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Cross-section (XS) is fundamental input to the NTE

Neutron transport equation (NTE):
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Griffin core depletion calculation for PBRs
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Two-step XS generation

1. Identify neutronically important variables
(encompass relevant feed-back mechanisms 

and reactivity control mechanisms)

2. Select tabulation points for each variable
(cover all possible states of the reactor)

3. Generate multigroup microscopic XS
(perform reference eigenvalue calculation, 

typically Monte Carlo)

5. Obtain macroscopic XS for NTE
(use microscopic XS and local isotope densities)

* Spatial dependency of XS represented by material IDs.

① Generation of multigroup 
microscopic XS Library

4. Multilinear interpolation of the XS library
(evaluate at each quadrature point)

② Evaluation of multigroup 
XS

Exponential growth of 
the interpolation cost 
and number of 
reference calculations 
as the number of state 
variables increase. 

Issue: large XS files (tens of GBs or larger).

Issue: Exponential growth of interpolation cost.
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Reduced-order model (ROM) for generation of micro XS

Data flow in PBR core depletion calculation with ROM.
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This work

Goal: construct ROMs to accelerate the multigroup XS evaluation
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Challenges in ROM construction for multigroup XS

① Microscopic cross-sections needed.
- For depletion analysis
- When deviating from conditions used to generate cross-sections, due to 

geometry changes, fuel loading, etc.
à Large number of isotopes

② Isotopic properties vary
- Reaction types vary for different isotopes, e.g., fissionable vs. non-

fissionable
- Scattering matrices have different entries
- Threshold reactions
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Outline

1. DRAGON dataset of microscopic multigroup cross sections
- Data visualization
- Correlation analysis

2. Machine learning-assisted ROM construction
- Down-selection of ROM techniques
- DNNs as the selected ROM technique

3. Preliminary Griffin testing
- 0D test case on infinite homogeneous region
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DRAGON dataset of microscopic multigroup cross sections 

Reaction DRAGON 
Name Definition

!! NFTOT Fission
"!! NUSIGF Neutron production from fission
#!! H-FACTOR Energy production from fission
!" SCATRD Neutron scattering
!#,% NG Radiative capture
!& ABS Absorption
!' REM Removal
!( STRD Total
!#,)# N2N 2$ production
!#,*# N3N 3$ production
!#,+# N4N 4$ production
!#,, NP Proton production
!#,- ND Deuteron production
!#,( NT Triton production
!#,#, NNP $ + ' production
!#,. NA ( production
!#,). N2A 2( production

Table 1. Reaction types considered in this work.

Control 
Variables

Unit Physical 
Range

Number of 
Tabulations Points

burnup GWd/tHM [0, 198] 31
tmod K [300, 2000] 35
tfuel K [300, 2000] 35

Table 2. Description of the control variables.

- 295 isotopes, 4 energy groups; 
- 5,184 data in training set; 1,367 data in test set

Figure 1. Visualization of self-shielded cross 
sections for representative isotopes. 
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Correlation analysis of the DRAGON dataset
Goal: Identify linearity in cross-section data across all isotopes, reaction types and energy groups. 

Figure 2. Total number of pairwise relationships with strong 
linearity ( # >0.999) across all isotopes and all energy groups.

! = !"# $,&
'/'0

= ( $& )( $ ( &
( $1 ) ( $ 1 ( &1 ) ( & 1

Pearson Correlation Coefficient # 

Similarity is shown:
o within the same reaction (diagonal)
o among derived reactions (off-diagonal)
- NFTOT, NUSIGF, H-FACTOR
- REM derived from STRD and SCATRD
- ABS is related to non-scattering interactions (NG)

o across reactions
- STRD and NG
- STRD and H-FACTOR
- SCATRD and NG
- SCATRD and H-FACTOR
- NG and H-FACTOR
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Machine learning (ML)-assisted ROM construction

Table 3. Machine learning algorithms considered
Category Notation Name

Linear Regression
PLS Partial Least Squares Regression

OLS-Poly Ordinary Least Squares (with 
polynomial features)

Kernel-based Methods
SVR Support Vector Regression
GP Gaussian Process

Tree-based Algorithms
RF Random Forest
XGB eXtreme Gradient Boosting

Neural Networks DNN Deep Neural Networks
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Down-selection of ML algorithms (accuracy)
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Down-selection of ML algorithms (full consideration)

Algorithm Storage 
Size

Training Speed 
(sec)

Prediction Speed 
(sec)

Accuracy (*2)
Train/Test Scalability Desirability

PLS +(10)) KB +(103)) +(103+) 0.909 / 0.911 ✓ ⨉
OLS-Poly +(104) KB* +(103)) +(103*) 0.999 / 0.999 ⨉⨉ ⨉
SVR +(105) KB +(1035) +(103+) 0.996 / 0.997 ⨉ ⨉
GP +(10)) MB +(10)) +(103)) 1.000 / 1.000 ⨉⨉ ⨉
RF +(10)) MB +(104) +(1035) 1.000 / 0.991 ✓ ⨉
XGB +(104) MB +(104) +(103*) 1.000 / 0.984 ✓ ⨉
DNN +(104) KB** +(105~10))** +(103+) 1.000 / 1.000 ✓ ✓
Interpolation +(10)) GB N/A Exponential Growth N/A ⨉⨉⨉ ⨉

*  Size of the OLS-poly model significantly depends on the polynomial order (5 in this work).
** Size and training cost of DNNs depends on the detailed NN structure.

Table 3. Comprehensive performance comparison and down-selection of ROM techniques 
(based on a single isotope, a single reaction).
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DNN as the selected ROM technique
Predicting all reactions at once for each isotope.

Figure 4. DNN predictive errors for essential reactions in 235U.
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DNN as the selected ROM technique

Figure 5. Predicted versus true values for all reactions except the scattering matrix in 235U 
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Predicting the scattering matrix

Figure 6. Predicted versus true values for non-zero entries in the 
scattering matrix of 235U. 

Evaluation Metrics
Mean absolute percentage error (MAPE)
Root mean-squared error (RMSE)
Mean absolute error (MAE)

- Only predicts non-zero entries in 
the scattering matrix

- Scattering matrix predicted together 
with other reactions
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Interfacing with MOOSE

Griffin

ISOXML/LibTorch
TorchXS

MixingTable

MultigroupLibrary

Materials
TorchNeutronicsMaterial

PebbleBedNeutronicsMaterial

UserObjects
ISOXMLMacroXS

PebbleUserObject

ISOXMLMultigroupLibrary

PebbleBedXSUserObject

Actions
PebbleDepletionAction

DRAGON

Microscopic multigroup cross section 
generation

Input 
Layer

Hidden 
Layer 1

Hidden 
Layer 2

Hidden 
Layer 3

Output 
Layer

PyTorch
DNN training

LibTorch
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Reactivity difference w.r.t multilinear interpolation

Burnup = 0.0 GWd/tHM Burnup = 39.6 GWd/tHM Burnup = 79.2 GWd/tHM

Burnup = 118.8 GWd/tHM Burnup = 158.4 GWd/tHM Burnup = 198.0 GWd/tHM
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Conclusion and future work

- DNNs provides high memory efficiency, excellent predictive accuracy, great scalability, 
easy integration into MOOSE, and superior flexibility in re-training. 

- More rigorous Griffin testing will be conducted to systematically test the performance of 
ROM in comparison to the multivariate interpolation method. 

- Current work focused on solving the transport equations, and future work will also include 
the depletion simulations. 

- In the longer term, developed ROMs will be integrated with the online XS generation 
capability in Griffin to enable on-the-fly update of the ROM upon generation of additional 
XS data. 




