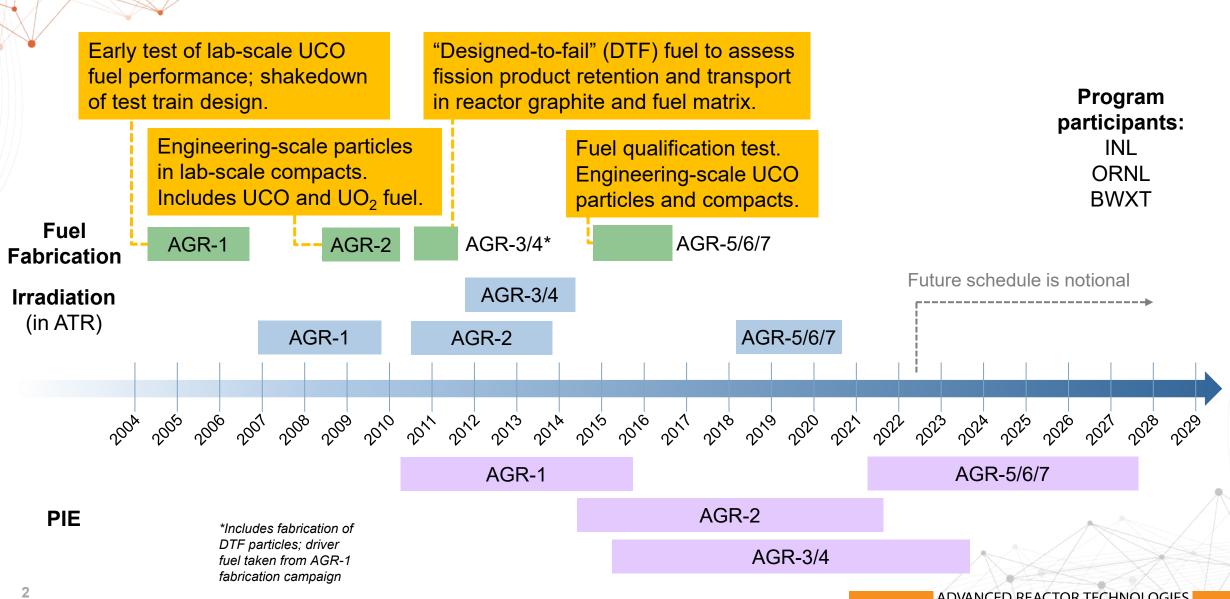
July 12, 2022


Paul Demkowicz

AGR Program Technical Director

DOE AGR Program Review: Concluding Remarks

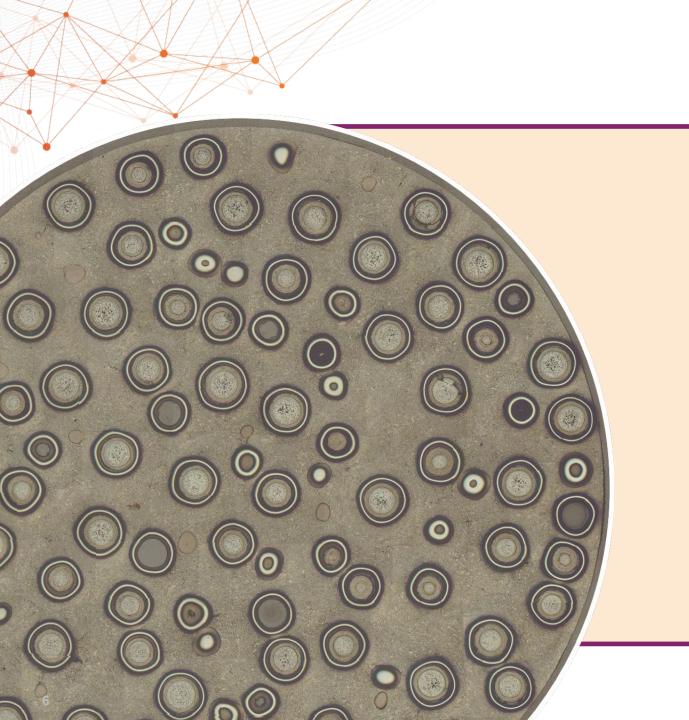
AGR Program Timeline

Major Program Activities – FY23 and Beyond

- Complete AGR-3/4 PIE and data analysis
 - Determine key takeaways in terms of fission product transport
- Continue/complete AGR-5/6/7 PIE and safety testing
 - Confirm cause of Capsule 1 particle failures
 - Confirm performance of pilot-scale fuel, including performance at extreme high and low temperature regimes
- Fuel oxidation tests
 - Determine fuel performance under oxidizing conditions
- Reporting
- Compile AGR datasets for use by reactor designers, e.g.:
 - Fission product retention characteristics of the fuel
 - Fuel failure analyses under all tested conditions
 - Oxidation kinetics and impact on fission product retention
- Support vendors' interaction with the regulator during licensing activities

Coated-Particle-Fueled Reactor Concepts and Fuel Designs

Developer	Description	Fuel design
X-energy	Xe-100 (200 MWt PB HTGR) Xe-Mobile (1 – 5 MWe microreactor)	UCO TRISO pebbles, graphitic matrix UCO TRISO
<u>Framatome</u>	SC-HTGR (625 MWt)	UCO TRISO compacts, graphitic matrix
<u>Ultrasafe Nuclear</u>	MMR (15 MWt microreactor)	UCO TRISO in SiC matrix ("FCM")
BWXT	BANR	UN TRISO in SiC matrix
Kairos Power	KP-FHR (140 MWe salt-cooled SMR) HERMES (35 MWt test reactor)	UCO TRISO pebbles, graphitic matrix UCO TRISO pebbles, graphitic matrix
<u>U-Battery</u>	U-Battery 10 MWt microreactor	UO ₂ TRISO fuel compacts
Westinghouse	eVinci 7-12 MWt microreactor	UCO TRISO compacts, graphitic matrix
Radiant Nuclear	>1 MWe microreactor	UCO TRISO compacts, graphitic matrix
StarCore Power	20 MWe HTGR	TRISO
<u>HolosGen</u>	22 MWt scalable microreactor	TRISO fuel compacts
ORNL	Transformational Challenge Reactor	UN TRISO in SiC matrix
NASA	Nuclear thermal propulsion (NTP), nuclear electric propulsion (NEP)	Various



Useful references:

- Advances in Small Modular Reactor Technology Developments. A Supplement to: IAEA Advanced Reactors Information System (ARIS), 2020 Edition, IAEA (https://aris.iaea.org/Publications/SMR_Book_2020.pdf)
- https://www.world-nuclear.org/information-library/nuclear-fuel-cycle/nuclear-power-reactors/small-nuclear-power-reactors.aspx

AGR Program Support for Industry Efforts to Commercialize TRISO-Fueled Reactor Technology

- Developers would like to leverage as much fuel qualification experience from the AGR database as possible
 - Program staff supports industry in interpretation and application of AGR data
- Varied fuel designs and operating conditions will require additional fuel performance data
 - Various DOE funding opportunities available (iFOA, ARDP, GAIN, ARC15, etc.)
 - National labs are supporting industry by applying expertise obtained from the AGR program experience to these fuel qualification efforts
- Topical report preparation:
 - Meeting with the High-Temperature Reactor Technology Working Group (HTR-TWG) in February 2022 to discuss prospective scope for future topical reports based on AGR program results (Summary report: INL/RPT-22-66553)

Thank you for your attention

Paul Demkowicz paul.demkowicz@inl.gov