

July 18, 2024

High Temperature Materials

Heramb Mahajan

Idaho National Laboratory

DOE ART GCR Review Meeting Hybrid Meeting at INL July 16–18, 2024

FY-24 Work Packages and Contributors

FY24 Work Packages	R&D topics
High Temperature Design Methodology - ANL, INL, ORNL	 ASME code participation <u>Continue development of new Class B rules</u> Variable amplitude fatigue testing to validate the fatigue design rules <u>Inelastic material models development and limited deformation data generation for all Division 5 Class A materials</u>
Long-Term VHTR Material Qualification – INL, ORNL	 <u>Verification of EPP + SMT method</u> Continue testing of new Alloy 800H weldment Creep and creep-fatigue crack growth tests in air and in reactor grade helium

Contributors

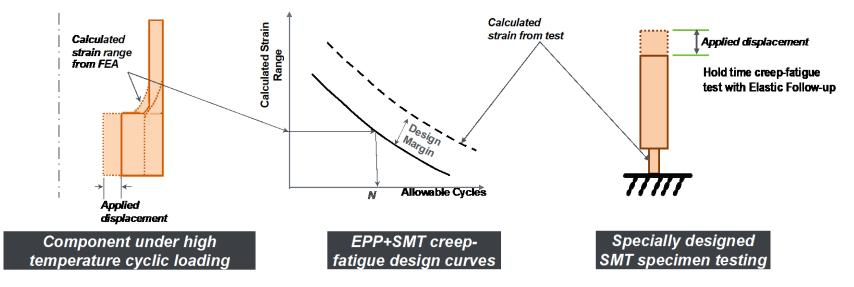
- Heramb Mahajan, Michael McMurtrey (INL)
- Yanli Wang, Brad Hall (ORNL)
- Mark Messner, Hao Deng (ANL)
- Sam Sham (Now NRC)
- Bob Jetter, Richard Wright, Bill Corwin (Subject Matter Experts)

Component Construction Rules for Advanced Reactor Designs

NRC Regulatory (ASME BP			
Components	Quality Desig	Division 5		
Traditional Component Classification	Quality Group A	Quality Group B	 Division Code Classical 	
Pressure Vessels, Piping, Pumps, Valves	Subsection HB, Class A	Subsection HC, Class B	 Compore in different 	
Metallic core support structures	Subsection HG, Class SM	NA	levels ba	
Nonmetallic core support structures	Subsection HH, Class SN	NA	 Code cla assure s⁻ 	

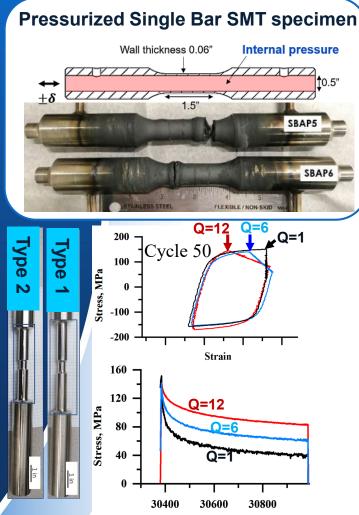
ASME BPVC Section III, Division 5 Code

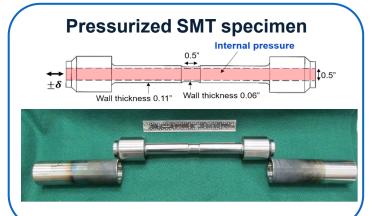
- Division 5 is organized by Code Classes
- Component classification in different importance levels based on function
- Code classes selection to assure structural integrity

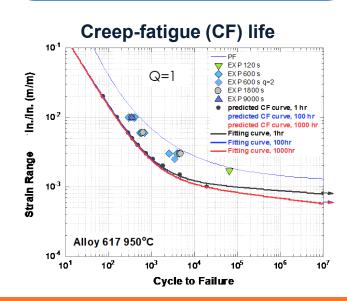

Material Library in Section III, Division 5 for Advanced Reactor Design

Maximum design life	10 Ye	ears	20 Yea	ar	30 Year		40 Year	50	Years	60	Year
SS 304											
SS 316H							Ongoing	0	ngoing	On	going
800H							Ongoing	0	ngoing	On	going
21/4Cr-1Mo (Grade 22)							Ongoing	O	ngoing	On	going
9Cr-1Mo-1V (Grade 91)											
Alloy 617 (Ni-alloy)			Ongoir	ng	Ongoing	J					
Alloy 709* (Planned)	Ongo	bing									
Maximum operation temperature	450C	500C	550C	600C	650C	700C	750C	800C	850C	900C	950C
SS 304											
SS 316H											
800H											
21/4Cr-1Mo (Grade 22)				Limit	Limit						
9Cr-1Mo-1V (Grade 91)											
Alloy 617 (Ni-alloy)											
Alloy 709* (Planned)											

*Currently A709 is not available in ASME Section III, Division 5. A709 Code case is under development.

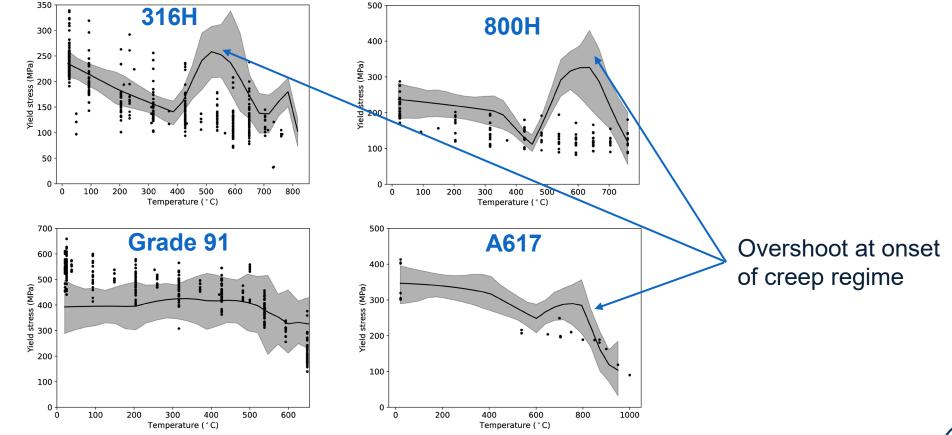

New Creep-Fatigue Evaluation Approach: Simplified Model Test (SMT)


- An alternative to Creep-Fatigue evaluation Approach in the ASME Section III Division 5 Code
- Consider strain accumulation damage at critical locations
- Represents the combined creep-fatigue effects at local stress raisers with multiaxiality



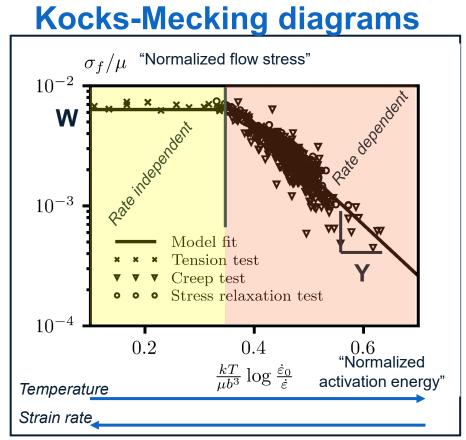
Testing and Developing SMT-based Creep-Fatigue Design Curves

6

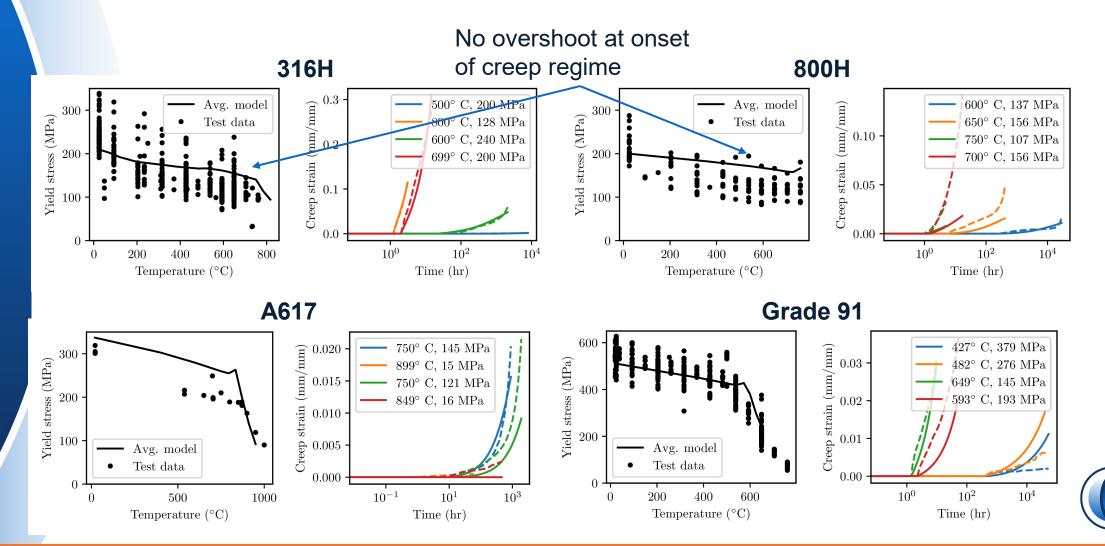


- Elastic follow-up effect:
 - Enhanced creep damage
 - Strain accumulation
- Support Elastic perfectly Plastic (EPP+SMT) design methodology
- Dissipation work-based method for CF life prediction
- Ongoing work
 - Design curves at lower temperature are being developed (400-800C)
 - Adopt Dissipated work of CF tests as the conservative design life criteria at lower temperature

Inelastic Model Development: Limitation with pure Chaboche Models



7


Inelastic Model Development: Kocks-Mecking model for Rate Senstivity

- General concept Material flow stress is controlled by thermally activated processes
- Normalized activation energy describes the energy available for dislocations to overcome
- Tension, creep, and stress relaxation data falls on a bilinear curve

Inelastic Model Development: Chaboche hardening with Kocks-Mecking Flow Rule

Class B Code Case Development: Allowable Stress Development

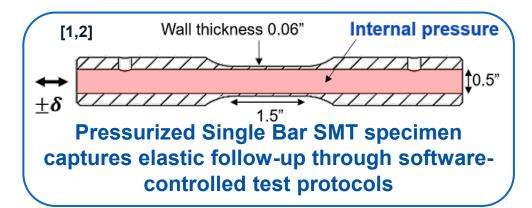
- Material list 316H, A617, 304H, 800H, Gr.91, Gr. 22
- Use all available data in Section III Division 5 Class A to develop Class B allowable stresses
- Develop allowable stresses

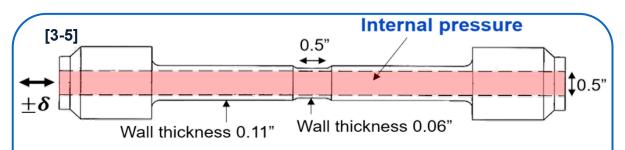
Creep Test Data

All available data, extensive information

Data extrapolation options

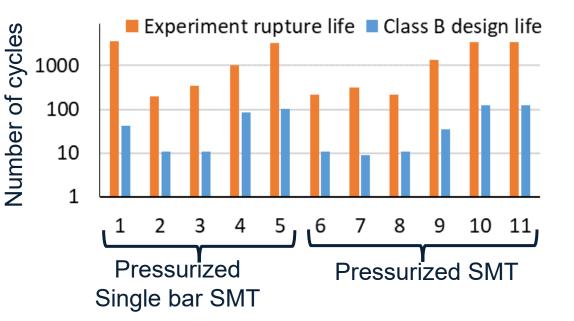
Larson-Miller with fixed confidence levels (Standard approach)


Allowable


 stress
 Time- and temperature dependent up to design time of 500,000 hours

Class B Code Case Development: Evaluation against Experimental Data

- Simplified Model Test (SMT) specimen to capture component response
- Test data and rupture life from literature [1-5]
- Material: Alloy 617

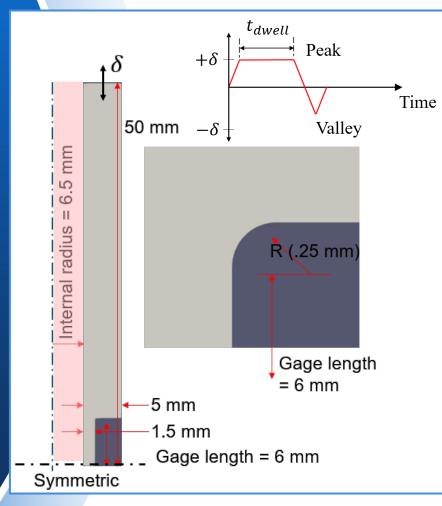


Pressurized SMT specimen captures elastic follow-up through test specimen geometry and external load

Wang Y., Hou, P., Jetter R.I. and Sham T.L., "Evaluation of Primary-load Effects on Creep-Fatigue Life of Alloy 617 Using Simplified Model Test Method", Proceedings of the ASME 2021 Pressure Vessels and Piping Conference, PVP2021-61658, July 2021.
 Wang Y., Hou, P., Jetter, R.I. and Sham, T.L., "Report on FY2020 Test Results in Support of the Development of EPP Plus SMT Design Method." ORNL/TM-2020/1620, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, 2022.
 Wang Y., Jetter R.I. and Sham T.L., "Pressurized Creep-Fatigue Testing of Alloy 617 Using Simplified Model Test Method", Proceedings of the ASME 2017 Pressure Vessels and Piping Conference, PVP2017-65457, July 2017.
 Wang, Y., Jetter, R.I., Messner, M.C. and Sham, T. L., "Report on FY19 Testing in Support of Integrated EPP-SMT Design Methods Development." ORNL/TM-2019/1224, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, 2019.
 Wang Y., Jetter R. I. and Sham T.L., "Effect of Internal Pressurization on the Creep-Fatigue Performance of Alloy 617 Based on Simplified Model Test Method", PVP2019-93650, July 2019.

Class B Code Case Development: Evaluation against Experimental Data

Specimen Geometry	ID	Test Name T (°C)		Internal Pressure (MPa)	q
Pressurized Single bar SMT [1-2] Pressurized SMT [3-5]	1	SBAP4	950	0.01	6.1
	2	SBAP5	950	1.03	3.4
	3	SBAP6	950	0.01	3.5
	4	SBAP9	950	1.03	2.0
	5	SBAP7	950	0.01	2.0
	6	P01	950	0.01	3.8
	7	P05	950	0.01	3.5
	8	P02	950	1.38	3.8
	9	P12	950	0.01	4.1
	10	P14	850	2.76	3.5
	11	P15	850	0.14	3.5



Class B creep-fatigue assessment is conservative compared to the rupture life

[1] Wang Y., Hou, P., Jetter R.I. and Sham T.L., "Evaluation of Primary-load Effects on Creep-Fatigue Life of Alloy 617 Using Simplified Model Test Method", Proceedings of the ASME 2021 Pressure Vessels and Piping Conference, PVP2021-61658, July 2021
 [2] Wang, Y., Hou, P., Jetter, R.I. and Sham, T.L., "Report on FY2020 Test Results in Support of the Development of EPP Plus SMT Design Method." ORNL/TM-2020/1620, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, 2022.
 [3] Wang Y., Jetter R.I. and Sham T.L., "Pressurized Creep-Fatigue Testing of Alloy 617 Using Simplified Model Test Method", Proceedings of the ASME 2017 Pressure Vessels and Piping Conference, PVP2017-65457, July 2017.
 [4] Wang, Y., Jetter, R.I., Messner, M.C. and Sham, T. L., "Report on FY19 Testing in Support of Integrated EPP-SMT Design Methods Development." ORNL/TM-2019/1224, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, 2019.
 [5] Wang Y., Jetter R. I. and Sham T.L., "Effect of Internal Pressurization on the Creep-Fatigue Performance of Alloy 617 Based on Simplified Model Test Method", PVP2019-93650, July 2019.

Class B Code Case Development: Evaluation with Sample Problem

Maximum allowable design cycles

ID (Stress concentration	Sectio Clas met	Proposed Class B		
	factor	Elastic	EPP	Inelastic	rules
А	1.44	101	705	503	282
В	1.71	34	294	282	183
С	2.64	4	88	155	99

Proposed Class B rules adopt simplified procedure without excessive conservatism

Future Work – Tasks for FY24

Continued Support for Code Rule Development

- Continue design curve development for alternative CF method at lower temperature range
- Continue the model training and optimization work. Plan to finish the four models by end of FY and support the ASME Code change for the 2027 edition
- Finish the draft Class B Code case by end of FY and continue the allowable stress development for candidate Class B materials

ADVANCED REACTOR TECHNOLOGIES PROGRAM

Thank You

Heramb Mahajan Heramb.Mahajan@inl.gov

