ECAR No.: 2200 Rev. No.: 1 Project No.: N/A Date: March 21, 2013

1. Quality Level (QL) No.	1	Professional Engineer's Stamp
2. QL Determination No.	RTC-000088	See LWP-10010 for requirements.
3. Engineering Job (EJ) No.	N/A	
4. SSC ID	N/A	
5. Building	N/A	
6. Site Area	533	

7. Objective/Purpose:

The Advanced Test Reactor (ATR) Safety Analysis Report (SAR-153) requires that a reactor physics analysis be performed for each ATR cycle to assure that each ATR fuel element will operate within safety limits. The results for Cycle 153B-1 reported in this Engineering Calculations and Analysis Report (ECAR) were obtained using the PDQWS X-Y model of the ATR core.

8. If revision, please state the reason and list sections and/or pages being affected:

Revised Table A1 to indicate power divisions as reported in the Requested Lobe Powers letter for Advanced Test Reactor (ATR) Cycle 153B-1. The nominal powers listed in Table A1 are the powers used in PDQWS. The maximum and minimum limits on those powers are based in the information in the Requested Lobe Powers letter for Cycle 153B-1.

9. Conclusions/Recommendations:

Attached are the reactor physics data in support of the ATR Core Safety Assurance Package for Cycle 153B-1. The physics analysis contained herein was performed using a total core power of 175 MW for a nominal 1 day and 156 MW for the remaining days using a nominal 14 day fuel loading. The results of the calculation show that SAR-153 and Technical Safety Requirement (TSR)-186 limits on effective plate power (EPP) will be exceeded during Cycle 153B-1 when operating with three primary coolant pumps (3-PCP operation) in the southwest (SW) and southeast (SE) lobes. A reduction in the maximum requested power for those lobes is required to ensure SAR-153 and TSR-186 limits will not be violated. Allowable maximum powers for the SW and SE lobes are 49.3, and 58.4 MW, respectively. The nominal powers will not be affected by the maximum power reduction.

TEM-10200 03/01/2012 Rev. 06	ENGINEERING CALCULATIONS AND ANALYSIS	Page 2 of 5
Title:	Results of Reactor Physics Safety Analysis for Advanced Test Reactor Cycle 1	53B-1
ECAR No .:	2200 Rev. No.: 1 Project No.: N/A Date:	March 21, 2013
CONTENT	S	
PROJECT	ROLES AND RESPONSIBILITIES	3
SCOPE A	ND BRIEF DESCRIPTION	4
DESIGN C	OR TECHNICAL PARAMETER INPUT AND SOURCES	4
RESULTS	OF LITERATURE SEARCHES AND OTHER BACKGROUND DAT	A4
ASSUMPT	IONS	4
COMPUTE	ER CODE VALIDATION	4
DISCUSSI	ON/ANALYSIS	4
REFEREN	CES	4

APPENDIXES

Appendix A – Results of Reactor Physics Safety Analysis for Advanced Test Reactor (ATR) Cycle 153B-1

TEM-10200-1 03/01/2012	ENGINEERING CALCULATIONS AND ANALYSIS	Page 3 of 5
Rev. 06		g

ECAR No.: 2200 Rev. No.: 1 Project No.: N/A Date: March 21, 2013

PROJECT ROLES AND RESPONSIBILITIES

Project Role	Name (Typed)	Organization	Pages covered (if applicable)
Performer	M. R. Holtz	W414	
Checker ^a	P. A. Roth	W414	
Independent Reviewer ^b	E. T. Swain	C660	
CUI Reviewer ^c	R. A. Jordan	W414	
Manager ^d	R. A. Jordan	W414	
Requestor ^e	N/A	N/A	
Nuclear Safety ^e	A. W. LaPorta	W414	
Document Owner ^e	R. A. Jordan	W414	

Responsibilities:

a. Confirmation of completeness, mathematical accuracy, and correctness of data and appropriateness of assumptions.

b. Concurrence of method or approach. See definition, LWP-10106.

c. Concurrence with the document's markings in accordance with LWP-11202.

d. Concurrence of procedure compliance. Concurrence with method/approach and conclusion.

e. Concurrence with the document's assumptions and input information. See definition of Acceptance, LWP-10200.

NOTE: Delete or mark "N/A" for project roles not engaged. Include ALL personnel and their roles listed above in the eCR system. The list of the roles above is not all inclusive. If needed, the list can be extended or reduced.

TEM-10200-1 03/01/2012 Rev. 06	ENGINEERING CALCULATIONS AND ANALYSIS	Page 4 of 5

ECAR No.: 2200 Rev. No.: 1 Project No.: N/A Date: March 21, 2013

SCOPE AND BRIEF DESCRIPTION

Safety Analysis Report (SAR) -153 for the Advanced Test Reactor (ATR) requires that a reactor physics safety analysis be performed to evaluate each ATR cycle. The results for Cycle 153B-1 reported in this Engineering Calculations and Analysis Report (ECAR) were obtained using the PDQWS X-Y model of the ATR core. Reference 1 identifies a SAR-153 commitment to use the PDQWS X-Y model for the required physics safety analysis.

DESIGN OR TECHNICAL PARAMETER INPUT AND SOURCES

- 1. Natural Phenomena Hazard (NPH) category and source (Performance Category per DOE-STD-1021 and/or Seismic Design Category per ANSI/ANS 2.26): N/A
- 2. Load scenarios and Acceptance Criteria: N/A

RESULTS OF LITERATURE SEARCHES AND OTHER BACKGROUND DATA

The analysis contained herein is performed routinely for each ATR cycle. Guidance for performing and documenting the analysis is contained in Guide (GDE-175), *ATR Core Physics Calculations Using PDQWS*.

ASSUMPTIONS

See Appendix.

COMPUTER CODE VALIDATION

- A. Computer type: UNIX Workstation (Castalia) see References 7 and 8
- B. Operating System and Version: See Appendix A
- C. Computer program name and revision: See Table 11
- D. Inputs: See Appendix A
- E. Outputs: See Appendix A
- F. Evidence of, or reference to, computer program validation: See Table 11
- G. Bases supporting application of the computer program to the specific physical problem: See Reference 9
- H. Validation of Mathcad and spreadsheet-type software can be done by random hand calculation checks performed by the checker (See LWP-10200, Appendix E).

DISCUSSION/ANALYSIS

See Appendix.

ECAR No.: 2200 Rev. No.: 1 Project No.: N/A Date: March 21, 2013

REFERENCES

- 1. R. T. McCracken letter to Distribution, RTMc-03-98, UFSAR/TSR Conversion Plan for the ATR Core Safety Assurance Program, Revision 1, March 5, 1998.
- 2. R. T. McCracken letter to J. D. Abrashoff, RTMc-18-98, Determination Of Corner Lobe Powers For Quadrant Differential Temperature Setting, June 3, 1998.
- 3. S. W. Monk letter to A. W. LaPorta, SWM-13-13, Advanced Test Reactor Cycle 153B Preliminary Experiment Requirements Letter, March 14, 2013.
- 4. R. A. Jordan letter to ATR Cycle Reference Document 15, RAJ-04-13, Requested Lobe Powers for Advanced Test Reactor (ATR) Cycle 153B-1 Startup, March 16, 2013.
- 5. A. C. Smith letter to R. T. McCracken, ACS-23-96, Updated References for the Advanced Test Reactor (ATR) Core Safety Assurance Calculations, July 19, 1996.
- 6. A. C. Smith letter to R. T. McCracken, ACS-07-97, Average Axial Peaking Factors Incorporated in ROSUB and POWCOR For Use With The New TSR, February 24, 1997.
- 7. P. A. Roth, Verification and Validation of ATR Physics Analysis Software on Workstation Castalia, ECAR-516, February, 2009.
- 8. Roth, P. A., Verification and Validation of ATR Physics Analysis Software, rzpgm and rzread, on Workstation Castalia, ECAR-593, April 29, 2009.
- 9. SAR-153, Updated Final Safety Analysis for the Advanced Test Reactor, Revision 35, January 23, 2013.
- 10. TSR-186, Technical Safety Requirements For The Advanced Test Reactor, Revision 31, January 23, 2013.

TEM-10200- 03/01/2012 Rev. 06	-1	ENGINEERIN	G CAL	CULATIONS	AND ANAL	YSIS	Page A-1 of A-21
Title:	Result of F	Reactor Physics Sa	afety Ana	lysis for Advand	ced Test Reac	tor Cycle 1	53B-1
ECAR No.:	2200	Rev. No.:	1	Project No.:	N/A	Date:	March 21, 2013
			Apr	oendix A			

Introduction

The Advanced Test Reactor (ATR) Safety Analysis Report (SAR-153) requires that a reactor physics analysis be performed to evaluate each ATR cycle. The results reported in this Engineering Calculations and Analysis Report (ECAR) were obtained using the PDQWS X-Y model of the ATR core. Reference 1 identifies a SAR-153 commitment to use the PDQWS X-Y model for the required physics analysis. Nuclide densities for any recycled elements used in the fuel loading of this cycle were obtained from the RECYCLE model.

Assumptions

Many of the fuel safety limits are expressed in terms of effective plate power (EPP). The EPP for a fuel element plate is the product of the effective point power (EPtP) and the average axial peaking factor. The EPtP is defined as the product of the total core power in megawatts (MW) and the maximum point-to-core-average power density ratio. The average axial peaking factor is obtained by normalizing the axial power profile such that the maximum axial peaking factor is equal to 1.0. The normalized power profile is integrated over the 48-inch active core height and the result is divided by the active core height (48 inches). The result is defined as the average axial peaking factor. The EPP value, calculated from the nominal lobe power, is scaled to the maximum lobe power using a multiplication factor equal to the ratio of the maximum lobe power to the actual calculated lobe power.

PDQWS analysis of Cycle 153B-1 assumes operation for 14 days (Reference 3) using two nominal lobe power divisions associated with the high (fast cycle) and low (power demand cycle) stages of a PALM cycle. Day 1 assumes a high-stage nominal lobe power division of 20-20-38-42-55 MW (NW-NE-C-SW-SE) for a total reactor power of 175 MW. A low-stage nominal lobe power division of 20-20-35-35-46 MW (NW-NE-C-SW-SE) for a total reactor power of 156 MW is assumed for remaining days in the 14 day cycle. Initially, the computation of EPP values assumed maximum lobe powers for the high stage/first day (fast cycle) of 23-23-44-50-60 MW (NW-NE-C-SW-SE) and for the low stage/remaining days (power demand cycle) of 23-23-39-43-54 MW (NW-NE-C-SW-SE) for normalization (References 3 and 4). However, the EPP values calculated in this way, exceeded TSR limits in the SW and SE lobes during the high stage/first day. In order to stay within the limits, the maximum lobe power split for the high stage/first day must be reduced to 23-23-44-49.3-58.4 MW (NW-NE-C-SW-SE). The limiting plate powers occurred in the elements adjacent to the A-ligaments. The EPP values presented in this ECAR have been calculated using the reduced maximum lobe powers. Loop experiments (Reference 3) included in the PDQWS model used for this calculation are shown in Table A1, along with lobe nominal, minimum, and maximum powers (Reference 4).

TEM-10200 03/01/2012 Rev. 06	-1	ENGINEERING CA	LCULATIONS	AND AI	NALYSIS	Page A-2 of A-21
Title:	Result of R	eactor Physics Safety A	nalysis for Advanc	ed Test F	Reactor Cycle 1	53B-1
ECAR No.:	2200	Rev. No.: 1	Project No.:	N/A	Date:	March 21, 2013
Data						

The Cycle 153B-1 fuel charge consists of the following fuel elements:

- 8 New 7F elements 23 recycle 7F elements
- 0 New NB elements 0 recycle NB elements
- 0 New YA elements 0 recycle YA elements
- 8 New YA...M elements 1 recycle YA...M elements

The loading placement and previous irradiation history is shown in Table A2.

When the reflector adjacent to a lobe receives sufficient radiation exposure such that the ligament A stress level exceeds a value of two standard deviations less than the failure stress, the safety limits for the EPtP and EPP for fuel elements adjacent to ligament A of that lobe must be reduced. Stress level in ligament A is an indicator of reflector lifetime. The most recent update of the reflector lifetime analysis (as required by SAR-153 4.2.3.6.1) provides values for relating lobe exposure (integrated power) to limiting reflector stress levels. Following Cycle 152B-1, the exposure of the reflector adjacent to the NW, NE, SW, and SE lobes passed the level where the ligament A stress will exceed a value of two standard deviations less than the failure. This ECAR documents the reduction in safety limits for the NW, NE, SW, and SE lobes.

When the inspection of a new fuel element finds a reduced width in a coolant channel between fuel plates, the EPP limit for the plates adjacent to the narrow coolant channel must be reduced. The PDQWS model used in this analysis tracks the power in 11 of the 19 fuel element plates; namely plate numbers 1, 2, 3, 5, 8, 11, 15, 16, 17, 18, and 19. When an element has a reduced width in any coolant channel, the plate power limit will be restricted for any adjacent tracked plate or for the nearest tracked plate if there is no adjacent tracked plate. The fuel elements in the fuel loading for this cycle do not have any narrow coolant channel restrictions (Table A3). The capsule facility loading used for Cycle 153B-1 (Reference 3) is listed Table A4.

Analysis and Calculations

The calculation was performed using the PDQWS computer code on the castalia workstation. PDQWS results were processed using a suite of codes, including most importantly, ROSUB, PQMAP, GRAMS, TRNF, GOPPNP, LMFIS, POWCOR, RPCR, and CRITOS. The cross-sections included in the input deck were generated using the codes: COMBINE, SCAMP, SCRABL, and RZPGM. Fuel inventory data for use in PDQWS is maintained by the codes: RECEPP and RECYCLE.

The ATR PDQWS model was utilized to represent the performance of the reactor during normal operation of Cycle 153B-1. The shim positions corresponding to this operation are shown in Table A5. The lobe powers and values of $K_{effective}$ for this run are shown in Table A6.

The ATR PDQWS model was also utilized to represent the "worst-case" shim misalignment accident for each lobe. The shim positions corresponding to each misalignment configuration are shown in Table A7 and the resulting lobe powers and values of $K_{\text{effective}}$ are shown in Table A8.

TEM-10200 03/01/2012 Rev. 06	-1 ENGINEERING CALCULATIONS AND ANALYSIS	Page A-3 of A-21
Title:	Result of Reactor Physics Safety Analysis for Advanced Test Reactor Cycle 1	53B-1

ECAR No.: 2200 Rev. No.: 1 Project No.: N/A Date: March 21, 2013

Results and Conclusions

The PDQWS analysis tracks the EPP in plate 19 and in 10 of the remaining 18 plates of each of the 40 elements. The most limiting value in each lobe has been determined by evaluating the EPP in each of the 10 tracked inner fuel plates in each of the 8 elements of each lobe, and then factoring in any restrictions that have been placed on each fuel plate. The value that results from this analysis is often the maximum EPP value in the lobe, but occasionally a restriction causes a plate with less than the maximum EPP to be more limiting. The EPP value can be compared to the EPP limit and is used in establishing acceptance criteria for the surveillance of the Lobe Power Calculation and Indication System (LPCIS) per TSR-186, 3.6.1 (b), Reference 10.

In the event that calculated EPP values exceed TSR-186 limits, maximum lobe power is reduced. Maximum lobe powers for Cycle 153B-1 are reduced in the SW and SE lobes to 49.3 and 58.4 MW, respectively.

Table 1 shows the limits for the EPP as specified in TSR-186, 3.6.1(a) (Table 3.6.1-1) for the inner plates along with the most limiting calculated EPP value for the inner plates in each lobe. Inner fuel plates are all plates except plate 19.

	Effectiv	ve Plate r Limit	Inner Plate Most Limiting EPP By Lobe					
Lobe	2 PCP	3 PCP	Pos.	Plate	Restricted to (%) of limit	Days	EPP	
NW	417	443	F-32	5	100	1 ^{high}	223	
NE	417	443	F-9	5	100	1 ^{high}	252	
С	417	443	F-11	5	100	1 ^{high}	427	
sw	417	443	F-22	5	100	0	443	
SE	417	443	F-19	5	100	0, 1 ^{high}	438	

Table 1. Limiting Inner Plate EPP by Lobe

When the initial requested maximum lobe power for the SW lobe was applied, the resulting maximum EPP value for that lobe exceeded the 3 PCP limit, so the SW lobe maximum power had to be reduced to 49.3 MW.

To form quadrants, the center lobe elements are relegated to the adjacent corner lobes. Table 2 shows the most limiting inner plate EPP value in each quadrant rather than in each lobe.

TEM-10200-1 03/01/2012 Rev. 06	ENGINEERING CALCULATIONS AND ANALYSIS	Page A-4 of A-21
1104.00		

ECAR No.: 2200 Rev. No.: 1 Project No.: N/A Date: March 21, 2013

Table 2. Limiting Inner Plate EPP by Quadrant

	Effectiv Power	ve Plate r Limit	Inner Plate Most Limiting EPP By Quadrant				
Quadrant	2 PCP	3 PCP	Pos.	Plate	Restricted to (%) of limit	Days	EPP
NW	417	443	F-31	5	100	1 ^{high}	245
NE	417	443	F-10	5	100	1 ^{high}	382
sw	417	443	F-22	5	100	0	443
SE	417	443	F-19	5	100	0, 1 ^{high}	438

Table 3 shows the limits for the EPP as specified in TSR-186 3.6.1(a) (Table 3.6.1-1) for plate 19 along with the most limiting calculated EPP value for plate 19 in each lobe.

	Effectiv Power	ve Plate r Limit	Plate 19 Most Limiting EPP By Lobe					
Lobe	2 PCP	3 PCP	Pos.	Plate	Restricted to (%) of limit	Days	EPP	
NW	417	445	F-33	19	100	1 ^{high}	165	
NE	417	445	F-8	19	100	1 ^{high}	173	
С	417	445	F-11	19	100	1 ^{high}	267	
SW	417	445	F-23	19	100	0	426	
SE	417	445	F-18	19	100	0	419	

Table 3. Limiting Plate 19 EPP by Lobe

The plate 19 most limiting EPP values for each lobe are within the allowable TSR EPP limits for 3-PCP operation.

The most limiting EPP values calculated for Cycle 153B-1 elements at each time step are given in Table 4.

TEM-10200-1 03/01/2012 ENGINEERING CALCULATIONS AND ANALYSIS Page A-5 of A-21 Rev. 06

Title: Result of Reactor Physics Safety Analysis for Advanced Test Reactor Cycle 153B-1

ECAR No.: 2200 Rev. No.: 1 Project No.: N/A Date: March 21, 2013

the state of the s		the local day is a second s	and the second se			والمترجل والمترجية والمرارية والمتركب والمترجل والمترجل والمترجل والمترج المترجل والمراجل والمترجا والمتراج
Plate Type	EPP Limit 3 PCP	Pos.	Plate	Restricted to (%) of limit	Days ^a	Cycle 153B-1 Most Limiting EPP
19	445	F-23	19	100	0	426
Inner	443	F-22	5	100	0	443
19	445	F-18	19	100	1 ^{high}	415
Inner	443	F-19	5	100	1 ^{high}	438
19	445	F-13	19	100	1 ^{low}	391
Inner	443	F-19	5	100	1 ^{low}	422
19	445	F-13	19	100	3	390
Inner	443	F-19	5	100	3	421
19	445	F-13	19	100	10	380
Inner	443	F-19	5	100	10	419
19	445	F-13	19	100	14	365
Inner	443	F-19	5	100	14	409

Table 4. Limiting EPP at Each Time Step

a – Data for the 0-day ganged outer shim case is not included.

Exposure has exceeded the value for the limiting A-ligament stress level in the NW, NE, SW, and SE lobes. Fuel elements in core positions F-34 through F-37 in the NW lobe, F-4 through F-7 in the NE lobe, F-24 through F-27 in the SW lobe, and F-14 through F-17 in the SE lobe are adjacent to an A-ligament. Therefore the EPP limits in Tables 1-4 above are not applicable to these positions and reduced values as specified in TSR-186 3.6.1(a) (Table 3.6.1-1) must be used. The most limiting EPP values for these positions are given in Table 5 along with the $<2\sigma$ limits. Note that limiting EPP values for Plate 19 are not applicable (N/A) in the SW and SE lobes due to loading of fuel type YA in $<2\sigma$ positions. Fuel type YA contains no fuel in Plate 19. When the initial requested maximum lobe power for the SE lobe was applied the resulting maximum EPP value for core positions for which A-ligament stress is $<2\sigma$ to cracking was exceeded, resulting in reducing the maximum power in the SE lobe to 58.4 MW.

TEM-10200-1 03/01/2012	ENGINEERING CALCULATIONS AND ANALYSIS	Page A-6 of A-21
Rev. 06		

ECAR No.: 2200 Rev. No.: 1 Project No.: N/A Date: March 21, 2013

Table 5. Limiting EPP for core positions for which Ligament A stress is <2σ to cracking

	Effective Plate Power Limit		Cycle 153B-1 Most Limiting EPP for Ligament A (<2σ) Positions by Lobe						
Lobe/Plate	2 PCP	3 PCP	EPP	Pos.	Plate	Days	Restricted to (%) of limit		
NW/Inner Plates	406	431	155	F-34	15	1 ^{high} ,14	100		
NW/Plate 19	358	357	132	F-34	19	1 ^{high}	100		
NE/Inner Plates	406	431	141	F-7	15	1 ^{high}	100		
NE/Plate 19	358	357	97	F-7	19	1 ^{high}	100		
SW/Inner Plates	406	431	378	F-24	17	1 ^{high}	100		
SW/Plate 19	358	357	N/A	N/A	N/A	N/A	N/A		
SE/Inner Plates	406	431	431	F-17	17	1 ^{high}	100		
SE/Plate 19	358	357	N/A	N/A	N/A	N/A	N/A		

N/A – not applicable - all of the $<2\sigma$ positions in SW and SE are filled with YA elements that have no fuel in plate 19

The elements in several positions of the fuel loading reach a fission density greater than 1.5×10^{21} during Cycle 153B-1. For these elements, keeping the effective point powers less than the appropriate limits will prevent blistering of the fuel by ensuring that the maximum temperature will be at least 2σ less than 500°F (533°K) as required under SAR-153, 4.2.1 (Reference 9). Table 6 shows the positions in which the elements have exceeded the 1.5×10^{21} limit at each time step.

Table 6. Fuel Element Positions for which the fission density is greater than 1.5×10^{21}

Days	Position Numbers
0	1, 2, 3, 4, 5, 6, 7, 8, 9, 20, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40
1 ^{high}	1, 2, 3, 4, 5, 6, 7, 8, 9, 20, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40
1 ^{low}	1, 2, 3, 4, 5, 6, 7, 8, 9, 20, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40
3	1, 2, 3, 4, 5, 6, 7, 8, 9, 20, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40
10	1, 2, 3, 4, 5, 6, 7, 8, 9, 20, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40
14	1, 2, 3, 4, 5, 6, 7, 8, 9, 20, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40

Once an element exceeds 1.5×10^{21} fission density, its effective point power must not exceed the appropriate limit for its position as defined in Reference 9. Tables 7 and 8 identify the calculated effective point power for the most limiting element in each lobe for an inner plate and plate 19. Lobes with N/A entries do not have any elements that exceed 1.5×10^{21} fission density during the cycle.

TEM-10200-1 03/01/2012 Rev. 06	ENGINEERING CALCULATIONS AND ANALYSIS	Page A-7 of A-21
Nev. 00		

ECAR No.: 2200 Rev. No.: 1 Project No.: N/A Date: March 21, 2013

 Table 7. Inner Plate Limiting Effective Point Power by lobe for fission density greater than

 1.5 x 10²¹

	Effective Point Power Limit		Cycle 153B-1 Most Limiting Effective Point Power By Lobe						
Lobe	2 PCP	3 PCP	Pos.	Plate	Restricted to (%) of limit	Days	EPtP		
NW	435	453	F-32	5	100	1 ^{high}	255		
NE	435	453	F-9	5	100	1 ^{high}	288		
С	446	465	F-20	5	100	1 ^{high}	378		
sw	435	453	N/A	N/A	N/A	N/A	N/A		
SE	435	453	N/A	N/A	N/A	N/A	N/A		

N/A – not applicable – no positions in SW and SE are >1.5 x 10²¹

Table 8. Plate 19 Limiting Effective Point Power by lobe for fission density greater than $1.5 \ge 10^{21}$

Lobe	Effective Point Power Limit		Cycle 153B-1 Most Limiting Effective Point Power By Lobe						
	2 PCP	3 PCP	Pos.	Plate	Restricted to (%) of limit	Days	EPtP		
NW	411	428	F-33	19	100	1 ^{high}	197		
NE	411	428	F-8	19	100	1 ^{high}	198		
С	411	428	F-11	19	100	1 ^{high}	368		
sw	411	428	N/A	N/A	N/A	N/A	N/A		
SE	411	428	N/A	N/A	N/A	N/A	N/A		

N/A – not applicable – no positions in SW and SE are $>1.5 \times 10^{21}$

The worst-case lobe powers equivalent to the TSR-186, 3.6.1a, Table 3.6.1-1 EPP limits are shown in Table 9. Worst-case lobe powers are calculated by simulating a lobe power unbalance accident using maximum shim unbalances in the PDQWS model. The results are subsequently scaled to the limiting EPP.

TEM-10200-1
03/01/2012

D	00
Rev	UD

Title:	Result of Read	t of Reactor Physics Safety Analysis for Advanced Test Reactor Cycle 153B-1							
ECAR No.:	2200	Rev No.	1	Project No.:	N/A	Date:	March 21, 2013		

Table 9. Worst-case Lobe Powers at Effective Plate Power Limit

Lobe	Cycle Maximum LOBE Power (MW)	Maximum Unbalanced LOBE Power (MW)	Type of Position, Type of Plate	Limiting EPP at Maximum Unbalanced LOBE Power (MW)	Position	Plate	Restriction	Transient Effective Plate Power Limits and Overpower Ratios (MW)	Reference Lobe Power for Quadrant ∆T Setpoints (MW)
			All, inner plates	216	F-33	15	1.00	709/1.45 = 488	67.3
NW	23.0	29.83	All, plate 19	188	F-33	19	1.00	712/1.45 = 491	77.9
			$< 2\sigma$, inner plates	207	F-34	15	1.00	690/1.45 = 475	68.4
			< 20, plate 19	183	F-34	19	1.00	489/1.37 = 356	58.0*
		29.30	All, inner plates	235	F-9	5	1.00	709/1.45 = 488	60.8*
NE	23.0		All, plate 19	155	F-8	19	1.00	712/1.45 = 491	92.8
	112 20.0		$< 2\sigma$, inner plates	161	F-7	15	1.00	690/1.45 = 475	86.4
			< 20, plate 19	116	F-7	19	1.00	489/1.37 = 356	89.9
С	44 0	51.28	All, inner plates	438	F-21	5	1.00	709/1.45 = 488	57.1*
· · ·		01.20	All, plate 19	262	F-30	19	1.00	712/1.45 = 491	96.1
			All, inner plates	606	F-25	17	1.00	709/1.45 = 488	59.7
SIM	10.3	74 16	All, plate 19	522	F-23	19	1.00	712/1.45 = 491	69.7
300	49.5	74.10	< 2o, inner plates	606	F-25	17	1.00	690/1.45 = 475	58.1*
l			< 2o, plate 19	N/A	N/A	N/A	1.00	489/1.37 = 356	N/A
			All, inner plates	606	F-16	17	1.00	709/1.45 = 488	60.2
05	50.4	74.00	All, plate 19	520	F-18	19	1.00	712/1.45 = 491	70.6
SE	58.4	74.80	< 2o, inner plates	606	F-16	17	1.00	690/1.45 = 475	58.6*
			< 2σ, plate 19	N/A	N/A	N/A	1.00	489/1.37 = 356	N/A

*indicates the minimum value for that lobe

N/A - not applicable - all of the <20 positions in SW and SE are filled with YA elements that have no fuel in plate 19

TEM-10200-1		
03/01/2012 Rev. 06	ENGINEERING CALCULATIONS AND ANALYSIS	Page A-9 of A-21

ECAR No.: 2200 Rev. No.: 1 Project No.: N/A Date: March 21, 2013

The resulting worst-case lobe powers are used for establishing compliance with TSR-186, 3.1.1(a) (Table 3.1.1-1 SR#03) for the quadrant differential temperature set point. The EPP limits utilized the methods given in Reference 2. Each line in Table 9 selects the element in a specific category that has the most limiting EPP once the individual plate restrictions have been considered. Values in the rightmost column are calculated by multiplying the values in columns 3, 8, and 9 and then dividing by the value in column 5. If the values in the rightmost column were smaller than the values in column 2, it would be necessary to reduce the requested maximum lobe powers accordingly.

Table A9 lists the fuel element powers for each time step of the cycle. In order to find the maximum expected fuel element power for the cycle, the element powers in Table A9 are scaled to the lobe maximum power, multiplying by the ratio of the lobe maximum power and dividing by the actual lobe power. After examining all of the scaled fuel element powers for time steps beyond xenon equilibrium, the maximum expected fuel element power during Cycle 153B-1 is 7.921 MW in core position F-18.

The maximum calculated point-to-average power density ratio at a distance 90% from the edge of the fuel in plate 19 for any element is 3.24 in core position F-18 for the time step 0.

The preliminary startup power division normalized to a total core power of 250 MW is: 25.2-26.0-53.4-71.8-73.7 MW (NW-NE-C-SW-SE).

The reactivity estimates and the fission density limits as given in SAR-153, Section 4.2.1.2.3 are shown in Table 10.

	Reactivity	v Estimate ^a	Fission De (2.3 X 10 ²¹	nsity Limit fissions/cc)
Lobe	MWd	Time in Cycle ^b (Days)	MWd	Time in Cycle ^c (Days)
NW	57	2.8	465	20.2
NE	80	4.0	406	17.6
С			719	18.3
SW	2229	63.4	2143	49.6
SE	1565	33.8	2353	43.4

Table 10. Reactivity Estimates and Fission Density Limits

a. The reactivity estimates were obtained using the XSPRJ method.

b. The Time in Cycle is based on the nominal power division of 20-20-38-42-55 (NW-NE-C-SW-SE) for the first day and 20-20-35-35-46 for the remainder of the cycle.

c. The Time in Cycle is based on the maximum power division of 23-23-44-49.3-58.4 (NW-NE-C-SW-SE) for the first day and 23-23-39-43-54 for the remainder of the cycle.

The results above show sufficient reactivity in the SW and SE lobes to sustain the requested lobe power for the cycle length of 14 days. The results indicate insufficient reactivity in the NW and NE lobes to sustain the requested lobe power for the cycle length of 14 days. However these lobes include significantly depleted recycled fuel elements. Experience indicates that lobes loaded in this way usually have much more reactivity than is calculated. The results also show that the fission density limits should not be exceeded for a cycle length of 14 days. The maximum center lobe power for the cycle is set at 27 MW (Ref. 6) which would change the time in the cycle required to reach the fission density limit in the center lobe to 49.81 days. Therefore the fission density limit should not be exceeded for the cycle. The reactivity and fission density data are shown in Figures A1 and A2.

TEM-10200-1 03/01/2012 ENGINEERING CALCULATIONS AND ANALYSIS Page A-10 of A-21 Rev. 06

Title: Result of Reactor Physics Safety Analysis for Advanced Test Reactor Cycle 153B-1

ECAR No.: 2200 Rev. No.: 1 Project No.: N/A Date: March 21, 2013

The following elements in the fuel loading for Cycle 153B-1 are expected to have no further recycle potential after the nominal operation of Cycle 153B-1:

Core Position	Element ID
F-2	XA808T
F-3	XA119T
F-8	XA583T
F-9	XA827T
F-20	XA813T
F-32	XA833T
F-40	XA641T

The methods used in this analysis are found in References 5 and 6.

Hardware and Software

Calculations were performed on the castalia workstation – CPU-property number 380414. The analysis codes along with their V&V tracking number are shown in Table 11. The V&V is documented in References 7 and 8.

ible 11. Comp	uter coue	s and vor in	acking Numbers
Software Application Name	Version	Checksum Value	Enterprise Architecture Tracking Number
cmpr	1	1381	114931
critos	2	5760	114934
Fispk	-	50065	224935
gopp1	02/99	37552	207598
grams	2	61942	114939
Lmfis	1	22139	114940
mxfis	-	4291	-
Pdq	1	61283	67621
powcor	1	4227	67618
pqmap	1	8421	114945
pqmapin	-	15808	-
pqxspl	1	16060	114947
recinv	1	11392	114949
recycle	1	56856	114950
rosub	2	29380	114952
rpcr2	-	55876	-
rzpgm	1	34117	114953
rzread	-	43442	114954
Trnf	1	2014	114957
updatr	1	25709	114958

Table 11. Computer Codes and V&V Tracking Numbers

ECAR No.: 2200 Rev. No.: 1 Project No.: N/A Date: March 21, 2013

Table A1. Experimental Designations and Nominal Power Division for ATR Cycle 153B-1^{3,4}

<u>Lobe</u>	Fas	Power t Power Demand	Loop Exper	iments
NW	+ 20 -	3 +3 20 3 -3	2E-NW-100	(Attachment to B-MT(EDT)I-1555, Rev. 1)
N	-	-	1D-N-106	(ATRC-1D-N-106-00)
NE	+3 20 -3	+3 20 3 -3	23-Hole Larg	e Irradiation Housing Assembly (DWG 443488)
w	-	-	1C-W-75	(ATRC-1C-W-75-00)
С	+6 38 -4	6 +2 35 -5	EPRI-2	(DCJ-03-12)
E	-	-	7-Hole East I	rradiation Housing Assembly (DWG 445163)
SW	+7 42 -8	.3 +8 35 -8	2D-SW-218	(ATRC-2D-SW-218-00)
S	-	-	SPICE BU	(ATRC-S-M-200-00)
SE	+ 55 -8	3.4 +8 46 3 -8	2B-SE-193	(ATRC-2D-SW-187-00)

TEM-10200-1 03/01/2012

Rev. 06

ENGINEERING CALCULATIONS AND ANALYSIS Pag

Page A-12 of A-21

Title: Result of Reactor Physics Safety Analysis for Advanced Test Reactor Cycle 153B-1 ECAR No.: 2200 Rev. No.: 1 Project No.: N/A Date: March 21, 2013 Table A2. Summary of Fuel Load for Cycle 153B-1 Content Core Serial Total Irradiation History 235U ¹⁰B MWD Pos. No. Pos. Cycle Pos. Cycle Cycle Pos. 1 XA706T 672 0.025 2637 142A-1 12 147A-1 36 150A-1 31 2 XA808T 632 0.016 2430 145B-1 23 146B-1 20 3 XA119T 627 0.014 2356 131B-1 22 135C-1 32 137B-1 14 8 151B-1 4 YA512TM 635 0.018 2531 142B-1 25 147A-1 21 5 XA837T 638 0.017 2508 145A-1 23 147A-1 11 6 XA730T 646 0.019 2611 143A-1 19 147A-1 16 150A-1 38 7 XA685T 648 0.018 141A-1 23 2810 143A-1 5 148B-1 31 148B-1 8 XA583T 638 0.017 2860 138A-1 3 140B-1 5 1 9 XA827T 659 0.022 2529 145A-1 13 148A-1 11 10 XA944T 921 0.214 966 150B-1 17 XA960T 11 923 0.216 965 150B-1 24 12 XA991T 1075 0.660 13 XA992T 1075 0.660 14 YA551TM 1023 0.517 15 YA555TM 1023 0.517 16 YA556TM 1023 0.517 17 YA557TM 1023 0.517 18 XA993T 1075 0.660 19 XA994T 1075 0.660 20 XA813T 661 0.021 2529 145B-1 28 148A-1 30 21 XA943T 927 0.223 966 150B-1 14 22 XA987T 1075 0.660 23 XA988T 1075 0.660 24 1023 **YA530TM** 0.517 25 **YA546TM** 1023 0.517 26 **YA548TM** 1023 0.517 27 YA550TM 1023 0.517 28 XA989T 1075 0.660 29 XA990T 1075 0.660 30 XA926T 918 0.226 755 150B-1 2 31 720 XA908T 0.036 2273 147A-1 28 148B-1 26 32 XA833T 697 0.029 2468 146A-1 17 147A-1 17 33 XA924T 698 0.032 2031 149B-1 13 2 151A-1 34 XA696T 700 0.034 2088 142B-1 39 149A-1 1 35 XA318T 701 0.032 1897 134A-1 17 142A-1 3 32 143B-1 36 XA841T 686 0.025 2468 146A-1 18 147A-1 15 37 XA816T 690 0.028 2032 149B-1 22 151A-1 3 38 XA834T 692 0.027 2429 145A-1 18 146B-1 15 39 XA867T 694 0.037 2135 146B-1 22 149B-1 29 40 XA641T 639 0.018 2599 145B-1 12 148A-1 40

TEM-10200 03/01/2012 Rev. 06)-1	ENGINEERING	CALCULATION	S AND ANA	LYSIS	Page A-13 of A-21
Title:	Result of Rea	ctor Physics Safet	y Analysis for Advan	ced Test Read	ctor Cycle 15	3B-1
ECAR No.:	2200	Rev. No.: 1	Project No.:	N/A	Date:	March 21, 2013
Table A3.	Plate Restrict	tions for Fuel Lo	aded in Cycle 15	<u>3B-1^{9,10}</u>		
<u>Core</u> Pos.	Serial No.	Rest	riction	<u>Restric</u> represente	ted Plates d in the PD	(of those QWS model)
1	XA706T					
2	XA808T					
3	XA119T					
4	YA512TM					
5	XA837T					
6	XA730T				2	
7	XA685T					
8	XA583T					
9	XA827T					
10	XA944T					
11	XA960T					
12	XA991T					
13	XA992T					
14	YA551TM					
15	YA555TM					
16	YA556TM					
17	YA557TM					
18	XA993T					
19	XA994T					

20 XA813T 21 XA943T 22 XA987T

23

24

25

26

27

28

29

30 31

32

33

34 35

36 37

38 39

40

XA987T XA988T YA530TM YA546TM YA548TM YA550TM

XA989T

XA990T XA926T

XA816T XA834T

XA867T

XA641T

XA908T XA833T XA924T XA696T XA318T OK to use MBM-041-07 XA841T

Table A4. Capsule Facility Loading Used in ATR Cycle 153B-1 Analysis³

TEM-10200-1 03/01/2012 Rev. 06

ENGINEERING CALCULATIONS AND ANALYSIS

Page A-14 of A-21

Title: Result of Reactor Physics Safety Analysis for Advanced Test Reactor Cycle 153B-1

ECAR No.:	2200	Rev. No.:	1	Project No.:	N/A	Date:	March 21, 2	2013

Facility	Description	Reference
A-1	IASFR	DWG 120421
A-2	IASFR	DWG 120421
A-3	IASFR	DWG 120421
A-4	IASFR	DWG 120421
A-5	IASFR	DWG 120421
A-6	IASFR	DWG 120421
A-7	IASFR	DWG 120421
A-8	IASFR	DWG 120421
A-9	SFROP	DWG 120421
A-10	SFROP	DWG 120421
A-11	SFROP	DWG 120421
A-12	SFROP	DWG 120421
A-13	LSFR	DWG 446643
A-14	LSFR	DWG 446643
A-15	LSFR	DWG 446643
A-16	LSFR	DWG 446643
B-1	YSFR	DWG 035140
B-2	YSFR	DWG 035140
B-3	YSFR	DWG 035140
B-4	YSFR	DWG 035140
B-5	YSFR	DWG 035140
B-6	YSFR	DWG 035140
B-7	HSIS Hardware	DWG 600271
B-8	YSFR	DWG 035140
B-9	Aluminum Filler	DWG 448898
B-10	Aluminum Filler	DWG 448898
B-11	Aluminum Filler	DWG 448898
B-12	Aluminum Filler	DWG 448898

ECAR No.: 2200 Rev. No.: 1 Project No.: N/A Date: March 21, 2013

Table A4. Continued

Facility	Description	Reference
H-1	LSA Cobalt	CSR-08-12, NE-18-13 Rev 2
H-2	LSA Cobalt	CSR-08-12
H-3	N-16 Monitor	
H-4	LSA Cobalt	CSR-08-12
H-5	LSA Cobalt	CSR-08-12, NE-18-13 Rev 2
H-6	LSA Cobalt	CSR-08-12
H-7	LSA Cobalt	CSR-08-12, NE-18-13 Rev 2
H-8	LSA Cobalt	CSR-08-12
H-9	AFIP Hafnium Rod	NE-18-13 Rev 2
H-10	LSA Cobalt	CSR-08-12
H-11	N-16 Monitor	
H-12	LSA Cobalt	CSR-08-12
H-13	LSA Cobalt	CSR-08-12, NE-18-13 Rev 2
H-14	LSA Cobalt	CSR-08-12
H-15	LSA Cobalt	CSR-08-12, NE-18-13 Rev 2
H-16	LSA Cobalt	CSR-08-12
I-1 thru I-20	Beryllium Filler	DWG 120391
I-21	Aluminum Filler	DWG 448898
1-22	Aluminum Filler	DWG 448898
I-23	Aluminum Filler	DWG 448898
1-24	AGR-2	SBG-07-12

TEM-10200- 03/01/2012 Rev. 06	1 ENGINEERING CALCULATIONS AND ANALYSIS	Page A-16 of A-21
Title:	Result of Reactor Physics Safety Analysis for Advanced Test Reactor Cycle 15	3B-1

ECAR No.:	2200	Rev.	No.:	1	Project No.:	N/A	Date:	March 21, 2013
							for the first of the first of the	******

Table A5. Summary of ATR Shim Positions for ATR Cycle 153B-1

Time at	NM	LOBE	NE	LOBE	SN	/ LOBE	SE	LOBE	
Power (Days)	Outer Shims (deg.)	Neck Shims Inserted	Outer Shims (deg.)	Neck Shims Inserted	Outer Shims (deg.)	Neck Shims Inserted	Outer Shims (deg.)	Neck Shim Inserte	: s ed
0	69.7	123456	69.7	123456	69.7	123 50	69.7	123	56
0	85.4	1234	75.2	123456	56.6	123 50	5 79.3	123	56
1 ^{high}	95.2		89.8	12345	85.4	123 50	5 100.1		
1 ^{low}	104.2		85.4	12	75.2	123 50	89.8		
3	104.2		85.4	12	75.2	123 50	89.8		
10	119.6		89.8		79.3	123 50	89.8		
14	134.2		95.2		85.4	123 50	95.2		

. .

Table A6. Summary of ATR Core Power and Calculated Keffective for ATR Cycle 153B-1

Time at Power	Total Core Power			Lobe P	owers (MV	V)	
(Days)	(MW)	NW	NE	<u>C</u>	SW	SE	Keffective
0	175	17.6	18.2	37.4	50.2	51.6	0.9922
0	175	20.1	19.5	37.4	41.5	56.4	0.9950
1 ^{high}	175	19.4	19.5	37.7	42.2	56.2	1.0022
1 ^{low}	156	19.2	19.5	35.1	34.9	47.3	0.9992
3	156	19.5	19.8	35.1	34.6	47.0	0.9966
10	156	19.8	19.9	34.8	35.1	46.3	0.9970
14	156	19.3	19.4	33.8	36.3	47.1	0.9986

TEM-10200- 03/01/2012 Rev. 06	1 ENGINEERING CALCULATIONS AND ANALYSIS	Page A-17 of A-21
Title:	Result of Reactor Physics Safety Analysis for Advanced Test Reactor Cycle 15	53B-1

ECAR No.:2200Rev. No.:1Project No.:N/ADate:March 21, 2013

Table A7. Summary of ATR Shim Positions for ATR Cycle 153B-1 Worst Case Calculations

	NW	LOBE	NE LOBE		SW	LOBE	SE LOBE		
Lobe	(Deg.)	Inserted	(Deg.)	Inserted	(Deg.)	Inserted	(Deg.)	Inserted	
NW	153.9	111111	69.7	111111	69.7	111011	0.0	111011	
NE	69.7	111111	153.9	111111	0.0	111011	69.7	111011	
С	0.0	000000	0.0	000000	0.0	000000	0.0	000000	
SW	69.7	111111	0.0	111111	153.9	111011	69.7	111011	
SE	0.0	111111	69.7	111111	69.7	111011	153.9	111011	

Table A8. Summary of ATR Core Power and Calculated Keffective for Worst-Case Calculations

	Total Core Power			Lobe Pov	vers (MW)		
Lobe	(MW)	NW	NE	<u>C</u>	<u>sw</u>	SE	Keffective
NW	175	29.8322	18.3211	38.6662	56.0570	32.1234	0.983678
NE	175	18.0023	29.3067	38.9144	31.5415	57.2351	0.983919
С	175	19.5001	20.6045	51.2841	41.3473	42.2639	0.998931
SW	175	16.0832	10.5763	34.1840	74.1659	39.9907	1.023140
SE	175	10.1093	16.5740	34.3160	39.1923	74.8084	1.023803

03/01/2012 ENGINEERING CALCULATIONS AND ANALYSIS Page A-18 of A Rev. 06	TEM-10200-1 03/01/2012 Rev. 06	ENGINEERING CALCULATIONS AND ANALYSIS	Page A-18 of A-21
--	--------------------------------------	---------------------------------------	-------------------

ECAR No.: 2200	Rev. No.: 1	Project No.:	N/A	Date:	March 21, 2013
Table A9. Summary of	Fuel Element Powe	ers for ATR Cycle	e 153B-1		

Time at Power	Total Core Power	Power (MW) for Fuel Element in Core Positions 1-10									
(Days)	(MW)	1	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	<u>9</u>	10
0	175.0	3.2	2.7	2.3	1.6	1.4	1.5	2.0	3.1	3.6	4.8
0	175.0	3.3	2.9	2.4	1.8	1.6	1.6	2.2	3.3	3.8	5.0
1 ^{high}	175.0	3.3	2.9	2.4	1.7	1.6	1.7	2.2	3.3	3.8	4.9
1 ^{low}	156.0	3.4	3.1	2.4	1.7	1.6	1.6	2.1	3.2	3.9	4.8
3	156.0	3.4	3.1	2.4	1.8	1.6	1.7	2.1	3.2	3.9	4.8
10	156.0	3.6	3.1	2.5	1.8	1.6	1.7	2.1	3.2	3.9	5.0
14	156.0	3.4	3.0	2.4	1.8	1.6	1.7	2.1	3.1	3.7	4.9

Time at Power	Total Core Power	Power (MW) for Fuel Element in Core Positions 11-20									
(Days)	(MW)	<u>11</u>	<u>12</u>	<u>13</u>	<u>14</u>	<u>15</u>	16	<u>17</u>	<u>18</u>	<u>19</u>	<u>20</u>
0	175.0	5.7	6.8	6.9	5.9	5.5	5.6	6.2	7.4	7.2	5.2
0	175.0	5.9	7.1	7.5	6.7	6.5	6.5	6.9	7.8	7.4	5.2
1 ^{high}	175.0	6.2	7.4	7.3	6.6	6.5	6.5	6.8	7.6	7.6	5.5
1 ^{low}	156.0	5.7	6.5	6.3	5.4	5.2	5.3	5.5	6.4	6.6	4.9
3	156.0	5.7	6.5	6.2	5.4	5.2	5.2	5.5	6.4	6.5	4.8
10	156.0	5.6	6.4	6.2	5.3	5.1	5.1	5.4	6.3	6.4	4.7
14	156.0	5.5	6.4	6.2	5.5	5.3	5.3	5.6	6.4	6.4	4.6

TEM-10200-1 03/01/2012 Rev. 06	ENGINEERING CALCULATIONS AND ANALYSIS	Page A-19 of A-21
--------------------------------------	---------------------------------------	-------------------

ECAR No .:	2200	Rev. No.: 1	Project No.:	N/A	Date:	March 21, 2013

Table A9. Continued

Time at Power	Total Core Power		Power	(MW) 1	for Fue	l Eleme	ent in C	Core Po	osition	\$ 21-30	
(Days)	(MW)	<u>21</u>	<u>22</u>	<u>23</u>	<u>24</u>	<u>25</u>	<u>26</u>	<u>27</u>	<u>28</u>	<u>29</u>	<u>30</u>
0	175.0	6.1	7.1	7.4	6.2	5.5	5.5	5.8	6.5	6.3	5.3
0	175.0	5.8	6.4	6.3	4.9	4.1	4.1	4.6	5.5	5.7	5.0
1 ^{high}	175.0	5.6	6.0	6.2	5.1	4.7	4.6	4.8	5.4	5.3	4.7
1 ^{low}	156.0	4.9	5.2	5.2	4.2	3.7	3.6	3.9	4.6	4.6	4.2
3	156.0	4.9	5.1	5.2	4.1	3.6	3.6	3.9	4.5	4.6	4.2
10	156.0	4.8	5.1	5.2	4.2	3.8	3.7	4.0	4.6	4.6	4.2
14	156.0	4.7	5.1	5.4	4.4	4.0	4.0	4.1	4.7	4.6	4.1

Time at Power	Total Core Power		Power	(MW) 1	for Fue	l Elem	ent in C	Core Po	osition	s 31-40	
(Days)	(MW)	<u>31</u>	<u>32</u>	<u>33</u>	<u>34</u>	35	36	37	<u>38</u>	<u>39</u>	<u>40</u>
0	175.0	3.9	3.2	2.9	1.9	1.4	1.4	1.7	2.3	2.8	3.1
0	175.0	3.9	3.5	3.1	2.2	1.8	1.7	2.0	2.6	3.2	3.3
1 ^{high}	175.0	4.1	3.5	2.9	2.1	1.7	1.7	1.9	2.5	3.2	3.5
1 ^{low}	156.0	3.8	3.3	2.8	2.1	1.8	1.7	2.0	2.5	3.1	3.4
3	156.0	3.8	3.3	2.8	2.1	1.8	1.8	2.0	2.5	3.1	3.4
10	156.0	3.7	3.2	2.8	2.2	1.9	1.9	2.1	2.6	3.1	3.3
14	156.0	3.6	3.1	2.7	2.2	1.9	1.9	2.1	2.5	2.9	3.2

Total Core MWd