TE 03/ Re	M-10200 01/2012 v. 06	-1 ENG	INEERING	CALCULAT	ONS AND A	NALYSIS	Page 1 of 5
Titl	e:	Results of Reacto	or Physics Sa	afety Analysis	for Advanced	Test Reactor C	ycle 154A-1
EC	AR No.:	2220 R	ev. No.: 0	Project N	lo.: N/A	Date:	4/9/2013
					Profes	sional Enginee	r'e Stamp
1.	Quality	Level (QL) No.		1	FIDIES	sional Enginee	a s Stamp
2.	QL Dete	ermination No.	RTC-0	000088	See LW	P-10010 for rec	uirements.
3.	Enginee	ering Job (EJ) No.	N	/A			
4.	SSC ID		N	/A			
5.	Building	I	N	/A			
6.	Site Are	a	53	33			
7.	Objectiv	ve/Purpose:	L				
8.	and Ana	alysis Report (ECA	R) were obta	ained using the	e PDQ X-Y mo	being affected:	core.
9.	9. Conclusions/Recommendations: Attached are the reactor physics data in support of the ATR Core Safety Assurance Package for Cycle 154A-1. The physics analysis contained herein was performed using a total core power of 103 MW with a fuel loading for 56 days. The results of the calculation show that none of the SAR/TSR limits will be violated during Cycle 154A-1 when operating with two primary coolant pumps (2-PCP operation).						

TEM-10200 03/01/2012 Rev. 06	-1 ENGINEERING CALCULATIONS AND ANALYSIS Page 2	of 5						
Title:	Results of Reactor Physics Safety Analysis for Advanced Test Reactor Cycle 154A-1							
ECAR No.:	2220 Rev. No.: 0 Project No.: N/A Date: 4/9/2013							
CONTENT	S							
PROJECT	ROLES AND RESPONSIBILITIES	3						
SCOPE AN	ND BRIEF DESCRIPTION	4						
DESIGN O	R TECHNICAL PARAMETER INPUT AND SOURCES	4						
RESULTS	OF LITERATURE SEARCHES AND OTHER BACKGROUND DATA	4						
ASSUMPTIONS								
COMPUTER CODE VALIDATION								
DISCUSSI	DISCUSSION/ANALYSIS							
REFEREN	CES	4						

APPENDIXES

Appendix A – Results of Reactor Physics Safety Analysis for Advanced Test Reactor (ATR) Cycle 154A-1

Title: Results of Reactor Physics Safety Analysis for Advanced Test Reactor Cycle 154A-1

ECAR No.: 2220 Rev. No.: 0 Project No.: N/A Date: 4/9/2013

PROJECT ROLES AND RESPONSIBILITIES

Project Role	Name (Typed)	Organization	Pages covered (if applicable)
Performer	P. A. Roth	W414	
Checker ^a	M. R. Holtz	W414	
Independent Reviewer ^b	N/A	N/A	
CUI Reviewer ^c	R. A. Jordan	W414	
Manager ^d	R. A. Jordan	W414	
Requestor ^e	N/A	N/A	
Nuclear Safety ^e	A. W. LaPorta	W414	
Document Owner ^e	R. A. Jordan	W414	and the second

Responsibilities:

a. Confirmation of completeness, mathematical accuracy, and correctness of data and appropriateness of assumptions.

b. Concurrence of method or approach. See definition, LWP-10106.

c. Concurrence with the document's markings in accordance with LWP-11202.

d. Concurrence of procedure compliance. Concurrence with method/approach and conclusion.

- e. Concurrence with the document's assumptions and input information. See definition of Acceptance, LWP-10200.
- **NOTE:** Delete or mark "N/A" for project roles not engaged. Include ALL personnel and their roles listed above in the eCR system. The list of the roles above is not all inclusive. If needed, the list can be extended or reduced.

TEM-10200- 03/01/2012 Rev. 06	ENGINEERING CALCULATIONS AND ANALYSIS	Page 4 of 5
		0 1 1511 1

Title: Results of Reactor Physics Safety Analysis for Advanced Test Reactor Cycle 154A-1

ECAR No.: 2220 Rev. No.: 0 Project No.: N/A Date: 4/9/2013

SCOPE AND BRIEF DESCRIPTION

Safety Analysis Report (SAR) -153 for the Advanced Test Reactor (ATR) requires that a reactor physics safety analysis be performed to evaluate each ATR cycle. The results for Cycle 154A-1 reported in this Engineering Calculations and Analysis Report (ECAR) were obtained using the PDQ X-Y model of the ATR core. Reference 1 identifies a SAR-153 commitment to use the PDQ X-Y model for the required physics safety analysis.

DESIGN OR TECHNICAL PARAMETER INPUT AND SOURCES

- 1. Natural Phenomena Hazard (NPH) category and source (Performance Category per DOE-STD-1021 and/or Seismic Design Category per ANSI/ANS 2.26): N/A
- 2. Load scenarios and Acceptance Criteria: N/A

RESULTS OF LITERATURE SEARCHES AND OTHER BACKGROUND DATA

The analysis contained herein is performed routinely for each ATR cycle. Guidance for performing and documenting the analysis is contained in the Technical Support Guide for the ATR physics model, Reference 11.

ASSUMPTIONS

See Appendix.

COMPUTER CODE VALIDATION

- A. Computer type: UNIX Workstation (Castalia) see References 7 and 8
- B. Operating System and Version: See Appendix A
- C. Computer program name and revision: See Table 11
- D. Inputs: See Appendix A
- E. Outputs: See Appendix A
- F. Evidence of, or reference to, computer program validation: See Table 11
- G. Bases supporting application of the computer program to the specific physical problem: See Reference 9
- H. Validation of Mathcad and spreadsheet-type software can be done by random hand calculation checks performed by the checker (See LWP-10200, Appendix E).

DISCUSSION/ANALYSIS

See Appendix.

Title: Results of Reactor Physics Safety Analysis for Advanced Test Reactor Cycle 154A-1

ECAR No.: 2220 Rev. No.: 0 Project No.: N/A Date: 4/9/2013

REFERENCES

- 1. R. T. McCracken letter to Distribution, RTMc-03-98, UFSAR/TSR Conversion Plan for the ATR Core Safety Assurance Program, Revision 1, March 5, 1998.
- 2. R. T. McCracken letter to J. D. Abrashoff, RTMc-18-98, Determination Of Corner Lobe Powers For Quadrant Differential Temperature Setting, June 3, 1998.
- 3. S. W. Monk letter to A. W. LaPorta, SWM-15-12, Rev.0, Advanced Test Reactor Cycle 154A Preliminary Experiment Requirements Letter, Revision 0, January 15, 2013
- 4. R. A. Jordan letter to ATR Cycle Reference Document 15, RAJ-6-13, Requested Lobe Powers for Advanced Test Reactor (ATR) Cycle 154A-1 Startup, April 2, 2013.
- 5. A. C. Smith letter to R. T. McCracken, ACS-23-96, Updated References for the Advanced Test Reactor (ATR) Core Safety Assurance Calculations, July 19, 1996.
- 6. A. C. Smith letter to R. T. McCracken, ACS-07-97, Average Axial Peaking Factors Incorporated in ROSUB and POWCOR For Use With The New TSR, February 24, 1997.
- 7. P. A. Roth, Verification and Validation of ATR Physics Analysis Software on Workstation Castalia, ECAR-516, February, 2009.
- 8. P. A. Roth, Verification and Validation of ATR Physics Analysis Software, rzpgm and rzread, on Workstation Castalia, ECAR-593, April 29, 2009.
- 9. SAR-153, Updated Final Safety Analysis for the Advanced Test Reactor, Revision 35, January 23, 2013.
- 10. TSR-186, Technical Safety Requirements For The Advanced Test Reactor, Revision 31, January 23, 2013.
- 11. GDE-175, ATR Core Physics Calculations Using PDQWS, Revision 0, October 8, 2012.
- 12. C. B. Davis, Evaluation of Variations in the ATR Axial Power Distribution on Core Safety Margins, ECAR-2179, March 5, 2013.

Appendix A

Results of Reactor Physics Safety Analysis for Advanced Test Reactor (ATR) Cycle 154A

Introduction

The Advanced Test Reactor (ATR) Safety Analysis Report (SAR-153) requires that a reactor physics analysis be performed to evaluate each ATR cycle. The results reported in this Engineering Calculations and Analysis Report (ECAR) were obtained using the PDQ X-Y model of the ATR core. Reference 1 identifies a SAR-153 commitment to use the PDQ X-Y model for the required physics analysis. Nuclide densities for any recycled elements used in the fuel loading of this cycle were obtained from the RECYCLE model.

Assumptions

Many of the fuel safety limits are expressed in terms of effective plate power (EPP). The EPP for a fuel element plate is the product of the effective point power (EPtP) and the average axial peaking factor. The EPtP is defined as the product of the total core power in megawatts (MW) and the maximum point-to-core-average power density ratio. The average axial peaking factor is obtained by normalizing the axial power profile such that the maximum axial peaking factor is equal to 1.0. The normalized power profile is integrated over the 48-inch active core height and the result is divided by the active core height (48 inches). The result is defined as the average axial peaking factor. The EPP values also include normalization using the ratio of the maximum lobe power to the actual calculated lobe power.

PDQ analysis of Cycle 154A-1 assumes operation for 56 days (Reference 3) using a nominal lobe power (MW) division of 20-16-24-20-23 (NW-NE-C-SW-SE) for a total reactor power of 103 MW. Computation of EPP values assumes maximum lobe powers (MW) of 23-19-29-23-26 (NW-NE-C-SW-SE) for normalization (References 3 and 4). Loop experiments (Reference 3) included in the PDQ model used for this calculation are shown in Table A1, along with lobe nominal, minimum, and maximum powers (Reference 4).

Data

The Cycle 154A-1 fuel charge consists of the following fuel elements:

- 14 New 7F elements 26 recycle 7F elements
- 0 New NB elements
 - ts 0 recycle NB elements
- 0 New YA elements 0 recycle YA elements
- 0 New YA...M elements 0 recycle YA...M elements

The loading placement and previous irradiation history is shown in Table A2.

When the reflector adjacent to a lobe receives sufficient radiation exposure such that the ligament A stress level exceeds a value of two standard deviations less than the failure stress, the safety limits for the EPtP and EPP for fuel elements adjacent to ligament A of that lobe must be reduced. Stress level in ligament A is an indicator of reflector lifetime. The most recent update of the reflector lifetime analysis (as required by SAR 4.2.3.6.1) provides values for relating lobe exposure (integrated power) to limiting reflector stress levels. The exposure of the reflector adjacent to the NW, NE, SW, and SE

TEM-10200- 03/01/2012 Rev. 06	-1 ENGINEERING CALCULATIONS AND ANALYSIS	Page A-2 of A-22
Title:	Result of Reactor Physics Safety Analysis for Advanced Test Reactor C	ycle 154A-1

ECAR No.: 2220 Rev. No.: 0 Project No.: N/A Date: 4/9/2013

lobes has passed the level where the ligament A stress will exceed a value of two standard deviations less than the failure stress. This ECAR documents the reduction in safety limits for the NW, NE, SW, and SE lobes.

When the inspection of a new fuel element finds a reduced width in a coolant channel between fuel plates, the EPP limit for the plates adjacent to the narrow coolant channel must be reduced. The PDQ model used in this analysis tracks the power in 11 of the 19 fuel element plates. Those plates have numbers 1, 2, 3, 5, 8, 11, 15, 16, 17, 18, and 19. When an element has a reduced width in any coolant channel, the plate power limit will be restricted for any adjacent tracked plate or for the nearest tracked plate if there is no adjacent tracked plate. The fuel elements in the fuel loading for this cycle do not have any narrow coolant channel restrictions.

Analysis and Calculations

The calculation was performed using the PDQ computer code on the castalia workstation. PDQ results were processed using a suite of codes, including most importantly, ROSUB, PQMAP, GRAMS, TRNF, GOPPNP, LMFIS, POWCOR, and CRITOS. The cross-sections included in the input deck were generated using the codes: COMBINE, SCAMP, SCRABL, and RZPGM. Fuel inventory data for use in PDQ is maintained by the codes: RECINV and RECYCLE.

The ATR PDQ model was run to represent the performance of the reactor during normal operation of Cycle 154A-1. The shim positions corresponding to this operation are shown in Table A5. The lobe powers and values of $K_{\text{effective}}$ for this run are shown in Table A6.

The ATR PDQ model was also run to represent the "worst-case" shim misalignment accident for each lobe. The shim positions corresponding to each misalignment configuration are shown in Table A7 and the resulting lobe powers and values of $K_{\text{effective}}$ are shown in Table A8.

Results and Conclusions

The PDQ analysis tracks the EPP in plate 19 and in 10 of the remaining 18 plates of each of the 40 elements. The most limiting value in each lobe has been determined by evaluating the EPP in each of the 10 tracked inner fuel plates in each of the 8 elements of each lobe, and then factoring in any restrictions that have been placed on each fuel plate. The value that results from this analysis is often the maximum EPP value in the lobe, but occasionally a restriction causes a plate with less than the maximum EPP to be more limiting. The EPP value can be compared to the EPP limit and used in establishing acceptance criteria for the surveillance of the Lobe Power Calculation and Indication System (LPCIS), ATR Technical Safety Requirement [TSR 3.6.1 (b)].

Table 1 shows the limits for the EPP as specified in ATR TSR 3.6.1(a) (Table 3.6.1-1) for the inner plates along with the most limiting calculated EPP value for the inner plates in each lobe. Inner fuel plates are all plates except plate 19.

Rev. 06	TEM-10200-1 03/01/2012 Rev. 06	ENGINEERING CALCULATIONS AND ANALYSIS	Page A-3 of A-22
---------	--------------------------------------	---------------------------------------	------------------

Title: Result of Reactor Physics Safety Analysis for Advanced Test Reactor Cycle 154A-1

ECAR No.: 2220 Rev. No.: 0 Project No.: N/A Date: 4/9/2013

Table 1. Limiting Inner Plate EPP by Lobe

	Effective Plate Power Limit		Inner Plate Most Limiting EPP By Lobe						
Lobe	2 PCP	3 PCP	Pos.	Plate	Restricted to (%) of limit	Days	EPP		
NW	417	443	F-32	5	100	0	210		
NE	417	443	F-9	5	100	0	204		
с	417	443	F-11	5	100	3, 24	228		
sw	417	443	F-22	5	100	0	230		
SE	412 ^a	438 ^a	F-12	1	100	0	251		

a EPP limit reduced by 1.1% - see reference 12

The most limiting EPP in each lobe is less than the operating limit for 2 PCPs, therefore two-pump operation will be possible for this cycle.

Table 2 shows the most limiting inner plate EPP value in each quadrant rather than in each lobe. Center lobe elements have been combined into the adjacent corner lobe to make the four quadrants.

	Effective Plate Power Limit		Inner Plate Most Limiting EPP By Quadrant					
Quadrant	2 PCP	3 PCP	Pos.	Plate	Restricted to (%) of limit	Days	EPP	
NW	417	443	F-32	5	100	0	210	
NE	417	443	F-10	5	100	3	226	
sw	417	443	F-22	5	100	0	230	
SE	412 ^a	438 ^a	F-12	1	100	0	251	

Table 2. Limiting Inner Plate EPP by Quadrant

a EPP limit reduced by 1.1% - see reference 12

Table 3 shows the limits for the EPP as specified in ATR TSR 3.6.1(a) (Table 3.6.1-1), and modified in Reference 9 for plate 19 along with the most limiting calculated EPP value for plate 19 in each lobe.

TEM-10200-1 03/01/2012 ENGINEERING CALCULATIONS AND ANALYSIS Page A-4 of A-22 Rev. 06

Title: Result of Reactor Physics Safety Analysis for Advanced Test Reactor Cycle 154A-1

ECAR No.: 2220 Rev. No.: 0 Project No.: N/A Date: 4/9/2013

Table 3. Limiting Plate 19 EPP by Lobe

Lobe	Effective Plate Power Limit		Plate 19 Most Limiting EPP By Lobe					
	2 PCP	3 PCP	Pos.	Plate	Restricted to (%) of limit	Days	EPP	
NW	417	445	F-33	19	100	0	180	
NE	417	445	F-8	19	100	0	171	
С	417	445	F-11	19	100	38	139	
sw	417	445	F-23	19	100	0	174	
SE	412 ^a	440 ^a	F-13	19	100	0	230	

a EPP limit reduced by 1.1% - see reference 12

The plate 19 most limiting EPP values for each lobe are within the allowable TSR EPP limits for 2-PCP operation. Therefore, 2-PCP operation is still acceptable for this cycle.

The most limiting EPP values calculated for Cycle 154A-1 elements at each time step are given in Table 4.

TEM-10200 03/01/2012 Rev. 06	-1	ENGINEERIN	IG C	ALCULATIONS	AND AN	ALYSIS	Page A-5 of	A-22
Title:	Result of	Reactor Physics	Safe	ty Analysis for Ad	vanced Te	est Reactor C	ycle 154A-1	
ECAR No.:	2220	Rev. No.:	0	Project No.:	N/A	Date:	4/9/2013	

Plate Type	EPP Limit 2 PCP	Cycle 154A-1 Most Limiting EPP	Position	Plate	Restricted to (%) of limit	Days⁵
19	412 ^a	230	F-13	19	100	0
Inner	412 ^a	251	F-12	1	100	0
19	412 ^a	210	F-13	19	100	3
Inner	417	228	F-11	5	100	3
19	412 ^a	205	F-13	19	100	10
Inner	417	227	F-11	5	100	10
19	412 ^a	202	F-13	19	100	17
Inner	417	224	F-11	5	100	17
19	412 ^a	197	F-13	19	100	24
Inner	417	228	F-11	5	100	24
19	412 ^a	193	F-13	19	100	31
Inner	417	226	F-11	5	100	31
19	412 ^a	186	F-13	19	100	38
Inner	417	223	F-11	5	100	38
19	412 ^a	180	F-13	19	100	45
Inner	417	216	F-11	5	100	45
19	412 ^a	173	F-13	19	100	52
Inner	412 ^a	209	F-12	5	100	52
19	412 ^a	168	F-13	19	100	56
Inner	412 ^a	205	F-12	5	100	56

Table 4. Limiting EPP at Each Time Step

a EPP limit reduced by 1.1% - see reference 12

b Data for the 0-day ganged outer shim case is not included.

Exposure has exceeded the value for the limiting A-ligament stress level in the NW, NE, SW, and SE lobes. Core positions F-34 through F-37 in the NW lobe, F-4 through F-7 in the NE lobe, F-24 through F-27 in the SW lobe, and F-14 through F-17 in the SE lobe are adjacent to ligament A. Therefore the EPP limits in Tables 1-4 above are not applicable to these positions and reduced

TEM-10200 03/01/2012 Rev. 06	-1 ENGINEERING CALCULATIONS AND ANALYSIS	Page A-6 of A-22
Title:	Result of Reactor Physics Safety Analysis for Advanced Test Reactor C	ycle 154A-1

ECAR No.: 2220 Rev. No.: 0 Project No.: N/A Date: 4/9/2013

values as specified in ATR TSR 3.6.1(a) (Table 3.6.1-1), must be used. The most limiting EPP values for these positions are given in Table 5 along with the $<2\sigma$ limits.

Table 5.	Limiting	EPP	for core	e positions	for which	Ligament	A stress is	<20 to cracking

	Effective Plate Power Limit		Cycle 154A-1 Most Limiting EPP for Ligament A (< 2σ) Positions by Lobe						
Lobe/Plate	2 PCP	3 PCP	EPP	Pos.	Plate	Days	Restricted to (%) of limit		
NW/Inner Plates	406	431	160	F-34	15	45,52,56	100		
NW/Plate 19	358	357	146	F-34	19	31	100		
NE/Inner Plates	406	431	127	F-7	15	31	100		
NE/Plate 19	358	357	107	F-7	19	24,31	100		
SW/Inner Plates	406	431	150	F-24	15	17	100		
SW/Plate 19	358	357	122	F-27	19	10,17	100		
SE/Inner Plates	401 ^a	426 ^a	177	F-14	15	56	100		
SE/Plate 19	354 ^a	353ª	161	F-14	19	3	100		

a EPP limit reduced by 1.1% - see reference 12

The elements in several positions of the fuel loading for this cycle reach a fission density greater than 1.5×10^{21} during the cycle. For these elements, keeping the effective point powers less than the appropriate limits will prevent blistering of the fuel by ensuring that the maximum temperature will be at least 2σ less than 500°F (533°K) as required under SAR-153, 4.2.1 (Reference 2). Table 6 shows the positions in which the elements have exceeded the 1.5×10^{21} limit at each time step.

Table 6.	Fuel Element	Positions	for which t	he fission	density is	greater than	1.5 x 10 ²¹
						U	

Days	Position Numbers
0	40
3	40
10	1, 40
17	1, 40
24	1, 11, 15, 16, 26, 30, 40
31	1, 7, 9, 10, 11, 15, 16, 20, 21, 26, 30, 31, 40
38	1, 2, 3, 7, 8, 9, 10, 11, 15, 16, 20, 21, 24, 25, 26, 27, 30, 31, 40
45	1, 2, 3, 4, 7, 8, 9, 10, 11, 15, 16, 17, 20, 21, 23, 24, 25, 26, 27, 28, 30, 31, 40
52	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15, 16, 17, 20, 21, 23, 24, 25, 26, 27, 28, 30, 31, 40
56	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15, 16, 17, 20, 21, 23, 24, 25, 26, 27, 28, 30, 31, 40

TEM-10200 03/01/2012 Rev. 06	-1	ENGINEERIN	G CA	LCULATIONS	AND AN	NALYSIS	Page A-7 of A-22
Title:	Result of	Reactor Physics	Safety	Analysis for Ad	vanced T	est Reactor C	ycle 154A-1
ECAR No.:	2220	Rev. No.:	0	Project No.:	N/A	Date:	4/9/2013

Once an element exceeds 1.5×10^{21} fission density, its effective point power must not exceed the appropriate limit for its position as defined in Reference 9. Tables 7 and 8 identify the calculated effective point power for the most limiting element in each lobe for an inner plate and plate 19. Lobes with "NA" entries do not have any elements that exceed 1.5×10^{21} fission density during the cycle.

Table 7. Inner Plate Limiting Effective Point Power by lobe for fission density greater than 1.5 x 10²¹

Lobe	Effective Point Power Limit		Cycle 154A-1 Most Limiting Effective Point Power By Lobe						
	2 PCP 3 PCP		Position	Plate	Restricted to (%) of limit	Days	EPtP		
NW	446	465	N/A	N/A	N/A	N/A	N/A		
NE	446	465	F-9	5	100	31	221		
С	446	465	F-11	5	100	24	277		
sw	446	465	F-23	15	100	45	200		
SE	430 ^a	448 ^a	F-16	15	100	24	191		

a EPP limit reduced by 1.1% - see reference 12

N/A = not applicable - no positions in NW are >1.5 x 10²¹

TEM-10200- 03/01/2012 Rev. 06	-1	ENGINEERING CA	ALCULATIONS	AND AN	NALYSIS	Page A-8 of A-22
Title:	Result of	Reactor Physics Safet	ty Analysis for Ad	vanced T	est Reactor C	ycle 154A-1
ECAR No.:	2220	Rev. No.: 0	Project No.:	N/A	Date:	4/9/2013

Table 8. Plate 19 Limiting Effective Point Power by lobe for fission density greater than 1.5×10^{21}

Lobe	Effectiv Power	ve Point r Limit	Cycle 154A-1 Most Limiting Effective Point Power By Lobe							
	2 PCP	3 PCP	Position	Plate	Restricted to (%) of limit	Days	EPtP			
NW	411	428	N/A	N/A	N/A	N/A	N/A			
NE	411	428	F-8	19	100	38	169			
С	411	428	F-11	19	100	38	162			
SW	411	428	F-23	19	100	45	169			
SE	406 ^a	423 ^a	F-16	19	100	24	154			

a EPP limit reduced by 1.1% - see reference 12

N/A = not applicable – no positions in NW are $>1.5 \times 10^{21}$

The worst-case lobe powers equivalent to the TSR-186 3.6.1a, Table 3.6.1-1 EPP limits are shown in Table 9. Worst-cases lobe powers are calculated by simulating a lobe power unbalance accident using maximum shim unbalances in the PDQ model and the results are subsequently scaled to the limiting EPP.

TEM-10200-1 03/01/2012 Rev. 06	ENGINEERING CALCULATIONS AND ANALYSIS							ge A-9 of A-22
Title:	Result of Rea	actor Physics Safety An	alysis fo	r Advanced Test React	or Cycle 154A-1			
ECAR No.:	2220	Rev. No.:	0	Project No.:	N/A	Date:	4/9/2013	

Table 9. Worst-case Lobe Powers at Effective Plate Power Limit

Lobe	Cycle Maximum LOBE Power (MW)	Maximum Unbalanced LOBE Power (MW)	Type of Position, Type of Plate	Limiting EPP at Maximum Unbalanced LOBE Power (MW)	Position	Plate	Restriction	Transient Effective Plate Power Limits and Overpower Ratios (MW)	Reference Lobe Power for Quadrant ∆T Setpoints (MW)
			All, inner plates	226	F-35	15	1.00	659/1.45 = 454	61.4
NW	23.0	30.57	All, plate 19	222	F-35	19	1.00	659/1.45 = 454	62.5
	20.0	00.07	< 2o, inner plates	226	F-35	15	1.00	641/1.45 = 442	59.7
			< 2σ, plate 19	222	F-35	19	1.00	490/1.37 = 357	49.1*
	NE 19.0	30.82	All, inner plates	216	F-9	5	1.00	659/1.45 = 454	64.7
NE			All, plate 19	197	F-7	19	1.00	659/1.45 = 454	71.0
			< 20, inner plates	209	F-7	15	1.00	641/1.45 = 442	65.1
			< 2σ, plate 19	197	F-7	19	1.00	490/1.37 = 357	55.8*
CR	29.0	30.32	All, inner plates	218	F-11	5	1.00	659/1.45 = 454	63.1*
	20.0	00.02	All, plate 19	131	F-11	19	1.00	659/1.45 = 454	105.0
			All, inner plates	264	F-25	15	1.00	659/1.45 = 454	67.0
SW	23.0	38.97	All, plate 19	245	F-25	19	1.00	659/1.45 = 454	72.2
000	20.0	50.57	< 2o, inner plates	264	F-25	15	1.00	641/1.45 = 442	65.2
			< 2σ, plate 19	245	F-25	19	1.00	490/1.37 = 357	56.7*
			All, inner plates	308	F-14	15	1.00	659/1.45 = 454	61.4
SE	26.0	41 72	All, plate 19	291	F-14	19	1.00	659/1.45 = 454	65.0
02	20.0	41.72	< 2o, inner plates	308	F-14	15	1.00	641/1.45 = 442	59.8
			< 2σ, plate 19	291	F-14	19	1.00	490/1.37 = 357	51.1*

*indicates the minimum value for that lobe

TEM-10200- 03/01/2012 Rev. 06	ENGINEERING CALCULATIONS AND ANALYSIS	Page A-10 of A-22
Title:	Result of Reactor Physics Safety Analysis for Advanced Test Reactor C	ycle 154A-1

ECAR No.: 2220 Rev. No.: 0 Project No.: N/A Date: 4/9/2013

The resulting worst-case lobe powers are used for establishing compliance with TSR 3.1.1(a) (Table 3.1.1-1 SR#03) for the quadrant differential temperature set point. The EPP limits utilized the methods given in Reference 2. Each line in the table selects the element in a specific category that has the most limiting EPP once the individual plate restrictions have been considered. Values in the rightmost column are calculated by multiplying the values in columns 3, 8, and 9 and then dividing by the value in column 5. If the values in the rightmost column were smaller than the values in column 2, it would be necessary to reduce the requested maximum lobe powers accordingly. For this cycle no such adjustment is necessary.

Table A9 lists the fuel element powers for each time step of the cycle. In order to find the maximum expected fuel element power for the cycle, the element powers in Table A9 are scaled to the lobe maximum power, multiplying by the ratio of the lobe maximum power and dividing by the actual lobe power. After examining all of the scaled fuel element powers for time steps beyond xenon equilibrium, the maximum expected fuel element power during Cycle 154A-1 is 4.103 MW in core position F-20.

The maximum calculated point-to-average power density ratio at a distance 90% from the edge of the fuel in plate 19 for any element is 2.84 in position F-13 for the time step 0.

The preliminary startup power division normalized to a total core power of 250 MW is: 39.2-40.1-60.4-52.6-57.7 (NW-NE-C-SW-SE).

The reactivity estimates and the fission density limits as given in SAR-153, Section 4.2.1.2.3 are shown in Table 10.

	Reactivit	y Estimate ^a	Fission Density Limit (2.3 X 10 ²¹ fissions/cc)			
Lobe	MWd Time in Cycle ^b (Days)		MWd	Time in Cycle ^c (Days)		
NW	1220	61.0	2236	97.2		
NE	1128	70.5	1258	66.2		
С			1527	52.6		
SW	1444	72.2	1952	84.8		
SE	1582	68.7	1998	76.8		

Table 10. Reactivity Estimates and Fission Density Limits

a. The reactivity estimates were obtained using the XSPRJ method.

b. The Time in Cycle is based on the nominal power division of 20-16-24-20-23 (NW-NE-C-SW-SE).

c. The Time in Cycle is based on the maximum power division of 23-19-29-23-26 (NW-NE-C-SW-SE).

The results above show sufficient reactivity in all lobes to sustain the requested lobe power for the cycle length of 56 days. The results also show that the fission density limits should not be exceeded for a cycle length of 56 days except in the C lobe. The time in the cycle required to reach the C lobe fission density limit was calculated using a maximum lobe power of 29 MW. To achieve the fission density limit during a 56 day cycle, a C lobe average power of approximately 27.2 MW would have to be sustained. Calculations and operational experience indicate that the C lobe average power over the entire cycle will probably be less than 24 MW. Thus, exceeding the fission density limit is considered improbable. Nuclear Engineering will track actual C Lobe MWds to ensure fission density limits in the C Lobe are not exceeded during the cycle. The reactivity and fission density data are shown in Figures A1 and A2.

TEM-10200-1 03/01/2012	ENGINEERING CALCULATIONS AND ANALYSIS	Page 4-11 of 4-22
Rev. 06		

Title: Result of Reactor Physics Safety Analysis for Advanced Test Reactor Cycle 154A-1

ECAR No.: 2220 Rev. No.: 0 Project No.: N/A Date: 4/9/2013

The following element in the fuel loading for Cycle 154A-1 is expected to have no further recycle potential after the nominal operation of Cycle 154A-1:

Core Position	Element ID
F-40	XA233T

The methods used in this analysis are found in References 5 and 6.

Hardware and Software

Calculations were performed on the castalia workstation – cpu-property number 380414. The analysis codes along with their V&V tracking number are shown in Table 11. The V&V is documented in References 7 and 8.

0.0	The i		the second second second second
Software Application Name	Version	Checksum Value	Enterprise Architecture Tracking Number
cmpr	1	1381	114931
critos	2	5760	114934
fispk	-	50065	224935
gopp1	02/99	37552	207598
grams	2	61942	114939
Imfis	1	22139	114940
mxfis	-	4291	-
PDQ	1	61283	67621
powcor	1	4227	67618
pqmap	1	8421	114945
pqmapin	-	15808	-
pqxspl	1	16060	114947
recinv	1	11392	114949
recycle	1	56856	114950
rosub	2	29380	114952
rpcr2	-	55876	-
rzpgm	1	34117	114953
rzread	-	43442	114954
trnf	1	2014	114957
updatr	1	25709	114958

Table 11. Computer Codes and V&V Tracking Numbers

TEM-102 03/01/20 Rev. 06	00-1 12 E	NGINEERING	CALCULATIONS		LYSIS	Page A-12 of A-22
Title:	Result of Rea	ctor Physics Sa	fety Analysis for Adv	anced Test	Reactor Cy	cle 154A-1
ECAR No	o.: 2220	Rev. No.: 0	Project No.:	N/A	Date:	4/9/2013
Table A1	. Experimental	Designations a	nd Nominal Power	Division for	ATR Cycl	e 154A-1 ^{3,4}
Lobe	Power	Loop Expe	riments			
NW	+3 20 -3	2E/NW-162	(ATRC-2E-NW-16	2-00)		
N	-	1D/N-106	(ATRC-1D-N-106-	00)		
NE	+3 16 -3	AGR 3/4	(SBG-05-11)			
w	-	1C/W-75	(ATRC-1C-W-75-0	00)		
с	+5 24 -5	EPRI-3	(DCJ-04-12)			
E	-	7-pin SIHA	(DWG443208)			
SW	+3 20 -3	2D/SW-188	(ATRC-2D-SW-18	8-01)		
S	-	SPICE 9	(ATRC-S-M-101-0	1)		
SE	+3 23 -3	2B/SE-192	(ATRC-2B-SE-192	2-03)		

TEM-10200-1

03/01/2012 Rev. 06

ENGINEERING CALCULATIONS AND ANALYSIS Page

ECAR No.: 2220 Rev. No.: 0 Project No.: N/A Date: 4/9/2013 Table A2. Summary of Fuel Load for Cycle Total Irradiation History Pos. Pos. No.: 0 Total Irradiation History Pos. Cycle Pos. 1 XA693T 805 0.067 1893 142A-1 8 143B-1 5 2 XA955T 860 0.124 1180 151B-1 18 144 1482-1 28 - <th>Title:</th> <th>Result o</th> <th>f Reactor Ph</th> <th>ysics Sa</th> <th>fety Analy</th> <th>sis for Adva</th> <th>anced Te</th> <th>est Reacto</th> <th>or Cycle 154A</th> <th><u>-1</u></th>	Title:	Result o	f Reactor Ph	ysics Sa	fety Analy	sis for Adva	anced Te	est Reacto	or Cycle 154A	<u>-1</u>
Table A2. Summary of Fuel Load for View 154A-1 Inclaim Listory Core Serial Cortent MWD Pos. Cycle Pos. Cycle Pos. 1 XA6931 805 0.067 1898 142A-1 8 143B-1 5 2 XA9557 860 0.124 1180 151B-1 18 1 3 4 XA704T 861 0.126 1191 144B-1 23 - - 5 XA812T 861 0.126 1191 144B-1 13 - - 6 XA822T 861 0.129 1289 151A-1 12 - - 8 XA646T 862 0.130 1197 142B-1 33 - - 10 XA740T 860 0.129 1435 143B-1 17 - - - - - - 11 XA633U 1075 0.660 - -	ECAR No	p.: 2220	Rev.	No.: 0	Pro	ject No.:	N/A	D	ate: 4/9/201	3
Core Serial Pos. No. Content Posl MW Total MW Inclaim History Cycle Posl Posl Posl Cycle Posl Posl Posl Posl H12A-1 1 XA693T 805 0.087 1898 142A-1 8 143B-1 5 2 XA955T 860 0.124 1180 151B-1 23 - 5 3 XA965T 860 0.124 1182 151B-1 23 - - 4 XA704T 861 0.126 1191 144B-1 28 - - 5 XA812T 861 0.126 1191 144B-1 18 - - 6 XA622T 861 0.129 1289 151A-1 13 - - 7 XA018U 863 0.129 1435 143B-1 14 - - 10 XA740T 860 0.123 1435 143B-1 17 - - 11 XA832T 855 0.123	Table A2	Table A2. Summary of Fuel Load for Cycle 154A-1								
Pos. No. "But MVD Cycle Pos. Cycle Pos. 1 XA693T 805 0.087 1898 142A-1 8 143B-1 5 2 XA965T 860 0.124 1180 151B-1 18 143B-1 5 3 XA965T 861 0.124 1182 151B-1 23 - - 4 XA704T 861 0.125 1191 144B-1 18 - - 5 XA812T 861 0.125 1191 144B-1 23 - - 6 XA822T 861 0.129 1289 151A-1 13 - - 10 XA740T 860 0.129 1435 143B-1 14 - - 11 XA832T 865 0.123 1408 145B-1 17 - - 12 XA033U 1075 0.660 - - - -	Core	Serial	Content	40	Total	Irradiatio	n Histor	Y		
1 XA693T 800 0.087 1898 142A-1 8 143B-1 5 2 XA965T 860 0.124 1180 151B-1 18 3 XA965T 860 0.124 1182 151B-1 23 4 XA704T 861 0.126 1191 144B-1 28 5 XA812T 861 0.122 1191 144B-1 12 6 XA842T 861 0.122 1191 144B-1 23 7 XA016U 861 0.129 1289 151A-1 12 13 9 XA017U 863 0.129 1289 151A-1 13 14 11 XA832T 865 0.123 1408 145A-1 17 14 13 XA032U 1075 0.660 14 XA033U 1075 0.660 14 XA034U 1075 0.660 14 XA035U 1075 0.660 14 148B-1 18 149A-1 7 12 XA036U 1	Pos.	<u>No.</u>	235U	¹⁰ B	MWD	Cycle	Pos.	Cycle	Pos.	
2 XA955T 860 0.124 1180 151B-1 18 3 XA965T 860 0.124 1182 151B-1 23 4 XA704T 861 0.126 1193 142A-1 28 5 XA812T 861 0.126 1191 144B-1 18 6 XA822T 861 0.125 1191 144B-1 23 7 XA016U 861 0.129 1289 151A-1 13 9 XA017U 863 0.129 1289 151A-1 13 10 XA740T 860 0.123 1408 145A-1 14 11 XA832T 855 0.123 1408 145A-1 17 12 XA032U 1075 0.660	1	XA693T	805	0.087	1898	142A-1	8	143B-1	5	
3 XA965T 860 0.124 1182 151B-1 23 4 XA704T 861 0.126 1193 142A-1 28 5 XA812T 861 0.126 1191 144B-1 18 6 XA822T 861 0.126 1191 144B-1 23 7 XA016U 861 0.162 1289 151A-1 12 8 XA646T 862 0.130 1197 142B-1 33 9 XA017U 863 0.129 1289 151A-1 13 10 XA740T 860 0.123 1435 143B-1 14 11 XA832T 855 0.600	2	XA955T	860	0.124	1180	151B-1	18			
4 XA704T 861 0.126 1193 142A-1 28 5 XA812T 861 0.126 1191 144B-1 18 6 XA822T 861 0.125 1191 144B-1 23 7 XA016U 861 0.162 1289 151A-1 12 8 XA646T 862 0.130 1197 142B-1 33 9 XA017U 863 0.129 1435 143B-1 14 11 XA832T 855 0.123 1408 145A-1 17 12 XA032U 1075 0.660	3	XA965T	860	0.124	1182	151B-1	23			
5 XA812T 861 0.126 1191 144B-1 18 6 XA822T 861 0.125 1191 144B-1 23 7 XA016U 861 0.162 1289 151A-1 12 8 XA646T 862 0.130 1197 142B-1 33 9 XA017U 863 0.129 1289 151A-1 13 10 XA740T 860 0.129 1435 143B-1 14 11 XA832T 855 0.123 1408 145A-1 17 12 XA03U 1075 0.660	4	XA704T	861	0.128	1193	142A-1	28			
6 XA822T 861 0.125 1191 144B-1 23 7 XA016U 861 0.162 1289 151A-1 12 8 XA646T 862 0.130 1197 142E-1 33 9 XA017U 863 0.129 1289 151A-1 13 10 XA740T 860 0.129 1435 143B-1 14 11 XA832T 855 0.123 1408 145A-1 17 12 XA032U 1075 0.660	5	XA812T	861	0.126	1191	144B-1	18			
7 XA016U 861 0.162 1289 151A-1 12 8 XA646T 862 0.130 1197 142B-1 33 9 XA017U 863 0.129 1289 151A-1 13 10 XA740T 860 0.129 1435 143B-1 14 11 XA832T 855 0.123 1408 145A-1 17 12 XA033U 1075 0.660	6	XA822T	861	0.125	1191	144B-1	23			
8 XA646T 862 0.130 1197 142B-1 33 9 XA017U 863 0.129 1289 151A-1 13 10 XA740T 860 0.129 1435 143B-1 14 11 XA832T 855 0.123 1408 145A-1 17 12 XA032U 1075 0.660	7	XA016U	861	0.162	1289	151A-1	12			
9 XA017U 863 0.129 1289 151A-1 13 10 XA740T 860 0.129 1435 143B-1 14 11 XA832T 855 0.123 1408 145A-1 17 12 XA032U 1075 0.660	8	XA646T	862	0.130	1197	142B-1	33			
10 XA740T 860 0.129 1435 143B-1 14 11 XA832T 855 0.123 1408 145A-1 17 12 XA032U 1075 0.660 - - - 13 XA033U 1075 0.660 - - - 14 XA034U 1075 0.660 - - - 15 XA034U 1075 0.660 - - - - 16 XA742T 851 0.112 1224 148B-1 23 - - 16 XA742T 851 0.119 1435 143B-1 17 -	9	XA017U	863	0.129	1289	151A-1	13			
11 XA832T 855 0.123 1408 145A-1 17 12 XA032U 1075 0.660 1 17 13 XA033U 1075 0.660 1 17 14 XA034U 1075 0.660 1 23 15 XA237T 847 0.112 1224 148B-1 23 16 XA742T 851 0.119 1435 143B-1 17 17 XA921T 940 0.247 883 149A-1 27 18 XA035U 1075 0.660 20 XA861T 854 0.127 1370 146B-1 3 149A-1 7 22 XA030U 1075 0.660 23 XA941T 910 0.231 966 150B-1 12 24 XA953T 896 0.174 1180 151B-1 14 25 25 XA226T 836 0.107 1360 148B-1 3 150A-1 19 26 XA263T 902 0.208 965	10	XA740T	860	0.129	1435	143B-1	14			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11	XA832T	855	0.123	1408	145A-1	17			
13 XA033U 1075 0.660 14 XA034U 1075 0.660 15 XA237T 847 0.112 1224 148B-1 23 16 XA742T 851 0.119 1435 143B-1 17 17 XA921T 940 0.247 883 149A-1 27 18 XA035U 1075 0.660	12	XA032U	1075	0.660						
14 XA034U 1075 0.660 15 XA237T 847 0.112 1224 148B-1 23 16 XA742T 851 0.119 1435 143B-1 17 17 XA921T 940 0.247 883 149A-1 27 18 XA035U 1075 0.660	13	XA033U	1075	0.660						
15 XA237T 847 0.112 1224 148B-1 23 1 16 XA742T 851 0.119 1435 143B-1 17 17 XA921T 940 0.247 883 149A-1 27 18 XA035U 1075 0.660 7 7 20 XA851T 859 0.123 1185 148B-1 18 21 XA866T 854 0.127 1370 146B-1 3 149A-1 7 22 XA030U 1075 0.660 7 7 7 7 23 XA941T 910 0.231 966 150B-1 12 7 24 XA953T 896 0.174 1180 151B-1 14 7 25 XA226T 836 0.107 1360 148B-1 3 150A-1 19 27 XA828T 886 0.160 1313 146A-1 16 148B-1 27 28 XA963T 902 0.208 965 150B-1	14	XA034U	1075	0.660						
16 XA742T 851 0.119 1435 143B-1 17 17 XA921T 940 0.247 883 149A-1 27 18 XA036U 1075 0.660 20 XA851T 859 0.123 1185 148B-1 18 20 XA851T 859 0.123 1185 148B-1 18 21 XA866T 854 0.127 1370 146B-1 3 149A-1 7 22 XA030U 1075 0.660 20 23 XA941T 910 0.231 966 150B-1 12 24 XA953T 896 0.174 1180 151B-1 14 25 XA226T 836 0.107 1360 148B-1 3 150A-1 19 27 XA828T 886 0.160 1313 146A-1 16 148B-1 29 29 28 XA963T 902 0.208 965 150B-1 27 27 3 142A-1 7 31 XA678T <td< td=""><td>15</td><td>XA237T</td><td>847</td><td>0.112</td><td>1224</td><td>148B-1</td><td>23</td><td></td><td></td><td>đ</td></td<>	15	XA237T	847	0.112	1224	148B-1	23			đ
17 XA921T 940 0.247 883 149A-1 27 18 XA035U 1075 0.660	16	XA742T	851	0.119	1435	143B-1	17			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17	XA921T	940	0.247	883	149A-1	27			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18	XA035U	1075	0.660						
20 XA851T 859 0.123 1185 148B-1 18 21 XA866T 854 0.127 1370 146B-1 3 149A-1 7 22 XA030U 1075 0.660	19	XA036U	1075	0.660						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20	XA851T	859	0.123	1185	148B-1	18			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	XA866T	854	0.127	1370	146B-1	3	149A-1	7	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	XA030U	1075	0.660						
24 XA953T 896 0.174 1180 151B-1 14 25 XA225T 885 0.175 927 148B-1 2 26 XA226T 836 0.107 1360 148B-1 3 150A-1 19 27 XA828T 886 0.160 1313 146A-1 16 129 29 XA031U 1075 0.660 30 XA678T 854 0.130 1495 140B-1 3 142A-1 7 31 XA811T 860 0.130 1408 145B-1 27 3 142A-1 7 32 XA018U 1075 0.660 33 XA021U 1075 0.660 33 XA022U 1075 0.660 34 XA022U 1075 0.660 36 XA961T 927 0.223 965 150B-1 27 37 XA027U 1075 0.660 38 XA028U 1075 0.660 38 XA028U 1075 0.660 39 150A-1 6	23	XA941T	910	0.231	966	150B-1	12			
25 XA225T 885 0.175 927 148B-1 2 26 XA226T 836 0.107 1360 148B-1 3 150A-1 19 27 XA828T 886 0.160 1313 146A-1 16 28 XA963T 902 0.208 965 150B-1 29 29 XA031U 1075 0.660 3 142A-1 7 31 XA878T 854 0.130 1495 140B-1 3 142A-1 7 31 XA811T 860 0.130 1408 145B-1 27 3 32 XA018U 1075 0.660 3 3 142A-1 7 32 XA018U 1075 0.660 3 3 3 142A-1 7 34 XA022U 1075 0.660 3 3 3 3 3 3 36 XA961T 927 0.223 965 150B-1 27 37 37 XA027U 1075 0.660	24	XA953T	896	0.174	1180	151B-1	14			
26 XA226T 836 0.107 1360 148B-1 3 150A-1 19 27 XA828T 886 0.160 1313 146A-1 16 28 XA963T 902 0.208 965 150B-1 29 29 XA031U 1075 0.660 30 XA678T 854 0.130 1495 140B-1 3 142A-1 7 31 XA811T 860 0.130 1495 140B-1 3 142A-1 7 32 XA018U 1075 0.660 33 XA021U 1075 0.660 33 XA022U 1075 0.660 34 XA022U 1075 0.660 36 XA961T 927 0.223 965 150B-1 27 37 37 XA027U 1075 0.660 38 XA028U 1075 0.660 38 XA028U 1075 0.660 39 XA029U 1075 0.660 39 XA029U 1075 0.660 40 XA233T 817<	25	XA225T	885	0.175	927	148B-1	2			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	XA226T	836	0.107	1360	148B-1	3	150A-1	19	
28 XA963T 902 0.208 965 150B-1 29 29 XA031U 1075 0.660 30 XA678T 854 0.130 1495 140B-1 3 142A-1 7 31 XA811T 860 0.130 1408 145B-1 27 32 32 XA018U 1075 0.660 33 XA021U 1075 0.660 34 XA022U 1075 0.660 35 XA025U 1075 0.660 36 XA961T 927 0.223 965 150B-1 27 37 37 XA027U 1075 0.660 38 XA028U 1075 0.660 38 XA028U 1075 0.660 40 48B-1 22 150A-1 6	27	XA828T	886	0.160	1313	146A-1	16			
29 XA031U 1075 0.660 30 XA678T 854 0.130 1495 140B-1 3 142A-1 7 31 XA811T 860 0.130 1408 145B-1 27 7 32 XA018U 1075 0.660 33 XA021U 1075 0.660 33 XA022U 1075 0.660 34 XA022U 1075 0.660 36 XA961T 927 0.223 965 150B-1 27 37 XA027U 1075 0.660 38 XA028U 1075 0.660 38 XA028U 1075 0.660 40 XA233T 817 0.096 1446 148B-1 22 150A-1 6	28	XA963T	902	0.208	965	150B-1	29			
30 XA678T 854 0.130 1495 140B-1 3 142A-1 7 31 XA811T 860 0.130 1408 145B-1 27 7 32 XA018U 1075 0.660 7 7 7 33 XA021U 1075 0.660 7 7 7 34 XA022U 1075 0.660 7 7 7 36 XA961T 927 0.223 965 150B-1 27 7 37 XA027U 1075 0.660 7 7 7 37 XA028U 1075 0.660 7 7 7 38 XA028U 1075 0.660 7 7 7 39 XA029U 1075 0.660 7 7 7 6	29	XA031U	1075	0.660						
31 XA811T 860 0.130 1408 145B-1 27 32 XA018U 1075 0.660 33 XA021U 1075 0.660 33 XA022U 1075 0.660 34 XA022U 1075 0.660 34 XA025U 1075 0.660 36 36 360 360 36 XA961T 927 0.223 965 150B-1 27 37 XA027U 1075 0.660 38 XA028U 1075 0.660 38 XA028U 1075 0.660 39 XA029U 1075 0.660 40 XA233T 817 0.096 1446 148B-1 22 150A-1 6	30	XA678T	854	0.130	1495	140B-1	3	142A-1	7	
32 XA018U 1075 0.660 33 XA021U 1075 0.660 34 XA022U 1075 0.660 35 XA025U 1075 0.660 36 XA961T 927 0.223 965 150B-1 27 37 XA027U 1075 0.660 38 XA028U 1075 0.660 38 XA028U 1075 0.660 40 1446 1448B-1 22 150A-1 6	31	XA811T	860	0.130	1408	145B-1	27			
33 XA021U 1075 0.660 34 XA022U 1075 0.660 35 XA025U 1075 0.660 36 XA961T 927 0.223 965 150B-1 27 37 XA027U 1075 0.660 38 XA028U 1075 0.660 39 XA029U 1075 0.660 40 148B-1 22 150A-1 6	32	XA018U	1075	0.660						
34 XA022U 1075 0.660 35 XA025U 1075 0.660 36 XA961T 927 0.223 965 150B-1 27 37 XA027U 1075 0.660 38 XA028U 1075 0.660 39 XA029U 1075 0.660 40 148B-1 22 150A-1 6	33	XA021U	1075	0.660						
35 XA025U 1075 0.660 36 XA961T 927 0.223 965 150B-1 27 37 XA027U 1075 0.660 38 XA028U 1075 0.660 39 XA029U 1075 0.660 40 148B-1 22 150A-1 6	34	XA022U	1075	0.660						
36 XA961T 927 0.223 965 150B-1 27 37 XA027U 1075 0.660 38 XA028U 1075 0.660 39 XA029U 1075 0.660 40 XA233T 817 0.096 1446 148B-1 22 150A-1 6	35	XA025U	1075	0.660						
37 XA027U 1075 0.660 38 XA028U 1075 0.660 39 XA029U 1075 0.660 40 XA233T 817 0.096 1446 148B-1 22 150A-1 6	36	XA961T	927	0.223	965	150B-1	27			
38 XA028U 1075 0.660 39 XA029U 1075 0.660 40 XA233T 817 0.096 1446 148B-1 22 150A-1 6	37	XA027U	1075	0.660	000	1000-1	21			
39 XA029U 1075 0.660 40 XA233T 817 0.096 1446 148B-1 22 150A-1 6	38	XA028U	1075	0.660						
40 XA233T 817 0.096 1446 148B-1 22 150A-1 6	39	XA02911	1075	0.660						
	40	XA233T	817	0.096	1446	148B-1	22	150A-1	6	

03/01/ Rev. (/2012)6		ENGINE	ERII	NG CA	LCULA	TIONS	AND AN	NALYS	IS	Page A-14 of A-
Title:		Result of F	Reactor Ph	ysics	Safety	Analysi	s for Adv	anced Te	est Read	tor Cy	cle 154A-1
ECAR	No.:	2220	Rev.	No.:	0	Projec	ct No.:	N/A		Date:	4/9/2013
<u>Table</u>	A3. I	Plate Restr	ictions for	Fue	Loade	ed in Cy	cle 1544	<u>-1</u> ^{9,10,12}	 		
Core	Sor	ial				1	Restri	cted Pla	tes nted		
Pos.	N	0.	Restricti	on		(in the F	PDQ mod	lel)		
1	XA69	93T	recontou	011			<u>m uno</u> r	Damoa			
2	XA95	55T									
3	XA96	5T									
4	XA70)4T									
5	XA81	2T									
6	XA82	22T									
7	XA01	6U									
8	XA64	I6T									
9	XA01	7U									
10	XA74	ют									
11	XA83	32T									
12	XA03	32U									
13	XA03	3U									
14	XA03	84U									
15	XA23	37T									
16	XA74	2T									
1/	XA92	211									
18	XA03	350									
19	XAUJ	36U									
20	XA85										
21	XAOD										
22	XAUJ										
23	XA94	27									
2 4 25	XA33	95T									
26	XA22										
27	XA82	201 28T									
28	XA96	3T									
29	XA03	31U									
30	XA67	'8T									
31	XA81	1T									
32	XA01	8U									
33	XA02	21U									
34	XA02	20									
35	XA02	25U									
36	XA96	51T									
37	XA02	27U									
38	XA02	28U									
39	XA02	9U									
40	XA23	3T									

TEM-10200-1 03/01/2012 ENGINEERING CALCULATIONS AND ANALYSIS Page A-15 of A-22 Rev. 06

Title: Result of Reactor Physics Safety Analysis for Advanced Test Reactor Cycle 154A-1

ECAR No.: 2220 Rev. No.: 0 Project No.: N/A Date: 4/9/2013

Table A4. Capsule Facility Loading Used in ATR Cycle 154A-1 Analysis³

Facility	Description	<u>Reference</u>
۵_1		
Δ-2	IASER	
A-3	IASER	
A-4	IASER	
A-5	IASER	
A-6	IASER	
A-7	IASFR	
A-8	IASFR	
A-9	SFROP	
A-10	SFROP	
A-11	SFROP	
A-12	SFROP	
A-13	LSFR	
A-14	EPRI –ZG-B	GWW-10-11
A-15	LSFR	
A-16	LSFR	
B-1	Startup Source	RAK-03-02
B-2	YSFR	
B-3	YSFR	
B-4	YSFR	
B-5	YSFR	
B-6	YSFR	
B-7	HSIS Hardware	Dwg. 600271
B-8	LUNA	SBG-06-12
B-9	Aluminum Filler	
B-10	Aluminum Filler	
		SPC 07 12 Day 1
D-12	AGR-2	36G-07-12, Rev. 1

TEM-10200-1 03/01/2012 Rev. 06

ENGINEERING CALCULATIONS AND ANALYSIS Page A-16 of A-22

Title: Result of Reactor Physics Safety Analysis for Advanced Test Reactor Cycle 154A-1

ECAR No .:	2220	Rev. No.:	0	Project No.:	N/A	Date: 4/9/2	013

Table A4. Continued

<u>Facility</u>	Description	<u>Reference</u>
H-1	LSA Cobalt	CSR-06-12
H-2	LSA Cobalt	CSR-06-12
H-3	N-16 Monitor	
H-4	LSA Cobalt	CSR-06-12
H-5	LSA Cobalt	CSR-06-12
H-6	LSA Cobalt	CSR-06-12
H-7	LSA Cobalt	CSR-06-12
H-8	LSA Cobalt	CSR-06-12
H-9	LSA Cobalt	CSR-06-12
H-10	LSA Cobalt	CSR-06-12
H-11	N-16 Monitor	
H-12	LSA Cobalt	CSR-06-12
H-13	LSA Cobalt	CSR-06-12
H-14	LSA Cobalt	CSR-06-12
H-15	LSA Cobalt	CSR-06-12
H-16	LSA Cobalt	CSR-06-12
I-1 thru I-20	Beryllium Filler	
I-21	Aluminum Filler	
I-22	UCSB-2	TLM-01-11
I-23	Aluminum Filler	
I-24	Aluminum Filler	

TEM-10200-1 03/01/2012 ENGINEERING CALCULATIONS AND ANALYSIS Page A-17 of A-22 Rev. 06

Title: Result of Reactor Physics Safety Analysis for Advanced Test Reactor Cycle 154A-1

ECAR No.: 2220 Rev. No.: 0 Project No.: N/A Date: 4/9/2013

Table A5. Summary of ATR Shim Positions for ATR Cycle 154A-1

	NW LOBE	NE LOBE	SW LOBE	SE LOBE
Time				
At	Outer Neck	Outer Neck	Outer Neck	Outer Neck
Power	Shims Shims	Shims Shims	Shims Shims	Shims Shims
<u>(Days)</u>	(Deg.) Inserted	(Deg.) Inserted	(Deg.) Inserted	(Deg.) Inserted
0	46.5 123456	46.5 123456	46.5 123 56	46.5 123 56
0	69.7 123456	40.1 123456	40.1 123 56	51.2 123 56
3	85.4	69.7 123456	69.7 123 56	85.4 123 56
10	89.8	69.7 123456	75.2 123 56	85.4 123 5
17	95.2	75.2 123456	79.3 123 56	85.4 123 5
24	100.1	79.3 123456	79.3 123 56	85.4 123
31	111.7	85.4 123456	85.4 123 5	85.4 1
38	116.4	85.4 12345	85.4 123	89.8
45	119.6	85.4 1234	85.4 12	95.2
52	124.4	85.4 123	85.4	100.1
56	134.2	85.4 1	95.2	111.7

Table A6. Summary of ATR Core Power and Calculated Keffective for ATR Cycle 154A-1

Time At Power	Total Core Power	Lobe Powers (MW) r							
(Days)	<u>(MW)</u>	<u>NW</u>	<u>NE</u>	<u>C</u>	<u>SW</u>	<u>SE</u>	<u>Keffective</u>		
0	103	16.1	16.5	24.9	21.7	23.8	0.9831		
0	103	19.2	15.6	24.5	20.2	23.5	0.9863		
3	103	19.1	16.1	22.8	20.7	24.4	0.9910		
10	103	19.0	15.6	22.4	21.2	24.8	0.9929		
17	103	19.6	15.8	22.0	21.4	24.2	0.9921		
24	103	19.8	16.0	21.8	20.7	24.7	0.9921		
31	103	20.1	15.6	21.7	21.3	24.2	0.9974		
38	103	19.9	15.6	21.8	21.2	24.5	0.9995		
45	103	20.0	15.8	21.7	20.8	24.7	0.9985		
52	103	19.9	15.6	22.0	20.8	24.6	0.9987		
56	103	19.5	15.6	21.9	21.0	24.9	1.0029		

TEM-10200-1 03/01/2012 ENGINEERING CALCULATIONS AND ANALYSIS Page A-18 of A-22 Rev. 06

Title: Result of Reactor Physics Safety Analysis for Advanced Test Reactor Cycle 154A-1

ECAR No.:2220Rev. No.:0Project No.:N/ADate:4/9/2013Table A7.Summary of ATR Shim Positions for ATR Cycle 154A-1 Worst Case Calculations

Lobe	NW L (Deg.)	OBE Inserted	NE LO (Deg.)	OBE <u>Inserted</u>	SW L((Deg.)	OBE <u>Inserted</u>	SE L <u>(Deg.)</u>	OBE <u>Inserted</u>
NW	153.9	111111	46.5	111111	46.5	111011	0.0	111011
NE	46.5	111111	153.9	111111	0.0	111011	46.5	111011
С	0.0	000000	0.0	000000	0.0	000000	0.0	000000
SW	46.5	111111	0.0	111111	153.9	111011	46.5	111011
SE	0.0	111111	46.5	111111	46.5	111011	153.9	111011

Table A8. Summary of ATR Core Power and Calculated Keffective for Worst-Case Calculations

	Total Core Power		Lobe Powers (MW)										
Lobe	<u>(MW)</u>	NW	NE	<u>C</u>	<u>SW</u>	<u>SE</u>	K effective						
NW	103	30.5782	14.9238	22.9557	19.2923	15.2500	0.996738						
NE	103	14.4487	30.8284	22.8900	13.8189	21.0140	0.999252						
С	103	16.1196	16.7541	28.0575	20.1883	21.8806	1.035208						
SW	103	13.4933	9.7762	21.9328	38.9777	18.8201	1.015177						
SE	103	9.1450	13.6308	21.6903	16.8045	41.7294	1.020719						

TEM-10200-1 03/01/2012

Rev. 06

Page A-19 of A-22

Result of Reactor Physics Safety Analysis for Advanced Test Reactor Cycle 154A-1 Title:

ECAR No.: 2220	Rev. No.: 0	Project No.:	N/A	Date: 4/9/2013					
Table A9. Summary of Fuel Element Powers for ATR Cycle 154A-1									

Time At Power	Total Core Power	Po									
(Days)	<u>(MW)</u>	<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	9	<u>10</u>
0	103	2.7	2.6	2.3	1.6	1.3	1.3	1.8	2.7	3.0	3.2
0	103.0	2.7	2.5	2.2	1.5	1.2	1.2	1.6	2.5	2.9	3.1
3	103.0	2.5	2.4	2.2	1.7	1.4	1.4	1.8	2.5	2.6	2.8
10	103.0	2.4	2.3	2.2	1.7	1.4	1.4	1.7	2.4	2.6	2.7
17	103.0	2.4	2.3	2.2	1.7	1.5	1.5	1.8	2.4	2.5	2.7
24	103.0	2.3	2.2	2.2	1.7	1.5	1.5	1.8	2.4	2.5	2.7
31	103.0	2.2	2.2	2.1	1.7	1.5	1.5	1.8	2.4	2.4	2.6
38	103.0	2.2	2.2	2.1	1.7	1.5	1.5	1.8	2.4	2.5	2.6
45	103.0	2.2	2.3	2.1	1.7	1.5	1.5	1.8	2.4	2.6	2.6
52	103.0	2.3	2.3	2.1	1.7	1.4	1.5	1.7	2.3	2.6	2.6
56	103.0	2.4	2.4	2.1	1.6	1.4	1.4	1.7	2.3	2.6	2.8

Time At Power	Total Core Power	Power (MW) For Fuel Element In Core Positions 11-20 r									
(Days)	<u>(MW)</u>	<u>11</u>	<u>12</u>	<u>13</u>	<u>14</u>	<u>15</u>	<u>16</u>	<u>17</u>	<u>18</u>	<u>19</u>	<u>20</u>
0	103.0	3.4	3.8	3.5	2.7	2.0	2.1	2.6	3.4	3.7	3.4
0	103.0	3.3	3.7	3.4	2.7	2.1	2.1	2.6	3.4	3.6	3.3
3	103.0	3.0	3.3	3.4	2.9	2.6	2.6	2.9	3.3	3.3	2.9
10	103.0	3.0	3.5	3.4	3.0	2.6	2.6	2.9	3.4	3.4	2.9
17	103.0	2.9	3.4	3.4	2.9	2.5	2.6	2.8	3.3	3.3	2.9
24	103.0	2.9	3.5	3.4	2.9	2.5	2.6	2.8	3.4	3.5	2.9
31	103.0	3.0	3.6	3.4	2.9	2.4	2.4	2.7	3.3	3.5	3.0
38	103.0	3.1	3.6	3.4	2.9	2.5	2.5	2.8	3.4	3.5	3.1
45	103.0	3.0	3.6	3.4	3.0	2.5	2.5	2.8	3.4	3.5	3.0
52	103.0	3.0	3.5	3.4	3.0	2.5	2.5	2.8	3.4	3.5	3.0
56	103.0	3.0	3.5	3.4	3.1	2.6	2.6	2.9	3.4	3.4	3.0

TEM-10200-1 03/01/2012 Rev. 06

ENGINEERING CALCULATIONS AND ANALYSIS Page A-20 of A-22

Title:	Result of Reactor F	hysics Safet	y Analysis for	Advanced T	est Reactor Cy	cle 154A-1
--------	---------------------	--------------	----------------	------------	----------------	------------

ECAR No .:	2220	Rev. No.:	0		Projec	ct No.	:	N/A		D)ate:	4/9/2013
<u>Table A9.</u>	<u>Continued</u> Time At Power	Total Core Power	TotalPower (MW) For Fuel ElementCoreIn Core Positions 21-30Power									
	<u>(Days)</u>	<u>(MW)</u>	<u>21</u>	<u>22</u>	<u>23</u>	<u>24</u>	<u>25</u>	<u>26</u>	<u>27</u>	<u>28</u>	<u>29</u>	<u>30</u>
	0	103.0	3.4	3.6	3.1	2.4	2.0	1.9	2.3	2.9	3.4	3.1
	0	103.0	3.3	3.4	2.9	2.2	1.7	1.7	2.1	2.8	3.3	3.1
	3	103.0	2.9	3.1	2.9	2.4	2.1	2.0	2.3	2.8	3.0	2.8
	10	103.0	2.9	3.1	3.0	2.5	2.2	2.2	2.4	2.8	3.0	2.8
	17	103.0	2.8	3.1	3.0	2.5	2.3	2.2	2.5	2.8	3.0	2.7
	24	103.0	2.8	3.0	2.9	2.4	2.2	2.1	2.4	2.7	2.9	2.7
	31	103.0	2.8	3.2	2.9	2.5	2.3	2.2	2.4	2.8	3.0	2.7
	38	103.0	2.8	3.3	2.9	2.4	2.2	2.1	2.4	2.7	3.1	2.7
	45	103.0	2.8	3.3	2.9	2.4	2.2	2.1	2.3	2.7	3.1	2.7
	52	103.0	3.0	3.3	2.8	2.4	2.1	2.1	2.3	2.7	3.2	2.9
	56	103.0	2.9	3.3	2.9	2.4	2.2	2.1	2.3	2.7	3.1	2.8

Time At	Total Core	Po	Power (MW) For Fuel Element In Core Positions 31-40									
Power <u>(Days)</u>	Power (MW)	<u>31</u>	<u>32</u>	<u>33</u>	<u>34</u>	<u>35</u>	<u>36</u>	<u>37</u>	<u>38</u>	<u>39</u>	<u>40</u>	
0	103.0	2.9	2.8	2.4	1.7	1.3	1.2	1.7	2.2	2.7	2.7	
0	103.0	2.9	3.0	2.8	2.2	1.9	1.8	2.1	2.6	2.9	2.7	
3	103.0	3.0	3.1	2.7	2.1	1.9	1.8	2.1	2.5	3.0	2.8	
10	103.0	2.9	3.0	2.6	2.1	1.9	1.9	2.1	2.4	2.9	2.7	
17	103.0	2.9	3.0	2.7	2.2	2.1	2.0	2.2	2.5	2.9	2.7	
24	103.0	2.8	3.0	2.7	2.3	2.1	2.0	2.2	2.5	2.9	2.7	
31	103.0	2.8	3.0	2.7	2.4	2.2	2.1	2.3	2.5	2.8	2.6	
38	103.0	2.7	2.9	2.7	2.4	2.2	2.1	2.3	2.5	2.8	2.5	
45	103.0	2.7	2.9	2.7	2.4	2.3	2.1	2.3	2.5	2.8	2.5	
52	103.0	2.7	2.9	2.7	2.4	2.3	2.1	2.3	2.5	2.8	2.5	
56	103.0	2.6	2.8	2.6	2.4	2.2	2.1	2.3	2.4	2.7	2.5	

