03/01/2012 Rev. 06	ENGINEERING	ENGINEERING CALCULATIONS AND ANALYSIS				
Title: <u>As-</u>	Run Thermal Analysis of the	he AGC-3 Experime	ent			
ECAR No.: 338	36 Rev. No.: 0	Project No.:	23747	Date:	10/11/2016	
Performer:	P. E. Murray	C130				
	(Name)	(Organization)	(Signa	ature)	(Date)	
Checker ¹ :	G. L. Hawkes	C130				
	(Name)	(Organization)	(Signa	ature)	(Date)	
Independent Pe Reviewer ² :	er _Not Required					
	(Name)	(Organization)	(Signa	ature)	(Date)	
CUI Reviewer:	M. E. Davenport	C020				
	(Name)	(Organization)	(Signa	ature)	(Date)	
Manager ³ :	M. A. Lillo	C130				
	(Name)	(Organization)	(Signa	ature)	(Date)	
Owner ⁴ :	M. E. Davenport	C020				
	(Name)	(Organization)	(Signa	ature)	(Date)	
ART Technical						
Development ⁴ :	W. E. Windes	B120				
	(Name)	(Organization)	(Signa	ature)	(Date)	
Nuclear Safety	Not Required					
	(Name)	(Organization)	(Signa	ature)	(Date)	
ATR Experimer	nt					
Engineering Ma	anager ³ : Not Required					

(Organization)

(Signature)

(Date)

Confirmation of completeness, mathematical accuracy, and correctness of data and appropriateness of assumptions.
 Concurrence of method or approach. See definition, LWP-10106.

(Name)

TEM-10200-1

3. Concurrence of procedure compliance. Concurrence with method/approach and conclusion.

4. Concurrence with the document's assumptions and input information. See definition of Acceptance, LWP-10200.

TEM-10200 03/01/2012 Rev. 06	-1 ENGINEERING CALCULATIONS AND ANALYSIS	Page 2 of 32
Title:	As-Run Thermal Analysis of the AGC-3 Experiment	

ECAR No.:	3386	Rev. No.: 0	Project No.:	23747	Date:	10/11/2016

REVISION LOG

Rev.	Date	Affected Pages	Revision Description
0	10/11/2016	All	Initial issue.

1EM-10200- 03/01/2012 Rev. 06	ENGIN	EERING C	ALCULATION	S AND ANA	LYSIS	Page 3 of 32
Title:	As-Run Thermal Ar	alysis of the	e AGC-3 Experim	ent		
ECAR No.:	3386 Rev	. No.: 0	Project No.:	23747	Date:	10/11/2016
1. Quality I	Level (QL) No.		2			
2. QL Determination No.		RTC-	000486	Professional Engineer's Stam		er's Stamp
3. Enginee	8. Engineering Job (EJ) No.		N/A	N/A		

4. eCR No.N/A5. SSC IDAGC-3 Experiment6. BuildingTRA-6707. Site AreaATR Complex

See LWP-10010 for requirements.

8. Objective/Purpose:

.

The third Advanced Graphite Creep (AGC-3) experiment was designed to irradiate various types of graphite specimens at a temperature of 900°C. The specimens were irradiated in an instrumented leadout capsule experiment in the east flux trap of the ATR during cycles 152B, 154B, 155A, and 155B. Temperature was monitored using twelve thermocouples located at various elevations in the reactor core, and a helium-argon gas mixture was used for gas gap temperature control of the specimens.

The purpose of this analysis is to calculate specimen temperature using measured data on reactor power and helium-argon gas flows, and as-run calculations of heating rates and displacement per atom (DPA) in graphite. The accuracy of the model is assessed by comparing measured and calculated thermocouple temperatures. Uncertainty in gas gaps may preclude an accurate temperature calculation. In these cases, adjustments are made to the thermal model in order to reconcile the measured and calculated thermocouple temperature and to ensure the accuracy of the calculated specimen temperature.

9. Conclusions/Recommendations:

A finite element, steady-state heat transfer analysis of the entire AGC-3 test train was performed using ABAQUS. The analysis was performed at three selected days during each cycle, using the measured east source power, measured gas flows, as-run heating rates, and as-run graphite DPA, to obtain best-estimate temperatures of the specimens and thermocouples. The accuracy of the model was assessed by comparing the measured and calculated thermocouple temperatures. The difference between these temperature values was used to estimate the mean and standard deviation of the error. Setting the uncertainty equal to the mean \pm two standard deviations corresponding to a 95% confidence interval, the results indicate that the maximum uncertainty in the calculated thermocouple temperature is $\pm 50^{\circ}$ C.

The temperature of each creep specimen is desired to be maintained at 900°C \pm 50°C. However, the results of this analysis show that the temperature of the specimen stacks is outside the desired range at the top of the test train where the temperature is less than the desired temperature due to lower gamma heating at this location. In most cases, the temperature of the center specimen stack is approximately 900°C \pm 50°C while the temperature of the peripheral specimen stacks is approximately 850°C \pm 50°C. Moreover, specimen temperature varies with elevation because of the uncertainty in the variable gas gaps used to compensate for the axial heating profile.

TEM-10200 03/01/2012 Rev. 06	-1	ENGINEERING C	ALCULATIONS	AND ANALYS	SIS	Page 4 of	32
Title:	As-Run The	ermal Analysis of the	AGC-3 Experime	nt			
ECAR No.:	3386	Rev. No.: 0	Project No.:	23747	Date:	10/11/2016	
			CONTENTS				
SCOPE OF	ANALYSIS	AND BRIEF DESCRI	PTION				6
DESIGN OF	R TECHNICA	L PARAMETER INP	UTS AND SOUR	CES			6
EXPERIME	NT DESCRIF	PTION AND OTHER	BACKGROUND	DATA			6
ASSUMPTI	ONS						9
SOFTWAR	E VALIDATIC	DN					. 10
ANALYSIS	RESULTS						. 11
CONCLUSI	ONS AND RI	ECOMMENDATION	S				.29
DATA FILE	S						. 30
REFERENC	CES						.31
DRAWING	3						. 32
APPENDIX	A						A1
APPENDIX	В						B1

TEM-10200 03/01/2012 Rev. 06	-1	ENGINEERI	NG C	ALCULATIONS	AND ANAL	YSIS	Page 5 of 3
Title:	As-Run Th	ermal Analysis	of the	e AGC-3 Experime	ent		
ECAR No.:	3386	Rev. No.:	0	Project No.:	23747	Date:	10/11/2016
			I	FIGURES			
Figure 1. Et	ffect of temp	erature and DF	PA on	thermal conductiv	vity of graphite	9	
Figure 2. Et	ffect of DPA	on diameter of	grap	hite specimens			
Figure 3. M	odel geome	try and finite el	emen	t mesh (cross-sec	tional view of	the experi-	ment) 1
Figure 5 M	easured and	d calculated ter	nnera	ture (°C) of TC-01	(18 inches a	beriment) bove core	mid-plane) durin
all irradiation	n cycles						
Figure 6. M	easured and	d calculated ter	npera	ture (°C) of TC-02	(13 inches a	bove core	mid-plane) durin
all irradiation	n cycles						1
Figure 7. M	easured and	d calculated ter	npera	ture (°C) of TC-03	(13 inches a	bove core	mid-plane) durin
Figure 8 M	n cycles easured and	d calculated ter	nnera	ture (°C) of TC-04	. (6 inches ab	ove core m	uid-plane) during
all irradiation	n cycles						
Figure 9. M	easured and	d calculated ter	npera	ture (°C) of TC-05	6 inches ab	ove core m	nid-plane) during
all irradiatio	n cycles						1
Figure 10. I	Measured a	nd calculated te	emper	ature (°C) of TC-0	6 (2 inches a	bove core	mid-plane) durin
Figure 11	Measured a	nd calculated te	mner	ature (°C) of TC-0	17 (6 inches b	elow core i	mid-nlane) durin
all irradiation	n cycles						
Figure 12.	Measured a	nd calculated te	emper	ature (°C) of TC-0	8 (6 inches b	elow core i	mid-plane) durin
all irradiation	n cycles						
Figure 13. I during all irr	vieasured ai	nd calculated te	emper	ature (°C) of TC-0	19 (11.25 inch	es below c	ore mid-plane)
Figure 14.	Measured a	nd calculated te	emper	ature (°C) of TC-1	0 (18 inches	below core	mid-plane)
during all irr	adiation cyc	les					
Figure 15.	Measured a	nd calculated te	emper	ature (°C) of TC-1	1 (18 inches	below core	e mid-plane)
during all irr	adiation cyc	les					
Figure 16. I	Veasured a	nd calculated te	emper	ature (°C) of TC-1	2 (11.25 inch	es below c	ore mid-plane)
Figure 17	Distribution (of specimen ter	npera	ture (°C) during a	selected day	in cycle 15	52B2
Figure 18.	Distribution (of specimen ter	npera	ture (°C) during a	selected day	in cycle 15	54B 2
Figure 19. I	Distribution of	of specimen ter	npera	ture (°C) during a	selected day	in cycle 15	55A 2
Figure 20. I	Distribution of	of specimen ter	npera	ture (°C) during a	selected day	in cycle 15	55B 2

TEM-10200 03/01/2012 Rev. 06	-1	ENGINEERING CA	LCULATIONS	AND ANAI	LYSIS	Page 6 of 3	2
Title:	As-Run	Thermal Analysis of the A	GC-3 Experime	ent			
ECAR No.:	3386	Rev. No.: 0	Project No.:	23747	Date:	10/11/2016	

SCOPE OF ANALYSIS AND BRIEF DESCRIPTION

The third Advanced Graphite Creep (AGC-3) experiment was designed to irradiate various types of graphite specimens at a temperature of 900°C. The specimens were irradiated in an instrumented leadout capsule experiment in the east flux trap of the ATR during cycles 152B, 154B, 155A, and 155B. Temperature was monitored using thermocouples, and a helium-argon gas mixture was used for gas gap temperature control of the specimens. A pneumatic piston was used to apply a maximum compressive load of 3000 psi to approximately half the specimens, resulting in corresponding pairs of stressed and unstressed specimens. The dimensional changes of corresponding specimen pairs will be used to determine irradiation-induced creep by distinguishing the separate effects of shrinkage occurring in all specimens and creep occurring in the stressed specimens only.

The purpose of this analysis is to calculate specimen temperature using measured data on reactor power and helium-argon gas flows, and as-run calculations of heating rates and displacement per atom (DPA) in graphite. The AGC-3 experiment contains twelve thermocouples located at various elevations in the reactor core. The accuracy of the model is assessed by comparing measured and calculated thermocouple temperatures. Uncertainty in gas gaps may preclude an accurate temperature calculation. In these cases, adjustments are made to the thermal model in order to reconcile the measured and calculated thermocouple temperature and to ensure the accuracy of the calculated specimen temperature.

DESIGN OR TECHNICAL PARAMETER INPUTS AND SOURCES

The technical and functional requirements for the AGC-3 experiment are given in TFR-791. The quality level of the analysis is "2" (important to safety) per quality level determination RTC-000486.

EXPERIMENT DESCRIPTION AND OTHER BACKGROUND DATA

The AGC-3 experiment is the third in a series of irradiation experiments to obtain data on fine-grained isotropic graphite used in the next generation very high temperature reactor (VHTR). The test train consists of seven stacks of cylindrical graphite specimens 0.5 inches in diameter contained in a graphite holder. The center stack contains unstressed specimens, while the peripheral stacks contain stressed specimens above core mid-plane and unstressed specimens below core mid-plane. The holder is contained in a stainless steel capsule, with a stainless steel heat shield placed between them. The holder has a stepped outside diameter to provide an axially varying temperature control gas gap to compensate for the axial variation in heating. The test train is divided into five temperature control gas zones containing separate helium-argon gas mixtures used for gas gap temperature control of the specimens. All specimens are desired to be irradiated at the same temperature, while corresponding stressed and unstressed specimens are desired to be irradiated to the same DPA. Other capsule internal components include tungsten heaters at the top and bottom of the test train, and a ceramic insulator at the top of the test train. Thermocouples and gas tubing are located in holes and grooves in the holder. Design details are from the drawings listed at the end of this document.

The thermal analysis was performed using a detailed finite element model of the experiment. Data on material properties are obtained from the handbooks and databases listed in the references. Results are given in Appendix A.1. The gas gaps between capsule components, accounting for the change in diameter of the capsule components due to thermal expansion and the change in diameter of graphite

TEM-10200 03/01/2012 Rev. 06	-1		ALCULATIONS		LYSIS	Page 7 o	f 32
Title:	As-Run	Thermal Analysis of the	AGC-3 Experime	ent			
ECAR No.:	3386	Rev. No.: 0	Project No.:	23747	Date:	10/11/2016	

due to irradiation-induced shrinkage, are calculated in Appendix A.2. The resulting heat transfer coefficients for the fluence-dependent "hot" gas gaps are computed using various helium-argon gas mixtures and various values of DPA. Results are given in Appendix A.3.

The thermal conductivity of graphite depends on temperature and neutron fluence. Experimental data for NBG-25, IG-110, and H-451 is shown in Fig. 1, along with the temperature and DPA-dependent profiles assumed in this analysis. The calculated profiles show the correct trends observed in irradiated graphite: increasing conductivity with increasing temperature due to annealing of defects, and decreasing conductivity with increasing fluence due to generation of defects. The calculated profiles are the same as those used in previous as-run analyses of AGC experiments (ECAR-2562, ECAR-2322), and are consistent with the data reported in Vreeling, Wouters, and van der Lann, 2008, Maruyama and Harayama, 1992, and Price, 1975.

Figure 1. Effect of temperature and DPA on thermal conductivity of graphite.

The size of the temperature control gas gap between the graphite holder and stainless steel heat shield depends on temperature and neutron fluence. The temperature dependence results from thermal expansion, and the fluence dependence results from irradiation-induced shrinkage of graphite. Experimental data for the change in diameter of graphite due to irradiation-induced shrinkage is shown in Fig. 2, along with a linear regression of the data which provides a relation between diameter change and DPA. The data was obtained from measurements of the dimensional change of NBG-25 specimens irradiated in the AGC-1 experiment (Windes, 2012). The graphite in the AGC-3 experiment was irradiated to a peak fast neutron (energy > 0.1 MeV) fluence of approximately 5.0×10^{21} neutrons/cm² which corresponds to a peak DPA of approximately 3.6 (ECAR-3051). At this neutron fluence, the diameter reduction is expected to be approximately 0.7%.

Figure 2. Effect of DPA on diameter of graphite specimens.

The flow of primary coolant in the annular gap between the capsule and chopped dummy in-pile tube is calculated for two-pump operation. Heat transfer coefficients for turbulent forced convection to the primary coolant were obtained from an experimental correlation using the film temperature method to account for fluid property variation. Details are given in Appendix A.4.

The heating rates of the experiment components in the east flux trap at 20.4 MW source power were obtained from the reactor physics analysis (ECAR-3051). Heating rates for each component in the test train were obtained as a function of position with respect to core mid-plane. For the capsule, heat shield, graphite holder and specimens, thermocouples, and primary coolant, a cosine-shaped profile was used to represent the axial variation in heating. The axial profile was split into separate profiles above and below core mid-plane, producing an unsymmetrical profile that preserves total core heating. The unsymmetrical heating profile improves temperature calculations as compared to using a symmetrical profile. Heating rates at a different power are obtained by linear scaling using the nominal operating heating rates provided in ECAR-3051 as a baseline. Details are given in Appendix A.5.

Reactor power, temperature control gas flows, and thermocouple temperatures are obtained from the Nuclear Data Management and Analysis System (NDMAS). Spreadsheets containing data recorded at 10 minute intervals were downloaded from the NDMAS website (https://htgr.inl.gov). Reactor power, temperature control gas flows, and thermocouple temperatures at selected days during each cycle are

TEM-10200- 03/01/2012 Rev. 06	-1	ENGINEERIN	IG (CALCULATIONS	AND AN	ALYSIS	Page 9 o	of 32
Title:	As-Run	Thermal Analysis of	of th	e AGC-3 Experimer	nt			
ECAR No.:	3386	Rev. No.:	0	Project No.:	23747	Date:	10/11/2016	

computed by averaging the data over the entire day. Peak DPA at those days was obtained from the asrun reactor physics analysis (ECAR-3051). The data from NDMAS is given in Appendix A.6.

ASSUMPTIONS

One significant uncertainty is the gap between the heat shield and capsule which can vary from the case where the dimples on the inside surface of the heat shield contact the holder to the case where the dimples on the outside surface of the heat shield contact the capsule. In this analysis, the location of the heat shield is calculated assuming the dimples on the outside surface of the heat shield contact the inside surface of the capsule, leading to a 0.10 inch gap between heat shield and capsule. The resulting temperature control gas gaps are calculated using the assumed location of the heat shield and accounting for thermal expansion and shrinkage of the capsule and holder.

The gas gap between the heat shield and capsule is adjusted to account for uncertainty in the exact location of the heat shield, the increased thermal conductance due to contact between the capsule and dimples on the heat shield, and the uncertainty in the control gas composition due to gas leakage around the rings separating adjacent gas zones. The variable gas gap between the heat shield and capsule was adjusted in order to bring into agreement the measured and calculated thermocouple temperatures. Moreover, the control gases in adjacent gas zones may mix since the seals are not gas-tight. In some cases, an argon-rich mixture in one zone was assumed to mix with a helium-rich mixture in an adjacent zone in order to bring into agreement the measured and calculated thermocouple temperatures. Details are given in Appendix A.6.

Another uncertainty is the gas gap between the graphite specimens and graphite holder which increases during irradiation due to graphite shrinkage. The bore diameter measurements of the irradiated holders showed a significant difference in the dimensional changes occurring in the lower and upper holders (INL/EXT-14-32060), suggesting that compressive loading of the lower holder had affected the measured dimensional change. Moreover, the position of the specimens in the bore channels of the graphite holder is not fixed and the diameter of the stressed specimens is also changing due to creep. These uncertainties preclude an accurate calculation of the gas gap between the specimens and holder. Therefore, the gas gap is set to its nominal design value of 0.010 inch and is assumed not to change during irradiation. A previous analysis of temperature uncertainty in the AGC experiments reported that the uncertainty in the gap between the specimens and holder will add approximately 12°C to the uncertainty in the temperature of the center specimen stack (ECAR-3017).

An additional uncertainty is the gas gap between the thermocouples and graphite holder which may vary due to the loose fit of the thermocouple inside the holder. The gas gap assumed in this analysis is based on the experiments reported in ECAR-2429, and is discussed in the as-run analyses of the AGC-1 and AGC-2 experiments (ECAR-2562, ECAR-2322).

The AGC-3 test train was rotated 180° after the first two cycles of irradiation. The effect of test train rotation on the azimuthal position of the specimens and thermocouples was included in the analysis. For the other components (capsule, heat shield and graphite holder), the heating rate at a particular elevation in the core is computed by averaging the heating rates over azimuthal segments. Sensitivity studies show that azimuthal variations in the heating rates of these components do not have a significant effect on

TEM-10200- 03/01/2012 Rev. 06	-1	ENGINEERING CA	LCULATIONS	AND ANA	LYSIS	Page 10 of	f 32
Title:	As-Run	Thermal Analysis of the	AGC-3 Experime	ent			
ECAR No.:	3386	Rev. No.: 0	Project No.:	23747	Date:	10/11/2016	

temperature because conduction heat transfer between components tends to equalize the temperature (ECAR-2562, ECAR-2322). Since the gas gaps surrounding the specimens and thermocouples provide resistance to conduction in the azimuthal direction, the effect of test train rotation on the heating rates of the specimens and thermocouples was included in the analysis.

The length of the specimen stacks under axial compression will change during irradiation due to irradiation-induced creep. In this analysis, temperature is evaluated in the undeformed configuration. Therefore, this analysis provides specimen temperature as a function of elevation. For a given specimen, its temperature at a particular time during irradiation may be determined by estimating its location with respect to core mid-plane, including the effect of axial compression, and then using the results of this analysis to obtain the temperature at that location.

SOFTWARE VALIDATION

A finite element heat transfer analysis of the AGC-3 experiment was performed using ABAQUS version 6.14-2 on a SGI ICE X distributed memory cluster with 684 compute nodes ("falcon" on the INL network). The operating system is SLES 11 SP 3, and each compute node has two 12-core 2.5 GHz Intel Xenon (Haswell) processors. ABAQUS is listed in the INL Enterprise Architecture (EA) repository of qualified scientific and engineering analysis software (EA Identifier 238858). ABAQUS has been validated for thermal analysis of ATR experiments by solving several test problems and verifying the results against analytical solutions provided in heat transfer textbooks. A complete description of the validation test problems is given in ECAR-131. Scripts were developed to automate the execution, data collection, and relative error calculation for each test problem. The scripts were run on computer "falcon" and a report file containing the results of validation testing was automatically generated (Appendix B). The test results meet the acceptance criterion that the relative error is less than 3%. Calculations given in the appendices were performed using Mathcad version 15, and verification of the computer-generated results was done during checking.

TEM-10200- 03/01/2012 Rev. 06	-1		LCULATIONS		LYSIS	Page 11 of	f 32
Title:	As-Run	Thermal Analysis of the	AGC-3 Experime	ent			
ECAR No.:	3386	Rev. No.: 0	Project No.:	23747	Date:	10/11/2016	

ANALYSIS RESULTS

A finite element, steady-state heat transfer analysis of the AGC-3 test train, including the capsule and all internal components, was performed using ABAQUS. The 8-node linear brick element was used to model all solid components except the heat shield which was modeled using the 4-node linear shell element. The 8-node forced convection brick element was used to model the primary coolant with a prescribed mass flow rate. The model geometry and finite element mesh of the experiment cross-section at the top of the test train where all thermocouples are visible is shown in Fig. 3. A 3-D cutaway view of the experiment is shown in Fig. 4. In these figures, the capsule is blue, specimen holder is green, specimens are red, and thermocouples are orange. The heat shield is modeled as a thin shell and is not clearly visible in the figure. The primary coolant and chopped dummy in-pile tube are also not shown.

Figure 3. Model geometry and finite element mesh (cross-sectional view of the experiment).

Figure 4. Model geometry and finite element mesh (cutaway view of the experiment).

TEM-10200- 03/01/2012 Rev. 06	-1	ENGINEERING	CALCULATIONS		LYSIS	Page 13 c	of 32
Title:	As-Run	Thermal Analysis of th	he AGC-3 Experime	ent			
ECAR No.:	3386	Rev. No.: 0	Project No.:	23747	Date:	10/11/2016	

A thermal analysis was performed at three selected days during each cycle, using the measured east source power, measured gas flows, as-run heating rates, and as-run graphite DPA, to obtain best-estimate temperatures of the test train components. Comparisons of the measured and calculated temperatures (°C) of each thermocouple in the test train, during all irradiation cycles, are shown in Figs. 5 - 16. The difference between the measured and calculated thermocouple temperature was used to estimate the mean and standard deviation of the error. Setting the uncertainty equal to the mean \pm two standard deviations corresponding to a 95% confidence interval, the results indicate that the maximum uncertainty in the calculated thermocouple temperature is $\pm 50^{\circ}$ C.

Figure 5. Measured and calculated temperature (°C) of TC-01 (18 inches above core mid-plane) during all irradiation cycles.

Figure 6. Measured and calculated temperature (°C) of TC-02 (13 inches above core mid-plane) during all irradiation cycles.

Figure 7. Measured and calculated temperature (°C) of TC-03 (13 inches above core mid-plane) during all irradiation cycles.

Figure 8. Measured and calculated temperature (°C) of TC-04 (6 inches above core mid-plane) during all irradiation cycles.

Figure 9. Measured and calculated temperature (°C) of TC-05 (6 inches above core mid-plane) during all irradiation cycles.

Figure 10. Measured and calculated temperature (°C) of TC-06 (2 inches above core mid-plane) during all irradiation cycles.

Figure 11. Measured and calculated temperature (°C) of TC-07 (6 inches below core mid-plane) during all irradiation cycles.

Figure 12. Measured and calculated temperature (°C) of TC-08 (6 inches below core mid-plane) during all irradiation cycles.

Figure 13. Measured and calculated temperature (°C) of TC-09 (11.25 inches below core mid-plane) during all irradiation cycles.

Figure 14. Measured and calculated temperature (°C) of TC-10 (18 inches below core mid-plane) during all irradiation cycles.

Figure 15. Measured and calculated temperature (°C) of TC-11 (18 inches below core mid-plane) during all irradiation cycles.

Figure 16. Measured and calculated temperature (°C) of TC-12 (11.25 inches below core mid-plane) during all irradiation cycles.

TEM-10200 03/01/2012 Rev. 06	-1	ENGINEERING	CALCULATIONS	AND ANAI	LYSIS	Page 25 o	f 32
Title:	As-Run	Thermal Analysis of t	he AGC-3 Experime	ent			
ECAR No.:	3386	Rev. No.: 0	Project No.:	23747	Date:	10/11/2016	

Plots of the axial distribution of volume-average temperature (°C) of each specimen stack, during a selected day in each irradiation cycle, are shown in Figs. 17 - 20. Note that the highest temperature occurs in the center specimen stack which is significantly hotter than the peripheral stacks. Moreover, the specimen temperature varies with elevation because of the uncertainty in the variable gas gaps used to compensate for the axial heating profile. An abrupt change in the temperature gradient occurs at the top of the test train due to the presence of a tungsten heater that produces a localized hot spot at that location. The volume-average temperature of each specimen, during three selected days in each irradiation cycle, are stored in text files as described in the section entitled "Data Files."

Figure 17. Distribution of specimen temperature (°C) during a selected day in cycle 152B.

Figure 18. Distribution of specimen temperature (°C) during a selected day in cycle 154B.

Figure 19. Distribution of specimen temperature (°C) during a selected day in cycle 155A.

Figure 20. Distribution of specimen temperature (°C) during a selected day in cycle 155B.

TEM-10200 03/01/2012 Rev. 06	-1	ENGINEERING C	ALCULATIONS	AND ANAI	_YSIS	Page 29 of 3	2
Title:	As-Run 1	hermal Analysis of the	AGC-3 Experime	ent			
ECAR No.:	3386	Rev. No.: 0	Project No.:	23747	Date:	10/11/2016	

CONCLUSIONS AND RECOMMENDATIONS

A finite element, steady-state heat transfer analysis of the entire AGC-3 test train was performed using ABAQUS. The analysis was performed at three selected days during each cycle, using the measured east source power, measured gas flows, as-run heating rates, and as-run graphite DPA, to obtain best-estimate temperatures of the specimens and thermocouples. In order to compensate for uncertainty in the gas gaps between heat shield and capsule, the model was adjusted in order to bring into agreement the measured and calculated thermocouple temperatures. The difference between the measured and calculated thermocouple temperatures. The difference between the measured and calculated thermocouple temperature was used to estimate the mean and standard deviation of the error. Setting the uncertainty equal to the mean \pm two standard deviations corresponding to a 95% confidence interval, the results indicate that the maximum uncertainty in the calculated thermocouple temperature is $\pm 50^{\circ}$ C.

The experiment requirements on temperature control are that the volume-average and time-average temperatures of each creep specimen shall be maintained at 900°C \pm 50°C (TFR-791, Section 3.3.3). However, the results of this analysis show that the temperature of the specimen stacks is outside the desired range at the top of the test train where the temperature is less than the desired temperature due to lower gamma heating at this location. In most cases, the temperature of the center specimen stack is approximately 900°C \pm 50°C while the temperature of the peripheral specimen stacks is approximately 850°C \pm 50°C. Moreover, specimen temperature varies with elevation because of the uncertainty in the variable gas gaps used to compensate for the axial heating profile.

TEM-10200- 03/01/2012 Rev. 06	-1	ENGINEERING	CALCULATIONS	AND ANA	LYSIS	Page 30 o	f 32
Title:	As-Run	Thermal Analysis of the	ne AGC-3 Experime	ent			
ECAR No.:	3386	Rev. No.: 0	Project No.:	23747	Date:	10/11/2016	

DATA FILES

The ABAQUS files containing the models created for this analysis are stored on the HPC file server in directory "/projects/atr_exp/AGC-3." The files created for each analysis case are listed in Table 1. ABAQUS Python scripts were created to read an ABAQUS output file and calculate the thermocouple temperature and volume average specimen temperature for each step in the analysis. The script "AbaqusTCData.py" calculates thermocouple temperature and writes the results to a file having the same name as the ABAQUS output file but with a ".txt" extension. The script "AbaqusSPData.py" calculates volume average specimen temperature and writes the results to a file having the same name as the ABAQUS output file but with a ".txt" extension. The script "AbaqusSPData.py" calculates volume average specimen temperature and writes the results to a file having the same name as the ABAQUS output file but with a ".txt" extension. The script "AbaqusSPData.py" calculates volume average specimen temperature and writes the results to a file having the same name as the ABAQUS output file but with a ".txt" extension. The script "AbaqusSPData.py" calculates volume average specimen temperature and writes the results to a file having the same name as the ABAQUS output file but with a ".data" extension. The scripts and data files are stored in the same directory as the ABAQUS files.

Table 1. ABAQUS/CAE model files and ABAQUS input and	output files
--	--------------

File name	Description
AGC-3.cae, AGC-3.jnl	Model files for all cycles
AGC-3-152B-1.inp, AGC-3-152B-1.f, AGC-3-152B-1.odb	Analysis files for cycle 152B step 1
AGC-3-152B-2.inp, AGC-3-152B-2.f, AGC-3-152B-2.odb	Analysis files for cycle 152B step 2
AGC-3-152B-3.inp, AGC-3-152B-3.f, AGC-3-152B-3.odb	Analysis files for cycle 152B step 3
AGC-3-154B-1.inp, AGC-3-154B-1.f, AGC-3-154B-1.odb	Analysis files for cycle 154B step 1
AGC-3-154B-2.inp, AGC-3-154B-2.f, AGC-3-154B-2.odb	Analysis files for cycle 154B step 2
AGC-3-154B-3.inp, AGC-3-154B-3.f, AGC-3-154B-3.odb	Analysis files for cycle 154B step 3
AGC-3-155A-1.inp, AGC-3-155A-1.f, AGC-3-155A-1.odb	Analysis files for cycle 155A step 1
AGC-3-155A-2.inp, AGC-3-155A-2.f, AGC-3-155A-2.odb	Analysis files for cycle 155A step 2
AGC-3-155A-3.inp, AGC-3-155A-3.f, AGC-3-155A-3.odb	Analysis files for cycle 155A step 3
AGC-3-155B-1.inp, AGC-3-155B-1.f, AGC-3-155B-1.odb	Analysis files for cycle 155B step 1
AGC-3-155B-2.inp, AGC-3-155B-2.f, AGC-3-155B-2.odb	Analysis files for cycle 155B step 2
AGC-3-155B-3.inp, AGC-3-155B-3.f, AGC-3-155B-3.odb	Analysis files for cycle 155B step 3

TEM-10200- 03/01/2012 Rev. 06	1 ENGINEERING CALCULATIONS AND ANALYSIS	Page 31 of 32
Title:	As-Run Thermal Analysis of the AGC-3 Experiment	

ECAR No.: 3386 Rev. No.: 0 Project No.: 23747 Date: 10/11/2016

REFERENCES

ABAQUS Standard, Version 6.14-2, SIMULIA, Inc., Providence, RI, 2014.

ASM Handbook Vol. 1: Properties and Selection: Irons, Steels, and High-Performance Alloys, 10th Edition, American Society of Metals, 1990.

ASM Handbook Vol. 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, 10th Edition, American Society of Metals, 1990.

Biasetto, L., Manzolaro, M., and Andrighetto, A., "Emissivity measurements of opaque gray bodies up to 2000°C by a dual-frequency pyrometer," The European Physics J. A 38, p. 167-171, 2008.

Barrie, S., "NGNP Advanced Graphite Capsule AGC-3 Experiment Test Train," TFR-791, Rev. 1, 2012.

Incropera, F. P. and DeWitt, D. P., *Fundamentals of Heat and Mass Transfer*, 5th ed., John Wiley & Sons, New York, 2002.

Marchenkov, E. I. and Shashkov, A. G., "Study of Thermal Conductivity of an He – Ar Mixture in the Temperature Range of 400 – 1500°K on an Installation With a Molybdenum Measuring Cell," Journal of Engineering Physics and Thermophysics 28(6), p. 725-731, 1975.

Maruyama, T. and Harayama, M., "Neutron irradiation effect on the thermal conductivity and dimensional change of graphite materials," J. Nuclear Materials 195, p. 44-50, 1992.

Mason, E. A. and von Ubisch, H., "Thermal Conductivities of Rare Gas Mixture," Physics of Fluids 3(3), p. 355-361, 1960.

Maynard, R. K., "Total Hemispherical Emissivity of Very High Temperature Reactor (VHTR) Candidate Materials: Hastelloy X, Haynes 230, and Alloy 617," Ph.D. Dissertation, University of Missouri, 2011.

Murray, P. E., "Validation of ABAQUS Standard 6.7-3 Heat Transfer," ECAR-131, Rev. 0, 2008.

Murray, P. E., "Thermal Analysis of the AGC Thermocouple Experiment," ECAR-2429, Rev. 0, 2014.

Murray, P. E., "As-Run Thermal Analysis of the AGC-1 Experiment," ECAR-2562, Rev. 0, 2014.

Murray, P. E., "As-Run Thermal Analysis of the AGC-2 Experiment," ECAR-2322, Rev. 0, 2014.

Murray, P. E., "Uncertainty Analysis of Temperature in the AGC-1 and AGC-2 Experiments," ECAR-3017, Rev. 0, 2016.

Oberg, E., Jones, F. D., Horton, H. L., Ryffell, H. H., *Machinery's Handbook*, 28th Edition, Industrial Press, 2008.

Parry, J. R., "As-Run Physics Analysis for the AGC-3 Experiment Irradiated in the ATR," ECAR-3051, Rev. 0, 2016.

Perry, R. H., and Green, D. W., *Perry's Chemical Engineers' Handbook*, 7th Edition, McGraw-Hill, 1997.

Price, R. J., "Thermal Conductivity of Neutron-Irradiated Reactor Graphites," Carbon 13, p. 201-204, 1975.

TEM-10200-1		
03/01/2012 Rev. 06	ENGINEERING CALCULATIONS AND ANALYSIS	Page 32 of 32

Title:	As-Run Thermal Analysis of the AGC-3 Experiment

	ECAR No.: 3386	Rev. No.: 0	Project No.:	23747	Date: 10/11/2016
--	----------------	-------------	--------------	-------	------------------

Vreeling, J. A., Wouters, O., and van der Lann, J. G., "Graphite irradiation testing for HTR technology at the High Flux Reactor in Petten," J. Nuclear Materials 381, p. 68-75, 2008.

Windes, W., "Data Report on Post-Irradiation Dimensional Change in AGC-1 Samples," INL/EXT-12-26255, 2012.

Windes, W. E., Winston, P. L., and Swank, W. D., "AGC-2 Disassembly Report," INL/EXT-14-32060, May, 2014.

DRAWINGS

603520, "ATR Advanced Graphite Capsule (AGC-3) Test Train Facility Assembly," Rev. 0.

603521, "ATR Advanced Graphite Capsule (AGC) Graphite Specimen Holder Machining Details," Rev. 2.

603522, "ATR Advanced Graphite Capsule (AGC) Hole Details and Upper and Lower Specimen Holders," Rev. 1.

603523, "ATR Advanced Graphite Capsule (AGC) Miscellaneous Graphite Component Assemblies and Details," Rev. 1.

603524, "ATR Advanced Graphite Capsule (AGC-3) Specimen Stack-Up Arrangements," Rev. 0.

603534, "ATR Advanced Graphite Capsule (AGC-3) Thermal Heat Shield Details," Rev. 1.

601501, "ATR Advanced Graphite Capsule (AGC) AGC-3 Graphite Specimen Cutout Diagrams," Rev. 4.

630434, "ATR Advanced Graphite Capsule (AGC) Capsule Facility In-Core Pressure Boundary Tube," Rev. 3.

443027, "ATR South and East Flux Trap Chopped Dummy In-Pile Tube Assembly," Rev. 7.

TEM-10200 03/01/2012 Rev. 06	-1	ENGINEERING CA	ALCULATIONS	AND ANAL	_YSIS	Page A2 of A	.62
Title:	As-Run	Thermal Analysis of the	AGC-3 Experime	ent			
ECAR No.:	3386	Rev. No.: 0	Project No.:	23747	Date:	10/11/2016	

ECAR-3386

As-Run Thermal Analysis of the AGC-3 Experiment Page A2 of A62

Thermophysical properties of tungsten (ASM Metals Handbook Vol. 2, Properties of Pure Metals - Tungsten, ASTM B777 Class 1):

$\rho_W \coloneqq 17.0 \cdot \frac{gm}{cm^3}$	$\rho_W = 0.614 \cdot \frac{lb}{in^3}$
$c_{p_W} \coloneqq 0.131 \cdot \frac{J}{gm \cdot K}$	$c_{p_W} = 0.031 \cdot \frac{BTU}{lb \cdot R}$
$\mathbf{T}_{\mathbf{S}} \coloneqq \begin{pmatrix} 500\\ 1000\\ 1500 \end{pmatrix} \cdot \mathbf{K}$	$T_{S} = \begin{pmatrix} 440\\ 1340\\ 2240 \end{pmatrix} \cdot {}^{\circ}F$
$\mathbf{k}_{\mathbf{W}} := \begin{pmatrix} 150\\ 125\\ 110 \end{pmatrix} \cdot \frac{\mathbf{W}}{\mathbf{m} \cdot \mathbf{K}}$	$k_{W} = \begin{pmatrix} 7.22 \\ 6.02 \\ 5.3 \end{pmatrix} \cdot \frac{BTU}{hr \cdot in \cdot R}$

Thermophysical properties of Haynes 230 nickel alloy (ASM Metals Handbook Vol. 1, Wrought Nickel Alloys):

$$\begin{split} \rho_{H} &\coloneqq 8.8 \cdot \frac{gm}{cm^{3}} & \rho_{H} &= 0.318 \cdot \frac{lb}{in^{3}} \\ c_{p_H} &\coloneqq 0.473 \cdot \frac{J}{gm \cdot K} & c_{p_H} &= 0.113 \cdot \frac{BTU}{lb \cdot R} \\ T_{S} &\coloneqq \begin{pmatrix} 21\\538\\871 \end{pmatrix} \circ C & T_{S} &= \begin{pmatrix} 70\\1000\\1600 \end{pmatrix} \cdot \circ F \\ k_{H} &\coloneqq \begin{pmatrix} 8.9\\1.84\\24.4 \end{pmatrix} \cdot \frac{W}{m \cdot K} & k_{H} &= \begin{pmatrix} 0.43\\0.89\\1.17 \end{pmatrix} \cdot \frac{BTU}{hr \cdot in \cdot R} \end{split}$$

TEM-10200-1 03/01/2012 Rev. 06		ENGINEERING CA	Page A3 of A62				
Title:	As-Run	Thermal Analysis of the	AGC-3 Experime	ent			
ECAR No.:	3386	Rev. No.: 0	Project No.:	23747	Date:	10/11/2016	

ECAR-3386

As-Run Thermal Analysis of the AGC-3 Experiment

Page A3 of A62

Thermophysical properties of nuclear-grade graphite:

$$\begin{split} \rho_g &\coloneqq 1.822 \ \frac{gm}{cm^3} & \rho_g = 0.0658 \cdot \frac{lb}{in^3} & \text{Density (Product Certification, NBG-25 graphite, SGL Group)} \\ c_{pg} &\coloneqq 5.66 \ \frac{cal}{mole \cdot K} & \frac{c_{pg}}{12 \cdot \frac{gm}{mole}} = 0.472 \cdot \frac{BTU}{lb \cdot R} & \text{Specific heat at 900 C (Perry's Handbook, 7th edition, Table 2-194)} \end{split}$$

Thermal conductivity of unirradiated fine-grained isotropic graphite (J. Nuclear Materials 381, p. 68-75, 2008):

$$T := \begin{pmatrix} 300\\ 400\\ 600\\ 800\\ 1000 \end{pmatrix} \circ C \qquad T = \begin{pmatrix} 572\\ 752\\ 1112\\ 1472\\ 1832 \end{pmatrix} \circ F$$
$$k_g := \begin{pmatrix} 95\\ 85\\ 72\\ 65\\ 60 \end{pmatrix} \frac{W}{m \cdot K} \qquad k_g = \begin{pmatrix} 4.574\\ 4.093\\ 3.467\\ 3.13\\ 2.889 \end{pmatrix} \cdot \frac{BTU}{in \cdot hr \cdot R}$$

Experimental data on effect of neutron fluence on thermal conductivity of fine-grained isotropic graphite (J. Nuclear Materials 381, p. 68-75, 2008; J. Nuclear Materials 195, p. 44-50, 1992; Carbon 13, p. 201-204, 1975); data is given at various values of temperature and dpa (displacemements per atom computed as a function of fast neutron fluence with energy > 0.1 MeV):

dpa := 0.13
 T_{irr} := 300 °C

$$k_{g_{irr}} := 27.2 \frac{W}{m \cdot K}$$

 dpa := 0.82
 T_{irr} := 400 °C
 $k_{g_{irr}} := 26.9 \frac{W}{m \cdot K}$

 dpa := 1.6
 T_{irr} := 600 °C
 $k_{g_{irr}} := 33 \frac{W}{m \cdot K}$

 dpa := 2.2
 T_{irr} := 1000 °C
 $k_{g_{irr}} := 39 \frac{W}{m \cdot K}$

dpa := 9.0
$$T_{irr} := 800 \,^{\circ}\text{C}$$
 $k_{g_{irr}} := 37 \, \frac{1}{\text{m} \cdot \text{K}}$

TEM-10200- 03/01/2012 Rev. 06	-1 EN	IGINEERING C	ALCULATIONS	AND ANALY	'SIS	Page A4 of A62
Title:	As-Run Thermal Analysis of the AGC-3 Experiment					
ECAR No.:	3386	Rev. No.: 0	Project No.:	23747	Date:	10/11/2016
	ECAR-3386	As-Ri	un Thermal Analysis of the AGC-3 Experiment		Page A4 of	A62
	$dpa := \begin{pmatrix} 0.1\\ 1.0\\ 10 \end{pmatrix}$	Displacemements	oer atom			
	$T = \begin{pmatrix} 300 \\ 400 \\ 600 \\ 800 \\ 1000 \end{pmatrix} \cdot ^{\circ}C$	Temperature in deg	rees C			
	$\begin{pmatrix} 0.30 & 0.2 \\ 0.41 & 0.3 \end{pmatrix}$	0 0.10				

0.41 0.50 0.20	Ratio of irradiated to unirradiated thermal conductivity as a function of temperature (rows) and dpa (columns).
0.73 0.64 0.55	evaluated using the experimental data given above
(0.80 0.70 0.60)	

Thermal conductivity of irradiated graphite at various values of temperature and dpa:

i := 0..4 j := 0..2

 $\varphi :=$

$$\lambda_{i,j} \coloneqq \varphi_{i,j} \cdot k_{g_i} \qquad \lambda = \begin{pmatrix} 1.372 & 0.915 & 0.457 \\ 1.678 & 1.228 & 0.819 \\ 2.115 & 1.733 & 1.387 \\ 2.285 & 2.003 & 1.721 \\ 2.311 & 2.022 & 1.733 \end{pmatrix} \cdot \frac{BTU}{\text{in-hr-R}}$$

As-Run Thermal Analysis of the AGC-3 Experiment

Page A5 of A62

Thermophysical properties of compressed water (Perry's Handbook, Tables 2-355 and 2-356):

$P_L := 20 \cdot bar = 290 \cdot psi$	
$T_{L} := \begin{pmatrix} 300\\ 350\\ 400 \end{pmatrix} \cdot K$	$\mathbf{T}_{\mathbf{L}} = \begin{pmatrix} 80\\ 170\\ 260 \end{pmatrix} \cdot \mathbf{\hat{F}}$
$\rho_{\text{H2O}} := \begin{pmatrix} 994.1 \\ 968.2 \\ 929.7 \end{pmatrix} \cdot \frac{\text{kg}}{\text{m}^3}$	$\rho_{\rm H2O} = \begin{pmatrix} 0.0359\\ 0.035\\ 0.0336 \end{pmatrix} \cdot \frac{\rm lb}{\rm in^3}$
$\mathbf{c}_{\underline{\mathbf{p}}\underline{\mathbf{H}}2\mathbf{O}} := \begin{pmatrix} 4.17\\ 4.19\\ 4.25 \end{pmatrix} \cdot \frac{\mathbf{J}}{\mathbf{g}\mathbf{m}\cdot\mathbf{K}}$	$\mathbf{c}_{\mathbf{p}}H2O = \begin{pmatrix} 0.996\\ 1.001\\ 1.015 \end{pmatrix} \cdot \frac{BTU}{Ib \cdot R}$
$k_{\text{H2O}} := \begin{pmatrix} 0.616 \\ 0.669 \\ 0.689 \end{pmatrix} \cdot \frac{W}{m \cdot K}$	$\mathbf{k}_{\text{H2O}} = \begin{pmatrix} 0.03\\ 0.032\\ 0.033 \end{pmatrix} \cdot \frac{\text{BTU}}{\text{hr} \cdot \text{in} \cdot \mathbf{R}}$
$\mu_{\text{H2O}} := \begin{pmatrix} 0.000856 \\ 0.000371 \\ 0.000218 \end{pmatrix} \cdot \frac{\text{N} \cdot \text{s}}{\text{m}^2}$	$\mu_{H2O} = \begin{pmatrix} 0.173 \\ 0.075 \\ 0.044 \end{pmatrix} \cdot \frac{lb}{hr \cdot in}$
$\Pr_{\text{H2O}} := \begin{pmatrix} 5.80 \\ 2.32 \\ 1.34 \end{pmatrix}$	
	Dopoity of

 $\rho_{w} \coloneqq 0.5 \cdot \left(\rho_{H2O_{0}} + \rho_{H2O_{1}}\right) \qquad \rho_{w} \equiv 0.0354 \cdot \frac{lb}{in^{3}} \qquad \begin{array}{c} \text{Density of compressed water at} \\ \text{reactor primary coolant inlet} \\ \text{temperature (125 deg F)} \end{array}$

As-Run Thermal Analysis of the AGC-3 Experiment

Page A6 of A62

Thermal conductivity of helium-argon gas mixtures (Physics of Fluids 3(3), p. 355-361, 1960; Journal of Engineering Physics and Thermophysics 28(6), p. 725-731, 1975):

$T_{gas} := \begin{pmatrix} 302\\793\\1173 \end{pmatrix} \cdot K$	$T_{gas} = \begin{pmatrix} 84\\968\\1652 \end{pmatrix} \cdot ^{\circ}F$
$k_{100Ar} \coloneqq \begin{pmatrix} 0.0182 \\ 0.0383 \\ 0.0480 \end{pmatrix} \cdot \frac{W}{m \cdot K}$	$k_{100Ar} = \begin{pmatrix} 0.00088\\ 0.00184\\ 0.00231 \end{pmatrix} \cdot \frac{BTU}{hr \cdot in \cdot R}$
$k_{10\text{He}90\text{Ar}} := \begin{pmatrix} 0.0234 \\ 0.0494 \\ 0.0590 \end{pmatrix} \cdot \frac{\text{W}}{\text{m} \cdot \text{K}}$	$k_{10\text{He90Ar}} = \begin{pmatrix} 0.00113\\ 0.00238\\ 0.00284 \end{pmatrix} \cdot \frac{\text{BTU}}{\text{hr} \cdot \text{in} \cdot \text{R}}$
$k_{20\text{He80Ar}} := \begin{pmatrix} 0.0294 \\ 0.0622 \\ 0.0700 \end{pmatrix} \cdot \frac{W}{m \cdot K}$	$k_{20\text{He80Ar}} = \begin{pmatrix} 0.00142\\ 0.00299\\ 0.00337 \end{pmatrix} \cdot \frac{\text{BTU}}{\text{hr} \cdot \text{in} \cdot \text{R}}$
$k_{30\text{He}70\text{Ar}} := \begin{pmatrix} 0.0364 \\ 0.0772 \\ 0.0880 \end{pmatrix} \cdot \frac{\text{W}}{\text{m} \cdot \text{K}}$	$k_{30\text{He}70\text{Ar}} = \begin{pmatrix} 0.00175\\ 0.00372\\ 0.00424 \end{pmatrix} \cdot \frac{\text{BTU}}{\text{hr} \cdot \text{in} \cdot \text{R}}$
$k_{40\text{He60Ar}} := \begin{pmatrix} 0.0451\\ 0.0957\\ 0.106 \end{pmatrix} \cdot \frac{W}{\text{m} \cdot \text{K}}$	$k_{40\text{He}60\text{Ar}} = \begin{pmatrix} 0.00217\\ 0.00461\\ 0.0051 \end{pmatrix} \cdot \frac{\text{BTU}}{\text{hr} \cdot \text{in} \cdot \text{R}}$
$k_{50He50Ar} := \begin{pmatrix} 0.0551 \\ 0.116 \\ 0.137 \end{pmatrix} \cdot \frac{W}{m \cdot K}$	$k_{50\text{He}50\text{Ar}} = \begin{pmatrix} 0.00265\\ 0.00559\\ 0.0066 \end{pmatrix} \cdot \frac{\text{BTU}}{\text{hr} \cdot \text{in} \cdot \text{R}}$
$k_{60He40Ar} := \begin{pmatrix} 0.0667\\ 0.140\\ 0.167 \end{pmatrix} \cdot \frac{W}{m \cdot K}$	$k_{60\text{He}40\text{Ar}} = \begin{pmatrix} 0.00321\\ 0.00674\\ 0.00804 \end{pmatrix} \cdot \frac{\text{BTU}}{\text{hr} \cdot \text{in} \cdot \text{R}}$
$k_{70\text{He}30\text{Ar}} := \begin{pmatrix} 0.0809\\ 0.169\\ 0.223 \end{pmatrix} \cdot \frac{W}{m \cdot K}$	$k_{70\text{He}30\text{Ar}} = \begin{pmatrix} 0.0039\\ 0.00814\\ 0.01074 \end{pmatrix} \cdot \frac{\text{BTU}}{\text{hr} \cdot \text{in} \cdot \text{R}}$

TEM-10200-1 03/01/2012 ENGINEERING CALCULATIONS AND ANALYSIS Page A7 of A62 Rev. 06 Title: As-Run Thermal Analysis of the AGC-3 Experiment ECAR No.: 3386 Rev. No.: 0 Project No.: 23747 Date: 10/11/2016 ECAR-3386 As-Run Thermal Analysis of the Page A7 of A62 AGC-3 Experiment

Thermal radiation properties of materials (for stainless steel and tungsten, Table A. 11, "Fundamentals of Heat and Mass Transfer," 5th ed., F. Incropera and D. DeWitt, 2002; for graphite, European Physical J. A 38, p. 167-171, 2008; for Inconel 600 (TC sheath) and Haynes 230 (heat shield), CINDAS Thermophysical Properties of Matter Database; for stainless steel coated with graphite powder, "Total Hemispherical Emissivity of VHTR Candidate Materials," PhD Dissertation, 2011):

- $\varepsilon_{\text{SST_lo}} \coloneqq 0.2$ Emissivity of clean stainless steel (304, Inconel 600, and Haynes 230) $\varepsilon_{\text{SST_hi}} \coloneqq 0.4$ Emissivity of stainless steel coated with graphite powder
- $\varepsilon_{W} = 0.10$ Emissivity of tungsten
- $\varepsilon_{\rm C} = 0.90$ Emissivity of graphite

$$\sigma \coloneqq 5.670 \cdot 10^{-8} \cdot \frac{W}{m^2 \cdot K^4} \qquad \sigma = 1.189 \times 10^{-11} \cdot \frac{BTU}{hr \cdot in^2 \cdot R^4} \qquad \text{Stefan-Boltzmann constant}$$

TEM-10200 03/01/2012 Rev. 06	-1	ENGINEERING CA	ALCULATIONS	AND ANAI	LYSIS	Page A8 of A62
Title:	As-Run ⁻	Thermal Analysis of the	AGC-3 Experime	nt		
ECAR No.:	3386	Rev. No.: 0	Proiect No.:	23747	Date:	10/11/2016

.

As-Run Thermal Analysis of the AGC-3 Experiment

Page A8 of A62

A.2 Gas gaps between capsule components

Calculate thermal expansion of capsule components:

$\alpha_{g} \coloneqq 4.5 \cdot 10^{-6} \cdot \frac{1}{K}$	Coefficient of thermal expansion of graphite (Perry's Handbook, Table 28-29)
$T_h \coloneqq 800 ^{\circ}C$	Irradiation temperature of graphite holder
$T_o \coloneqq 25 \circ C$	Reference temperature
$\Delta T_h \coloneqq T_h - T_o = 775 \cdot \Delta^{\circ} C$	Temperature change of holder
$r_{o_h} := 0.5 \cdot 2.081 \cdot in$	Outside radius of holder (Drawing 603521)
$\mathbf{u}_{o_h} \coloneqq \alpha_g \cdot \Delta T_h \cdot \mathbf{r}_{o_h} = 0.0036 \cdot in$	Radial thermal expansion at outside surface of holder
$r_{i_h} := 0.5 \cdot 0.510 \cdot in$	Inside radius of channels in holder (Drawing 603522)
$\mathbf{u}_{\underline{i}\underline{h}} \coloneqq \mathbf{\alpha}_{\underline{g}} \cdot \mathbf{\Delta} \mathbf{T}_{\underline{h}} \cdot \mathbf{r}_{\underline{i}\underline{h}} = 0.0009 \cdot \mathbf{i}\mathbf{n}$	Radial thermal expansion at inside surface of channels in holder
$T_s \coloneqq 900 \ ^{\circ}C$	Irradiation temperature of specimens
$\Delta T_s := T_s - T_o = 875 \cdot \Delta^{\circ} C$	Temperature change of specimens
$r_{0_s} := 0.5 \cdot 0.491 \cdot in$	Outside radius of specimens (Drawing 601501)
$\mathbf{u}_{0_s} \coloneqq \alpha_g \cdot \Delta \mathbf{T}_s \cdot \mathbf{r}_{0_s} = 0.001 \cdot \mathrm{in}$	Radial thermal expansion at outside surface of specimens
$u_{i_h} - u_{o_s} = -0.00008 \cdot in$	Differential expansion between holder and specimens is negligible

TEM-10200- 03/01/2012 Rev. 06	-1 El	NGINEERIN	IG CAL	CULATIONS	AND ANAL	YSIS	Page A9 of A62
Title:	As-Run Therm	al Analysis	of the AC	GC-3 Experime	nt		
ECAR No.:	3386	Rev. No.:	0	Project No.:	23747	Date:	10/11/2016
	ECAR-3386		As-Run T AG	hermal Analysis of the C-3 Experiment		Page A9 of	A62
	$\alpha_{s} \coloneqq 17.3 \cdot 10^{-1}$	$6 \frac{1}{K}$		Coefficient of steel (Perry's	thermal expansion Handbook, Table	on of stainless 28-4)	
	$T_c := 150 ^{\circ}C$			Irradiation ter	nperature of caps	sule	
	$\Delta T_c \coloneqq T_c - T$	_o = 125·Δ°C		Temperature	change of capsul	le	
	$d_i := 2.13 \cdot in$			Inside diamet	er of capsule (dra	awing 630434)	
	$\mathbf{u_{i_c}} \coloneqq \mathbf{\alpha_s} \cdot \Delta \mathbf{T_c}$	$0.5 \cdot d_i = 0.0023 \cdot d_i$	n	Radial therma	al expansion at e of capsule		
	Calculate locat	tion of heat shiel ide surface of ca	d assuming apsule:	dimples on heat shie	eld		
	h _{dim} := 0.010+	in		Height of dim (drawing 603	ple on heat shiel 534)	d	
	$r_{o_hs} \coloneqq 0.5 \cdot d_i$	$+ u_{i_c} - h_{dim} =$	1.0573 . in	Outside radiu with the insid	s of heat shield a e surface of caps	after contact sule	
	$t_{hs} \coloneqq 0.004 in$			Thickness of	heat shield (draw	ving 603534)	
	$r_{i_hs} \coloneqq r_{o_hs}$	- t _{hs} = 1.0533.in		Inside radius	of heat shield		
	Calculate gas and nubs on h	gaps between ca older:	psule and h	neat shield and betwe	een capsule		

$\mathbf{d_c} \coloneqq 0.5 \cdot \mathbf{d_i} + \mathbf{u_{i_c}} - \mathbf{r_{o_hs}} = 0.01 \cdot \mathbf{in}$	Gas gap between capsule and heat shield
$d_{o_n} \coloneqq 2.121 \cdot in$	Outside diameter of nubs on holder (drawing 603522)
$d_n := 0.5 \cdot d_i + u_{i_c} - 0.5 \cdot d_{o_n} - u_{o_h} = 0.0032 \cdot in$	Gas gap between capsule and nubs

Rings on holder separate gas zones; contact between heat shield and rings is assumed.

TEM-10200- 03/01/2012 Rev. 06	-1 EN	IGINEERI	NG CAL	CULATIONS	AND ANAL	YSIS	Page A10 of A62	
Title:	As-Run Therm	s-Run Thermal Analysis of the AGC-3 Experiment						
ECAR No.:	3386	Rev. No.:	0	Project No.:	23747	Date:	10/11/2016	
	ECAR-3386		As-Run TI AG	hermal Analysis of the C-3 Experiment		Page A10 of	A62	
	Calculate gas (and between h	gaps between c eat shield and g	apsule and g raphite insul	graphite insulator at to lator at top of holder:	op of holder,			
	$d_{o_m} := 2.090$.	in		Outside diame at top of holde	eter of graphite ins er (drawings 63042	sulator 28)		
	$d_m := 0.5 \cdot d_i + $	$u_{i_c} = 0.5 \cdot d_{o_m}$	$- u_{o_h} = 0.0$	019·in Gas gap betw graphite insula	een capsule and ator at top of holde	er		
	$d_e \coloneqq r_{i_hs} - 0.$	5·d _{o_m} - u _{o_h} =	= 0.0047•in	Gas gap betw graphite insula	een heat shield ar ator at top of holde	nd er		
	Calculate gas g and between h	gaps between c eat shield and b	apsule and b ottom end o	oottom end of holder, f holder:				
	$d_{o_b} \coloneqq 1.991 \cdot i$	n		Outside diame holder (drawin	eter of bottom end g 603521)	l of		
	$d_b \coloneqq 0.5 \cdot d_i + \tau$	$u_{i_c} = 0.5 \cdot d_{o_b} =$	$- u_{o_h} = 0.00$	68 · in Gas gap betw bottom end of	een capsule and holder			
	$d_a \coloneqq r_{i_hs} - 0.$	5·d _{o_b} - u _{o_h} =	= 0.054·in	Gas gap betw bottom end of	een heat shield ar holder	nd		
	Calculate gas gand	gaps between h spacers:	older and sp	ecimens, holder and p	oush rods,			
	$d_{i_c} := 0.510 \cdot ir$	1.		Inside diamete in holder (drav	er of specimen ch ving 603522)	annels		
	$d_{i_t} := 0.144 \cdot in$	t.		Inside diamete holder (drawin	er of TC channels g 603522)	in		
	$d_{o_s} \coloneqq 0.491 \cdot in$	n		Outside diame (drawing 6015	eter of specimens 01)			
	$d_{o_r} = 0.482 \cdot in$	1		Outside diame spacers (draw	eter of push rods a ring 603523)	and		
	$d_{o_t} := 0.125 \cdot in$	1		Outside diame (drawing 6035	eter of thermocoup 20)	oles		
	$d_s := 0.5 \cdot (d_{i_c}$	$- d_{0_s} = 0.0095$	5·in	Gas gaps betw	ween specimens a	and holder		

 $d_{s} \coloneqq 0.5 \cdot (d_{i_c} - d_{o_s}) = 0.0095 \cdot in$ $d_{p} \coloneqq 0.5 \cdot (d_{i_c} - d_{o_r}) = 0.014 \cdot in$ Gas gaps between spacer rod and holder, and push rod and holder

TEM-10200- 03/01/2012 Rev. 06	-1	ENGINEERIN	IG CALCU	JLATIONS		LYSIS	Page A11 of A62
Title:	As-Run The	rmal Analysis	of the AGC-	3 Experime	nt		
ECAR No.:	3386	Rev. No.:	0 Pro	oject No.:	23747	Date:	10/11/2016
	ECAR-3386		As-Run Therm AGC-3 I	al Analysis of the ∃xperiment		Page A11 of	i A62
	Gas gap between thermocouples and holder is not known precisely due to the loose fit between these components; the minimum gap is assumed to be equal to 5% of the nominal gap corresponding to the case where the thermocouple is centered (ECAR-2429).						
	$d_t := \begin{pmatrix} 0.05\\ 1.95 \end{pmatrix}$	$) \cdot 0.0095 \text{ in} = \begin{pmatrix} 0.000\\ 0.018 \end{pmatrix}$	$\binom{5}{5}$ · in	Minimum and thermocouple	d maximum gas g es and holder	gap between	
	Gas gap be location of around the order to bri	etween heat shield a the heat shield and rings separating gas ng into agreement th	nd capsule is va uncertainty in th s zones; this ga ne measured and	aried to account le gas mixture di s gap is used to d calculated tem	for uncertainty ir ue to gas leakage adjust the mode peratures.	the e I in	
	$d_c = 0.01 \cdot in$	n		Nominal gas and heat shie	gap between caj eld	osule	
	$\mathbf{d_{v1}} := \begin{pmatrix} 0.0 \\ 0$	001 002 003 004 005 006 007 008		Variable gas heat shield to	gaps between ca	apsule and ertainties	

0.010 0.011 0.012 0.013

0.014 0.015 0.016

 $d_{v2} :=$

TEM-10200- 03/01/2012 Rev. 06	-1	ENGINEERING C	ALCULATIONS	AND AN	ALYSIS	Page A12 of A62
Title:	As-Run	Thermal Analysis of the	e AGC-3 Experime	nt		
ECAR No.:	3386	Rev. No.: 0	Project No.:	23747	Date:	10/11/2016

As-Run Thermal Analysis of the AGC-3 Experiment

Page A12 of A62

The following table shows the gas gaps between capsule and heat shield in each of five gas zones during each irradiation cycle; zone elevations are given relative to core mid-plane.

		Gas Gap B	etween HeatS	hield and
Zone Elevati	ion (inches)	Ci	apsule (inches	;)
		Cycle 152B	Cycle 152B	Cycle 152B
Bottom	Тор	Step 1	Step 2	Step 3
-24.36	-16.02	0.009	0.009	0.013
-15.99	-8.02	0.014	0.013	0.012
-7.99	7.99	0.012	0.012	0.011
8.02	15.99	0.013	0.014	0.013
16.02	25	0.003	0.003	0.003
		Gas Gap B	etween Heat S	hield and
Zone Elevati	ion (inches)	C	apsule (inches	5) 0 - 1 - 1 - 1 - 1 - 1 - 1
Bottom	qoT	Cycle 154B Step 1	Cycle 154B Step 2	Cycle 154B Step 3
-24.36	-16.02	0.013	0.016	0.016
-15.99	-8.02	0.010	0.011	0.011
-7.99	7.99	0.011	0.010	0.009
8.02	15.99	0.011	0.013	0.013
16.02	25	0.001	0.003	0.003
		Gas Gap B	etween Heat S	hield and
Zone Elevati	ion (inches)	Gas Gap B Ca	etween Heat S apsule (inches	hield and
Zone Elevati	ion (inches)	Gas Gap B Ca Cycle 155A	etween Heat S apsule (inches Cycle 155A	hield and ;) Cycle 155A
Zone Elevati Bottom	ion (inches) Top	Gas Gap B Ca Cycle 155A Step 1	etween Heat S apsule (inches Cycle 155A Step 2	hield and 5) Cycle 155A Step 3
Zone Elevati Bottom -24.36	ion (inches) Top -16.02	Gas Gap B Ca Cycle 155A Step 1 0.012	etween HeatS apsule (inches Cycle 155A Step 2 0.014	hield and ;) Cycle 155A Step 3 0.016
Zone Elevati Bottom -24.36 -15.99	ion (inches) Top -16.02 -8.02	Gas Gap B C Cycle 155A Step 1 0.012 0.012	etween HeatS apsule (inches Cycle 155A Step 2 0.014 0.012	hield and ;) Cycle 155A Step 3 0.016 0.011
Zone Elevati Bottom -24.36 -15.99 -7.99	ion (inches) Top -16.02 -8.02 7.99	Gas Gap B Cycle 155A Step 1 0.012 0.012 0.011	etween Heat S apsule (inches Cycle 155A Step 2 0.014 0.012 0.011	hield and () Cycle 155A Step 3 0.016 0.011 0.010
Zone Elevati Bottom -24.36 -15.99 -7.99 8.02	ion (inches) Top -16.02 -8.02 7.99 15.99	Gas Gap B Cz Cycle 155A Step 1 0.012 0.012 0.011 0.001	etween Heat S apsule (inches Cycle 155A Step 2 0.014 0.012 0.011 0.008	hield and () Cycle 155A Step 3 0.016 0.011 0.010 0.010
Zone Elevati Bottom -24.36 -15.99 -7.99 8.02 16.02	ion (inches) Top -16.02 -8.02 7.99 15.99 25	Gas Gap B Cycle 155A Step 1 0.012 0.012 0.011 0.008 0.000	etween Heat S apsule (inches Cycle 155A Step 2 0.014 0.012 0.011 0.008 0.002	hield and cycle 155A Step 3 0.016 0.011 0.010 0.010 0.002
Zone Elevati Bottom -24.36 -15.99 -7.99 8.02 16.02	ion (inches) Top -16.02 -8.02 7.99 15.99 25	Gas Gap B Cycle 155A Step 1 0.012 0.012 0.011 0.008 0.002 Gas Gap B	etween Heat S apsule (inches Cycle 155A Step 2 0.014 0.012 0.011 0.008 0.002 etween Heat S	hield and Cycle 155A Step 3 0.016 0.011 0.010 0.010 0.002 hield and
Zone Elevati Bottom -24.36 -15.99 -7.99 8.02 16.02 Zone Elevati	ion (inches) Top -16.02 -8.02 7.99 15.99 25 ion (inches)	Gas Gap B Cycle 155A Step 1 0.012 0.012 0.011 0.008 0.002 Gas Gap B C	etween Heat S apsule (inches Cycle 155A Step 2 0.014 0.012 0.011 0.008 0.002 etween Heat S apsule (inches	hield and Cycle 155A Step 3 0.016 0.011 0.010 0.010 0.002 hield and 5)
Zone Elevati Bottom -24.36 -15.99 -7.99 8.02 16.02 Zone Elevati	ion (inches) Top -16.02 -8.02 7.99 15.99 25 ion (inches)	Gas Gap B Cycle 155A Step 1 0.012 0.012 0.011 0.008 0.002 Gas Gap B Cycle 155B	etween Heat S apsule (inches Cycle 155A Step 2 0.014 0.012 0.011 0.008 0.002 etween Heat S apsule (inches Cycle 155B	hield and Cycle 155A Step 3 0.016 0.011 0.010 0.010 0.002 hield and) Cycle 155B
Zone Elevati Bottom -24.36 -15.99 -7.99 8.02 16.02 Zone Elevati Bottom	ion (inches) Top -16.02 -8.02 7.99 15.99 25 ion (inches) Top	Gas Gap B Cycle 155A Step 1 0.012 0.012 0.011 0.008 0.002 Gas Gap B Cycle 155B Step 1	etween Heat S apsule (inches Cycle 155A Step 2 0.014 0.012 0.011 0.008 0.002 etween Heat S apsule (inches Cycle 155B Step 2	hield and Cycle 155A Step 3 0.016 0.011 0.010 0.010 0.002 hield and Cycle 155B Step 3
Zone Elevati Bottom -24.36 -15.99 -7.99 8.02 16.02 Zone Elevati Bottom -24.36	ion (inches) Top -16.02 -8.02 7.99 15.99 25 ion (inches) Top -16.02	Gas Gap B Cz Cycle 155A Step 1 0.012 0.012 0.011 0.008 0.002 Gas Gap B Cz Cycle 155B Step 1 0.016	etween Heat S apsule (inches Cycle 155A Step 2 0.014 0.012 0.011 0.008 0.002 etween Heat S apsule (inches Cycle 155B Step 2 0.016	hield and Cycle 155A Step 3 0.016 0.011 0.010 0.010 0.002 hield and Cycle 155B Step 3 0.016
Zone Elevati Bottom -24.36 -15.99 -7.99 8.02 16.02 Zone Elevati Bottom -24.36 -15.99	ion (inches) Top -16.02 -8.02 7.99 15.99 25 ion (inches) Top -16.02 -8.02	Gas Gap B Cycle 155A Step 1 0.012 0.012 0.011 0.008 0.002 Gas Gap B Cycle 155B Step 1 0.016 0.010	etween Heat S apsule (inches Cycle 155A Step 2 0.014 0.012 0.011 0.008 0.002 etween Heat S apsule (inches Cycle 155B Step 2 0.016 0.010	hield and Cycle 155A Step 3 0.016 0.011 0.010 0.010 0.002 hield and Step 3 0.016 0.010
Zone Elevati Bottom -24.36 -15.99 -7.99 8.02 16.02 Zone Elevati Bottom -24.36 -15.99 -7.99	ion (inches) Top -16.02 -8.02 7.99 15.99 25 ion (inches) Top -16.02 -8.02 7.99	Gas Gap B Cycle 155A Step 1 0.012 0.012 0.011 0.008 0.002 Gas Gap B Cycle 155B Step 1 0.016 0.010 0.009	etween Heat S apsule (inches Cycle 155A Step 2 0.014 0.012 0.011 0.008 0.002 etween Heat S apsule (inches Cycle 155B Step 2 0.016 0.010 0.009	hield and Cycle 155A Step 3 0.016 0.011 0.010 0.010 0.002 hield and Cycle 155B Step 3 0.016 0.010 0.010 0.010
Zone Elevati Bottom -24.36 -15.99 -7.99 8.02 16.02 Zone Elevati Bottom -24.36 -15.99 -7.99 8.02	ion (inches) Top -16.02 -8.02 7.99 15.99 25 ion (inches) Top -16.02 -8.02 7.99 15.99	Gas Gap B Cycle 155A Step 1 0.012 0.012 0.011 0.008 0.002 Gas Gap B Cycle 155B Step 1 0.016 0.010 0.009 0.010	etween Heat S apsule (inches Cycle 155A Step 2 0.014 0.012 0.011 0.008 0.002 etween Heat S apsule (inches Cycle 155B Step 2 0.016 0.010 0.009 0.011	hield and () Cycle 155A Step 3 0.016 0.011 0.010 0.002 hield and () Cycle 155B Step 3 0.016 0.010 0.009 0.011

d _h :=	2.032 2.039 2.049 2.056 2.064 2.073 2.081	·in			Outside diameter of holder sections (drawing 603520)
d _g := :	ri_hs - ($0.5 \cdot d_h - u_o_h =$	(0.054) 0.034 0.03 0.025 0.022 0.018 0.013 (0.009)	·in	Gas gaps between holder and heat shield after expansion

(1.991)

Include effect of change in diameter of graphite due to irradiation-induced shrinkage.

Effect of neutron fluence on graphite dimensions (INL/EXT-12-26255, Appendix A, 2012):

dpa = $f(\Phi)$	Displacemements per atom as a function of neutron fluence
$\beta := 0.00191$	
$\frac{\Delta D}{D} = \beta \cdot dpa$	Diameter reduction, obtained from linear regression of data on NBG-25 specimens

TEM-10200 03/01/2012 Rev. 06)-1	ENGINEERING CA	LCULATIONS		YSIS	Page A14 of A62
Title:	As-Run	Thermal Analysis of the <i>i</i>	AGC-3 Experime	ent		
ECAR No.:	3386	Rev. No.: 0	Project No.:	23747	Date:	10/11/2016

As-Run Thermal Analysis of the AGC-3 Experiment

Page A14 of A62

Evaluate temperature control gas gaps at 3 dpa (exceeds the highest graphite dpa during irradiation):

$d_h =$	(1.991) 2.032 2.039 2.049 2.056 2.064 2.073 2.081	.in D	iameter of holder sections
d _g =	(0.054) 0.034 0.025 0.022 0.018 0.013 0.009	-in G (u	as gaps between holder and heat shield inirradiated)

dpa := 3.0

$$d_{g1} := d_g + 0.5 \cdot \beta \cdot dpa \cdot d_h = \begin{pmatrix} 0.06 \\ 0.039 \\ 0.036 \\ 0.031 \\ 0.028 \\ 0.024 \\ 0.019 \\ 0.015 \end{pmatrix} \cdot in$$

Gas gaps (irradiated at 3 dpa)

As-Run Thermal Analysis of the AGC-3 Experiment

Page A15 of A62

A.3 Heat transfer coefficients for conduction across gas gaps

Gas gaps (from Appendix A.2):

$d_g = \begin{pmatrix} 0.054 \\ 0.034 \\ 0.025 \\ 0.022 \\ 0.018 \\ 0.013 \\ 0.009 \end{pmatrix} \cdot \text{in}$	Gas gaps between holder and heat shield at various segments of variable diameter holder
$d_{s} = 0.0095 \cdot in$	Gas gaps between specimens and holder
$d_p = 0.014 \cdot in$	Gas gaps between spacer rod and holder, and push rod and holder
$d_{v1} = \begin{pmatrix} 0.001 \\ 0.002 \\ 0.003 \\ 0.004 \\ 0.005 \\ 0.006 \\ 0.007 \\ 0.008 \end{pmatrix} \cdot in$	$d_{v2} = \begin{pmatrix} 0.009 \\ 0.01 \\ 0.011 \\ 0.012 \\ 0.013 \\ 0.014 \\ 0.015 \\ 0.016 \end{pmatrix}$. Gas gaps between capsule and heat shield
$\mathbf{d}_{\mathrm{t}} = \begin{pmatrix} 0.0005\\ 0.0185 \end{pmatrix} \cdot \mathbf{i}\mathbf{n}$	Gas gaps between holder and thermocouple
$d_m = 0.0187 \cdot in$	Gas gap between capsule and upper graphite insulator
$d_{b} = 0.0682 \cdot in$	Gas gap between capsule and bottom end of holder
$d_a = 0.0542 \cdot in$	Gas gap between heat shield and bottom end of holder
$d_n = 0.0032 \cdot in$	Gas gap between capsule and nubs at bottom end of holder
$d_{e} = 0.0047 \cdot in$	Gas gap between heat shield and upper graphite insulator

As-Run Thermal Analysis of the AGC-3 Experiment

Page A16 of A62

Evaluate gas gap conductance using 50% helium 50% argon for all gas gaps other than temperature control gas gaps:

$$T_{gas} = \begin{pmatrix} 84\\ 968\\ 1652 \end{pmatrix} \cdot \circ F$$

i := 0..2 m := 0..1 n := 0..7

$$\mathbf{h}_{\mathbf{s}_{i}} \coloneqq \frac{\mathbf{k}_{50\text{He}50\text{Ar}_{i}}}{\mathbf{d}_{\mathbf{s}}} \quad \mathbf{h}_{\mathbf{s}} = \begin{pmatrix} 0.279\\ 0.588\\ 0.694 \end{pmatrix} \cdot \frac{\text{BTU}}{\text{in}^{2} \cdot \text{hr} \cdot \text{R}} \qquad \qquad \mathbf{h}_{\mathbf{b}_{i}} \coloneqq \frac{\mathbf{k}_{50\text{He}50\text{Ar}_{i}}}{\mathbf{d}_{\mathbf{b}}} \quad \mathbf{h}_{\mathbf{b}} = \begin{pmatrix} 0.039\\ 0.082\\ 0.097 \end{pmatrix} \cdot \frac{\text{BTU}}{\text{in}^{2} \cdot \text{hr} \cdot \text{R}}$$

$$\mathbf{h}_{\mathbf{p}_{i}} \coloneqq \frac{\mathbf{k}_{50\text{He}50\text{Ar}_{i}}}{\mathbf{d}_{\mathbf{p}}} \quad \mathbf{h}_{\mathbf{p}} = \begin{pmatrix} 0.19\\ 0.399\\ 0.471 \end{pmatrix} \cdot \frac{\text{BTU}}{\text{in}^{2} \cdot \text{hr} \cdot \text{R}} \qquad \qquad \mathbf{h}_{\mathbf{n}_{i}} \coloneqq \frac{\mathbf{k}_{50\text{He}50\text{Ar}_{i}}}{\mathbf{d}_{\mathbf{n}}} \quad \mathbf{h}_{\mathbf{n}} = \begin{pmatrix} 0.836\\ 1.76\\ 2.078 \end{pmatrix} \cdot \frac{\text{BTU}}{\text{in}^{2} \cdot \text{hr} \cdot \text{R}}$$

$$\mathbf{h_{vl}}_{i,n} \coloneqq \frac{\mathbf{k_{50He50Ar}}_{i}}{\mathbf{d_{vl}}_{n}} \qquad \mathbf{h_{vl}} = \begin{pmatrix} 2.653 & 1.327 & 0.884 & 0.663 & 0.531 & 0.442 & 0.379 & 0.332 \\ 5.585 & 2.793 & 1.862 & 1.396 & 1.117 & 0.931 & 0.798 & 0.698 \\ 6.596 & 3.298 & 2.199 & 1.649 & 1.319 & 1.099 & 0.942 & 0.825 \end{pmatrix} \cdot \frac{\mathrm{BTU}}{\mathrm{in}^{2} \cdot \mathrm{hr} \cdot \mathrm{R}}$$

$$\mathbf{h_{v2}}_{i,n} \coloneqq \frac{\mathbf{k_{50He50Ar}}_{i}}{\mathbf{d_{v2}}_{n}} \qquad \mathbf{h_{v2}} = \begin{pmatrix} 0.295 & 0.265 & 0.241 & 0.221 & 0.204 & 0.19 & 0.177 & 0.166 \\ 0.621 & 0.559 & 0.508 & 0.465 & 0.43 & 0.399 & 0.372 & 0.349 \\ 0.733 & 0.66 & 0.6 & 0.55 & 0.507 & 0.471 & 0.44 & 0.412 \end{pmatrix} \cdot \frac{\mathrm{BTU}}{\mathrm{in}^{2} \cdot \mathrm{hr} \cdot \mathrm{R}}$$

$$\mathbf{h}_{\mathbf{m}_{i}} \coloneqq \frac{\mathbf{k}_{50\text{He}50\text{Ar}_{i}}}{\mathbf{d}_{\mathbf{m}}} \quad \mathbf{h}_{\mathbf{m}} = \begin{pmatrix} 0.142\\ 0.299\\ 0.353 \end{pmatrix} \cdot \frac{\text{BTU}}{\inf^{2} \cdot \text{hr} \cdot \text{R}} \qquad \qquad \mathbf{h}_{\mathbf{e}_{i}} \coloneqq \frac{\mathbf{k}_{50\text{He}50\text{Ar}_{i}}}{\mathbf{d}_{\mathbf{e}}} \quad \mathbf{h}_{\mathbf{e}} = \begin{pmatrix} 0.568\\ 1.195\\ 1.411 \end{pmatrix} \cdot \frac{\text{BTU}}{\inf^{2} \cdot \text{hr} \cdot \text{R}}$$

$$\mathbf{h}_{a_{i}} \coloneqq \frac{\mathbf{k}_{50\text{He}50\text{Ar}_{i}}}{\mathbf{d}_{a}} \quad \mathbf{h}_{a} = \begin{pmatrix} 0.049\\ 0.103\\ 0.122 \end{pmatrix} \cdot \frac{\text{BTU}}{\text{in}^{2} \cdot \text{hr} \cdot \text{R}}$$

$$\mathbf{h}_{t_{i},m} \coloneqq \frac{\mathbf{k}_{50\text{He}50\text{Ar}_{i}}}{\mathbf{d}_{t_{m}}} \qquad \mathbf{h}_{t} = \begin{pmatrix} 5.585 & 0.143\\ 11.759 & 0.302\\ 13.887 & 0.356 \end{pmatrix} \cdot \frac{\text{BTU}}{\text{in}^{2} \cdot \text{hr} \cdot \text{R}}$$

ECAR No.: 3386 Rev. No.: 0 Project No.: 23747 Date: 10/11/2016	
--	--

As-Run Thermal Analysis of the AGC-3 Experiment

Page A17 of A62

Evaluate temperature control gas gap conductance using various gas mixtures:

$$i := 0..2$$
 $j := 0..7$ $T_{gas} = \begin{pmatrix} 84\\968\\1652 \end{pmatrix}$.°F

Evaluate gas gap conductance using 100% helium:

$$\mathbf{h}_{g_{i,j}} \coloneqq \frac{\mathbf{k}_{100\text{He}_{i}}}{\mathbf{d}_{g_{j}}} \qquad \mathbf{h}_{g} = \begin{pmatrix} 0.137 & 0.22 & 0.246 & 0.295 & 0.342 & 0.42 & 0.563 & 0.808 \\ 0.274 & 0.44 & 0.491 & 0.589 & 0.684 & 0.839 & 1.126 & 1.616 \\ 0.353 & 0.568 & 0.633 & 0.759 & 0.882 & 1.082 & 1.451 & 2.084 \end{pmatrix} \cdot \frac{\text{BTU}}{\text{in}^{2} \cdot \text{hr} \cdot \text{R}}$$

Evaluate gas gap conductance using 90% helium 10% argon:

$$\mathbf{h}_{g_{i,j}} \coloneqq \frac{\mathbf{k}_{90\text{He10Ar}_{i}}}{d_{g_{j}}} \quad \mathbf{h}_{g} = \begin{pmatrix} 0.11 & 0.177 & 0.198 & 0.237 & 0.275 & 0.338 & 0.453 & 0.651 \\ 0.222 & 0.357 & 0.399 & 0.478 & 0.555 & 0.681 & 0.914 & 1.312 \\ 0.3 & 0.483 & 0.539 & 0.646 & 0.751 & 0.921 & 1.235 & 1.774 \end{pmatrix} \cdot \frac{\text{BTU}}{\text{in}^{2} \cdot \text{hr} \cdot \text{R}}$$

Evaluate gas gap conductance using 80% helium 20% argon:

$$\mathbf{h}_{g_{i,j}} \coloneqq \frac{\mathbf{k}_{80\text{He}20\text{Ar}_{i}}}{\mathbf{d}_{g_{j}}} \quad \mathbf{h}_{g} = \begin{pmatrix} 0.088 & 0.142 & 0.158 & 0.19 & 0.221 & 0.271 & 0.363 & 0.521 \\ 0.173 & 0.279 & 0.311 & 0.373 & 0.433 & 0.531 & 0.713 & 1.023 \\ 0.248 & 0.399 & 0.445 & 0.534 & 0.62 & 0.76 & 1.02 & 1.464 \end{pmatrix} \cdot \frac{\text{BTU}}{\text{in}^{2} \cdot \text{hr} \cdot \text{R}}$$

Evaluate gas gap conductance using 70% helium 30% argon:

$$\mathbf{h}_{g_{i,j}} \coloneqq \frac{\mathbf{k}_{70\text{He30Ar}_{i}}}{d_{g_{j}}} \quad \mathbf{h}_{g} = \begin{pmatrix} 0.072 & 0.116 & 0.129 & 0.155 & 0.18 & 0.22 & 0.296 & 0.425 \\ 0.15 & 0.242 & 0.27 & 0.323 & 0.375 & 0.46 & 0.618 & 0.887 \\ 0.198 & 0.319 & 0.356 & 0.427 & 0.495 & 0.608 & 0.815 & 1.17 \end{pmatrix} \cdot \frac{\text{BTU}}{\text{in}^{2} \cdot \text{hr} \cdot \text{R}}$$

Evaluate gas gap conductance using 60% helium 40 argon:

$$\mathbf{h}_{g_{i,j}} \coloneqq \frac{\mathbf{k}_{60\text{He}40\text{Ar}_i}}{d_{g_j}} \quad \mathbf{h}_g = \begin{pmatrix} 0.059 & 0.095 & 0.106 & 0.128 & 0.148 & 0.182 & 0.244 & 0.35 \\ 0.124 & 0.2 & 0.223 & 0.268 & 0.311 & 0.381 & 0.512 & 0.735 \\ 0.148 & 0.239 & 0.266 & 0.319 & 0.371 & 0.455 & 0.61 & 0.876 \end{pmatrix} \cdot \frac{\text{BTU}}{\text{in}^2 \cdot \text{hr} \cdot \text{R}}$$

TEM-10200-1 ENGINEERING CALCULATIONS AND ANALYSIS Page A18 of A62 Rev. 06 Page A18 of A62 Page A18 of A62 Title: As-Run Thermal Analysis of the AGC-3 Experiment As-Run Thermal Analysis of the AGC-3 Experiment

ECAR No.: 3386	Rev. No.: 0	Project No.:	23747	Date: 10/11/2016
----------------	-------------	--------------	-------	------------------

ECAR-3386

As-Run Thermal Analysis of the AGC-3 Experiment Page A18 of A62

Evaluate gas gap conductance using 50% helium 50% argon:

k50He50Ar		(0.049	0.079	0.088	0.105	0.122	0.15	0.201	0.289	DITL
$h_{g_{1}} := \frac{1}{1}$	h _g =	0.103	0.166	0.185	0.222	0.258	0.316	0.424	0.609	BIU
^o i,j ^a g _j	U	0.122	0.196	0.219	0.262	0.304	0.373	0.501	0.719	in ² ·hr ·R

Evaluate gas gap conductance using 40% helium 60% argon:

$$\mathbf{h}_{g_{i,j}} \coloneqq \frac{\mathbf{k}_{40\text{He60Ar}_i}}{d_{g_j}} \quad \mathbf{h}_g = \begin{pmatrix} 0.04 & 0.064 & 0.072 & 0.086 & 0.1 & 0.123 & 0.165 & 0.237 \\ 0.085 & 0.137 & 0.153 & 0.183 & 0.213 & 0.261 & 0.35 & 0.502 \\ 0.094 & 0.152 & 0.169 & 0.203 & 0.235 & 0.289 & 0.387 & 0.556 \end{pmatrix} \cdot \frac{\text{BTU}}{\text{in}^2 \cdot \text{hr} \cdot \text{R}}$$

Evaluate gas gap conductance using 30% helium 70% argon:

 $\mathbf{h}_{g_{i,j}} \coloneqq \frac{\mathbf{k}_{30\text{He}70\text{Ar}_i}}{d_{g_j}} \quad \mathbf{h}_g = \begin{pmatrix} 0.032 & 0.052 & 0.058 & 0.07 & 0.081 & 0.099 & 0.133 & 0.191 \\ 0.069 & 0.11 & 0.123 & 0.148 & 0.171 & 0.21 & 0.282 & 0.405 \\ 0.078 & 0.126 & 0.14 & 0.168 & 0.195 & 0.24 & 0.322 & 0.462 \end{pmatrix} \cdot \frac{\text{BTU}}{\text{in}^2 \cdot \text{hr} \cdot \text{R}}$

Evaluate gas gap conductance using 20% helium 80% argon:

$$\mathbf{h}_{g_{i,j}} \coloneqq \frac{\mathbf{k}_{20\text{He80Ar}_i}}{\mathbf{d}_{g_j}} \quad \mathbf{h}_{g} = \begin{pmatrix} 0.026 & 0.042 & 0.047 & 0.056 & 0.065 & 0.08 & 0.107 & 0.154 \\ 0.055 & 0.089 & 0.099 & 0.119 & 0.138 & 0.169 & 0.227 & 0.326 \\ 0.062 & 0.1 & 0.112 & 0.134 & 0.156 & 0.191 & 0.256 & 0.367 \end{pmatrix} \cdot \frac{\text{BTU}}{\text{in}^2 \cdot \text{hr} \cdot \text{R}}$$

Evaluate gas gap conductance using 10% helium 90% argon:

 $\mathbf{h}_{g_{i,j}} \coloneqq \frac{\mathbf{k}_{10\text{He90Ar}_i}}{\mathbf{d}_{g_j}} \quad \mathbf{h}_g = \begin{pmatrix} 0.021 & 0.033 & 0.037 & 0.045 & 0.052 & 0.064 & 0.086 & 0.123 \\ 0.044 & 0.071 & 0.079 & 0.094 & 0.11 & 0.135 & 0.181 & 0.259 \\ 0.052 & 0.084 & 0.094 & 0.113 & 0.131 & 0.161 & 0.216 & 0.31 \end{pmatrix} \cdot \frac{\text{BTU}}{\text{in}^2 \cdot \text{hr} \cdot \text{R}}$

Evaluate gas gap conductance using 100% argon:

$$\mathbf{h}_{g_{i,j}} \coloneqq \frac{\mathbf{k}_{100\mathrm{Ar}_{i}}}{\mathbf{d}_{g_{j}}} \qquad \mathbf{h}_{g} = \begin{pmatrix} 0.016 & 0.026 & 0.029 & 0.035 & 0.04 & 0.05 & 0.067 & 0.096 \\ 0.034 & 0.055 & 0.061 & 0.073 & 0.085 & 0.104 & 0.14 & 0.201 \\ 0.043 & 0.069 & 0.077 & 0.092 & 0.107 & 0.131 & 0.175 & 0.252 \end{pmatrix} \cdot \frac{\mathrm{BTU}}{\mathrm{in}^{2} \cdot \mathrm{hr} \cdot \mathrm{R}}$$

TEM-10200-1
03/01/2012
Rev. 06ENGINEERING CALCULATIONS AND ANALYSISPage A19 of A62Title:As-Run Thermal Analysis of the AGC-3 ExperimentECAR No.: 3386Rev. No.: 0Project No.: 23747Date: 10/11/2016

ECAR-3386

As-Run Thermal Analysis of the AGC-3 Experiment

Page A19 of A62

Evaluate temperature control gas gap conductance including the effect of irradiation-induced shrinkage of graphite (calculation performed at 3 dpa):

$$i := 0..2$$
 $j := 0..7$ $T_{gas} = \begin{pmatrix} 84\\ 968\\ 1652 \end{pmatrix}$.°F

Evaluate gas gap conductance using 100% helium:

$$\mathbf{h}_{g_{i,j}} \coloneqq \frac{\mathbf{k}_{100\text{He}_{i}}}{\mathbf{d}_{g1_{j}}} \qquad \mathbf{h}_{g} = \begin{pmatrix} 0.124 & 0.188 & 0.206 & 0.239 & 0.269 & 0.314 & 0.388 & 0.49 \\ 0.248 & 0.375 & 0.412 & 0.478 & 0.538 & 0.629 & 0.776 & 0.98 \\ 0.319 & 0.484 & 0.531 & 0.616 & 0.693 & 0.81 & 1 & 1.263 \end{pmatrix} \cdot \frac{\text{BTU}}{\text{in}^{2} \cdot \text{hr} \cdot \text{R}}$$

Evaluate gas gap conductance using 90% helium 10% argon:

 $\mathbf{h_{g_{i,j}}} \coloneqq \frac{\mathbf{k_{90He10Ar_i}}}{\mathbf{d_{g1}}} \quad \mathbf{h_g} = \begin{pmatrix} 0.1 & 0.151 & 0.166 & 0.192 & 0.217 & 0.253 & 0.312 & 0.394 \\ 0.201 & 0.305 & 0.334 & 0.388 & 0.437 & 0.51 & 0.63 & 0.795 \\ 0.272 & 0.412 & 0.452 & 0.524 & 0.59 & 0.69 & 0.851 & 1.075 \end{pmatrix} \cdot \frac{\mathrm{BTU}}{\mathrm{in}^2 \cdot \mathrm{hr} \cdot \mathrm{R}}$

Evaluate gas gap conductance using 80% helium 20% argon:

$$\mathbf{h}_{g_{i,j}} \coloneqq \frac{\mathbf{k}_{80\text{He}20\text{Ar}_{i}}}{\mathbf{d}_{g1_{j}}} \quad \mathbf{h}_{g} = \begin{pmatrix} 0.08 & 0.121 & 0.133 & 0.154 & 0.173 & 0.203 & 0.25 & 0.316 \\ 0.157 & 0.238 & 0.261 & 0.302 & 0.341 & 0.398 & 0.491 & 0.62 \\ 0.224 & 0.34 & 0.373 & 0.433 & 0.487 & 0.57 & 0.703 & 0.888 \end{pmatrix} \cdot \frac{\text{BTU}}{\text{in}^{2} \cdot \text{hr} \cdot \text{R}}$$

Evaluate gas gap conductance using 70% helium 30% argon:

$$\mathbf{h}_{g_{i,j}} \coloneqq \frac{\mathbf{k}_{70\text{He}30\text{Ar}_{i}}}{\mathbf{d}_{g1_{j}}} \quad \mathbf{h}_{g} = \begin{pmatrix} 0.065 & 0.099 & 0.108 & 0.125 & 0.141 & 0.165 & 0.204 & 0.257 \\ 0.136 & 0.206 & 0.226 & 0.262 & 0.295 & 0.345 & 0.426 & 0.538 \\ 0.179 & 0.272 & 0.298 & 0.346 & 0.39 & 0.455 & 0.562 & 0.709 \end{pmatrix} \cdot \frac{\text{BTU}}{\text{in}^{2} \cdot \text{hr} \cdot \text{R}}$$

Evaluate gas gap conductance using 60% helium 40% argon:

$$\mathbf{h}_{g_{i,j}} \coloneqq \frac{\mathbf{k}_{60\text{He40Ar}_i}}{\mathbf{d}_{g1_j}} \quad \mathbf{h}_{g} = \begin{pmatrix} 0.054 & 0.081 & 0.089 & 0.103 & 0.117 & 0.136 & 0.168 & 0.212 \\ 0.113 & 0.171 & 0.187 & 0.217 & 0.245 & 0.286 & 0.353 & 0.445 \\ 0.134 & 0.204 & 0.223 & 0.259 & 0.292 & 0.341 & 0.421 & 0.531 \end{pmatrix} \cdot \frac{\text{BTU}}{\text{in}^2 \cdot \text{hr} \cdot \text{R}}$$

TEM-10200-1 03/01/2012 ENGINEERING CALCULATIONS AND ANALYSIS Page A20 of A62 Rev. 06 Title: As-Run Thermal Analysis of the AGC-3 Experiment

ECAR No.: 3386	Rev. No.: 0	Project No.:	23747	Date: 10/11/2016
----------------	-------------	--------------	-------	------------------

ECAR-3386

As-Run Thermal Analysis of the AGC-3 Experiment Page A20 of A62

Evaluate gas gap conductance using 50% helium 50% argon:

$$\mathbf{h}_{g_{i,j}} \coloneqq \frac{\mathbf{k}_{50\text{He}50\text{Ar}_i}}{d_{g1_j}} \quad \mathbf{h}_{g} = \begin{pmatrix} 0.044 & 0.067 & 0.074 & 0.085 & 0.096 & 0.112 & 0.139 & 0.175 \\ 0.093 & 0.141 & 0.155 & 0.18 & 0.203 & 0.237 & 0.292 & 0.369 \\ 0.11 & 0.167 & 0.183 & 0.212 & 0.239 & 0.28 & 0.345 & 0.436 \end{pmatrix} \cdot \frac{\text{BTU}}{\text{in}^2 \cdot \text{hr} \cdot \text{R}}$$

Evaluate gas gap conductance using 40% helium 60% argon:

$$\mathbf{h}_{g_{i,j}} \coloneqq \frac{\mathbf{k}_{40\text{He60Ar}_i}}{\mathbf{d}_{g1_j}} \quad \mathbf{h}_{g} = \begin{pmatrix} 0.036 & 0.055 & 0.06 & 0.07 & 0.079 & 0.092 & 0.114 & 0.143 \\ 0.077 & 0.117 & 0.128 & 0.148 & 0.167 & 0.195 & 0.241 & 0.304 \\ 0.085 & 0.129 & 0.142 & 0.164 & 0.185 & 0.216 & 0.267 & 0.337 \end{pmatrix} \cdot \frac{\text{BTU}}{\text{in}^2 \cdot \text{hr} \cdot \text{R}}$$

Evaluate gas gap conductance using 30% helium 70% argon:

 $\mathbf{h}_{g_{i,j}} \coloneqq \frac{\mathbf{k}_{30\text{He}70\text{Ar}_i}}{\mathbf{d}_{g1_j}} \quad \mathbf{h}_{g} = \begin{pmatrix} 0.029 & 0.044 & 0.049 & 0.056 & 0.064 & 0.074 & 0.092 & 0.116 \\ 0.062 & 0.094 & 0.103 & 0.12 & 0.135 & 0.158 & 0.194 & 0.246 \\ 0.071 & 0.107 & 0.118 & 0.136 & 0.154 & 0.18 & 0.222 & 0.28 \end{pmatrix} \cdot \frac{\text{BTU}}{\text{in}^2 \cdot \text{hr} \cdot \text{R}}$

Evaluate gas gap conductance using 20% helium 80% argon:

$$\mathbf{h}_{g_{i,j}} \coloneqq \frac{\mathbf{k}_{20\text{He80Ar}_{i}}}{\mathbf{d}_{g1_{j}}} \quad \mathbf{h}_{g} = \begin{pmatrix} 0.024 & 0.036 & 0.039 & 0.046 & 0.051 & 0.06 & 0.074 & 0.094 \\ 0.05 & 0.076 & 0.083 & 0.096 & 0.109 & 0.127 & 0.157 & 0.198 \\ 0.056 & 0.085 & 0.094 & 0.109 & 0.122 & 0.143 & 0.176 & 0.223 \end{pmatrix} \cdot \frac{\text{BTU}}{\text{in}^{2} \cdot \text{hr} \cdot \text{R}}$$

Evaluate gas gap conductance using 10% helium 90% argon:

$$\mathbf{h}_{g_{i,j}} \coloneqq \frac{\mathbf{k}_{10\text{He}90\text{Ar}_{i}}}{\mathbf{d}_{g1_{j}}} \quad \mathbf{h}_{g} = \begin{pmatrix} 0.019 & 0.029 & 0.031 & 0.036 & 0.041 & 0.048 & 0.059 & 0.074 \\ 0.04 & 0.06 & 0.066 & 0.077 & 0.086 & 0.101 & 0.124 & 0.157 \\ 0.047 & 0.072 & 0.079 & 0.092 & 0.103 & 0.12 & 0.149 & 0.188 \end{pmatrix} \cdot \frac{\text{BTU}}{\text{in}^{2} \cdot \text{hr} \cdot \text{R}}$$

Evaluate gas gap conductance using 100% argon:

$$\mathbf{h}_{g_{i,j}} \coloneqq \frac{\mathbf{k}_{100Ar_i}}{\mathbf{d}_{g1_j}} \qquad \mathbf{h}_{g} = \begin{pmatrix} 0.015 & 0.022 & 0.024 & 0.028 & 0.032 & 0.037 & 0.046 & 0.058 \\ 0.031 & 0.047 & 0.051 & 0.059 & 0.067 & 0.078 & 0.096 & 0.122 \\ 0.039 & 0.059 & 0.064 & 0.074 & 0.084 & 0.098 & 0.121 & 0.153 \end{pmatrix} \cdot \frac{\mathrm{BTU}}{\mathrm{in}^2 \cdot \mathrm{hr} \cdot \mathrm{R}}$$

TEM-10200- 03/01/2012 Rev. 06	-1 E	NGINEERII		CULATIONS		LYSIS	Page A21 of A62
Title:	As-Run Ther	mal Analysis	of the AG	C-3 Experimer	nt		
ECAR No.:	3386	Rev. No.:	0	Project No.:	23747	Date:	10/11/2016
	ECAR-3386		As-Run Th AGC	nermal Analysis of the C-3 Experiment		Page A21 of /	A62
	A.4 Turbuler and choppe	nt forced convect d dummy in-pile	tion in the a tube	nnulus between cap	osule		
	$T_{inlet} \coloneqq 125$	$PF P_{inlet} =$	360-psi	Primary coolant i	inlet temperatur	e and pressure	
	$\Delta p \coloneqq 77 \cdot psi$			Core pressure dr	op for 2-pump c	peration	
	$T_{film} \coloneqq \begin{pmatrix} 125\\ 170\\ 260 \end{pmatrix}$	o)))) °F		Assumed range	of film temperat	ure	
	Interpolated t	hermophysical pro	operty values	at film temperature:			
	$\rho := \begin{bmatrix} 0.5 \cdot \left(\rho_E \right) \\ 0.5$	$\begin{bmatrix} 120_0 + \rho_{H2O_1} \\ \rho_{H2O_1} \\ \rho_{H2O_2} \end{bmatrix}$		$\rho = \begin{pmatrix} 0.0354 \\ 0.035 \\ 0.0336 \end{pmatrix} \cdot \frac{\text{lb}}{\text{in}^3}$			
	$c_p := \begin{bmatrix} 0.5 \cdot (c_1) \\ c_2 \end{bmatrix}$	^c p_H2O ₀ + ^c p_H2O ^c p_H2O ₁ ^c p_H2O ₂		$\mathbf{c}_{\mathbf{p}} = \begin{pmatrix} 0.998\\ 1.001\\ 1.015 \end{pmatrix} \cdot \frac{\mathbf{BT}}{\mathbf{Ib} \cdot \mathbf{F}}$	<u>U</u> 2		
	$\mathbf{k} \coloneqq \begin{bmatrix} 0.5 \cdot \left(\mathbf{k}_{\mathrm{F}} \right) \\ \\ \\ \end{bmatrix}$	$\begin{bmatrix} 220_0 + k_{H2O_1} \\ k_{H2O_1} \\ k_{H2O_2} \end{bmatrix}$		$\mathbf{k} = \begin{pmatrix} 0.031\\ 0.032\\ 0.033 \end{pmatrix} \cdot \frac{\mathbf{BT}}{\mathbf{hr} \cdot \mathbf{in}}$	U ·R		
	$\mu := \begin{bmatrix} 0.5 \cdot \left(\mu_F \right) \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} \mu_{2O_0} + \mu_{H2O_1} \\ \mu_{H2O_1} \\ \mu_{H2O_2} \end{bmatrix}$		$\mu = \begin{pmatrix} 0.124 \\ 0.075 \\ 0.044 \end{pmatrix} \cdot \frac{\text{lb}}{\text{hr} \cdot \text{in}}$			
	Pr := [0.5·(P)	$(H_{2O_0} + Pr_{H_{2O_1}})$ $Pr_{H_{2O_1}}$ $Pr_{H_{2O_2}}$		$\Pr = \begin{pmatrix} 4.06\\ 2.32\\ 1.34 \end{pmatrix}$			

03/01/2012 Rev. 06	E	NGINEERI	NG CA	LCULATIONS	AND ANA	LYSIS	Page A22 of A62
Title:	As-Run Thern						
ECAR No.:	3386	Rev. No.:	0	Project No.:	23747	Date:	10/11/2016
	ECAR-3386		As-Run Ad	Thermal Analysis of the GC-3 Experiment		Page A22 o	f A62
	Hydrodynamic	s in the annulus	between ca	apsule and chopped c	dummy in-pile tuk	be:	
	D _i := 2.50·in			Outside diameter (drawing 630434)	r of capsule		
	$D_0 \coloneqq 2.624 \cdot in$	i.		Inside diameter o (drawing 443027)	of chopped dumn	ny in-pile tube	
	$D_{hy} := D_o - I$	D _i D _{hy}	$v = 0.124 \cdot in$	Hydraulic diamet	er of annulus		
	$A_{f} \coloneqq \frac{\pi}{4} \cdot (D_{o} - $	+ D_i)· D_{hy} A_f	$= 0.499 \cdot in^2$	Flow area of ann	ulus		
	$L_{f} \coloneqq 145 \cdot in$			Length of annulu and 443027)	s (Drawings 603	520	
	$V_{f} \coloneqq 218.7 \cdot \frac{ir}{s}$	1		Flow velocity (init due to nonlinear	tially assumed f-Re dependence	>)	
	$\operatorname{Re} := \frac{\rho_0 \cdot D_{hy}}{\mu_0}$	V _f Re	= 27981				
	$\varepsilon := 250 \times 10^{-10}$	- 6 in		Wall roughness (Perry's Handboo	k, Table 6-1)	
	$\mathbf{f} \coloneqq \left[-4 \cdot \log \left[\frac{0}{2} \right] \right]$	$\frac{0.27 \cdot \varepsilon}{D_{hy}} + \left(\frac{7}{Re}\right)^{0.9}$	2	Turbulent Fannin tubes (Perry's Ha	g friction factor f andbook, Eq. 6-3	or rough 9)	
	f = 0.00717						
	$K_c \coloneqq 0.5$			Maximum loss co contraction (Perr	oefficient for sud y's Handbook, E	den q. 6-91)	
	$K_e \coloneqq 1.0$			Maximum loss co enlargement (Pe	oefficient for sud rry's Handbook, I	den Eq. 6-95)	
	$\mathbf{K}_{\mathbf{f}} \coloneqq \frac{4 \cdot \mathbf{f} \cdot \mathbf{L}_{\mathbf{f}}}{\mathbf{D}_{hy}}$	К _f	= 33.554	Loss coefficient (Perry's Handboo	for pipe friction k, Eq. 6-32)		

As-Run Thermal Analysis of the AGC-3 Experiment Page A23 of A62

Bernoulli equation (Perry's Handbook, Eq. 6-90):

$$\begin{split} \mathrm{V}_{\mathbf{f}} &\coloneqq \sqrt{\frac{2\cdot\Delta p}{\rho_0\cdot\left(\mathrm{K}_c+\mathrm{K}_e+\mathrm{K}_f\right)}} & \mathrm{V}_{\mathbf{f}} = 218.7\cdot\frac{\mathrm{in}}{\mathrm{s}} & \text{Checks (equal to velocity} \\ \mathrm{Q}_{\mathbf{f}} &\coloneqq \mathrm{V}_{\mathbf{f}}\cdot\mathrm{A}_{\mathbf{f}} & \mathrm{Q}_{\mathbf{f}} = 28.4\cdot\frac{\mathrm{gal}}{\mathrm{min}} \\ \mathrm{m}_{\mathbf{f}} &\coloneqq \rho_0\cdot\mathrm{V}_{\mathbf{f}} & \mathrm{m}_{\mathbf{f}} = 27914\cdot\frac{\mathrm{lb}}{\mathrm{in}^2\cdot\mathrm{hr}} \end{split}$$

Heat transfer coefficient for turbulent forced convection in an annulus:

Colburn correlation (Perry's Handbook, Eq. 5-50c, using film temperature method to account for fluid property variation):

i := 0..1

$$\operatorname{Re}_{i_{1}} \coloneqq \frac{\rho_{i} \cdot D_{hy} \cdot V_{f}}{\mu_{i}} \qquad \operatorname{Re}_{i} = \begin{pmatrix} 27987\\ 45670 \end{pmatrix} \qquad \text{Reynolds number}$$

Nusselt number (applies to both surfaces of annulus):

$$Nu_{i} := 0.023 \cdot \left(\frac{Re_{i}}{i} \right)^{0.8} \cdot \left(\frac{Pr_{i}}{i} \right)^{0.33} Nu = \left(\frac{131.858}{162.196} \right)$$

$$h_{i} := \frac{Nu_{i} \cdot k_{i}}{D_{hy}} \qquad \qquad h = \begin{pmatrix} 32.9\\ 42.13 \end{pmatrix} \cdot \frac{BTU}{hr \cdot in^{2} \cdot R}$$

TEM-10200- 03/01/2012 Rev. 06	-1	ENGINEERING CA		AND ANA	LYSIS	Page A24 of A62
Title:	As-Run	Thermal Analysis of the	AGC-3 Experime	ent		
ECAR No.:	3386	Rev. No.: 0	Project No.:	23747	Date:	10/11/2016

As-Run Thermal Analysis of the AGC-3 Experiment

Page A24 of A62

A.5 Nuclear heating rates

Heating rates at 20.4 MW east source power (ECAR-3051 Tables 3 through 9). A cosine function is used to represent the axial heating profile. In some cases, the heating rates are averaged over azimuthal segments.

Heating rates of stainless steel capsule, averaged over azimuthal segments:

	(-24.12)		(1.92)	l
	-23.125		2.36	
	-22.125		2.77	Í
	-21.125		3.15	
	-20.125		3.51	
	-19.125		3.90	
	-18.125		4.27	
	-17.125		4.61	
	-15.125		5.26	
	-13.125		5.83	
	-11.125		6.29	
	-9.125		6.70	
	-7.125		7.03	
	-5.125		7.26	
	-3.125		7.36	
1222310	-1.125		7.43	W
x :=	1.125	·m q _{capsule} :=	7.40	gm
	3.125		7.27	
	5.125		7.06	
	7.125		6.75	
	9.125		6.35	
	11.125		5.86	
	13.125		5.30	
	15.125		4.62	
	17.125		3.94	
	18.125		3.53	
	19.125		3.08	
	20.125		2.66	
	21.125		2.21	ĺ
	22.125		1.74	
	23.125		1.36	
	24.125		(1.06)	

TEM-10200 03/01/2012 Rev. 06	-1 E	NGINEERII	NG CAL	CULATIONS		LYSIS	Page A25 of A62				
Title:	As-Run Thermal Analysis of the AGC-3 Experiment										
ECAR No.:	3386	Rev. No.:	0	Project No.:	23747	Date:	10/11/2016				
	ECAR-3386		As-Run T AG	Thermal Analysis of the SC-3 Experiment		Page A25 of	A62				
	f(x,a,b,c) :=	$a{\boldsymbol{\cdot}} \text{cos}[b{\boldsymbol{\cdot}}(x+\textbf{c})]$		Axial he	eating profile						
	$\mathbf{g}_{\mathbf{S}} := \begin{pmatrix} 10\\ 0.05\\ 1 \end{pmatrix}$			Inital gi	n coefficients						
	$s_{f} := \operatorname{genfit}\left(\frac{2}{n}\right)$	$\frac{d_{a}}{d_{a}}, \frac{q_{capsule}}{\frac{W}{gm}}, g_{s}, f$)	Calcula for heat	te regression co ting profile	efficients					
	$s_{f} = \begin{pmatrix} 7.505\\ 0.057\\ 1.065 \end{pmatrix}$										
	$F_{f}(x) \coloneqq f(x)$	$\mathbf{s}_{\mathbf{f}_0}, \mathbf{s}_{\mathbf{f}_1}, \mathbf{s}_{\mathbf{f}_2}$		Axial	heating profile						
	$\rho_{\rm SST} \cdot {}^{\rm s} {}_{\rm f} {}_{\rm 0} \cdot {W \over {\rm gm}}$	$= 3369 \cdot \frac{\text{BTU}}{\text{hr} \cdot \text{in}^3}$		Peak	heating						
	Plot comparir	ng calculated hea	ting data to	heating data fitted to	a cosine functio	n:					

TEM-10200 03/01/2012 Rev. 06	-1	ENGINEERING CA		AND ANAI	_YSIS	Page A26 of A62
Title:	As-Run T	hermal Analysis of the	AGC-3 Experime	nt		
ECAR No.:	3386	Rev. No.: 0	Project No.:	23747	Date:	10/11/2016

As-Run Thermal Analysis of the AGC-3 Experiment

Page A26 of A62

Heating rates of stainless steel heat shield, averaged over azimuthal segments:

	(-24.12)		(2.58)	Ň
	-23.125		3.43	
	-22.125		4.13	
	-21.125		4.69	
-2 -1 -1 -1	-20.125		5.28	
	-19.125		5.89	
	-18.125		6.41	
	-17.125		6.92	
	-15.125		7.91	
	-13.125		8.78	
	-11.125		9.37	
	-9.125		9.98	
	-7.125		10.51	
	-5.125		10.74	
	-3.125		10.96	
	-1.125	Tura may av	11.03	W
x =	1.125	$q_{shield} =$	11.01	gm
	3.125		10.78	
	5.125		10.36	
	7.125		9.94	
	9.125		9.33	
	11.125		8.60	
	13.125		7.74	
	15.125		6.76	
	17.125		5.71	
	18.125		5.06	
	19.125		4.36	
	20.125		3.73	
	21.125		3.07	
	22.125		2.33	
	23.125		1.81	
	24.125		(1.41)	

TEM-10200- 03/01/2012 Rev. 06	-1 E	NGINEERII		LCULATIONS		LYSIS	Page A27 of A62
Title:	As-Run Thern	nal Analysis	of the A	GC-3 Experime	nt		
ECAR No.:	3386	Rev. No.:	0	Project No.:	23747	Date:	10/11/2016
	ECAR-3386		As-Run AG	Thermal Analysis of the GC-3 Experiment		Page A27 of	A62
	$f(x,a,b,c) := a \cdot \cos[b \cdot (x + c)]$ Axial heating profile						
	$g_{s} := \begin{pmatrix} 10 \\ 0.05 \\ 1 \end{pmatrix}$ Inital guess of regression coefficients						
	$s_{f} := genfit \left(\frac{x}{ir} \right)$	$\left(\frac{q_{shield}}{\frac{W}{gm}}, g_s, f\right)$	Calculate regression coefficients for heating profile				
	$s_{f} = \begin{pmatrix} 11.162 \\ 0.057 \\ 1.228 \end{pmatrix}$						
	$F_{f}(x) \coloneqq f(x, x)$	$\mathbf{s}_{0},\mathbf{s}_{1},\mathbf{s}_{1}$		Axial	heating profile		
	$\rho_{H'} s_{f_0} \cdot \frac{W}{gm} =$	5492. $\frac{\text{BTU}}{\text{hr}\cdot\text{in}^3}$		Peak	heating		

Plot comparing calculated heating data to heating data fitted to a cosine function:

TEM-10200 03/01/2012 Rev. 06	-1	ENGINEERING CA	LCULATIONS		LYSIS	Page A28 of A62
Title:	As-Run	Thermal Analysis of the A	GC-3 Experime	nt		
ECAR No.:	3386	Rev. No.: 0	Project No.:	23747	Date:	10/11/2016

As-Run Thermal Analysis of the AGC-3 Experiment

Page A28 of A62

Heating rates of graphite holder, averaged over azimuthal segments:

3	(-24.12		(1.53)	ľ
	-23.125		2.01	
	-22.125		2.29	
	-21.125		2.61	
	-20.125		2.92	
	-19.125		3.22	
	-18.125		3.53	
	-17.125		3.83	
	-15.125		4.35	
	-13.125		4.82	
	-11.125		5.20	
	-9.125		5.53	
	-7.125		5.79	
	-5.125		5.98	
	-3.125		6.09	
	-1.125	The second second	6.16	W
x =	1.125	·in q _{holder} :=	6.12	.gm
	3.125		6.01	
	5.125		5.86	
	7.125		5.60	
	9.125		5.27	
	11.125		4.87	
	13.125		4.42	
	15.125		3.87	
	17.125		3.29	
	18.125		2.99	
	19.125		2.61	
	20.125		2.30	
	21.125		2.01	
	22.125		1.66	
	23.125		1.34	
3	(24.125		(1.07)	ļ

TEM-10200 03/01/2012 Rev. 06	-1 EN	IGINEERIN	G CALCULATIO	NS AND ANA	ALYSIS	Page A29 of A62
Title:	As-Run Therm	al Analysis o	f the AGC-3 Exper	iment		
ECAR No.:	3386	Rev. No.:	0 Project No	.: 23747	Date:	10/11/2016
	ECAR-3386		As-Run Thermal Analysis AGC-3 Experiment	of the	Page A29 of	A62
	f(x,a,b,c) :=	$a \cdot cos[b \cdot (x + c)]$,	Axial heating profile		
	$\mathbf{g}_{\mathbf{S}} := \begin{pmatrix} 10\\ 0.05\\ 1 \end{pmatrix}$		I	nital guess of regres	ssion coefficients	
	$s_{f} := genfit \left(\frac{x}{it} \right)$	$\left(\frac{q_{\text{holder}}}{q_{\text{m}}}, \frac{q_{\text{holder}}}{q_{\text{m}}}, g_{\text{s}}, f\right)$	ſ	Calculate regression or heating profile	coefficients	
	$s_{f} = \begin{pmatrix} 6.19\\ 0.056\\ 0.901 \end{pmatrix}$					
	$F_f(x) := f(x,$	$\mathbf{s}_{\mathbf{f}_0}, \mathbf{s}_{\mathbf{f}_1}, \mathbf{s}_{\mathbf{f}_2}$		Axial heating profile	9	
	$\rho_g \cdot s_{f_0} \cdot \frac{W}{gm} =$	$631 \cdot \frac{\text{BTU}}{\text{hr} \cdot \text{in}^3}$		Peak heating		

Plot comparing calculated heating data to heating data fitted to a cosine function:

TEM-10200 03/01/2012 Rev. 06	-1	ENGINEERING C	ALCULATIONS	AND ANAI	_YSIS	Page A30 of A62
Title:	As-Run	Thermal Analysis of the	AGC-3 Experime	ent		
ECAR No.:	3386	Rev. No.: 0	Project No.:	23747	Date:	10/11/2016

As-Run Thermal Analysis of the AGC-3 Experiment

Page A30 of A62

Heating rates of graphite samples in the center channel, during the first two cycles of irradiation (152B and 154B):

1	(-24.12)		(1.49)	ſ
	-23.125		2.03	
	-22.125		2.32	
	-21.125	1.125	2.61	
	-20.125		2.9	
	-19.125		3.24	
	-18.125		3.49	
	-17.125		3.8	
	-15.125		4.35	
	-13.125		4.8	
	-11.125		5.19	
	-9.125		5.52	
	-7.125		5.81	
	-5.125		5.97	
	-3.125		6.03	
7675	-1.125	1.402 855 8.	6.11	W
x =	1.125	·in q _{sample} :=	6.11	gm
	3.125		6.1	
	5.125		5.87	
	7.125		5.62	
	9.125		5.21	
	11.125		4.88	
	13.125		4.4	
	15.125		3.86	
	17.125		3.27	
	18.125		3.02	
	19.125		3.69	
	20.125		2.23	
	21.125		2.03	
	22.125		1.68	
	23.125		1.39	
	(24.125)		(1.1)	

TEM-10200- 03/01/2012 Rev. 06	-1 El	NGINEERI	NG CAI	CULATIONS		LYSIS	Page A32 of A62
Title:	As-Run Therm	nal Analysis	of the A	GC-3 Experimer	nt		
ECAR No.:	3386	Rev. No.:	0	Project No.:	23747	Date:	10/11/2016
	ECAR-3386		As-Run ⁻ AC	Fhermal Analysis of the GC-3 Experiment		Page A32 c	of A62
	Heating rates the first two cy	of graphite sam cles of irradiatio	oles in char on (152B an	inel 1, during d 154B):			
	(-24.12			(1.65)			
	-23.125			2.19			
	-22.125			2.53			
	-21.125			2.89			
	-20.125			3.16			
	-19.125			3.48			
	-18.125			3.84			
	-17.125			4.17			
	-15.125			4.71			
	-13.125			5.32			
				5.67			
	-9.125			6.04			

	-9.125			6.04	
	-7.125			6.27	
	-5.125			6.51	3
	-3.125			6.63	
	-1.125			6.67	W
x =	1.125	-ın	q _{sample} ≔	6.64	gm
	3.125			6.58	
	5.125			6.36	
	7.125			6.02	
	9.125			5.77	
	11.125			5.32	
	13.125			4.75	
	15.125			4.26	
	17.125			3.6	
	18.125			3.26	
	19.125			2.94	
	20.125			2.59	
	21.125			2.19	
	22.125			1.81	
	23.125			1.45	
	24.125			(1.15)	1

TEM-10200 03/01/2012 Rev. 06	-1 E		IG CALCULATIO	ONS AND) ANALYS	SIS	Page A33 of A62
Title:	As-Run Therr	mal Analysis c	of the AGC-3 Expe	riment			
ECAR No.:	3386	Rev. No.:	0 Project No	o.: 23	747	Date:	10/11/2016
	ECAR-3386		As-Run Thermal Analysia AGC-3 Experimen	s of the t	Ρ	age A33 of	<i>i</i> A62
	$f(x,a,b,c) := a \cdot cos[b \cdot (x + c)]$ Axial heating profile						
	$\mathbf{g}_{\mathbf{S}} := \begin{pmatrix} 10\\ 0.05\\ 1 \end{pmatrix}$		I	Inital guess of regression coefficients			
	$s_{f} := genfit \left(\frac{2}{h} \right)$	$\left(\frac{q_{sample}}{m}, \frac{q_{sample}}{W}, g_{s}, f\right)$	C f	≿alculate regre or heating pro	ession coefficie file	ents	
	$s_{f} = \begin{pmatrix} 6.733 \\ 0.056 \\ 0.889 \end{pmatrix}$						
	$\mathbb{F}_{f}(x)\coloneqq f\!\left(x\right)$	${}^{s}f_{0}, {}^{s}f_{1}, {}^{s}f_{2}$		Axial heating	profile		
	q _{channel_1} ≔	$p_{g} \cdot s_{f_0} \cdot \frac{W}{gm} = 686 \cdot \cdot$	BTU hr·in ³	Peak heating	1		
	Plot comparir	ng calculated heati	ng data to heating data f	tted to a cosi	ne function:		

Axial position (in)

TEM-10200 03/01/2012 Rev. 06	-1	ENGINEERING C	ALCULATIONS	AND ANAI	YSIS	Page A34 of A62
Title:	As-Run T	hermal Analysis of the	AGC-3 Experime	ent		
ECAR No.:	3386	Rev. No.: 0	Project No.:	23747	Date:	10/11/2016

As-Run Thermal Analysis of the AGC-3 Experiment

Page A34 of A62

Heating rates of graphite samples in channel 2, during the first two cycles of irradiation (152B and 154B):

	(-24.12)	1	(1.57)	ř.
	-23.125		2.14	
	-22.125		2.42	
	-21.125		2.75	
	-20.125		3.07	
	-19.125		3.34	
	-18.125		3.66	
	-17.125		3.97	
	-15.125		4.52	
	-13.125		5	
	-11.125		5.4	
	-9.125		5.74	
	-7.125		6.06	
	-5.125		6.14	
	-3.125		6.33	
	-1.125		6.39	W
x =	1.125	·m q _{sample} :=	6.28	gm
	3.125		6.23	
	5.125		6.04	
	7.125		5.83	
	9.125		5.45	
	11.125		5.12	
	13.125		4.56	
	15.125		4	
	17.125		3.44	
	18.125		3.08	
	19.125		2.76	
	20.125		2.42	
	21.125		2.14	
	22.125		1.78	
	23.125		1.43	
	(24.125)	1	(1.11)	

TEM-10200 03/01/2012 Rev. 06	-1 EN	GINEERIN		CULATIONS	AND ANAL	YSIS	Page A35 of A62
Title:	As-Run Therm	al Analysis c	of the AG	C-3 Experime	nt		
ECAR No.:	3386	Rev. No.:	0	Project No.:	23747	Date:	10/11/2016
	ECAR-3386		As-Run Th AGC	ermal Analysis of the C-3 Experiment		Page A35 of	A62
	$f(x,a,b,c) \coloneqq a$	$1 \cdot \cos[b \cdot (x + c)]$		Axial h	eating profile		
	$\mathbf{g}_{\mathbf{s}} := \begin{pmatrix} 10\\ 0.05\\ 1 \end{pmatrix}$			Inital g	uess of regression	n coefficients	
	$s_f := genfit \left(\frac{x}{in} \right)$	$\left(\frac{q_{sample}}{\frac{W}{gm}}, g_{s}, f \right)$		Calcula for hea	te regression coe ting profile	efficients	
	$s_{f} = \begin{pmatrix} 6.409\\ 0.056\\ 0.9 \end{pmatrix}$						
	$F_{f}(x) \coloneqq f(x,s_{f})$	$\left[0, {}^{s}f_{1}, {}^{s}f_{2}\right)$		Axial	heating profile		
	q _{channel_2} := f	$b_{g} \cdot s_{f_0} \cdot \frac{W}{gm} = 653 \cdot \cdot$	BTU hr∙in ³	Peak	heating		

Plot comparing calculated heating data to heating data fitted to a cosine function:

TEM-10200 03/01/2012 Rev. 06	-1 EN	IGINEERII	NG CAL		AND ANAL	YSIS	Page A36 of A62
Title:	As-Run Therm	al Analysis	of the A	GC-3 Experimer	ıt		
ECAR No.:	3386	Rev. No.:	0	Project No.:	23747	Date:	10/11/2016
	ECAR-3386		As-Run T AG	Thermal Analysis of the SC-3 Experiment		Page A36 o	f A62

Heating rates of graphite samples in channel 3, during the first two cycles of irradiation (152B and 154B):

	(-24.12		(1.42)	1
	-23.125		1.93	
	-22.125		2.24	
	-21.125		2.54	2
	-20.125		2.85	
	-19.125		3.11	
	-18.125		3.4	
	-17.125		3.63	
	-15.125		4.18	
	-13.125		4.66	
	-11.125		4.99	
	-9.125		5.29	
	-7.125		5.51	8
	-5.125		5.69	
	-3.125		5.77	6
v –	-1.125	-in a	5.81	W
x –	1.125	-in _{4sample}	5.78	gm
	3.125		5.7	
	5.125		5.6	
	7.125		5.31	
	9.125		5.01	3
	11.125		4.63	
	13.125		4.27	
	15.125		3.73	
	17.125		3.15	
	18.125		2.87	2
	19.125		2.5	
	20.125		2.21	
	21.125		1.94	
	22.125		1.65	8
	23.125		1.35	
	(24.125)		(1.07)	

TEM-10200 03/01/2012 Rev. 06	-1 El	IGINEERIN	IG CALCULAT	ONS AND ANA		Page A37 of A62
Title:	As-Run Therm	al Analysis o	of the AGC-3 Exp	eriment		
ECAR No.:	3386	Rev. No.:	0 Project N	No.: 23747	Date:	10/11/2016
	ECAR-3386		As-Run Thermal Analy AGC-3 Experime	sis of the ent	Page A37 of A	A62
	$f(x,a,b,c) \coloneqq a$	$a \cdot \cos[b \cdot (x + c)]$		Axial heating profile		
	$\mathbf{g}_{\mathbf{s}} := \begin{pmatrix} 10\\ 0.05\\ 1 \end{pmatrix}$			Inital guess of regressi	ion coefficients	
	$s_f := genfit \left(egin{array}{c} x \\ in \end{array} ight)$	$\left(\frac{q_{sample}}{\frac{W}{gm}}, g_{s}, f \right)$		Calculate regression co for heating profile	oefficients	
	$s_{f} = \begin{pmatrix} 5.884 \\ 0.056 \\ 0.907 \end{pmatrix}$					
	$F_f(x) \coloneqq f\left(x, s_f\right)$	$\mathbf{f}_0, \mathbf{s}_1, \mathbf{s}_1, \mathbf{s}_2$		Axial heating profile		
	q _{channel_3} ≔ 1	$\sigma_{g} \cdot s_{f_0} \cdot \frac{W}{gm} = 599 \cdot 10^{-10}$	BTU hr·in ³	Peak heating		

Plot comparing calculated heating data to heating data fitted to a cosine function:

TEM-10200 03/01/2012 Rev. 06	-1	ENGINEERING CA	LCULATIONS	AND ANAL	YSIS	Page A38 of A62
Title:	As-Run T	hermal Analysis of the A	AGC-3 Experime	ent		
ECAR No.:	3386	Rev. No.: 0	Project No.:	23747	Date:	10/11/2016

As-Run Thermal Analysis of the AGC-3 Experiment

Page A38 of A62

Heating rates of graphite samples in channel 4, during the first two cycles of irradiation (152B and 154B):

	(-24.12)		(1.38)	e.
	-23.125		1.83	ŏ
	-22.125		2.12	
	-21.125		2.43	d.
	-20.125		2.67	
	-19.125		2.99	
	-18.125		3.27	
	-17.125		3.49	
	-15.125		4.02	3
	-13.125		4.46	
	-11.125		4.79	
	-9.125		5.09	
	-7.125		5.38	
	-5.125		5.48	
	-3.125		5.59	
	_1 125		5 62	
	1.125		3.05	W
x =	1.125	•in q _{sample} :=	5.65 5.6	. <u>W</u> gm
x =	1.125 3.125	\cdot in $q_{sample} \coloneqq$	5.6 5.52	. <u>w</u> gm
x =	1.125 1.125 3.125 5.125	∙in q _{sample} ≔	5.65 5.52 5.4	. W gm
x =	1.125 1.125 3.125 5.125 7.125	∙in q _{sample} ≔	5.63 5.52 5.4 5.19	. W gm
x =	1.125 1.125 3.125 5.125 7.125 9.125	∙in q _{sample} ≔	5.6 5.52 5.4 5.19 4.82	. W gm
x =	1.125 1.125 3.125 5.125 7.125 9.125 11.125	∙in q _{sample} ≔	5.63 5.6 5.52 5.4 5.19 4.82 4.45	. W gm
x =	1.125 1.125 3.125 5.125 7.125 9.125 11.125 13.125	∙in q _{sample} ≔	5.63 5.6 5.52 5.4 5.19 4.82 4.45 4.04	. W gm
x =	1.125 1.125 3.125 5.125 7.125 9.125 11.125 13.125 15.125	∙in q _{sample} ≔	5.65 5.52 5.4 5.19 4.82 4.45 4.04 3.55	. W gm
x =	1.125 1.125 3.125 5.125 7.125 9.125 11.125 13.125 15.125 17.125	∙in q _{sample} ≔	5.6 5.52 5.4 5.19 4.82 4.45 4.04 3.55 3.05	. W gm
x =	1.125 1.125 3.125 5.125 7.125 9.125 11.125 13.125 15.125 17.125 18.125	∙in q _{sample} ≔	5.63 5.6 5.52 5.4 5.19 4.82 4.45 4.04 3.55 3.05 2.79	. W gm
x =	1.125 1.125 3.125 5.125 7.125 9.125 11.125 13.125 15.125 17.125 18.125 19.125	∙in q _{sample} ≔	5.65 5.52 5.4 5.19 4.82 4.45 4.04 3.55 3.05 2.79 2.36	. W gm
x =	1.125 1.125 3.125 5.125 7.125 9.125 11.125 13.125 15.125 17.125 18.125 19.125 20.125	∙in q _{sample} ≔	5.63 5.6 5.52 5.4 5.19 4.82 4.45 4.04 3.55 3.05 2.79 2.36 2.13	. W gm
x =	1.125 1.125 3.125 5.125 7.125 9.125 11.125 13.125 15.125 17.125 18.125 19.125 20.125 21.125	∙in q _{sample} ≔	5.63 5.6 5.52 5.4 5.19 4.82 4.45 4.04 3.55 3.05 2.79 2.36 2.13 1.89	. W gm
x =	1.125 1.125 3.125 5.125 7.125 9.125 11.125 13.125 15.125 17.125 18.125 19.125 20.125 21.125 22.125	∙in q _{sample} ≔	5.63 5.6 5.52 5.4 5.19 4.82 4.45 4.04 3.55 3.05 2.79 2.36 2.13 1.89 1.56	. W gm
x =	1.125 1.125 3.125 5.125 7.125 9.125 11.125 13.125 13.125 15.125 17.125 18.125 19.125 20.125 21.125 21.125 22.125 23.125	∙in q _{sample} ≔	5.63 5.6 5.52 5.4 5.19 4.82 4.45 4.04 3.55 3.05 2.79 2.36 2.13 1.89 1.56 1.25	. W gm

TEM-10200 03/01/2012 Rev. 06	-1 I	ENGINEERIN	IG CA	LCULATIONS	AND ANA	LYSIS	Page A39 of A62
Title:	As-Run The	rmal Analysis	of the A	GC-3 Experime	ent		
ECAR No.:	3386	Rev. No.:	0	Project No.:	23747	Date:	10/11/2016
	ECAR-3386		As-Run A	Thermal Analysis of the GC-3 Experiment	9	Page A39 of	f A62
	f(x,a,b,c):	$= a \cdot \cos[b \cdot (x + c)]$		Axial h			
	$\mathbf{g}_{\mathbf{S}} := \begin{pmatrix} 10 \\ 0.05 \\ 1 \end{pmatrix}$			Inital g	on coefficients		
	$s_{f} := genfit \left(\frac{x}{in}, \frac{q_{sample}}{W}, g_{s}, f \right)$			Calcul for hea	ate regression co ating profile	efficients	
	$s_{f} = \begin{pmatrix} 5.687 \\ 0.056 \\ 0.89 \end{pmatrix}$						
	$F_{f}(x) \coloneqq f(x)$	$\left(s,s_{f_0},s_{f_1},s_{f_2}\right)$		Axial	heating profile		
	q _{channel_4} 3	$= \rho_{g} \cdot s_{f_0} \cdot \frac{W}{gm} = 579$	BTU hr·in ³	Peak	t heating		

Plot comparing calculated heating data to heating data fitted to a cosine function:

TEM-10200 03/01/2012 Rev. 06	-1 El	NGINEERI	NG CAL	CULATIONS	AND ANA	LYSIS	Page A40 of A62
Title:	As-Run Therm	nal Analysis	of the A	GC-3 Experime	nt		
ECAR No.:	3386	Rev. No.:	0	Project No.:	23747	Date:	10/11/2016
	ECAR-3386		As-Run T AG	Thermal Analysis of the GC-3 Experiment		Page A40 o	f A62
	Heating rates the first two cy	of graphite samp yoles of irradiatio	bles in chan on (152B an	nel 5, during d 154B):			
	$\begin{pmatrix} -24.12 \\ 22.125 \end{pmatrix}$)		$\begin{pmatrix} 1.47 \\ 1.05 \end{pmatrix}$			
	-23.125			2.29			
	-21.125			2.59			
	-20.125			2.86			
	-19.125			3.18			
	-18.125			3.47			
	-17.125			3.72			
	-15.125			4.29			
	-13.125			4.71			
	-11.125			5.13			

8			Takon menangkan kenar				
	-9.125		5.52				
	-7.125		5.77				
	-5.125		5.84				
	-3.125		6.1				
	-1.125		6.1	W			
x =	1.125	·ın q _{sample} ≔	6.14	. <u></u> gm			
	3.125		5.94				
	5.125		5.79				
	7.125		5.54				
	9.125		5.15				
	11.125		4.83				
	13.125		4.36				
	15.125		3.8				
	17.125		3.26				
	18.125		2.94				
	19.125		2.59				
	20.125		2.25				
	21.125		2.01				
	22.125		1.63				
	23.125		1.33				
	24.125 /		(1.07)				
TEM-10200- 03/01/2012 Rev. 06	-1	ENGINEERII	NG C	ALCULATIONS	AND ANA	LYSIS	Page A41 of A62
-------------------------------------	--	---	---------------------------	--	-----------------------------------	-------------	-----------------
Title:	As-Run Th	ermal Analysis	of the	AGC-3 Experime	nt		
ECAR No.:	3386	Rev. No.:	0	Project No.:	23747	Date:	10/11/2016
	ECAR-3386		As-Ru	in Thermal Analysis of the AGC-3 Experiment	i -	Page A41 of	A62
	f(x,a,b,c	$c) \coloneqq a \cdot cos[b \cdot (x + c)]$		Axial h	eating profile		
	$\mathbf{g}_{\mathbf{s}} := \begin{pmatrix} 10\\ 0.05\\ 1 \end{pmatrix}$			Inital g			
	$s_{f} \coloneqq genf$	$fit\left(\frac{x}{in}, \frac{q_{sample}}{\frac{W}{gm}}, g_{s}, f\right)$		Calcula for hea	ate regression co ting profile	efficients	
	$\mathbf{s_f} = \begin{pmatrix} 6.1\\ 0.0\\ 0.8 \end{pmatrix}$	29 56 75					
	$F_{f}(x) \coloneqq f$	$f\left(x, s_{f_0}, s_{f_1}, s_{f_2}\right)$		Axial	heating profile		
	q _{channel_}	$_{5} := \rho_{g} \cdot s_{f_{0}} \cdot \frac{W}{gm} = 624$	BTU hr·in ³	Peak	heating		

TEM-10200- 03/01/2012 Rev. 06	-1	ENGINEERING C	ALCULATIONS	AND ANAL	YSIS	Page A42 of A62
Title:	As-Run T	hermal Analysis of the	AGC-3 Experime	ent		
ECAR No.:	3386	Rev. No.: 0	Project No.:	23747	Date:	10/11/2016

As-Run Thermal Analysis of the AGC-3 Experiment

Page A42 of A62

Heating rates of graphite samples in channel 6, during the first two cycles of irradiation (152B and 154B):

	(-24.12)		(1.6)	F
	-23.125		2.14	
	-22.125		2.44	
	-21.125		2.81	
	-20.125		3.16	
	-19.125		3.46	
	-18.125		3.77	
	-17.125		4.1	
	-15.125		4.7	
	-13.125		5.16	
	-11.125		5.64	
	-9.125		6	
	-7.125		6.25	
	-5.125		6.45	
	-3.125		6.6	
	-1.125		6.64	W
x =	1.125	·m q _{sample} :=	6.63	gm
	3.125		6.48	
	5.125		6.27	
	7.125		6	
	9.125		5.68	
	11.125		5.17	
	13.125		4.72	×.
	15.125		4.18	
	17.125		3.54	
	18.125		3.22	
	19.125		2.83	
	20.125		2.47	
	21.125		2.14	
	22.125		1.78	
	23.125		1.44	
	(24.125)	J	(1.13)	

TEM-10200- 03/01/2012 Rev. 06	-1 El	NGINEERIN	IG CALCULAT	IONS AND A	ANALYSIS	Page A43 of A62
Title:	As-Run Thern	nal Analysis c	of the AGC-3 Exp	periment		
ECAR No.:	3386	Rev. No.:	0 Project	No.: 2374	7 Date:	10/11/2016
	ECAR-3386		As-Run Thermal Analy AGC-3 Experim	rsis of the ent	Page A43 of	A62
	f(x,a,b,c) :=	$a \cdot \cos[b \cdot (x + c)]$		Axial heating prof	ïle	
	$\mathbf{g}_{\mathbf{s}} := \begin{pmatrix} 10\\ 0.05\\ 1 \end{pmatrix}$			Inital guess of reg	gression coefficients	
	$s_{f} := genfit \left(\frac{x}{in} \right)$	$\left(\frac{q_{sample}}{W}, g_{s}, f\right)$		Calculate regress for heating profile	sion coefficients	
	$s_{f} = \begin{pmatrix} 6.674\\ 0.056\\ 0.903 \end{pmatrix}$					
	$F_{f}(x) \coloneqq f\left(x, s\right)$	$\mathbf{f_0}^{,\mathbf{s}}\mathbf{f_1}^{,\mathbf{s}}\mathbf{f_2} \Big)$		Axial heating pro	ofile	
	q _{channel_6} ≔	$\rho_{g} \cdot s_{f_{0}} \cdot \frac{W}{gm} = 680 \cdot \cdot$	BTU hr·in ³	Peak heating		

TEM-10200- 03/01/2012 Rev. 06	-1 El	NGINEERI	NG CAI	LCULATIONS	AND ANAL	YSIS	Page A44 of A62
Title:	As-Run Therm	nal Analysis	of the A	GC-3 Experime	nt		
ECAR No.:	3386	Rev. No.:	0	Project No.:	23747	Date:	10/11/2016
	ECAR-3386		As-Run AG	Thermal Analysis of the GC-3 Experiment	i -	Page A44 of	A62
	The test train	was rotated 180	degrees af	ter the first two cycles	s of irradiation.		
	Effect of 180 of the position of the that the heating	degree test train graphite sample g rates in these	rotation on es (the sym channels a	the azimuthal bol <-> indicates ire interchanged):			
	channel 1 <->	channel 4					
	channel 2 <->	channel 5					
	channel 3 <->	channel 6					
	Peak heating in the second two	rate of each cha o cycles of irradi	nnel of grap ation (155A	bhite samples during and 155B):			
	^q channel_cente	$r := 630 \frac{BTU}{hr \cdot in^3}$					
	q _{channel_1} :=	579 $\frac{\text{BTU}}{\text{hr} \cdot \text{in}^3}$					
	q _{channel_2} :=	$624 \frac{BTU}{hr \cdot in^3}$					
	q _{channel_3} :=	$680 \frac{\text{BTU}}{\text{hr} \cdot \text{in}^3}$					
	q _{channel_4} :=	$686 \frac{\text{BTU}}{\text{hr} \cdot \text{in}^3}$					
	q _{channel_5} :=	$653 \frac{\text{BTU}}{\text{hr} \cdot \text{in}^3}$					
	$q_{channel_6} :=$	$599 \frac{\text{BTU}}{\text{hr} \cdot \text{in}^3}$					

TEM-10200- 03/01/2012 Rev. 06	-1	ENGINEERING CA	ALCULATIONS	AND ANAL	YSIS	Page A45 of A62
Title:	As-Run	Thermal Analysis of the	AGC-3 Experime	ent		
ECAR No.:	3386	Rev. No.: 0	Project No.:	23747	Date:	10/11/2016

As-Run Thermal Analysis of the AGC-3 Experiment

Page A45 of A62

Heating rates of coolant:

	(-24.12)		(3.27)	í.
	-23.125		4.12	
	-22.125		4.88	
	-21.125		5.56	
	-20.125		6.24	
	-19.125		6.92	
	-18.125		7.58	
	-17.125		8.23	
	-15.125		9.38	
	-13.125		10.38	
	-11.125		11.24	
	-9.125		11.93	
	-7.125		12.44	
	-5.125		12.85	
	-3.125		13.08	
	-1.125		13.13	W
x =	1.125	·m q _{coolant} :=	13.16	gm
	3.125		12.96	
	5.125		12.57	
	7.125		11.99	
	9.125		11.34	
	11.125		10.47	
	13.125		9.47	
	15.125		8.36	
	17.125		7.11	
	18.125		6.37	
	19.125		5.63	
	20.125		4.93	
	21.125		4.25	
	22.125		3.55	
	23.125		2.86	
	(24.125)		(2.22)	

TEM-10200- 03/01/2012 Rev. 06	-1 EN	IGINEERIN	G CALCULATI	ONS AND ANA	ALYSIS	Page A46 of A62
Title:	As-Run Therma	al Analysis of	f the AGC-3 Expe	eriment		
ECAR No.:	3386	Rev. No.: 0) Project N	o.: 23747	Date:	10/11/2016
	ECAR-3386		As-Run Thermal Analysi AGC-3 Experimer	s of the t	Page A46 of	<i>i</i> A62
	f(x,a,b,c) :=	$a \cdot \cos[b \cdot (x + c)]$		Axial heating profile		
	$\mathbf{g}_{\mathbf{S}} := \begin{pmatrix} 10\\ 0.05\\ 1 \end{pmatrix}$			Inital guess of regres	sion coefficients	
	$s_f := genfit \left(\frac{x}{in} \right)$	$\left(\frac{q_{coolant}}{W}, g_{s}, f\right)$		Calculate regression for heating profile	coefficients	
	$s_{f} = \begin{pmatrix} 13.315\\ 0.056\\ 0.891 \end{pmatrix}$					
	$F_{f}(x) \coloneqq f(x,s)$	$(s_{f_0}, s_{f_1}, s_{f_2})$		Axial heating profile	•	
	$\rho_0 \cdot \mathbf{s_{f_0}} \cdot \frac{\mathbf{W}}{\mathbf{gm}} = 7$	$730.\frac{\text{BTU}}{\text{hr}\cdot\text{in}^3}$		Peak heating		

TEM-10200- 03/01/2012 Rev. 06	-1	ENGINEERING C	ALCULATIONS	AND ANAL	YSIS	Page A47 of A62
Title:	As-Run T	hermal Analysis of the	AGC-3 Experime	nt		
ECAR No.:	3386	Rev. No.: 0	Project No.:	23747	Date:	10/11/2016

As-Run Thermal Analysis of the AGC-3 Experiment

Page A47 of A62

Calculate average density of thermocouple:

$D_{o_tc} \approx 0.125 \cdot in$	Outside diameter of thermocouple sheath
$D_{i_t} := 0.093 \cdot in$	Inside diameter of thermocouple sheath
$D_{wire} \coloneqq 0.025 \cdot in$	Diameter of thermocouple wire
$A_{\text{wire}} := 2 \cdot \frac{\pi}{4} \cdot D_{\text{wire}}^2$	Cross sectional area of 2 wires
$D_{i_ins} \coloneqq \sqrt{\frac{4}{\pi} \cdot A_{wire}} = 0.0354 \cdot in$	Inside diameter of insulation
$A_{\text{sheath}} \coloneqq \frac{\pi}{4} \cdot \left(D_{o_{\text{tc}}}^2 - D_{1_{\text{tc}}}^2 \right) = 0.0$	$0.055 \cdot in^2$ Cross sectional area of sheath
$A_{ins} := \frac{\pi}{4} \cdot \left(D_{i_tc}^2 - D_{i_ins}^2 \right) = 0.037$	5-cm ² Cross sectional area of insulation
$ \rho_{\text{metal}} \coloneqq 8.4 \frac{\text{gm}}{\text{cm}^3} $	Density of sheath and wires
$\rho_{\rm MgO} \coloneqq 3.65 \frac{\rm gm}{\rm cm^3}$	Density of insulation

Density of thermocouple (composite material consisting of inconel sheath, MgO insulation, and wires)

$$\rho_{tc} := \frac{\rho_{metal} \cdot (A_{sheath} + A_{wire}) + \rho_{MgO} \cdot A_{ins}}{A_{sheath} + A_{wire} + A_{ins}} = 6.2 \cdot \frac{gm}{cm^3}$$

TEM-10200- 03/01/2012 Rev. 06	-1 EN	IGINEERII	NG CAL		AND ANAL	YSIS	Page A48 of A62
Title:	As-Run Therma	al Analysis	of the A	GC-3 Experimen	ıt		
ECAR No.:	3386	Rev. No.:	0	Project No.:	23747	Date:	10/11/2016
	ECAR-3386		As-Run T AG	Thermal Analysis of the GC-3 Experiment		Page A48 o	f A62

Heating rates of thermocouples (average of thermocouples TC-10 and TC-11

spanning an elevation from 18 inches below core to the top of core), during the first two cycles of irradiation (152B and 154B):

	(-18.125)		(3.81)	
	-17.125		5.76	
	-15.125		6.41	
	-13.125		7.18	
	-11.125		7.71	
	-9.125		8.42	
	-7.125		8.60	
	-5.125		8.64	
	-3.125		9.19	
	-1.125		9.08	
	1.125		9.23	
	3.125		8.93	
×	5.125	in a -	8.84	W
х	7.125	q_{tc}	8.40	gm
	9.125		7.85	
	11.125		7.18	
	13.125		6.51	
	15.125		5.65	
	17.125		4.82	
	18.125		4.32	
	19.125		3.73	
	20.125		3.16	
	21.125		2.60	
	22.125		2.05	
	23.125		1.60	
	(24.125)		(1.27)	

TEM-10200 03/01/2012 Rev. 06	-1 EN	IGINEERIN	NG CALCULATIO	ONS AND ANA	LYSIS Page A49 of A6	2
Title:	As-Run Therm	al Analysis	of the AGC-3 Expe	riment		
ECAR No.:	3386	Rev. No.:	0 Project N	o.: 23747	Date: 10/11/2016	
	ECAR-3386		As-Run Thermal Analysi AGC-3 Experimen	s of the t	Page A49 of A62	
	$f(x,a,b,c) \coloneqq$	$a \cdot \cos[b \cdot (x + c)]$		Axial heating profile		
	$\mathbf{g}_{\mathbf{S}} := \begin{pmatrix} 10\\ 0.05\\ 1 \end{pmatrix}$			Inital guess of regress	sion coefficients	
	$s_{f} := genfit \left(\frac{x}{in} \right)$	$\left(\frac{q_{tc}}{W}, g_{s}, f\right)$		Calculate regression of for heating profile	coefficients	
	$\mathbf{s_{f}} = \begin{pmatrix} 9.298\\ 0.059\\ 0.596 \end{pmatrix}$					
	$F_{f}(x) := f(x,s)$	$(s_{f_0}, s_{f_1}, s_{f_2})$		Axial heating profile		
	^q TC_profile ^{;=}	$\rho_{tc} \cdot s_{f_0} \cdot \frac{W}{gm} = 3$	198. BTU hr·in ³	Peak heating		

TEM-10200 03/01/2012 Rev. 06	-1	ENGINEERING CA	ALCULATIONS		LYSIS	Page A50 of A62
Title:	As-Run	Thermal Analysis of the	AGC-3 Experime	ent		
ECAR No.:	3386	Rev. No.: 0	Project No.:	23747	Date:	10/11/2016

As-Run Thermal Analysis of the AGC-3 Experiment

Page A50 of A62

Ratio of the heating rate of each TC to the heating rate obtained from the heating profile at an elevation of 18.125 inches above core mid-plane (the location closest to core-mid-plane at which the TC heating rates can be compared):

$\gamma_{\text{TC01}} \coloneqq \frac{4.15}{4.32} = 0.961$	$\gamma_{TC07} \coloneqq \frac{3.93}{4.32} = 0.91$
$\gamma_{\text{TC02}} \coloneqq \frac{4.29}{4.32} = 0.993$	$\gamma_{\rm TC08} \coloneqq \frac{3.61}{4.32} = 0.836$
$\gamma_{\rm TC03} := \frac{4.27}{4.32} = 0.988$	$\gamma_{\text{TC09}} := \frac{4.16}{4.32} = 0.963$
$\gamma_{\rm TC04} \coloneqq \frac{3.84}{4.32} = 0.889$	$\gamma_{TC10} \coloneqq \frac{4.38}{4.32} = 1.014$
$\gamma_{\rm TC05} := \frac{3.66}{4.32} = 0.847$	$\gamma_{\text{TC11}} \coloneqq \frac{4.26}{4.32} = 0.986$
$\gamma_{\text{TC06}} \coloneqq \frac{4.09}{4.32} = 0.947$	$\gamma_{\text{TC12}} \coloneqq \frac{3.89}{4.32} = 0.9$

Peak heating rate of each TC during the first two cycles of irradiation (152B and 154B):

$$\begin{array}{ll} q_{TC01} \coloneqq \gamma_{TC01} \cdot q_{TC_profile} = 3072 \cdot \frac{BTU}{hr \cdot in^3} & q_{TC07} \coloneqq \gamma_{TC07} \cdot q_{TC_profile} = 2909 \cdot \frac{BTU}{hr \cdot in^3} \\ q_{TC02} \coloneqq \gamma_{TC02} \cdot q_{TC_profile} = 3176 \cdot \frac{BTU}{hr \cdot in^3} & q_{TC08} \coloneqq \gamma_{TC08} \cdot q_{TC_profile} = 2672 \cdot \frac{BTU}{hr \cdot in^3} \\ q_{TC03} \coloneqq \gamma_{TC03} \cdot q_{TC_profile} = 3161 \cdot \frac{BTU}{hr \cdot in^3} & q_{TC09} \coloneqq \gamma_{TC09} \cdot q_{TC_profile} = 3079 \cdot \frac{BTU}{hr \cdot in^3} \\ q_{TC04} \coloneqq \gamma_{TC04} \cdot q_{TC_profile} = 2843 \cdot \frac{BTU}{hr \cdot in^3} & q_{TC10} \coloneqq \gamma_{TC10} \cdot q_{TC_profile} = 3242 \cdot \frac{BTU}{hr \cdot in^3} \\ q_{TC05} \coloneqq \gamma_{TC05} \cdot q_{TC_profile} = 2709 \cdot \frac{BTU}{hr \cdot in^3} & q_{TC11} \coloneqq \gamma_{TC11} \cdot q_{TC_profile} = 3153 \cdot \frac{BTU}{hr \cdot in^3} \\ q_{TC06} \coloneqq \gamma_{TC06} \cdot q_{TC_profile} = 3028 \cdot \frac{BTU}{hr \cdot in^3} & q_{TC12} \coloneqq \gamma_{TC12} \cdot q_{TC_profile} = 2880 \cdot \frac{BTU}{hr \cdot in^3} \\ q_{TC10} \coloneqq \gamma_{TC12} \cdot q_{TC_profile} = 2880 \cdot \frac{BTU}{hr \cdot in^3} \\ q_{TC10} \coloneqq \gamma_{TC12} \cdot q_{TC_profile} = 2880 \cdot \frac{BTU}{hr \cdot in^3} \\ q_{TC10} \coloneqq \gamma_{TC12} \cdot q_{TC_profile} = 2880 \cdot \frac{BTU}{hr \cdot in^3} \\ q_{TC10} \coloneqq \gamma_{TC12} \cdot q_{TC_profile} = 2880 \cdot \frac{BTU}{hr \cdot in^3} \\ q_{TC10} \coloneqq \gamma_{TC12} \cdot q_{TC_profile} = 2880 \cdot \frac{BTU}{hr \cdot in^3} \\ q_{TC10} \coloneqq \gamma_{TC12} \cdot q_{TC_profile} = 2880 \cdot \frac{BTU}{hr \cdot in^3} \\ q_{TC10} \coloneqq \gamma_{TC12} \cdot q_{TC_profile} = 2880 \cdot \frac{BTU}{hr \cdot in^3} \\ q_{TC10} \coloneqq \gamma_{TC12} \cdot q_{TC_profile} = 2880 \cdot \frac{BTU}{hr \cdot in^3} \\ q_{TC10} \coloneqq \gamma_{TC12} \cdot q_{TC_profile} = 2880 \cdot \frac{BTU}{hr \cdot in^3} \\ q_{TC10} \coloneqq \gamma_{TC12} \cdot q_{TC12} \cdot q_{TC_profile} = 2880 \cdot \frac{BTU}{hr \cdot in^3} \\ q_{TC10} \coloneqq \gamma_{TC12} \cdot q_{TC12} \cdot q_{TC12} \cdot q_{TC_profile} = 2880 \cdot \frac{BTU}{hr \cdot in^3} \\ q_{TC10} \coloneqq \gamma_{TC12} \cdot q_{TC12} \cdot q_{$$

TEM-10200 03/01/2012 Rev. 06)-1 E	NGINEERII	NG C	ALCULATIONS	AND ANA	LYSIS	Page A51 of <i>I</i>	462
Title:	As-Run Therr	nal Analysis	of the	AGC-3 Experimer	nt			
ECAR No.:	3386	Rev. No.:	0	Project No.:	23747	Date:	10/11/2016	
	ECAR-3386		As-Rı	in Thermal Analysis of the AGC-3 Experiment		Page A51 c	of A62	
	The test train	was rotated 180	degrees	after the first two cycles	of irradiation.			

Effect of 180 degree test train rotation on the azimuthal position of the thermocouples (the symbol <-> indicates that the heating rates in these channels are interchanged):

TC 1 <-> TC 6 TC 2 <-> TC 7 TC 3 <-> TC 8 TC 4 <-> TC 11 TC 5 <-> TC 10 TC 9 <-> TC 12

Peak heating rate of each TC during the second two cycles of irradiation (155A and 155B):

$$\begin{array}{ll} q_{TC01}\coloneqq \gamma_{TC06}\cdot q_{TC_profile} = 3028 \cdot \frac{BTU}{hr \cdot in^3} & q_{TC07}\coloneqq \gamma_{TC02}\cdot q_{TC_profile} = 3176 \cdot \frac{BTU}{hr \cdot in^3} \\ q_{TC02}\coloneqq \gamma_{TC07}\cdot q_{TC_profile} = 2909 \cdot \frac{BTU}{hr \cdot in^3} & q_{TC08}\coloneqq \gamma_{TC03}\cdot q_{TC_profile} = 3161 \cdot \frac{BTU}{hr \cdot in^3} \\ q_{TC03}\coloneqq \gamma_{TC08}\cdot q_{TC_profile} = 2672 \cdot \frac{BTU}{hr \cdot in^3} & q_{TC09}\coloneqq \gamma_{TC12}\cdot q_{TC_profile} = 2880 \cdot \frac{BTU}{hr \cdot in^3} \\ q_{TC04}\coloneqq \gamma_{TC11}\cdot q_{TC_profile} = 3153 \cdot \frac{BTU}{hr \cdot in^3} & q_{TC10}\coloneqq \gamma_{TC05}\cdot q_{TC_profile} = 2709 \cdot \frac{BTU}{hr \cdot in^3} \\ q_{TC05}\coloneqq \gamma_{TC10}\cdot q_{TC_profile} = 3242 \cdot \frac{BTU}{hr \cdot in^3} & q_{TC11}\coloneqq \gamma_{TC04}\cdot q_{TC_profile} = 2843 \cdot \frac{BTU}{hr \cdot in^3} \\ q_{TC06}\coloneqq \gamma_{TC01}\cdot q_{TC_profile} = 3072 \cdot \frac{BTU}{hr \cdot in^3} & q_{TC12}\coloneqq \gamma_{TC09}\cdot q_{TC_profile} = 3079 \cdot \frac{BTU}{hr \cdot in^3} \end{array}$$

TEM-10200- 03/01/2012 Rev. 06	-1	ENGINEERING C	ALCULATIONS	AND ANAL	YSIS	Page A52 of A62
Title:	As-Run T	hermal Analysis of the	AGC-3 Experime	nt		
ECAR No.:	3386	Rev. No.: 0	Project No.:	23747	Date:	10/11/2016

As-Run Thermal Analysis of the AGC-3 Experiment

Page A52 of A62

Adjust heating profile by splitting into separate profiles below and above core mid-plane.

Normalized heating profile obtained by fitting heating data to a cosine function:

 $P_{norm}(x) \coloneqq \cos[0.056 \cdot (x + 0.9)]$

Integrate normalized heating profile:

$$I := \int_{-27.5}^{25.5} P_{\text{norm}}(x) \, dx \cdot in = 35.6 \cdot in$$

Split into separate profiles below and above core mid-plane:

 $P_{norm_below}(x) \coloneqq \cos[0.053 \cdot (x + 0.9)]$

$$I_{below} \coloneqq \int_{-27.5}^{0} P_{norm_below}(x) \, dx \cdot in = 19.5 \cdot in$$

 $P_{norm above}(x) \coloneqq cos[0.059 \cdot (x + 0.9)]$

$$I_{above} := \int_{0}^{25.5} P_{norm_above}(x) \, dx \cdot in = 16 \cdot in$$

Integrate normalized heating profiles to check that total core heating is unchanged:

 $I_{below} + I_{above} = 35.6 \cdot in$

TEM-10200- 03/01/2012 Rev. 06	-1	ENGINEERING CA	LCULATIONS	AND ANA	LYSIS	Page A53 of A62
Title:	As-Run	Thermal Analysis of the A	AGC-3 Experime	ent		
ECAR No.:	3386	Rev. No.: 0	Project No.:	23747	Date:	10/11/2016

As-Run Thermal Analysis of the AGC-3 Experiment

Page A53 of A62

Define array of coordinates:

i := 0..24

 $\zeta_i := -24 + 2 \cdot i$

Define arrays of normalized heating values:

$$i \coloneqq 0..24$$
 $P \coloneqq P_{norm}(\zeta)$

- j := 0..12 $P_{adj_j} := P_{norm_below}(\zeta_j)$
- k := 13..24 $P_{adj_k} := P_{norm_above}(\zeta_k)$

Plot symmetric and unsymmetric heating profiles:

Note: The unsymmetric heating profile (blue trace) was shown to improve temperature calculations in the AGC tests as compared to using the symmetric heating profile (red trace); see ECAR-2562 and ECAR-2322.

TEM-10200- 03/01/2012 Rev. 06	1	ENGINEERING CA	ALCULATIONS	AND ANAL	YSIS	Page A54 of A62
Title:	As-Run The	ermal Analysis of the	AGC-3 Experime	nt		
ECAR No.:	3386	Rev. No.: 0	Project No.:	23747	Date:	10/11/2016

As-Run Thermal Analysis of the AGC-3 Experiment

Page A54 of A62

Heating rates of other components with uniform heating rather than an axial heating profile:

Tungsten at top of center stack and bottom of lower stacks (ECAR-3051 Table 10):

 $q_{W_{bot}} := 2.71 \cdot \frac{W}{gm}$ Heating rate of tungsten at the bottom of lower stacks

D (

 $x_1 := -23.75$

 $\beta_1 \coloneqq \frac{P_{norm_below}(x_1)}{P_{norm}(x_1)} = 1.226$

Adjustment to heating profile

Axial position of bottom of lower stacks

 $\beta_1 \cdot \rho_W \cdot q_{W_bot} = 3159 \cdot \frac{BTU}{hr \cdot in^3}$

Adjusted heating rate

Heating of cente

x₂ := 19.25

 $q_{W_{top}} := 3.75 \cdot \frac{W}{gm}$

 $\beta_2 \coloneqq \frac{P_{norm_above}(x_2)}{P_{norm}(x_2)} = 0.871$

 $\beta_2 \cdot \rho_W \cdot q_{W_top} = 3103 \cdot \frac{BTU}{hr \cdot in^3}$

Heating rate of tungsten at the top of center stack

Axial position of top of center stack

Adjustment to heating profile

Adjusted heating rate

TEM-10200- 03/01/2012 Rev. 06	-1	ENGINEERING CA	LCULATIONS		LYSIS	Page A55 of A62
Title:	As-Run	Thermal Analysis of the A	AGC-3 Experime	ent		
ECAR No.:	3386	Rev. No.: 0	Project No.:	23747	Date:	10/11/2016

As-Run Thermal Analysis of the AGC-3 Experiment

Page A55 of A62

A.6 Source power, gas flows, and DPA

Graphite DPA as a function of irradiation time:

$t := \begin{pmatrix} 0 \\ 51 \\ 10 \\ 159 \\ 209 \end{pmatrix}$) .0 4.4 9.5 9.4	Effective full power days accumulated at the start of cycles 152B, 154B, 155A and 155B ("Advanced Test Reactor Power History Through Cycle 155B-1," Interoffice Memorandum DEH-02-14)
DPA :=	$\begin{pmatrix} 0 \\ 0.84 \\ 1.76 \\ 2.72 \\ 3.60 \end{pmatrix}$	Maximum DPA accumulated at the start of each cycle, averaged over the specimen stacks (ECAR-3051 Table 19)

$$\beta_{i} := \frac{DPA_{i+1} - DPA_{i}}{t_{i+1} - t_{i}} \qquad \beta = \begin{pmatrix} 0.016\\ 0.017\\ 0.017\\ 0.017\\ 0.018 \end{pmatrix} \cdot day^{-1}$$

DPA accumulated per day in each cycle

Irradiation time (days)

TEM-10200 03/01/2012 Rev. 06	-1 I	ENGINEERIN	IG CALCU	LATIONS		LYSIS	Page A56 of A62
Title:	As-Run Ther	mal Analysis	of the AGC-	3 Experime	nt		
ECAR No.:	3386	Rev. No.:	0 Pro	ject No.:	23747	Date:	10/11/2016
	ECAR-3386		As-Run Therma AGC-3 E	al Analysis of the xperiment		Page A56 of	A62
	DPA at selec	cted days during ea	ich cycle is calci	ulated using the	DPA rate and E	FPD at that day	Γ.
	$EFPD := \begin{pmatrix} 2 \\ 3e \\ 5e \end{pmatrix}$	day		Effective full p 12/19/2012, 1/	ower days in cyc 03/2013 and 1/1	le 152B at 7/2013	
	$\beta_0 \cdot (EFPD -$	$ t_0 = \begin{pmatrix} 0.35\\ 0.59\\ 0.82 \end{pmatrix} $		DPA			
	$\Delta day := \begin{pmatrix} 18\\ 36\\ 52 \end{pmatrix}$	9.5 9.5 9.5		Effective full p 09/11/2013, 09	ower days in cyc /29/2013 and 10	le 154B at /15/2013	
	$EFPD := t_1 + $	$\Delta day = \begin{pmatrix} 69.5 \\ 87.5 \\ 103.5 \end{pmatrix} \cdot c$	lay	Total effective days	full power		
	$\beta_0 \cdot t_1 + \beta_1 \cdot ($	EFPD $- t_1 = \begin{pmatrix} 1.16 \\ 1.47 \\ 1.74 \end{pmatrix}$		DPA			
	$\Delta day := \begin{pmatrix} 18\\ 36\\ 48 \end{pmatrix}$	day		Effective ful 12/11/2013,	l power days in o 12/29/2013 and	cycle 155A at 01/10/2014	
	$EFPD := t_2 - t_2$	$-\Delta day = \begin{pmatrix} 122.4 \\ 140.4 \\ 152.4 \end{pmatrix}$	lay	Total effecti days	ve full power		

 $\beta_{0} \cdot t_{1} + \beta_{1} \cdot (t_{2} - t_{1}) + \beta_{2} \cdot (EFPD - t_{2}) = \begin{pmatrix} 2.07 \\ 2.39 \\ 2.6 \end{pmatrix}$

DPA

Effective full power days in cycle 155B at 02/25/2014, 03/14/2014 and 04/08/2014

Total effective full power days

TEM-10200- 03/01/2012 Rev. 06	-1 E	NGINEERI	NG CAI	LCULATIONS		LYSIS	Page A57 of A62
Title:	As-Run Therr	mal Analysis	of the A	GC-3 Experime	nt		
ECAR No.:	3386	Rev. No.:	0	Project No.:	23747	Date:	10/11/2016
	ECAR-3386		As-Run AC	Thermal Analysis of the GC-3 Experiment		Page A57 o	f A62
	East source p containing da values given l data over the	cower and gas flo ta recorded at 10 here are for selec entire day:	ws are obta minute inte ted days di	ained from the NDMA ervals are stored in NI uring the cycle and are	S system; sprea DMAS (https://ht e computed by a	dsheets gr.inl.gov); veraging the	
	Cycle: 152B,	Date: 12/19/2012	, Power: 20	0.25 MW, DPA: 0.35			
	Temperature	control gas: zone	1: 0.501 A	r			
	Temperature	control gas: zone	2: 0.052 A	r			
	Temperature	control gas: zone	3: 0.069 A	r			
	Temperature	control gas: zone	4: 0.201 A	r			
	Temperature	control gas: zone	5: 0.967 A	r			
	Temperature	control gas: zone	6: 0.500 A	r			
	Cycle: 152B,	Date: 1/03/2013,	Power: 20.	48 MW, DPA: 0.59			
	Temperature	control gas: zone	1: 0.464 A	r			
	Temperature	control gas: zone	2: 0.068 A	Ľ,			
	Temperature	control gas: zone	3: 0.065 A	r			
	Temperature	control gas: zone	4: 0.168 A	r			
	Temperature	control gas: zone	5: 0.967 A	r			
	Temperature	control gas: zone	6: 0.500 A	r			
	Cycle: 152B,	Date: 1/17/2013,	Power: 20.	66 MW, DPA: 0.82			
	Temperature	control gas: zone	1: 0.328 A	r			
	Temperature	control gas: zone	2: 0.131 A	r			
	Temperature	control gas∶zone	3: 0.082 A	r			
	Temperature	control gas: zone	4: 0.198 A	r			
	Temperature	control gas: zone	5: 0.981 A	r			
	Temperature	control gas∶zone	6: 0.500 A	r			

TEM-10200 03/01/2012 Rev. 06	-1 E	ENGINEERI	NG CA	ALCULATIONS	AND ANA	LYSIS	Page A58 of A62	
Title:	As-Run Thermal Analysis of the AGC-3 Experiment							
ECAR No.:	3386	Rev. No.:	0	Project No.:	23747	Date:	10/11/2016	
	ECAR-3386		As-Ru	n Thermal Analysis of the AGC-3 Experiment		Page A58 of	i A62	
	Cycle: 154B	, Date: 09/11/2013	, Power:	21.13 MW, DPA: 1.16				
	Temperature	control gas: zone	1: 0.211	Ar				
	Temperature	control gas: zone	2: 0.212	Ar				
	Temperature	control gas: zone	3: 0.005	6 Ar				
	Temperature	control gas: zone	4: 0.212	Ar				
	Temperature	control gas: zone	5: 0.915	Ar				
	Temperature	control gas: zone	6: 0.500	Ar				
	Cycle: 154B	, Date: 09/29/2013	, Power:	21.21 MW, DPA: 1.47				
	Temperature	control gas: zone	1: 0.068	Ar				
	Temperature	control gas: zone	2: 0.068	Ar				
	Temperature	control gas: zone	3: 0.005	3 Ar				
	Temperature	control gas: zone	4: 0.001	2 Ar				
	Temperature	control gas: zone	5: 0.801	Ar				
	Temperature	control gas: zone	6: 0.500	Ar				
	Cycle: 154B	, Date: 10/15/2013	, Power:	21.19 MW, DPA: 1.74				
	Temperature	control gas: zone	1: 0.068	Ar				
	Temperature	control gas: zone	2: 0.068	Ar				
	Temperature	control gas: zone	3: 0.005	4 Ar				
	Temperature	control gas: zone	4: 0.001	4 Ar				
	Temperature	control gas: zone	5: 0.801	Ar				
	Temperature	control gas: zone	6: 0.500	Ar				

As-Run Ther 3386 ECAR-3386 Cycle: 155A Temperature Temperature Temperature	, Date: 12/11/20	D13, F	f the A D As-Run - AC	GC-3 Experimen	nt 23747	Date: Page A59 o	10/11/2016
3386 ECAR-3386 Cycle: 155A Temperature Temperature Temperature	Rev. No	0.: () As-Run Ad	Project No.: Thermal Analysis of the GC-3 Experiment	23747	Date: Page A59 of	10/11/2016
ECAR-3386 Cycle: 155A Temperature Temperature Temperature	, Date: 12/11/20 control gas: zo	013, F	As-Run ⁻ AC	Thermal Analysis of the GC-3 Experiment		Page A59 o	f A62
Cycle: 155A Temperature Temperature Temperature	, Date: 12/11/20 control gas: zo	013, F					
Temperature Temperature Temperature	e control gas: zo	one 1	Power: 20	0.61 MW, DPA: 2.07			
Temperature Temperature	control app. 7		: 0.168 A	r			
Temperature	oundul yas. 20	one 2	: 0.000 A	r			
	e control gas: zo	one 3	: 0.0051.	Ar			
Temperature	e control gas: zo	one 4	: 0.768 A	r.			
Temperature	e control gas: zo	one 5	: 1.000 A	r			
Temperature	e control gas: zo	one 6	: 0.500 A	r			
Cycle: 155A	, Date: 12/29/20	013, F	^D ower: 20	0.67 MW, DPA: 2.39			
Temperature	e control gas: zo	one 1	: 0.168 A	r			
Temperature	e control gas: zo	one 2	: 0.000 A	r			
Temperature	e control gas: zo	one 3	: 0.0045.	Ar			
Temperature	e control gas: zo	one 4	: 0.775 A	r			
Temperature	e control gas: zo	one 5	: 1.000 A	r			
Temperature	e control gas: zo	one 6	: 0.500 A	ŗ			
Cycle: 155A	, Date: 01/10/20	014, F	Power: 2	1.19 MW, DPA: 2.60			
Temperature	e control gas: zo	one 1	: 0.107 A	r			
Temperature	e control gas: zo	one 2	: 0.000 A	,			
Temperature	e control gas: zo	one 3	: 0.0048,	Ar			
Temperature	e control gas: zo	one 4	: 0.575 A	r			
Temperature	e control gas: zo	one 5	: 1.000 A	" Γ			
Tomporation	e control das: zo	ne A	· 0 500 A				
	Temperature Temperature Cycle: 155A Temperature Temperature Temperature Temperature Cycle: 155A Temperature Temperature Temperature Temperature Temperature	Temperature control gas: zo Temperature control gas: zo Temperature control gas: zo Cycle: 155A, Date: 12/29/20 Temperature control gas: zo Temperature control gas: zo Temperature control gas: zo Temperature control gas: zo Temperature control gas: zo Cycle: 155A, Date: 01/10/20 Temperature control gas: zo Temperature control gas: zo	Temperature control gas: zone 4 Temperature control gas: zone 5 Temperature control gas: zone 6 Cycle: 155A, Date: 12/29/2013, I Temperature control gas: zone 1 Temperature control gas: zone 2 Temperature control gas: zone 3 Temperature control gas: zone 3 Temperature control gas: zone 4 Temperature control gas: zone 5 Temperature control gas: zone 6 Cycle: 155A, Date: 01/10/2014, I Temperature control gas: zone 1 Temperature control gas: zone 2 Temperature control gas: zone 3 Temperature control gas: zone 4 Temperature control gas: zone 3 Temperature control gas: zone 3 Temperature control gas: zone 4 Temperature control gas: zone 5	Temperature control gas: zone 4: 0.768 A Temperature control gas: zone 5: 1.000 A Temperature control gas: zone 6: 0.500 A Cycle: 155A, Date: 12/29/2013, Power: 24 Temperature control gas: zone 1: 0.168 A Temperature control gas: zone 2: 0.000 A Temperature control gas: zone 3: 0.0045. Temperature control gas: zone 3: 0.0045. Temperature control gas: zone 4: 0.775 A Temperature control gas: zone 5: 1.000 A Temperature control gas: zone 6: 0.500 A Cycle: 155A, Date: 01/10/2014, Power: 2 Temperature control gas: zone 1: 0.107 A Temperature control gas: zone 2: 0.000 A Temperature control gas: zone 3: 0.0048. Temperature control gas: zone 3: 0.0048. Temperature control gas: zone 3: 0.0048.	 Temperature control gas: zone 4: 0.768 Ar Temperature control gas: zone 5: 1.000 Ar Temperature control gas: zone 6: 0.500 Ar Cycle: 155A, Date: 12/29/2013, Power: 20.67 MW, DPA: 2.39 Temperature control gas: zone 1: 0.168 Ar Temperature control gas: zone 2: 0.000 Ar Temperature control gas: zone 3: 0.0045 Ar Temperature control gas: zone 4: 0.775 Ar Temperature control gas: zone 5: 1.000 Ar Temperature control gas: zone 6: 0.500 Ar Cycle: 155A, Date: 01/10/2014, Power: 21.19 MW, DPA: 2.60 Temperature control gas: zone 1: 0.107 Ar Temperature control gas: zone 3: 0.0048 Ar Temperature control gas: zone 4: 0.575 Ar 	Temperature control gas: zone 4: 0.768 Ar Temperature control gas: zone 5: 1.000 Ar Temperature control gas: zone 6: 0.500 Ar Cycle: 155A, Date: 12/29/2013, Power: 20.67 MW, DPA: 2.39 Temperature control gas: zone 1: 0.168 Ar Temperature control gas: zone 2: 0.000 Ar Temperature control gas: zone 3: 0.0045 Ar Temperature control gas: zone 3: 0.0045 Ar Temperature control gas: zone 4: 0.775 Ar Temperature control gas: zone 5: 1.000 Ar Temperature control gas: zone 6: 0.500 Ar Cycle: 155A, Date: 01/10/2014, Power: 21.19 MW, DPA: 2.60 Temperature control gas: zone 1: 0.107 Ar Temperature control gas: zone 2: 0.000 Ar	Temperature control gas: zone 4: 0.768 Ar Temperature control gas: zone 5: 1.000 Ar Temperature control gas: zone 6: 0.500 Ar Cycle: 155A, Date: 12/29/2013, Power: 20.67 MW, DPA: 2.39 Temperature control gas: zone 1: 0.168 Ar Temperature control gas: zone 2: 0.000 Ar Temperature control gas: zone 3: 0.0045 Ar Temperature control gas: zone 3: 0.0045 Ar Temperature control gas: zone 4: 0.775 Ar Temperature control gas: zone 5: 1.000 Ar Temperature control gas: zone 5: 1.000 Ar Temperature control gas: zone 6: 0.500 Ar Cycle: 155A, Date: 01/10/2014, Power: 21.19 MW, DPA: 2.60 Temperature control gas: zone 1: 0.107 Ar Temperature control gas: zone 3: 0.0048 Ar Temperature control gas: zone 3: 0.0048 Ar

03/01/2012 Rev. 06	E		CALCULATIONS	AND ANA	LYSIS	Page A60 of A6				
Title:	As-Run Thermal Analysis of the AGC-3 Experiment									
ECAR No.:	3386	Rev. No.: 0	Project No.:	23747	Date:	10/11/2016				
	ECAR-3386	As	-Run Thermal Analysis of the AGC-3 Experiment		Page A60 c	f A62				
	Cycle: 155B	, Date: 02/25/2014, Pow	ver: 21.07 MW, DPA: 2.95							
	Temperature	control gas: zone 1: 0.0	000 Ar							
	Temperature	control gas: zone 2: 0.0	016 Ar							
	Temperature	control gas: zone 3: 0.0	005 Ar							
	Temperature	control gas: zone 4: 0.4	402 Ar							
	Temperature	control gas: zone 5: 0.9	999 Ar							
	Temperature	control gas: zone 6: 0.	500 Ar							
	Cycle: 155B	, Date: 03/14/2014, Pow	ver: 21.32 MW, DPA: 3.25							
	Temperature	control gas: zone 1: 0.0	000 Ar							
	Temperature	control gas: zone 2: 0.0	001 Ar							
	Temperature	control gas: zone 3: 0.0	005 Ar							
	Temperature	control gas: zone 4: 0.0	069 Ar							
	Temperature	control gas: zone 5: 0.9	928 Ar							
	Temperature	control gas: zone 6: 0.4	483 Ar							
	Cycle: 155B	, Date: 04/08/2014, Pow	ver: 21.34 MW, DPA: 3.53							
	Temperature	control gas: zone 1: 0.0	000 Ar							
	Temperature	control gas: zone 2: 0.0	000 Ar							
	Temperature	control gas: zone 3: 0.0	005 Ar							
	Temperature	control gas: zone 4: 0.0	001 Ar							
	Temperature	control gas: zone 5: 0.	721 Ar							
	Temperature	control gas: zone 6: 0.4	466 Ar							

TEM-10200- 03/01/2012 Rev. 06	-1 E	NGINEERII	NG CAI		S AND ANAL	YSIS	Page A61 of A62
Title:	As-Run Thern	nal Analysis	of the A	GC-3 Experim	ent		
ECAR No.:	3386	Rev. No.:	0	Project No.:	23747	Date:	10/11/2016
	ECAR-3386		As-Run ⁻ AC	Thermal Analysis of t GC-3 Experiment	ne	Page A61 o	i A62
	Adjustments t	o gas flows:					
	The control ga assumed to fl since there is equal to the a	as in zone 6 (gas ow into zone 5 (t no seal between verage of the arg	between h op of test t these zone on gas flow	eat shield and caps rain) and dilute the es. The argon gas f /s in zones 5 and 6	ule, normally set to argon-rich control ga low in zone 5 is ass	50% argon) is as in zone 5 sumed to be	;
	In some case gas-tight. The the irradiation mixture was u change signifi may have bee and the early average of the	s, the gases in a gas flow data sh except for cycle sed. Since the re cantly when an a n diluted by gas part of cycle 1550 e argon gas flows	djacent zor hows that z 155A and t eactor powe rgon-rich m leakage fro B, the argo in zones 3	nes may mix since f one 4 contained a h he early part of cyc er and the temperatu ixture was introduc m the helium-rich g n gas flow in zone 4 and 4.	he seals between z lelium-rich mixture of e 155B when an arg ure of the TCs in zo ed, the argon-rich g as in zone 3. During t is assumed to be	ones are not during most of gon-rich gas ne 4 did not as in zone 4 g cycle 155A equal to the	
	Adjust argon (gas flows using t	he assump	tions given above:			
	Cycle: 152B,	Date: 12/19/2012	2	Су	cle: 154B, Date: 09	/11/2013	
	$\operatorname{Ar}_{\operatorname{zone}_5} := \frac{1}{2}$	$\frac{0.967 + 0.500}{2} = 0$.734	Aı	$z_{\text{zone}_5} \coloneqq \frac{0.915 + 0}{2}$.500 = 0.708	
	Cycle: 152B,	Date: 1/03/2013		Cy	cle: 154B, Date: 09	/29/2013	
	$\operatorname{Ar}_{\operatorname{zone}}_5 \coloneqq \frac{1}{2}$	$\frac{0.967 + 0.500}{2} = 0$.734	Aı	$z_{\text{zone}}5 \coloneqq \frac{0.801 + 0}{2}$.500 = 0.651	
	Cycle: 152B, I	Date: 1/17/2013		Су	cle: 154B, Date: 10	/15/2013	
	$\operatorname{Ar}_{\operatorname{zone}}_{5} \coloneqq \frac{1}{2}$	$\frac{0.981 + 0.500}{2} = 0$.74	Aı	$z_{\text{zone}}5 \coloneqq \frac{0.801 + 0}{2}$	<u>.500</u> = 0.651	

TEM-10200- 03/01/2012 Rev. 06	-1 E		NG CA	LCULATION	S ANI	D ANALYS	SIS	Page A62 of A62
Title:	As-Run Ther	mal Analysis	of the A	AGC-3 Experim	nent			
ECAR No.:	3386	Rev. No.:	0	Project No.:	23	5747	Date:	10/11/2016
	ECAR-3386		As-Rur /	Thermal Analysis of AGC-3 Experiment	the	F	Page A62 of	f A62
	Cycle: 155A, [Date: 12/11/2013		c	ycle: 155	6B, Date: 02/25/	2014	
	$\operatorname{Ar}_{\operatorname{zone}_4} := \frac{0}{2}$	$\frac{.0051 + 0.768}{2} = 0.$	387	A	Ar _{zone_4} :	$=\frac{0.005+0.402}{2}$	- = 0.204	
	$\operatorname{Ar}_{\operatorname{zone}_5} := \frac{1}{2}$	$\frac{.000 + 0.500}{2} = 0.7$	5	Ą	Ar _{zone_5}	$=\frac{0.999+0.500}{2}$	- = 0.75	
	Cycle: 155A, [Date: 12/29/2013		C	ycle: 155	5B, Date: 03/14/	2014	
	$\operatorname{Ar}_{\operatorname{zone}_4} := \frac{0}{2}$	$\frac{.0045 + 0.775}{2} = 0.$	39					
	$\operatorname{Ar}_{\operatorname{zone}_5} := \frac{1}{2}$	$\frac{.000 + 0.500}{2} = 0.7$	5	Α	Ar _{zone_5}	$=\frac{0.928+0.483}{2}$	- = 0.705	
	Cycle: 155A, [Date: 01/10/2014		C	ycle: 155	5B, Date: 04/08/	2014	
	$\operatorname{Ar}_{\operatorname{zone}_4} := \frac{0}{2}$	$\frac{.0048 + 0.575}{2} = 0.$	29					
	$\operatorname{Ar}_{\operatorname{zone}_{5}} := \frac{1}{2}$	$\frac{.000 + 0.500}{2} = 0.7$	5	Ą	Ar _{zone_5} :	$= \frac{0.721 + 0.466}{2}$	- = 0.594	

TEM-10200- 03/01/2012 Rev. 06	-1	ENGINEERING C	ALCULATIONS	AND ANAI	LYSIS	Page B1 o	f B4
Title:	As-Run ⁻	Thermal Analysis of the	AGC-3 Experime	nt			
ECAR No.:	3386	Rev. No.: 0	Project No.:	23747	Date:	10/11/2016	
		A	APPENDIX B				

As-Run Thermal Analysis of the AGC-3 Experiment

Page B1 of B4

Appendix B - Report file containing results of ABAQUS validation

```
ABQ EXE: abq6142
COMPUTER: service0 ice inl gov
OS: Linux
OS TYPE: 3.0.101-0.46-default
t1
ODB: Test-1
dictTest[Test-1].Keys: ['Grp1']
        NT11-n325
Max error: 1.20% <-----
Max1: 37.3320 Min1: 10.5200 Range: 26.8120
Abg Max2: 37.7813 Abg Min2: 10.6362 Range: 27.1451
        NT11-n281
Max error: 1.48% <-----
Max1: 55.1070 Min1: 13.9970 Range: 41.1100
Abg Max2: 54.7760 Abg Min2: 14.2043 Range: 40.5717
     +2
ODB: Test-2
dictTest[Test-2].Keys: ['Grp2', 'Grp1']
         NT15-n61
Max error: 1.34% <-----
Max1: 37.3320 Min1: 10.5200 Range: 26.8120
Abg Max2: 37.7366 Abg Min2: 10.6609 Range: 27.0756
        NT11-n61
Max error: 1.54% <-----
Max1: 55.1070 Min1: 13.9970 Range: 41.1100
Abg Max2: 54.7444 Abg Min2: 14.2131 Range: 40.5313
                     t3
ODB: Test-3
dictTest[Test-3].Keys: ['Grp1']
        NT11-n130
Max error: 1.65% <-----
Max error: 1.00% <-----
Max1: 44.5920 Min1: 12.5210 Range: 32.0710
Abq Max2: 44.7825 Abq Min2: 12.7270 Range: 32.0555
        NT11-n59
Max error: 1.85% <-----
Max1: 55.3390 Min1: 14.7770 Range: 40.5620
Abg Max2: 55.0396 Abg Min2: 15.0511 Range: 39.9885
                                   _____
-
     t4
ODB: Test-4
```

Title:	As-Run Thermal Analysis of the AGC-3 Experiment								
ECAR No.:				5 / /0///00/0					
	3386 Rev.	No.: 0	Project No.:	23747	Date: 10/11/2016				
	ECAR-3386	As-Ru	ın Thermal Analysis of	the	Page B2 of B4				
			AGC-3 Experiment						
	dictTest[Test-4].	Keys: ['Gr	p1']						
	NT11-n2 Error: 0.00%	81							
	Ans: 13.760 NT11-n3	0 Abq: 03	13.7600						
	Error: 0.00% Ans: 11.320 NT11-n3	< 0 Abq: 25	11.3200						
	Error: 0.00%	<	4 0000						
	NT11-n3	14 <							
	Ans: 8.270	0 Abq:	8.2700						
	Error: 0.00%	<	13 1500						
	AIIS. 15.150		=============						
	t5								
	t5 ODB: Test-5	Voyat []Cr			- 10 m 4 1 1				
	t5 ====================================	Keys: ['Gr 2	p3', 'Grp2', 'Gı						
	t5 	Keys: ['Gr 2 < 0 Abq:	p3', 'Grp2', 'Gi 11.3200						
	t5 	Keys: ['Gr 2 < 0 Abq: 2 <	p3', 'Grp2', 'Gi 11.3200						
	t5 	Keys: ['Gr 2 < 0 Abq: 2 < 0 Abq: 2	p3', 'Grp2', 'Gr						
	t5 	Keys: ['Gr 2 < 0 Abq: 2 < 0 Abq: 2 <	p3', 'Grp2', 'Gi 11.3200						
	t5 ====================================	Keys: ['Gr 2 < 0 Abq: 2 < 0 Abq: 2 < 0 Abq: 2 <	p3', 'Grp2', 'Gi 11.3200 13.1500 13.7600						
	t5 ODB: Test-5 dictTest[Test-5]. NT13-n6 Error: 0.00% Ans: 11.320 NT12-n6 Error: 0.00% Ans: 13.150 NT11-n6 Error: 0.00% Ans: 13.760 NT15-n6 Error: 0.00% Ans: 4.000 NT14-n6	Keys: ['Gr 2 	p3', 'Grp2', 'Gr 11.3200 13.1500 13.7600 4.0000	p1', 'Grp5'					
	t5 	Keys: ['Gr 2 	p3', 'Grp2', 'Gi 11.3200 13.1500 13.7600 4.0000 8.2700	p1', 'Grp5'					
	t5 	Keys: ['Gr 2 0 Abq: 2 0 Abq: 2 0 Abq: 2 0 Abq: 2 0 Abq: 2 0 Abq: 2 0 Abq: 2 0 Abq:	p3', 'Grp2', 'Gr 11.3200 13.1500 13.7600 4.0000 8.2700	p1', 'Grp5'					
	t5 	Keys: ['Gr 2 	p3', 'Grp2', 'Gr 11.3200 13.1500 13.7600 4.0000 8.2700	p1', 'Grp5'	, 'Grp4']				
	t5 ====================================	Keys: ['Gr 2 	p3', 'Grp2', 'Gr 11.3200 13.1500 13.7600 4.0000 8.2700	p1', 'Grp5'	, 'Grp4']				
	t5 ====================================	Keys: ['Gr 2 0 Abq: 2 	p3', 'Grp2', 'Gi 11.3200 13.1500 13.7600 4.0000 8.2700 p1']	p1', 'Grp5'					
	t5 	Keys: ['Gr 2 	p3', 'Grp2', 'Gr 11.3200 13.1500 13.7600 4.0000 8.2700 p1'] 61.8970 Range:	p1', 'Grp5'					
	t5 ====================================	Keys: ['Gr 2 (p3', 'Grp2', 'Gr 11.3200 13.1500 13.7600 4.0000 8.2700 91'] 61.8970 Range: 61.7364 Range:	p1', 'Grp5' 18.8670 18.7551					
	t5 	Keys: ['Gr 2 0 Abq: 2 0 Abq: 2 0 0 Abq: 2 0 0 0 0 0 0 0 0 0 0 0 0 0	p3', 'Grp2', 'Gr 11.3200 13.1500 13.7600 4.0000 8.2700 p1'] 61.8970 Range: 61.7364 Range:	p1', 'Grp5' 18.8670 18.7551					

TEM-10200- 03/01/2012 Rev. 06	1 El	NGINEERII	NG CAL	CULATIONS	AND ANAL	YSIS	Page B3 of B4
Title:	As-Run Therm	nal Analysis	of the AG	f the AGC-3 Experiment			
ECAR No.:	3386	Rev. No.:	0	Project No.:	23747	Date:	10/11/2016
	ECAR-3386		As-Run TI AG	nermal Analysis of f C-3 Experiment	the	Page B3 o	f B4
	t7						_
	ODB: Test-7 dictTest[Te H Error: 0.19 Ans:	st-7].Keys: FL-e56 % < -0.1700	['Grp1' Abq:	-0.1697			=
	======================================						=
	ODB: Test-8 dictTest[Te H	st-8].Keys: FL-e1121	['Grp1']			=
	Error: 1.74 Ans: H	% < 0.1710 FL-e3678	Abq:	0.1740			
	Ans:	• -0.1620	Abq:	-0.1656			=
	t9 ===========						=
	ODB: Test-9 dictTest[Te N Error: 0.01	st-9].Keys: T11-n13 %	['Grp1'	1			
	Ans:	50.0010 T11-n17	Abq:	50.0036			
	Error: 0.00 Ans: N Error: 0.20	% < 55.5500 T11-n328 % <	Abq:	55.5500			
	Ans: N Error: 0.05	51.6040 T11-n38 %	Abq:	51.7074			
	Ans: N	50.0890 T11-n28	Abq:	50.1148			
	Ans: N	° 50.7010 T11-n218	Abq:	50.7550			
	Error: 0.01 Ans: N	<pre>% < 50.0110 T11-n32</pre>	Abq:	50.0176			
	Error: 0.10 Ans: N	% < 50.3060 T11-n324 % <	Abq:	50.3555			
	Ans: N Error: 0.08	52.4260 T11-n4 % <	Abq:	52.5321			

TEM-10200- 03/01/2012 Rev. 06	-1	ENGINEERI	NG CA	LCULATIONS	AND ANA	LYSIS	Page B4 of B4
Title:	As-Run Th	ermal Analysis	of the A	AGC-3 Experime	ent		
ECAR No.:	3386	Rev. No.:	0	Project No.:	23747	Date: 10)/11/2016
	ECAR-338	36	As-Run A	Thermal Analysis of t GC-3 Experiment	the	Page B4 of E	4
	Ans: Error: 0	51.0600 NT11-n320 .16% <	Abq:	51.1006			
	Ans:	53.6690	Abq: ======	53.7552			
	t10						
	======= ODB: Tes dictTest	======================================	: ['Gr	======================================			
	Error: 0 Ans: ========	.15% < 215.7130	Abq:	216.0345	;		
	t11 =======				:		
	ODB: Tes dictTest	t-11 [Test-11].Keys HFL-e55	: ['Gr	p1']			
	Error: 0 Ans: =======	.02% < -5.5000	Abq: ======	-5.4989	;		
	t12 =======						
	ODB: Tes dictTest	t-12 [Test-12].Keys NT11-n336	: ['Gr	p1']			
	Error: 0 Ans: ========	.00% < 406.6667	Abq:	406.6667			