Document ID: ECAR-1742 Project No: NA Revision No: 1 Effective Date: 12/8/2011

Engineering Calculations and Analysis

 ECAR Title:
 Results of Reactor Physics Safety Analysis for Advanced Test Reactor Cycle 151A

 ECAR No.:
 1742

Performer:	B. J. Curnutt	W321/GB25	B	12/8/11
	(Name)	(Organization)	(Signature)	(Date)
Checker ¹ :	A. W. LaPorta	W321/GB20	Wolf	12/8/11
	(Name)	(Organization)	(Signature)	(Date)
Independent Peer Reviewer ² :	N/A			
	(Name)	(Organization)	(Signature)	(Date)
Data Verifier:	P. A. Roth	W321/GB20	Weth por ser	hen 12/8/11
	(Name)	(Organization)	(Signature)	(Date)
CUI Reviewer:	C. J. Stanley	W223/W432	- Stanly	12/8/11
	(Name)	(Organization)	(Signature)	(Date)
Manager ³ :	R. A. Jordan	W321/GB25	hoberta Jordan	12/8/11
	(Name)	(Organization)	(Signature)	(Date)
Owner ⁴ :				
	(Name)	(Organization)	(Signature)	(Date)
Nuclear Safety ⁴ :				
	(Name)	(Organization)	(Signature)	(Date)
Cognizant Engineer ⁴ :				
Doccont	(Name) Mic	(Organization)	(Signature)	(Date)

1. Confirmation of completeness, mathematical accuracy, and correctness of data and appropriateness of assumptions.

2. Concurrence of method or approach. See definition, LWP-10106.

3. Concurrence of procedure compliance. Concurrence with method/approach and conclusion.

4. Concurrence with the document's assumptions and input information. See definition of Acceptance, LWP-10200.

TEM-10200-1 ENGINEERING CALCULATIONS AND ANALYSIS REPORT 09/30/2011 Rev. 05

 Title:
 Results of Reactor Physics Safety Analysis for Advanced Test Reactor Cycle 151A

 ECAR No.:
 1742

 ECAR Rev. No.:
 1

 Project File No.:
 NA

 Date:
 12/8/2011

REVISION LOG

Rev.	Date	Affected Pages	Revision Description
0	11/28/11	All	Create
1	12/8/11	7-10, and 16	ATR Complex USQ-2010-497 establishes new interim limits on EPP's. This revision updates Tables 1-5 with the new interim limits per ATR Complex USQ-2010-497.
		······································	

TEM-1(09/30/2 Rev. 05)200- :011 5	1	ENGINEERING CALCULATIONS AND ANALYSIS REPORT Is of Reactor Physics Safety Analysis for Advanced Test Reactor Cycle 151A 742 ECAR Rev. No.: 1 Project File No.: NA	Page 3 of 39	
Title:	Res	ults of Reacto	r Physics Safety Analysis for Advanced	Test Reactor Cycle 151A	
ECAR	No.:	1742	ECAR Rev. No.: 1	Project File No.: <u>NA</u>	Date: <u>12/8/2011</u>

1.	Quality Level (QL) No.	1	
2.	QL Determination No.	RTC-000088	Professional Engineer's Stamp
3.	Engineering Job (EJ) No.	NA	NA
4.	eCR No.	600166	
5.	SSC ID	NA	
6.	Building	NA	
7.	Site Area	533	

8. Objective/Purpose:

The Upgraded Final Safety Analysis Report (UFSAR) for the Advanced Test Reactor (ATR) requires that a reactor physics analysis be performed for each ATR cycle to assure that each ATR fuel element will operate within safety limits. The results reported in this Engineering Calculations and Analysis Report (ECAR) were obtained using the Upgraded Final Safety Analysis Report (UFSAR) PDQ X-Y model of the ATR core.

The purpose of this revision is to update the interim limits set for EPP. Tables 1 through 5 of this revision have been updated with the new EPP limits as specified in ATR Technical Safety Requirements 3.6.1(a) (Table 3.6.1-1), and modified in Reference 13 (ATR Complex-USQ-210-497, Revision 1.

9. Conclusions/Recommendations:

Cycle 151A will run at a total core power of 101 MW for a nominal 53 days. Attached are the reactor physics data in support of the ATR Core Safety Assurance Program for Cycle 151A. The physics analysis contained herein was performed using a total core power of 100 MW with a fuel loading for 53 days. The results of the calculation show that none of the SAR/TSR limits will be violated during cycle 151A when in 2-PCP operation.

TEM-10200-1 09/30/2011 Rev. 05	ENGINEERING CALCULATIO	ONS AND ANALYSIS REPORT	Page 4 of 39
Title: <u>Results o</u>	f Reactor Physics Safety Analysis for Advance	ced Test Reactor Cycle 151A	
ECAR No.: 1742	ECAR Rev. No.: 1	Project File No.: NA	Date: <u>12/8/2011</u>
CONTENTS	an - Manada - Ang ang ang - Manada - Ang ang - Manada		
SCOPE AND B	RIEF DESCRIPTION		4
DESIGN OR TI	ECHNICAL PARAMETER INPUT ANI	O SOURCES	4
RESULTS OF I	LITERATURE SEARCHES AND OTHE	ER BACKGROUND DATA	4
ASSUMPTION	S		4
COMPUTER C	ODE VALIDATION		5
DISCUSSION/2	ANALYSIS		5
RECOMMEND	ATIONS		5
REFERENCES			5
Appendix A Re	sults of Reactor Physics Safety Analysis	for Advanced Test Reactor (ATR)	Cycle 151A6

APPENDIXES

Appendix A - Results of Reactor Physics Safety Analysis for Advanced Test Reactor (ATR) Cycle 151A

SCOPE AND BRIEF DESCRIPTION

See above

.

DESIGN OR TECHNICAL PARAMETER INPUT AND SOURCES

- 1. Natural Phenomena Hazard (NPH) category and source (Performance Category per DOE-STD-1021 and/or Seismic Design Category per ANSI/ANS 2.26): N/A
- 2. Load scenarios and Acceptance Criteria: N/A

RESULTS OF LITERATURE SEARCHES AND OTHER BACKGROUND DATA

The analysis contained herein is performed routinely for each ATR cycle. The plan for performing and documenting the analysis is contained in the Technical Support Guide for the TSR Physics model.

ASSUMPTIONS

See Appendix A

TEM-10200-1 09/30/2011 Rev. 05	ENGINEERING CALCULATIO	INS AND ANALYSIS REPORT	Page 5 of 39
Title: Results of Reactor	Physics Safety Analysis for Advanc	ed Test Reactor Cycle 151A	
ECAR No.: 1742	ECAR Rev. No.: 1	Project File No.: NA	Date: <u>12/8/2011</u>

COMPUTER CODE VALIDATION

Computer type:

UNIX Workstation (Castalia) See References 12 and 13 of Appendix A

A. Computer program name and revision: See Appendix A

- B. Inputs: See Appendix A
- C. Outputs: See Appendix A
- D. Evidence of, or reference to, computer program validation: See Appendix A
- E. Bases supporting application of the computer program to the specific physical problem: See Appendix A

DISCUSSION/ANALYSIS

See Appendix A

RECOMMENDATIONS

See Appendix A

REFERENCES

See Appendix A

TEM-10200-1 09/30/2011 Rev. 05	ENGINEERING CALCULATION	IS AND ANALYSIS REPORT	Page 6 of 39
Title: <u>Results of React</u>	or Physics Safety Analysis for Advanced	1 Test Reactor Cycle 151A	
ECAR No.: <u>1742</u>	ECAR Rev. No.: 1	Project File No.: <u>NA</u>	Date: <u>12/8/2011</u>

Appendix A

Results of Reactor Physics Safety Analysis for Advanced Test Reactor (ATR) Cycle 151A

Introduction

The Upgraded Final Safety Analysis Report (UFSAR) for the Advanced Test Reactor (ATR) requires that a reactor physics analysis be performed to evaluate each ATR cycle. The results reported in this Engineering Calculations and Analysis Report (ECAR) were obtained using the Upgraded Final Safety Analysis Report (UFSAR) PDQ X-Y model of the ATR core. Reference 1 identifies a UFSAR commitment to use the UFSAR PDQ X-Y model for the required physics analysis. Nuclide densities for any recycled elements used in the fuel loading of this cycle were obtained from the UFSAR RECYCLE model.

Assumptions

Many of the fuel safety limits are expressed in terms of effective plate power (EPP). The EPP for a fuel element plate is the product of the effective point power and the average axial peaking factor. The effective point power is defined as the product of the total core power in megawatts (MW) and the maximum point-to-core-average power density ratio. The average axial peaking factor is obtained by normalizing the axial power profile such that the maximum axial peaking factor is equal to 1.0. The normalized power profile is integrated over the 48-inch active core height and the result is divided by the active core height (48 inches). The result is defined as the average axial peaking factor. The EPP values also include normalization using the ratio of the maximum lobe power to the actual calculated lobe power.

The PDQ analysis of Cycle 151A was run for 53 days (Ref. 5) using a nominal lobe power (MW) division of 19-13-22-23-23 (NW-NE-CR-SW-SE) for a total reactor power of 100 MW. Effective plate power (EPP) values have been computed using maximum lobe powers (MW) of 19-16-30-26-26 (NW-NE-CR-SW-SE) for normalization (Ref. 6). Loop experiments (Ref. 5) included in the PDQ model used for this calculation are shown in Table A1, along with lobe nominal, minimum, and maximum powers (Ref. 6).

Data

The Cycle 151A fuel charge consists of the following fuel elements:

- 16 New 7F elements 15 recycle 7F elements
- 4 New NB elements 0 recycle NB elements
- 0 New YA elements 0 recycle YA elements
- 0 New YA...M elements 5 recycle YA...M elements

TEM-10200-1 09/30/2011 Rev. 05	ENGINEERING CALCULATION	NS AND ANALYSIS REPORT	Page 7 of 39
Title: <u>Results of Reacto</u>	r Physics Safety Analysis for Advance	d Test Reactor Cycle 151A	
ECAR No.: <u>1742</u>	ECAR Rev. No.: 1	Project File No.: <u>NA</u>	Date: <u>12/8/2011</u>

The loading placement and previous irradiation history is shown in Table A2.

When the reflector adjacent to a lobe receives sufficient radiation exposure that the ligament A stress level exceeds a value of two standard deviations less than the failure stress, the safety limits for the effective point power and EPP for fuel elements adjacent to ligament A of that lobe must be reduced. The most recent update of the reflector lifetime analysis (as required by SAR 4.2.3.6.1) provides values for relating lobe exposure (integrated power) to limiting reflector stress levels. The exposure of the reflector adjacent to the SW and SE lobes has passed the level where the ligament A stress will exceed a value of two standard deviations less than the failure stress. This ECAR documents the reduction in safety limits in those two lobes.

When the inspection of a new fuel element finds a reduced width in a coolant channel between fuel plates, the effective plate power limit for the plates adjacent to the narrow coolant channel must be reduced. The PDQ model used in this analysis tracks the power in 11 of the 19 fuel element plates. Those plates have numbers 1, 2, 3, 5, 8, 11, 15, 16, 17, 18, and 19. When an element has a reduced width in any coolant channel, the plate power limit will be restricted for any adjacent tracked plate or for the nearest tracked plate if there is no adjacent tracked plate. The fuel elements in the fuel loading for this cycle do not have any restrictions.

Analysis and Calculations

The calculation was performed using the PDQWS computer code on the castalia workstation. PDQWS results were processed using a suite of codes, including most importantly, ROSUB, PQMAP, GRAMS, TRNF, GOPPNP, LMFIS, POWCOR, and CRITOS. The cross-sections included in the input deck were generated using the codes: COMBINE, SCAMP, SCRABL, and RZPGM. Fuel inventory data for use in PDQWS is maintained by the codes: RECINV and RECYCLE.

The ATR PDQ model was run to represent the performance of the reactor during normal operation of Cycle 151A. The shim positions corresponding to this operation are shown in Table A5. The lobe powers and values of $K_{effective}$ for this run are shown in Table A6.

TEM-10200-1 09/30/2011 Rev. 05	ENGINEERING CALCULATION	S AND ANALYSIS REPORT	Page 8 of 39
Title: <u>Results of Reacto</u>	r Physics Safety Analysis for Advanced	Test Reactor Cycle 151A	
ECAR No.: 1742	ECAR Rev. No.: 1	Project File No.: <u>NA</u>	Date: 12/8/2011

The ATR PDQ model was also run to represent the "worst-case" shim misalignment accident for each lobe. The shim positions corresponding to each misalignment configuration are shown in Table A7 and the resulting lobe powers and values of $K_{\text{effective}}$ are shown in Table A8.

Results and Conclusions

The PDQ analysis tracks the EPP in plate 19 and in ten of the remaining 18 plates of each of the 40 elements. The most limiting value in each lobe has been determined by evaluating the EPP in each of the 10 tracked inner fuel plates in each of the 8 elements of each lobe, and then factoring in any restrictions that have been placed on each fuel plate. The value that results from this analysis is often the maximum EPP value in the lobe, but occasionally a restriction causes a plate with less than the maximum EPP to be more limiting. The EPP value can be compared to the effective plate power limit and used in establishing acceptance criteria for the surveillance of the Lobe Power Calculation and Indication System (LPCIS) [TSR 3.6.1 (b)].

Table 1 shows the limits for the EPP as specified in ATR Technical Safety Requirements 3.6.1(a) (Table 3.6.1-1), and modified in Reference 13 for the inner plates along with the most limiting calculated EPP value for the inner plates in each lobe. Inner fuel plates are all plates except plate 19.

Lobe	Effective Plate Power Limit		Inner Plate Most Limiting EPP By Lobe				
	2 PCP	3 PCP	Pos.	Plate	Restricted to (%) of limit	Days	EPP
NW	340	330	F-32	5	100	0	210
NE	340	330	F-2	5	100	0	179
CR	340	330	F-21	5	100	3	261
sw	340	330	F-22	5	100	0	250
SE	340	330	F-19	5	100	0	243

Table 1. Limiting Inner Plate EPP by Lobe

The most limiting EPP in each lobe is less than the operating limit for 2 primary coolant pumps (PCP), so twopump operation will be possible for this cycle.

Table 2 shows the most limiting inner plate EPP value in each quadrant rather than in each lobe. Center lobe elements have been combined into the adjacent corner lobe to make the four quadrants.

TEM-10200-1	ENGINEERING CALCULATIONS AND ANALYSIS REPORT	Page 9 of 39
09/30/2011		
Rev. 05		

Title: Results of Reactor Physics Safety Analysis for Advanced Test Reactor Cycle 151A

ECAR No.: <u>1742</u> ECAR Rev. No.: <u>1</u> Project File No.: <u>NA</u> Date: <u>12/8/2011</u>

Quadrant	Effective Plate Power Limit		Inner Plate Most Limiting EPP By Quadrant				
	2 PCP	3 PCP	Pos.	Plate	Restricted to (%) of limit	Days	EPP
NW	340	330	F-31	5	100	3	214
NE	340	330	F-10	5	100	3	203
SW	340	330	F-21	5	100	3	261
SE	340	330	F-20	5	100	3	252

Table 3 shows the limits for the EPP as specified in ATR Technical Safety Requirements 3.6.1(a) (Table 3.6.1-1), and modified in Reference 13 for plate 19 along with the most limiting calculated EPP value for plate 19 in each lobe.

Table 2. Limiting Inner Plate EPP by Quadrant

TEM-10200-1 ENGINEERING CALCULATIONS AND ANALYSIS REPORT Page 10 of 39 09/30/2011 Rev. 05

Title: Results of Reactor Physics Safety Analysis for Advanced Test Reactor Cycle 151A

ECAR No.: 1742 ECAR Rev. No.: 1 Project File No.: NA Date: 12/8/2011

Lobe	Effectiv	ve Plate		Plate 19 Most				
	Powe	r Limit						
	2 PCP	3 PCP	Pos.	Plate	Restricted to (%) of limit	Days	EPP	
NW	340	332	F-33	19	100	0	180	
NE	340	332	F-8	19	100	0	155	
CR	340	332	F-20	19	100	24	136	
SW	340	332	F-23	19	100	0	212	
SE	340	332	F-18	19	100	0	209	

Table 3. Limiting Plate 19 EPP by Lobe

The plate 19 most limiting EPP values for each lobe are within the allowable TSR EPP limits for 2-PCP operation. Therefore, 2-PCP operation is still acceptable for this cycle.

The most limiting EPP values calculated for Cycle 151A elements at each time step are given in Table 4.

Plate Type	EPP Limit 2 PCP	Pos.	Plate	Restricted to (%) of limit	Daysª	Cycle 151A Most Limiting EPP
19	340	23	19	100	0	212
Inner	340	22	5	100	0	250
19	340	18,23	19	100	3	196
Inner	340	21	5	100	3	261
19	340	18,23	19	100	10	193
Inner	340	21	5	100	10	258
19	340	18	19	100	17	191

Table 4. Limiting EPP at Each Time Step

TEM-10200-1 ENGINEERING CALCULATIONS AND ANALYSIS REPORT 09/30/2011

Rev. 05

Title:	Results of Reactor	Physics Safety	Analysis for	Advanced Test	Reactor Cycle 151A

ECAR No.: 1742 ECAR Rev. No.: 1 Project File No.: NA Date: 12/8/2011

Inner	340	21	5	100	17	254
19	340	18	19	100	24	188
Inner	340	21	5	100	24	246
19	340	23	19	100	31	183
Inner	340	21	5	100	31	238
19	340	18	19	100	38	178
Inner	340	21	5	100	38	227
19	340	18	19	100	45	171
Inner	340	19	5	100	45	213
19	340	18	19	100	52	164
Inner	340	19	5	100	52	207
19	340	18	19	100	53	162
Inner	340	19	5	100	53	204

a Data for the 0-day ganged outer shim case is not included

Exposure exceeded the value for the limiting A-ligament stress level in the SW and SE lobe during cycle 147A. Core positions F-24 through F-27 in the SW lobe and F-14 through F-17 in the SE lobe are adjacent to ligament A. Therefore the EPP limits in Tables 1-4 above are not applicable to these positions and reduced values as specified in ATR Technical Safety Requirements 3.6.1(a) (Table 3.6.1-1), and modified in Reference 13 must be used. The most limiting EPP values for these positions are given below along with the $<2\sigma$ limits.

Table 5.	Limiting EPP	for core positions for wh	nich Ligament A stress i	s <2σ to cracking:	F-14 through
F-17 and	F-24 through	F-27			

Lobe/Plate	Effec	Effective Plate		Cycle 151A Most Limiting EPP for				
	POW		Ligame	nt A (<20	(<2 σ) Positions By Lobe			
	2 PCP	3 PCP	EPP	Pos.	Plate	Days	Restricted to (%) of limit	

TEM-10200-1	ENGINEERING CALCULATIONS AND ANALYSIS REPORT	
09/30/2011		
Rev. 05		

Title: Results of Reactor Physics Safety Analysis for Advanced Test Reactor Cycle 151A

ECAR No.: 1742 ECAR Rev. No.: 1 Project File No.: NA Date: <u>12/8/2011</u>

Page 12 of 39

SW/Inner Plates	331	321	180	24	15	53	100
SW/Plate 19	291	266	166	24	19	3	100
SE/Inner Plates	331	321	182	17	15	53	100
SE/Plate 19	291	266	166	17	19	3	100

The elements in several positions of the fuel loading for this cycle, reach a fission density greater than 1.5x10²¹ during the cycle. For these elements, keeping the effective point powers less than the appropriate limits will prevent blistering of the fuel by ensuring that the maximum temperature will be at least 2σ less than 500°F (533°K) as required under UFSAR 4.2.1 as defined in Reference 4. Table 6 shows in which positions the elements have exceeded the 1.5×10^{21} limit at each time step.

Days	Position Numbers
0	4, 5, 6, 7, 10, 40
3	1, 4, 5, 6, 7, 9, 10, 31, 40
10	1, 4, 5, 6, 7, 9, 10, 11, 20, 30, 31, 40
17	1, 4, 5, 6, 7, 9, 10, 11, 20, 21, 30, 31, 40
24	1, 4, 5, 6, 7, 9, 10, 11, 20, 21, 30, 31, 40
31	1, 3, 4, 5, 6, 7, 9, 10, 11, 20, 21, 30, 31, 40
38	1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 20, 21, 30, 31, 40
45	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 20, 21, 25, 30, 31, 40
52	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15, 20, 21, 25, 30, 31, 40
53	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15, 20, 21, 25, 30, 31, 40

Table 6. Fuel Element Positions for which the fission density is greater than $1.5 \ge 10^{21}$

Once an element exceeds 1.5 x 10²¹ fission density, its effective point power must not exceed the appropriate limit for its position as defined in Reference 4. Tables 7 and 8 identify the calculated effective point power for

TEM-10200-1 09/30/2011 Rev. 05	Page 13 of 39		
Title: <u>Results of React</u>	or Physics Safety Analysis for Advance	ed Test Reactor Cycle 151A	
ECAR No.: 1742	ECAR Rev. No.: <u>1</u>	_ Project File No.: <u>NA</u>	Date: <u>12/8/2011</u>

the most limiting element in each lobe for an inner plate and plate 19. Lobes with "NA" entries do not have any elements that exceed 1.5×10^{21} fission density during the cycle.

Lobe	Effectiv Powe	ve Point r Limit		Cy Effec	rcle 151A Most Li ctive Point Power	miting [.] By Lobe	
	2 PCP	3 PCP	Pos.	Plate	Restricted to (%) of limit	Days	EPtP
NW	446	465	N/A	N/A	100	N/A	N/A
NE	446	465	F-9	5	100	3	200
CR	446	465	F-20	5	100	10	303
SW	435	453	F-25	15	100	45	172
SE	435	453	F-15	15	100	52,53	183

Table 7. Inner Plate Limiting Effective Point Power by lobe for fission density greater than 1.5 x 10²¹

A work of I have I > Endering Entering I offer of other of hosten achieve a character than 110 x 10	Table 8. Plate 19 Limitin	g Effective Point Power h	y lobe for fission	density greater t	(han 1.5 x 10 ²¹
---	---------------------------	---------------------------	--------------------	-------------------	-----------------------------

Lobe	Effectiv Powe	ve Point r Limit		C Effe	ycle 151A Most L ctive Point Powe	imiting er By Lobe		
	2 PCP	3 PCP	Pos.	Plate	Restricted to (%) of limit	Days	EPtP	
NW	411	428	N/A	N/A	N/A	N/A	N/A	
NE	411	428	F-2	19	100	45	156	
CR	411	428	F-20	19	100	24	159	
SW	411	428	F-25	19	100	45,53	134	
SE	411	428	F-15	19	100	53	144	

TEM-10200-1 09/30/2011 Rev. 05	ENGINEERING CALCULATION	Page 14 of 39	
Title: <u>Results of Reactor</u>	r Physics Safety Analysis for Advanced	Test Reactor Cycle 151A	
ECAR No.: 1742	ECAR Rev. No.: 1	Project File No.: <u>NA</u>	Date: <u>12/8/2011</u>

The worst-case LOBE powers equivalent to the TSR 3.6.1a, Table 3.6.1-1 effective plate power limits are shown in Table 9 on the next page. The worst-cases were found by simulating a lobe power unbalance accident using maximum shim unbalances in the PDQ model and the results are subsequently scaled to the limiting effective plate power.

TEM-10200-1 09/30/2011 Rev. 05

Title: Results of Reactor Physics Safety Analysis for Advanced Test Reactor Cycle 151A ECAR No .: ECAR Rev. No.: 1 1742

Date: 12/8/2011 Project File No.: NA

 Table 9. Worst-case Lobe Powers at Effective Plate Power Limit

(MW)	Power	Type of Plate	LOBE Power (MW)	Position	Plate	Restriction	and Overpower Ratios (MW)	for Quadrant ∆T Setpoints (MW)
-	(All inner plates	288	F-37	17	1.00	659/1 45 = 454	55.6*
19.0	35.31	All, plate 19	287	F-37	19	1.00	659/1.45 = 454	55.8
16.0	23.71	All, inner plates All, plate 19	172 160	F-3 F-3	15 19	1.00 1.00	659/1.45 = 454 659/1.45 = 454	62.5* 67.2
30.0	30.00	All, inner plates All, plate 19	206 124	F-21 F-21	5 19	1.00 1.00	659/1.45 = 454 659/1.45 = 454	66.1* 109.8
26.0	37.70	All, inner plates All, plate 19 < 2σ, inner plates < 2σ, plate 19	283 275 283 275	F-26 F-26 F-26 F-26	15 19 15 19	1.00 1.00 1.00 1.00	659/1.45 = 454 659/1.45 = 454 641/1.45 = 442 490/1.37 = 357	60.4 62.2 58.8 48.9*
	16.0 30.0 26.0	16.0 23.71 30.0 30.00 26.0 37.70	16.0 23.71 All, plate 19 30.0 30.00 All, inner plates All, plate 19 All, plate 19 All, inner plates All, plate 19 All, plate 19 4Il, inner plates All, plate 19 4Il, inner plates 4Il, plate 19 4Il, plate 19Il, plate 19 4Il, plate 19 4Il, plate 19Il, plate 19 4Il, plate 19Il, plate 19 4Il, plate 19Il, plate 19 4Il, plate 19 4Il, plate 19Il, plate 19 4Il, plate 19Il, plate 19 4Il, plate 19Il, pl	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16.023.71All, plate 19160F-3 30.0 30.00 All, inner plates206F-21 30.0 30.00 All, plate 19124F-21 $All, plate 19$ 124F-21 $All, plate 19$ 283F-26 26.0 37.70 All, plate 19275 26.0 37.70 $< 2\sigma, inner plates$ 283 275 $F-26$ 275 $F-26$ 275 $F-26$ 75 $< 2\sigma, plate 19$ $F-26$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Page 15 of 39

TEM-10200-1 09/30/2011 Rev. 05

ENGINEERING CALCULATIONS AND ANALYSIS REPORT

Title: Results of Reactor Physics Safety Analysis for Advanced Test Reactor Cycle 151A

ECAR No.:	1742		ECAR Rev. N	lo.: <u>1</u>		Project F	ile No.: <u>NA</u>	Date	e: <u>12/8/2011</u>
			All, inner plates	289	F-16	15	1.00	659/1.45 = 454	60.5
			All, plate 19	281	F-16	19	1.00	659/1.45 = 454	62.3
SE	SE 26.0	38.57	< 2ơ, inner plates	289	F-16	15	1.00	00 641/1.45 = 442 58.9	58.9
			< 2σ, plate 19	281	F-16	19	1.00	490/1.37 = 357	49.0*

*indicates the minimum value for that lobe

TEM-10200-1 09/30/2011 Rev. 05	ENGINEERING CALCULATIO	ONS AND ANALYSIS REPO	RT Page 17 of 39
Title: <u>Results of Reactor</u>	Physics Safety Analysis for Advance	ed Test Reactor Cycle 151A	
ECAR No.: 1742	ECAR Rev. No.: 1	Project File No.: NA	Date: 12/8/2011

The resulting worst-case lobe powers are used for establishing compliance with Technical Safety Requirement 3.1.1(a) (Table 3.1.1-1 SR#03) for the quadrant differential temperature set point. The effective plate power limits utilized the methods given in Reference 3. Each line in the table selects the element in a specific category that has the most limiting EPP once the individual plate restrictions have been considered. Values in the rightmost column are calculated by multiplying the values in columns 3, 8, and 9 and then dividing by the value in column 5. If the values in the rightmost column were smaller than the values in column 2, it would be necessary to reduce the requested maximum lobe powers accordingly. For this cycle no such adjustment will be necessary.

Table A9 lists the fuel element powers for each time step of the cycle. In order to find the maximum expected fuel element power for the cycle, the element powers in Table A9 are scaled to the lobe maximum power by multiplying by the ratio of the lobe maximum power divided by the actual lobe power. After examining all of the scaled fuel element powers for time steps beyond xenon equilibrium, we find that the maximum expected fuel element power during Cycle 151A is 4.541 MW in core position F-21.

The maximum calculated point-to-average power density ratio at a distance 90% from the edge of the fuel in plate 19 for any element is 2.70 in position F-23 for the time step 0.

The preliminary startup power division normalized to a total core power of 250 MW is: 46.8-34.7-62.3-53.7-52.4 (NW-NE-C-SW-SE).

The reactivity estimates and the fission density limits as given in UFSAR Section 4.2.1.2.3 are shown in Table 10.

	Read	tivity Estimate ^a	Fission Density Limit (2.3 X 10 ²¹ fissions/cc)		
Lobe	MWd	Time in Cycle ^b (Days)	MWd	Time in Cycle ^c (Days)	
NW	1239	65.2	2012	105.8	
NE	1086	83.5	944	59.0	
C			1316	43.8	

 Table 10. Reactivity Estimates and Fission Density Limits

TEM-10200-1 09/30/2011 Rev. 05

Title: Results of Reactor Physics Safety Analysis for Advanced Test Reactor Cycle 151A

ECAR No.: <u>1742</u> ECAR Rev. No.: <u>1</u>

.: 1 Project File No.: NA

Date: 12/8/2011

sw	1578	68.6	2060	79.2
SE	1581	68.7	2046	78.6

a. The reactivity estimates were obtained using the XSPRJ method.

b. The Time in Cycle is based on the nominal power division of 19-13-22-23-23 (NW-NE-CR-SW-SE).

c. The Time in Cycle is based on the maximum power division of 19-16-30-26-26 (NW-NE-CR-SW-SE).

The results above show sufficient reactivity to sustain the requested lobe power for the cycle length of 53 days. The results also show that the fission density limits should not be exceeded for a cycle length of 53 days in every lobe except the center (CR) lobe. The time in the cycle required to reach the CR lobe fission density limit was calculated using a maximum lobe power of 30 MW. To achieve the fission density limit during a 53 day cycle, a CR lobe average power of approximately 25 MW would have to be sustained. Calculations indicate that the CR lobe average power over the entire cycle will be 21.7 MW; Therefore, exceeding the fission density limit in the CR lobe is considered improbable. Nuclear Engineering will track actual CR Lobe MWds to ensure fission density limits in the CR Lobe are not exceeded during the cycle. The reactivity and fission density data are shown in Figures A1 and A2.

All of the elements in the fuel loading for Cycle 151A are expected to have further recycle potential after the nominal operation of Cycle 151A except for the following:

Pos.	Serial No.
5	XA755R
20	XA880T
30	YA506TM
31	XA868T

The methods used in this analysis are found in References 7 and 8.

TEM-10200-1 09/30/2011 Rev. 05	ENGINEERING CALCULATION	INEERING CALCULATIONS AND ANALYSIS REPORT			
Title: <u>Results of Reactor</u>	r Physics Safety Analysis for Advanced	Test Reactor Cycle 151A			
ECAR No.: 1742	ECAR Rev. No.: 1	Project File No.: <u>NA</u>	Date: <u>12/8/2011</u>		

Hardware and Software

Calculations were performed on the castalia workstation – cpu-property number 380414. The analysis codes along with their V&V tracking number are shown in Table 11. The V&V is documented in References 11 and 12.

Software	Version	Checksum	Enterprise
Application		Value	Architecture
Name			Tracking
			Number
cmpr	1	1381	114931
critos	2	5760	114934
Fispk	-	50065	224935
gopp1	02/99	37552	207598
grams	2	61942	114939
Lmfis	1	22139	114940
mxfis	-	4291	-
Pdq	1	61283	67621
powcor	1	4227	67618
pqmap	1	8421	114945
pqmapin	-	15808	-
pqxspl	1	16060	114947
recinv	1	11392	114949
recycle	1	56856	114950
rosub	2	29380	114952
rpcr2	-	55876	-

Table 11. Computer Codes and V&V Tracking Numbers

Page 20 of 39

TEM-10200-1 09/30/2011 Rev. 05

Title: Results of Reactor Physics Safety Analysis for Advanced Test Reactor Cycle 151A

ECAR No.: 1742 _____ ECAR Rev. No.: 1_____

Project File No.: NA Date: 12/8/2011

rzpgm	1	34117	114953
rzread	-	43442	114954
Trnf	1	2014	114957
updatr	1	25709	114958

Title: Results of Reactor Physics Safety Analysis for Advanced Test Reactor Cycle 151A

ECAR No.: <u>1742</u> ECAR Rev. No.: <u>1</u> Project File No.: <u>NA</u> Date: <u>12/8/2011</u>

References

- 1. R. T. McCracken letter to Distribution, RTMc-03-98, UFSAR/TSR Conversion Plan for the ATR Core Safety Assurance Program, Revision 1, March 5, 1998
- S.T. Polkinghorne, Analysis of ATR 3-inch and 6-inch LOCA's for 110MW Two-Pump Operation, TRA-ATR-1374, October 1998
- 3. R. T. McCracken letter to J. D. Abrashoff, RTMc-18-98, Determination Of Corner Lobe Powers For Quadrant Differential Temperature Setting, June 3, 1998
- 4. Davis, C. B., Compliance With ATR SAR Commitment on Fuel Design Temperatures, TEV-556, October 29, 2009
- 5. D. J. Schoonen letter to A. W. LaPorta, DJS-55-11, Rev.1, Advanced Test Reactor Cycle 151A Preliminary Experiment Requirements Letter, Revision 1, November 21, 2011
- 6. R. A. Jordan letter to ATR Cycle Reference Document 15, RAJ-11-11, Requested Lobe Powers for Advanced Test Reactor (ATR) Cycle 151A-1 Startup, November 16, 2011
- 7. A. C. Smith letter to R. T. McCracken, ACS-23-96, Updated References for the Advanced Test Reactor (ATR) Core Safety Assurance Calculations, July 19, 1996
- 8. A. C. Smith letter to R. T. McCracken, ACS-07-97, Average Axial Peaking Factors Incorporated in ROSUB and POWCOR For Use With The New TSR, February 24, 1997
- S.T. Polkinghorne, Power Limits for ATR Fuel Plates with Less-Than-Nominal Thickness Coolant Channels, TRA-ATR-1601, July 2000
- 10. BEA SP, SP-10.6.2.2, ATR Fuel Element Receipt, Performance Assurance, And Release, Rev 8, December 11, 2007
- 11. P. A. Roth, Verification and Validation of ATR Physics Analysis Software on Workstation Castalia, ECAR-516, February, 2009.
- 12. Roth, P. A., Verification and Validation of ATR Physics Analysis Software, rzpgm and rzread, on Workstation Castalia, ECAR-593, April 29, 2009.
- 13. ATR Complex-USQ-2010-497, Revision 1, Seismic-Induced Experiment Loop Leakage, December 5, 2011.

TEM-10200-1 E 09/30/2011 Rev. 05		ENGINEERING CALCULATIONS AND ANALYSIS REPORT	Page 22 of 39
Title: Re	esults of Rea	ctor Physics Safety Analysis for Advanced Test Reactor Cycle 151A	
ECAR No.	: <u>1742</u>	ECAR Rev. No.: <u>1</u> Project File No.: <u>NA</u>	Date: <u>12/8/2011</u>
Table A1.	Experime	ntal Designations and Nominal Power Division for ATR Cycle 151A ^{5,6}	
Lobe	<u>Power</u>	Loop Experiments	
	+0		
NW	19	2E/NW-160 R#2E	
	-4		
N	-	1D/N-105 Var Flux/Temp Corr. R#0	
	+3		
NE	13	AGR 3/4	
	-2		
w	-	1C/W-75 Med. Corr. R#0	
	+1.4		
с	22	AFIP-6 Mk-II	

-4

Title: <u>Re</u>	sults of Rea	actor Physics Safety Analysis for Advanc	ed Test Reactor Cycle 151A	
ECAR No.	1742	ECAR Rev. No.: 1	Project File No.: <u>NA</u>	Date: <u>12/8/2011</u>
E		7-Pin Flux Trap Irradiatio	on Facility with LSA Cobalt in E-	1 through E-7
	+3			
SW	23	2D/SW-185 STD BU R#	1	
	-3			
S .		AGC-2		
	+3			
SE	23	2B/SE-191 STD BU R#	1	
	-3			

Core	Serial	Content	Tot	al Irr	adiation H	listory					
<u>Pos.</u>	<u>No.</u>	²³⁵ U	¹⁰ B	<u>MWD</u>	Cycle	<u>Pos.</u>	Cycle	Pos.	<u>Cycle</u>	Pos. Cycle	<u>Pos</u>
1	XA726T	765	0.058	2204	145A-1	6	143A-1	13			
2	XA924T	8 69	0.138	1231	149B-1	13					
3	XA816T	843	0.128	1232	149B-1	22					

Page 24 of 39

TEM-10200-1 09/30/2011 Rev. 05

Title:	Results of Read	ctor Physics	Safety Ana	alysis for A	dvanced Te	est Reacto	or Cycle 1514	<u> </u>	
ECAR No.: 1742		<u></u>	ECAR Rev. No.: 1			Project	File No.: <u>NA</u>	Date: <u>12/8/2011</u>	
4	YA501TM	702	0.034	2154	145B-1	26	141A-1	12	
5	XA755R	684	0.031	2215	149A-1	40	124A-1	22	
6	YA504TM	653	0.021	2321	148A-1	21	135B-1	17	
7	YA553TM	695	0.033	1985	149B-1	9	145B-1	7	
8	XA327T	866	0.147	1170	136A-1	22	134A-1	26	
9	XA130T	779	0.065	2033	134B-1	35	131A-1	17	
10	XA645T	765	0.055	1941	142A-1	17	140A-1	3	
11	YA515TM	764	0.062	1943	139A-1	35	135C-1	15	
12	XA016U	1075	0.660						
13	XA017U	1075	0.660						
14	XA947T	1075	0.660						
15	XA894T	954	0.273	663	149A-1	8			
16	XA948T	1075	0.660						
17	XA011U	1075	0.660						
18	XA012U	1075	0.660						
19	XA014U	1075	0.660						
20	XA880T	800	0.078	1703	149A-1	16	148A-1	33	
21	XA875T	808	0.086	1821	149B-1	5	148A-1	3	
22	XA019U	1075	0.660						
23	XA020U	1075	0.660						
24	XA023U	1075	0.660						
25	XA831T	940	0.253	965	149B-1	7			
26	XA024U	1075	0.660						
27	XA026U	1075	0.660						

Page 25 of 39

TEM-10200-1
09/30/2011
Rev. 05

Title:	Results of Reac	tor Physics	Safety Ana	lysis for A	dvanced Te	st React	or Cycle 151A	1	<u></u>
ECAR	No.: <u>1742</u>		_ ECAR R	ev. No.: <u>1</u>		Project	File No.: <u>NA</u>		Date: <u>12/8/2011</u>
28	XA950T	1075	0.660						
29	XA951T	1075	0.660						
30	YA506TM	760	0.068	1969	143B-1	34	142B-1	7	
31	XA868T	754	0.051	1831	148B-1	33	146B-1	28	
32	XA746TNB	1075	0.000						
33	XA747TNB	1075	0.000						
34	XA010U	1075	0.660						
35	XA865T	892	0.167	1094	148A-1	13			
36	XA861T	903	0.185	965	149B-1	8			
37	XA748TNB	1075	0.000						
38	XA749TNB	1075	0.000						
39	XA009U	1075	0.660						
40	XA885T	753	0.050	1949	148B-1	38	146B-1	38	

No. Restrictions for Fuel Loaded in Cycle 151A ^{9,10} Table A3. Plate Restrictions for Fuel Loaded in Cycle 151A ^{9,10} Restricted Plates Core Serial (of those represented Pos. No. Restriction in the PDQ model) 1 XA726T 2 XA924T 3 XA816T 4 YA501TM 5 XA755R 6 YA504TM 7 YA553TM 8 XA327T 9 XA130T 10 XA645T 11 YA515TM 12 XA016U 13 XA017U 14 XA947T 15 XA894T 16 XA948T 17 XA01U 18 XA01ZU 19 XA01U 19 XA01U 19 XA01U 19 XA014U 20 XA880T	M-102 /30/20 v. 05	200-1 11	ENGIN	EERING CALCULATIC	ONS AND ANALYSIS REPORT	Page 26 of 39
ECAR Rev. No: 1 Project File No: NA Restrictions for Fuel Loaded in Cycle 151A ⁹¹⁰ Restricted Plates Core Serial (of those represented Pos. No. Restriction in the PDQ model) Image: Core Note Note Note Note Note Note Note Not	tle: <u>F</u>	Results of F	Reactor Physics	Safety Analysis for Advanc	ed Test Reactor Cycle 151A	
Table A3. Plate Restrictions for Fuel Loaded in Cycle 151A ⁹⁻¹⁰ Restricted Plates Core Serial (of those represented Pos. No. Restriction in the PDQ model) 1 1 XA726T 2 XA924T 3 XA816T 4 YA501TM 5 XA755R 6 YA504TM 7 YA503TM 8 XA327T 9 XA130T 10 XA645T 11 YA515TM 12 XA016U 13 XA017U 14 XA947T 15 XA894T 16 XA948T 17 XA011U 18 XA012U 19 XA014U 20 XA880T	CAR No	o.: <u>1742</u>		ECAR Rev. No.: 1	Project File No.: NA	Date: <u>12/8/2011</u>
Restricted Plates Core Field (fthose represented) Poso No. Restriction inte PDQ model) 1 SA7261 - 2 A39247 - - 3 XA8167 - - 4 VA504TM - - 5 XA5578 - - 6 XA504TM - - 7 VA504TM - - 8 XA3271 - - 9 XA1307 - - 10 XA515TM - - 11 VA503TM - - 12 XA1307 - - 13 XA1307 - - 14 XA1470 - - 15 XA9471 - - 16 XA0120 - - 17 XA0120 - - 18 XA0120 - - 19 XA0140 - -	ble A3	3. Plate R	estrictions fo	r Fuel Loaded in Cycle 15:	<u>1A</u> ^{9,10}	
Year(of those represented)PoseNo.Restrictionin the PDQ model)1KA726T-2KA924T-3KA816T-4YA501TM-5KA755R-6YA504TM-7YA504TM-7YA504TM-8KA327T-9KA343T-10KA645T-11YA515TM-12KA016U-13KA017U-14KA947T-15KA012U-16KA012U-17KA012U-18KA012U-19KA012U-19KA012U-10KA012U-11KA012U-12KA012U-13KA012U-14KA012U-15KA012U-16KA012U-17KA012U-18KA012U-19KA012U-19KA012U-10KA012U-11KA012U-12KA012U-13KA012U-14KA012U-15KA012U-16KA012U-17KA012U-18KA012U-19KA012U-19K				Restricted Plates		
Pos.No.Restrictionin the PDQ model)1XA726T.2XA924T.3XA816T.4XA50TM.5XA755R.6XA50TM.7XA53TM.7XA53TM.8XA327T.9XA130T.10XA51TM.11YA51TM.12XA014U.13XA017U.14XA948T.15XA948T.16XA948T.17XA012U.18XA012U.19XA012U.19XA012U.10XA012U.11XA012U.12XA012U.13XA012U.14XA012U.15XA012U.16XA012U.17XA012U.18XA012U.19XA012U.19XA012U.10XA012U.11XA012U.12XA012U.13XA012U.14XA012U.15XA012U.16XA012U.17XA012U.18XA012U.19XA012U.19XA012U.19XA012U <td< th=""><th>ore S</th><th>Serial</th><th></th><th>(of those represe</th><th>nted</th><th></th></td<>	ore S	Serial		(of those represe	nted	
1 XA726T 2 XA924T 3 XA816T 4 YA501TM 5 XA755R 6 YA504TM 7 YA503TM 8 XA327T 9 XA130T 10 XA645T 11 YA515TM 12 XA016U 13 XA017U 14 XA947T 15 XA948T 16 XA948T 17 XA01U 18 XA012U 19 XA014U 20 XA880T	<u>s.</u>	<u>No.</u>	Restriction	in the PDQ model)		
2 XA924T 3 XA816T 4 YA501TM 5 XA755R 6 YA504TM 7 YA503TM 8 XA327T 9 XA130T 10 XA645T 11 YA515TM 12 XA016U 13 XA017U 14 XA947T 15 XA948T 16 XA011U 17 XA011U 18 XA012U 19 XA014U 20 XA880T		XA726T				
3 XA816T 4 YAS01TM 5 XA755R 6 XA755R 6 YAS04TM 7 YAS53TM 8 XA327T 9 XA130T 10 XA645T 11 YAS15TM 12 XA016U 13 XA017U 14 XA947T 15 XA948T 16 XA01U 17 XA01U 18 XA012U 19 XA014U 20 XA880T 21 XA880T		XA924T				
4 YASO1TM 5 XA755R 6 YASO4TM 7 YASO3TM 7 YAS53TM 8 XA327T 9 XA130T 10 XA645T 11 YAS15TM 12 XA016U 13 XA017U 14 XA947T 15 XA948T 16 XA011U 17 XA011U 18 XA012U 19 XA014U 19 XA014U 20 XA880T 21 XA830T		XA816T				
5 XA755R 6 YA504TM 7 YA553TM 8 XA327T 9 XA130T 10 XA645T 11 YA515TM 12 XA016U 13 XA017U 14 XA947T 15 XA948T 16 XA948T 17 XA011U 18 XA012U 19 XA014U		YA501TM				
6 YASO4TM 7 YAS53TM 8 XA327T 9 XA130T 10 XA64ST 11 YAS1STM 12 XA016U 13 XA017U 14 XA947T 15 XA894T 16 XA012U 17 XA011U 18 XA012U 19 XA014U 20 XA880T		XA755R				
7 YASS3TM 8 XA327T 9 XA130T 10 XA645T 11 YAS15TM 12 XA016U 13 XA017U 14 XA947T 15 XA948T 16 XA011U 17 XA011U 18 XA012U 19 XA014U		YA504TM				
8 XA327T 9 XA130T 10 XA645T 11 YA515TM 12 XA016U 13 XA017U 14 XA947T 15 XA894T 16 XA948T 17 XA011U 18 XA012U 19 XA014U 20 XA880T		YA553TM				
9 XA130T 10 XA645T 11 YA515TM 12 XA016U 13 XA017U 14 XA947T 15 XA894T 16 XA948T 17 XA011U 18 XA012U 19 XA014U 20 XA880T		XA327T				
 XA645T YA515TM XA016U XA017U XA947T XA894T XA948T XA011U XA012U XA012U XA014U XA880T XA885T 		XA130T				
 YA515TM XA016U XA017U XA947T XA894T XA894T XA948T XA011U XA012U XA012U XA014U XA880T XA85T 	D	XA645T				
 12 XA016U 13 XA017U 14 XA947T 15 XA894T 16 XA948T 17 XA011U 18 XA012U 19 XA014U 20 XA880T 21 XA875T 	1	YA515TM				
 13 XA017U 14 XA947T 15 XA894T 16 XA948T 17 XA011U 18 XA012U 19 XA014U 20 XA880T 21 XA875T 	2	XA016U				
 14 XA947T 15 XA894T 16 XA948T 17 XA011U 18 XA012U 19 XA014U 20 XA880T 21 XA875T 	3	XA017U				
 15 XA894T 16 XA948T 17 XA011U 18 XA012U 19 XA014U 20 XA880T 21 XA875T 	4	XA947T				
 16 XA948T 17 XA011U 18 XA012U 19 XA014U 20 XA880T 21 XA875T 	5	XA894T				
 17 XA011U 18 XA012U 19 XA014U 20 XA880T 21 XA875T 	5	XA948T				
 18 XA012U 19 XA014U 20 XA880T 21 XA875T 	7	XA011U				
 19 XA014U 20 XA880T 21 XA875T 	8	XA012U				
20 XA880T	Ð	XA014U				
21 XA875T	C	XA880T				
21 ///0731	1	XA875T				

TEM-10 09/30/20 Rev. 05	200-1)11	ENGINEER	ING CALCULA	TIONS AND ANALYSIS REPO	RT Page 27 of 39
Title:	Results of Reac	tor Physics Safe	ty Analysis for Adv	anced Test Reactor Cycle 151A	
ECAR N	lo.: <u>1742</u>	EC	CAR Rev. No.: 1	Project File No.: <u>NA</u>	Date: <u>12/8/2011</u>
22	XA019U				
23	XA020U				
24	XA023U				
25	XA831T				
26	XA024U				
27	XA026U				
28	XA950T				
29	XA951T				
30	YA506TM				
31	XA868T				
32	XA746TNB				
33	XA747TNB				
34	XA010U				
35	XA865T				
36	XA861T				
37	XA748TNB				
38	XA749TNB				
39	XA009U				
40	XA885T				

Table A4. Capsule Facility Loading Used in ATR Cycle 151A Analysis⁵

				۰.	
-	а	c	E	11	٦.
	u	~			- 1

y <u>Description</u>

Reference

NEFT AGR-3/4

TEM-10 09/30/20 Rev. 05	200-1 ENGIN 011	IEERING CALCULATIO	ONS AND ANALYSIS REPOI	RT Page 28 of 39
Title:	Results of Reactor Physic	s Safety Analysis for Advanc	ced Test Reactor Cycle 151A	
ECAR N	lo.: <u>1742</u>	ECAR Rev. No.: 1	Project File No.: <u>NA</u>	Date: <u>12/8/2011</u>
CFT	AFIP-6 Mk II		HWG-0	3-11
E-1	LSA Cobalt			
E-2	LSA Cobalt			
E-3	LSA Cobalt			
E-4	LSA Cobalt			
E-5	LSA Cobalt			
E-6	LSA Cobalt			
E-7	LSA Cobalt			
SFT	AGC-2		MED-01	1-11
A-1	HSA Cobalt		BJH-2-9	2
A-2	HSA Cobalt		BJH-2-9	2
A-3	IASFR			
A-4	HSA Cobalt		BJH-2-9	2
A-5	HSA Cobalt		BJH-2-92	
A-6	HSA Cobalt		BJH-2-92	
A-7	HSA Cobalt		BJH-2-92	
A-8	HSA Cobalt		BJH-2-92	
A-9	HSA Cobalt		RAK-04-02	
A-10	AFC-3A		KEB-13-11	
A-11	AFC-3B		KEB-13-11	
A-12	SFROP			

Page 29 of 39

TEM-10200-1 09/30/2011 Rev. 05

Title: <u>Res</u>	ults of Reactor Physics	Safety Analysis for Advance	ed Test Reactor Cycle 151A	
ECAR No.:	1742	ECAR Rev. No.: <u>1</u>	Project File No.: <u>NA</u>	Date: <u>12/8/2011</u>
A-13	LSFR			
A-14	EPRI –ZG-B		GWW-09	9-11
A-15	EPRI –ZG-C		GWW-09-11	
A-16	EPRI –ZG-A		GWW-09	9-11
B-1	YSFR			
B-2	USU-1		DJL-02-1	1
B-3	HSA Cobalt		BJH-73-8	8
B-4	HSA Cobalt		BJH-73-8	8
B-5	HSA Cobalt		BJH-73-8	8
B-6	HSA Cobalt		BJH-73-8	8
B-7	HSIS		Dwg. 6002	71
Table A4.	<u>Continued</u>			
<u>Facility</u>	Description		<u>Reference</u>	
B-8	YSFR			
B-9	RERTR-12-4		GNH-05-	11
B-10	RERTR-13-1		GNH-09-	11
B-11	Aluminum Filler			
B-12	AGR-2		SBG-01-1	1, Rev.1
H-1	HSA Cobalt		TMS-06-0	08
H-2	HSA Cobalt		TMS-06-0	08

TEM-10200-1 09/30/2011	ENGINEERING CALCULATIONS AND ANALYSIS REPORT	Page 30 of 39
Rev. 05		

ECAR No.: <u>17</u>	42	ECAR Rev. No.: 1	Project File No.: <u>NA</u>	Date: 12/8/2011
Н-3	N-16 MONITOR			
H-4	HSA Cobalt		TMS-06-08	
H-5	HSA Cobalt		TMS-06-08	
H-6	HSA Cobalt		TMS-06-08	
H-7	HSA Cobalt		TMS-06-08	
H-8	HSA Cobalt		TMS-06-08	
H-9	HSA Cobalt		TMS-06-08	
H-10	HSA Cobalt		TMS-06-08	
H-11	N-16 MONITOR			
H-12	HSA Cobalt		TMS-06-08	
H-13	HSA Cobalt		TMS-06-08	
H-14	HSA Cobalt		TMS-06-08	
H-15	HSA Cobalt		TMS-06-08	
H-16	HSA Cobalt		TMS-06-08	
I-1 thru I-20	Beryllium Filler			
I-21	Beryllium Filler			
I-22	UCSB-2		TLM-1-11	
1-23	LWRS-1		KEB-13-11	
1-24	Aluminum Filler			

TEM-10200-1 09/30/2011 Rev. 05	ENGINEERING CALCULATION	IS AND ANALYSIS REPORT	Page 31 of 39
Title: <u>Results of Reactor</u>	Physics Safety Analysis for Advanced	Test Reactor Cycle 151A	
ECAR No.: 1742	ECAR Rev. No.: <u>1</u>	Project File No.: <u>NA</u>	Date: <u>12/8/2011</u>

Table A5. Summary of ATR Shim Positions for ATR Cycle 151A

		NW L	OBE		NE LC	DBE				SW LO	DBE		SE LO	BE	
Time															
At	Outer	Neck		Outer	Neck				Outer	Neck		Outer	Neck		
Powe (Days)	er <u>(Deg.)</u>	Shim Inser	is Shims <u>ted</u>	(Deg.)	Shim Insert	is S ted	hin	IS	<u>(Deg.)</u>	Shim Insert	s Shim ted	s <u>(Deg.)</u>	Shim <u>Insert</u>	is Shim <u>:ed</u>	S
0		40.1	12345	6	40.1	12	234	5	6	40.1	123	56	40.1	123	56
0		40.1	12345	6	13.5	12	234	5	6	51.2	123	56	56.6	123	56
3		79.3	12345	6	56.6	12	234	5	6	85.4	123	5	85.4	123	
10		85.4	12345	6	61.0	12	234	5	6	85.4	123		85.4	12	
17		85.4	12345	i i	64.7	12	234	5	6	85.4	12		85.4	1	
24		85.4	1234		69.7	12	234	5	6	85.4	1		85.4		
31		85.4	123		75.2	12	234	5	6	85.4			89.8		
38		85.4	12		79.3	1 2	234	5	6	89.8			89.8		
45		85.4			85.4	1 2	234	5		95.2			95.2		
52		89.8			85.4	1 2	234	•	2	100.1			100.1		
53		95.2			85.4	1 2	23			104.2			104.2		

TEM-10200-1 09/30/2011 Rev. 05	ENGINEERING CALCULATION	S AND ANALYSIS REPORT	Page 32 of 39
Title: Results of Reacto	or Physics Safety Analysis for Advanced	Test Reactor Cycle 151A	
ECAR No.: 1742	ECAR Rev. No.: 1	Project File No.: NA	Date: <u>12/8/2011</u>

-

Time	Total							
at	Core	Lobe I	Powers (MW)				
Power	Power							
<u>(Days)</u>	<u>(MW)</u>	<u>NW</u>	<u>NE (</u>	<u>r sw</u>	<u>SE</u>	<u>K_{effect}</u>	ive	
0	100	18.7	13.9	24.9	21.5	21.0	0.9889	
0	100	17.6	12.1	24.3	22.6	23.3	0.9947	
3	100	18.2	12.0	21.7	23.9	24.1	0.9949	
10	100	18.2	12.2	21.6	24.0	24.1	0.9964	
17	100	18.0	12.1	21.7	24.1	24.1	0.9992	
24	100	18.0	12.2	22.0	24.0	23.9	1.0024	
31	100	17.8	12.2	21.9	23.8	24.2	1.0031	
38	100	18.0	12.3	21.6	24.4	23.7	1.0002	
45	100	17.9	12.7	21.6	24.2	23.6	1.0016	
52	100	17.9	12.9	21.1	24.3	23.8	0.9986	
53	100	18.1	13.0	20.9	24.1	23.8	1.0019	

Table A7. Summary of ATR Shim Positions for ATR Cycle 151A Worst Case Calculations

	NW LOBE	NE LOBE	SW LOBE	SE LOBE		
Lobe	(Deg.) Inserted	(Deg.) Inserted	(Deg.) Inserted	(Deg.) Inserted		

ECAR No.: 1742		EC/	AR Rev. N	o.: <u>1</u>	Project F	ile No.: <u>NA</u>	I	Date: 12/8/2011		
NW	153.9	111111	40.1	111111	40.1	111011	0.0	111011		
NE	40.1	111111	153.9	111111	0.0	111011	40.1	111010		
CR	0.0	000000	0.0	000000	0.0	000000	0.0	000000		
sw	40.1	111111	0.0	111111	153.9	111011	40.1	111011		
SE	0.0	111111	40.1	111111	40.1	111011	153.9	111011		

Title: Results of Reactor Physics Safety Analysis for Advanced Test Reactor Cycle 151A

Table A8. Summary of ATR Core Power and Calculated Keffective for Worst-Case Calculations

	Total						
	Core	Lobe P	owers (N	1W)			
	Power						
Lobe	<u>(MW)</u>	<u>NW</u>	<u>NE</u>	<u>CR</u> <u>SW</u>	<u>SE</u>	<u>K_{effective}</u>	
NW	100	35.3189	12.3059	22.0938	17.4208	12.8607	1.015048
NE	100	17.6786	23.7136	5 23.6274	15.6435	19.3368	0.999689
CR	100	18.3040	14.5342	30.0015	18.7445	18.4158	1.031456
sw	100	15.0899	8.9109	21.6732	37.7071	16.6190	1.022307
SE	100	11.2018	11.6536	5 21.6888	16.8826	38.5732	1.022219

TEM-10200-1	ENGINEERING CALCULATIONS AND ANALYSIS REPORT	Page 34 of 39
Rev. 05		

Title: Results of Reactor Physics Safety Analysis for Advanced Test Reactor Cycle 151A

ECAR No.: <u>1742</u> ECAR Rev. No.: <u>1</u> Project File No.: <u>NA</u> Date: <u>12/8/2011</u>

Table A9. Summary of Fuel Element Powers for ATR Cycle 151A

Time At Core	Total In C	tal Power (MW) For Fuel Element In Core Positions 1-10										
Power	Power											
(Days)	<u>(MW)</u>	1 2	<u>2</u> <u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	<u>) 10</u>	<u>)</u>		
0	100	2.8	2.5	2.2	1.3	0.9	0.9	1.3	2.2	2.5	2.9	
0	100	2.7	2.4	1.9	1.0	0.7	0.7	1.0	2.0	2.4	2.8	
3	100	2.3	2.1	1.8	1.2	0.9	0.8	1.2	2.0	2.1	2.5	
10	100	2.3	2.1	1.8	1.2	0.9	0.9	1.2	2.0	2.1	2.4	
17	100	2.3	2.0	1.8	1.2	0.9	0.9	1.2	2.0	2.1	2.4	
24	100	2.2	2.0	1.8	1.2	0.9	0.9	1.2	2.0	2.0	2.4	
31	100	2.2	2.0	1.8	1.2	1.0	1.0	1.3	2.0	2.0	2.4	
38	100	2.2	2.0	1.8	1.2	1.0	1.0	1.3	2.0	2.0	2.3	
45	100	2.2	2.1	1.9	1.3	1.1	1.1	1.3	2.0	2.0	2.3	
52	100	2.2	2.1	1.9	1.3	1.1	1.1	1.3	2.0	2.1	2.3	
53	100	2.2	2.2	1.9	1.3	1.1	1.1	1.3	2.0	2.1	2.3	

Time		Total	Pov	ver (M	IW) Fo	or Fue	l Elen	nent				
At	Core	in (Core P	ositior	ns 11-	20						
Power		Power										
(Days)		<u>(MW)</u>	<u>11</u>	<u>12</u> 1	<u>3 14</u>	<u>1 15</u>	<u>16</u>	<u>17</u>	<u>18</u>	<u>19</u>	<u>20</u>	
_0		100	3.1	3.1	2.9	2.3	1.8	1.9	2.4	3.1	3.4	3.4

TEM-10200-1 09/ Re

09/30/2011 Rev. 05							_					
Title: <u>Res</u>	ults of Reactor Phy	vics Safety A	nalysis	for Ad	vance	d Test	React	or Cyc	cle 15	A		
ECAR No.:	1742	ECAR	Rev. No	p.: <u>1</u>		_ ł	Project	t File N	lo.: <u>N/</u>	4		Date: <u>12/8/2011</u>
	0	100	3.0	3.2	3.1	2.7	2.2	2.4	2.8	3.4	3.6	3.4
	3	100	2.8	3.0	3.1	2.8	2.7	2.8	3.0	3.4	3.4	3.1
	10	100	2.8	3.1	3.1	2.8	2.6	2.8	2.9	3.4	3.4	3.2
	17	100	2.8	3.1	3.1	2.8	2.6	2.7	2.9	3.4	3.5	3.3
	24	100	2.9	3.1	3.0	2.8	2.6	2.7	2.9	3.4	3.5	3.3
	31	100	2.8	3.1	3.1	2.8	2.6	2.8	3.0	3.4	3.5	3.3
	38	100	2.8	3.0	3.0	2.8	2.6	2.7	2.9	3.3	3.4	3.2
	45	100	2.7	2.9	3.0	2.8	2.6	2.8	2.9	3.3	3.3	3.1
	52	100	2.6	2.9	3.0	2.8	2.7	2.9	3.0	3.3	3.3	3.0
	53	100	2.6	2.9	3.0	2.9	2.7	2.9	3.0	3.3	3.2	2.9

Tit

TEM-10200-1	ENGINEERING CALCULATIONS AND ANALYSIS REPORT	P
09/30/2011		
Rev. 05		

Title:	Results of Reactor Physics S	afety Analysis for Advanced Te	st Reactor Cycle 151A	
ECAR N	No.: <u>1742</u>	ECAR Rev. No.: <u>1</u>	Project File No.: <u>NA</u>	Date: <u>12/8/2011</u>
			-	

Table A9. Continued

Time		Total Power (MW) For Fuel Element											
At	Core	In Co	In Core Positions 21-30										
Power		Power											
(Days)		<u>(MW)</u>	21	<u>22</u> <u>2</u> 3	<u>3 24</u>	<u>25</u>	<u>26</u>	<u>27</u>	<u>28</u>	<u>29</u>	<u>30</u>		
0		100	3.5	3.4	3.2	2.4	1.9	1.9	2.4	3.0	3.3	3.2	
0		100	3.5	3.5	3.3	2.6	2.1	2.2	2.6	3.1	3.3	3.1	
3		100	3.1	3.2	3.3	2.9	2.7	2.7	2.8	3.1	3.1	2.8	
10		100	3.1	3.3	3.4	2.9	2.6	2.7	2.8	3.1	3.2	2.8	
17		100	3.2	3.3	3.4	2.9	2.6	2.7	2.8	3.1	3.2	2.8	
24		100	3.3	3.4	3.4	2.9	2.6	2.7	2.8	3.1	3.2	2.9	
31		100	3.3	3.4	3.3	2.9	2.5	2.6	2.8	3.1	3.2	2.9	
38		100	3.3	3.3	3.4	3.0	2.7	2.8	2.9	3.2	3.3	2.9	
45		100	3.1	3.3	3.3	3.0	2.7	2.8	2.9	3.1	3.2	2.8	
52		100	3.0	3.2	3.3	3.0	2.7	2.9	2.9	3.1	3.1	2.8	
53		100	3.0	3.2	3.3	3.0	2.7	2.9	2.9	3.1	3.1	2.7	

Time		Total Power (MW) For Fuel Element										
At	Core	In Core Positions 31-40										
Power		Power										
(Days)		<u>(MW)</u>	<u>31</u>	<u>32 3</u>	<u>3 34</u>	<u>35</u>	<u>36</u>	<u>37</u>	<u>38</u>	<u>39</u>	<u>40</u>	
0		100	3.1	3.4	2.9	1.9	1.3	1.3	2.0	2.8	3.1	2.9
0		100	3.0	3.2	2.8	1.8	1.2	1.3	1.9	2.6	2.9	2.8

TEM-10200-1 09/30/2011 Rev. 05

Title: Results of Reactor Physics Safety Analysis for Advanced Test Reactor Cycle 151A

ECAR No.: 1742		_ ECAR Rev. No.: 1				Project File No.: NA						Date: <u>12/8/2011</u>
	3	100	2.6	2.9	2.7	2.0	1.7	1.7	2.1	2.6	2.6	2.4
	10	100	2.6	2.8	2.7	2.0	1.7	1.7	2.1	2.5	2.5	2.4
	17	100	2.6	2.8	2.6	2.0	1.7	1.7	2.1	2.5	2.6	2.4
	24	100	2.6	2.9	2.6	2.0	1.7	1.7	2.0	2.5	2.7	2.4
	31	100	2.6	2.9	2.6	2.0	1.6	1.6	2.0	2.4	2.7	2.4
	38	100	2.6	3.0	2.6	2.0	1.6	1.6	2.0	2.4	2.7	2.4
	45	100	2.7	3.0	2.6	2.0	1.6	1.6	2.0	2.4	2.8	2.5
	52	100	2.7	2.9	2.5	2.0	1.6	1.7	2.0	2.4	2.8	2.5
	53	100	2.6	2.9	2.5	2.0	1.7	1.7	2.1	2.4	2.8	2.5

