secondary oxide deposited on top of the primary 
oxide layer

– Non-uniform and localized, compared to uniform primary oxide

– Theorized to be the result of oxide buildup at the contact points between the 
particles and SiC cup

• Focused liftouts on regions away from contact points during primary oxide 
thickness analysis

Example of secondary oxide formed on a 1400°C, 100 h particle

Locations 

targeted 

for FIB 

analysis
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Oxide Microstructure Characterization

Unirradiated Irradiated

1400°C, 100 h
• SiC/oxide lamellas prepared with FIB/SEM

• S/TEM analysis

– General characterization to confirm microstructure

• EDS performed to examine fission product 
presence

EDS mapping of the (A) 50 h irradiated sample and (B) an 
unirradiated sample, which show element locations within the 
chosen interface areas [1].

• Previous studies suggest an increased oxidation rate due to 
appreciable impurities present at the SiC/oxide interface [2].

• Note: Pd signal intensity was increased to observe Pd features 
in the SiC layer. Noise in the oxide layer does not suggest Pd 
presence.

[1] Skitt, D.J., R.L. Seibert, T.J. Gerczak, J.D. Hunn, Z.M. Burns, G.W. Helmreich. 2021. Oxidation Testing and 
Examination of AGR-2 TRISO Particles, ORNL/TM-2021/2092, Revision 0. Oak Ridge: Oak Ridge National 
Laboratory
[2] Singhal, S.C., and F.F. Lange. 1975. “Effect of Alumina Content on the Oxidation of Hot-Pressed Silicon 
Carbide.” Journal of the American Ceramic Society 58 (9-10): 433–435.

SiC

Oxide layer

C C

Si O O

PdU U Pd

Si

2 µm 2 µm

A B



1717

All oxide microstructures examined were crystalline

1200°C, 400 h 
Unirradiated

1400°C, 400 h 
Unirradiated

• Irradiated and unirradiated samples revealed similar crystalline 
microstructures

– Could not analyze differences due to amorphization from 200 kV electron beam

• 1400ºC, >200 h irradiated particles exhibited larger grain size than that 
of unirradiated samples

1400°C, 200 h 
Unirradiated

1400°C, 200 h 
Irradiated

SiC

Oxide layer
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1400oC, 50–200 h oxidation rate was slightly slower in 
irradiated particles, but faster after 400 h

• Irradiated and unirradiated oxidation kinetics overall were similar

• Increase in irradiated oxidation rate at 400 h was theorized to be the result 
of larger grain sizes

– Possible contribution from presence of excess impurities (e.g., fission products) [1]

– Oxidant diffusion previously noted to be faster in amorphous, quartz, and cristobalite 
structures [2]

[1] Opila, E. 1995. “Influence of Alumina Reaction Tube Impurities on the Oxidation of Chemically-Vapor-Deposited Silicon Carbide.” Journal of the American Ceramic Society 78 (4): 1107–1110.

[2] Costello, J.A., and R.E. Tressler. 1986. “Oxidation Kinetics of Silicon Carbide Crystals and Ceramics in Dry Oxygen.” Journal of the American Ceramics Society 69 [9]: 674–681.

Unirradiated Irradiated

Exposure B (𝜇m2/h) R2 B (𝜇m2/h) R2

50–100 h, 1400oC 0.055 0.998 0.039 0.963

50–200 h, 1400oC 0.062 0.996 0.055 0.970

50–400 h, 1400oC 0.120 0.928 0.143 0.889

0–48 h, 1300oC (Literature) [1,2] 0.042–0.058

0–48 h, 1400oC (Literature) [1,2] 0.121–0.126

400 h, 1200oC 0.018 0.015

0-48 h, 1200oC (Literature) [1,2] 0.017–0.036
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Summary

• Irradiated TRISO particles failure fraction increased with 
prolonged exposures at 1400°C.

– Similar trend observed in KORA → temperature and duration affects 
failure fraction

– External factors contributed to uncorrelated particle failures

• E.g., burnback particles, handling methods

• Irradiated oxidation rate was slower for 50─200 h but faster 
after 400 h at 1400°C, 21% O2

– Difference between irradiated and unirradiated not substantial

• Minor variations observed suggest oxidation rates in 
unirradiated TRISO studies can be used to estimate irradiated 
TRISO oxidation kinetics.
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Current and Future FITT Efforts

• AGR-5/6/7 inert gas thermal exposures in FITT

– Examine 110mAg and 154Eu release

– Compact 2-2-1 particles (non-burnback)

– Six 100 h tests, 1100–1600°C

• AGR-5/6/7 oxidation testing in 21% O2 atmosphere

– Compact 2-2-1 particles (non-burnback)

– Two 1400°C exposures, 100 & 200 h

– ZrO2 cup to replace SiC cup to reduce interaction with particles
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