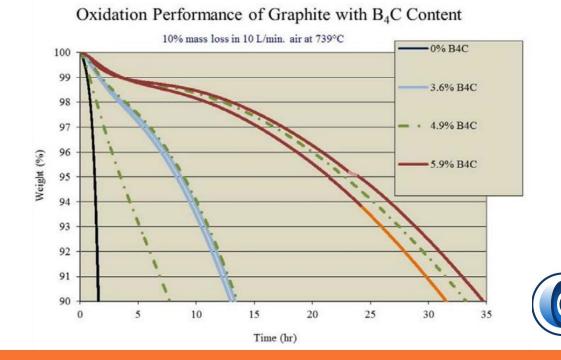


Wednesday, July 17, 2024

Oxidation Resistant Graphite


Tim Bragg and Michael Barkdull

DOE ART GCR Review Meeting Hybrid Meeting at INL July 16–18, 2024

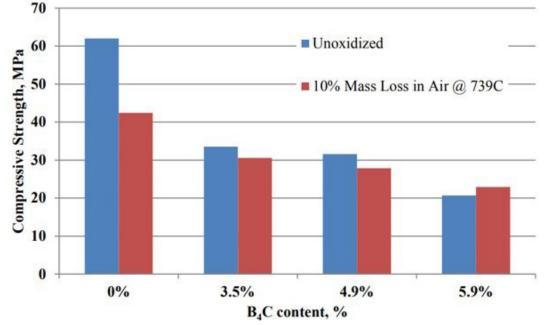
Introduction

• Current Research:

- Coat graphite with boron based materials to resist oxidation
- Understand the coating mechanics
- Prior research:
 - Abnormally low rates of oxidation observed
 - Cause determined to be boron based doping
 - Prompted current research in oxidation resistance

Why we are doing this

- Possibility of Air-Ingress Accident Scenarios puts reactors components at risk of oxidation
 - Oxidation reduces mechanical strength of graphite, compromising reactor core components
 - At high temperatures, graphite can quickly be compromised
 - Work in oxidation seeks to understand and mitigate risks of oxidation in reactors


Original work

- 2010's study on oxidation resistance
 - Graphite dopped with boron carbide
 - Graphite dopped in manufacturing
- Boron Carbide reduced mechanical strength loss after oxidation
- As fabricated strength decreased nearly 50% when dopped over 3.6%
- Strength decrease after oxidation was only 11% compared to 30% when not dopped

The benefits of doing this work

- Oxidation decreases mechanical properties of graphite
- In the case of an air-ingress accident high oxidation can cause the core of the reactor to become structurally unstable

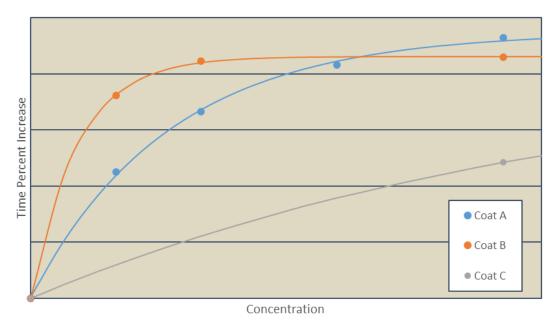
Things decided last summer

- Use simple, post graphitization introduction of boron using a boron based coating
- Factors considered:
 - Source of Boron
 - Concentration
 - Heat treatment time

- Mechanism of application
- Sequential applications
- Heat treatment temperature

The work last summer

- What works and what stands out
- Wide Sweep
 - Various settings for the factors
 - Oxidized at 740 °C
- Initial imaging via SEM-EDS:
 - Attempt to determine boron content and location
 - Layered coating vs graphite structure
 - No clear indication of boron seen


The results: Oxidation times

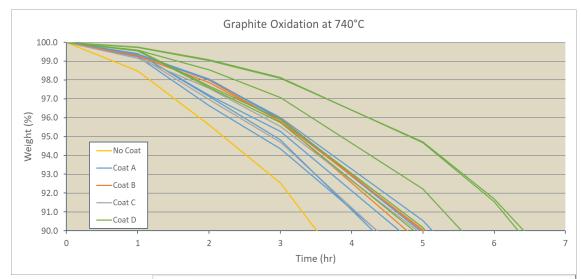
Graphite Oxidation at 740°C

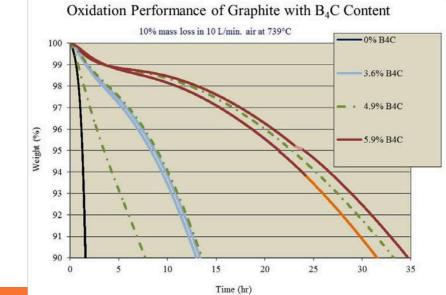
The results: Patterns

 Time increase has an apparent exponential trend with concentration

Effect of Concentration on Oxidation Resistance

• Difference in the oxidation distribution





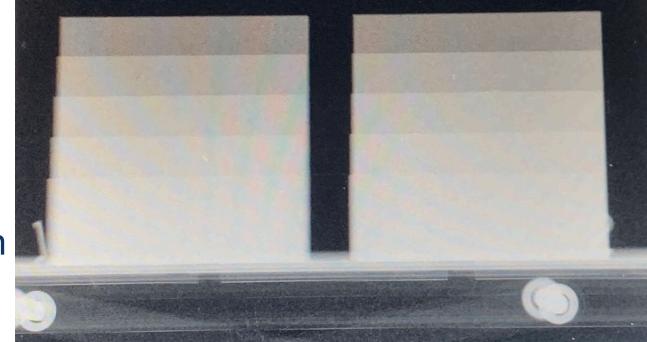
Coated

What we learned from the results

- All coating methods worked
- Option D seems to be the best option
- Has the ability to be scaled
- The results were in line with previous beliefs

What we are doing this summer

- We have set up a controlled application process
- Collecting data to feed into a computational model
- Investigating various with coating D compositions


The next steps

- Oxidation rate reduction achieved, need to determine why and how it works and need to determine what are the consequences:
 - Coating Characterization
 - Mechanism Determination
 - Strength Testing
- With this information the coating process can then be optimized and scaled up

Imaging

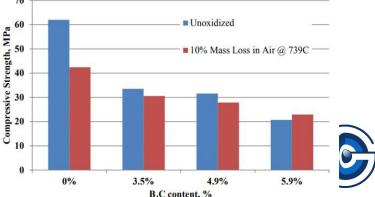
 We are working with OSU to gather neutron imaging

- Imaging will provide
 - Initial boron content
 - Boron burn off
 - Boron penetration
 - Final boron content

GRADE

Modeling


- Working to set up parametric study
 - Boron concentration & Thickness
 - Heat treat & oxidation temp
 - Heat treatment & oxidation time
 - Diffusion & concentration


	× 10 ⁻³	2114	IG-110	IG-430	NBG-17	NBG-18	PCEA
D _{eff N2}	μ	9.30	4.62	3.26	1.70	1.10	0.87
D_{N_2Ar}	σ	0.60	1.24	0.23	0.17	0.28	0.28
	Min	8.45	2.68	2.84	1.47	0.85	0.51
	Max	10.27	5.62	3.72	2.02	1.77	1.21
D _{eff Ar}	μ	10.25	5.18	3.72	2.29	1.13	1.37
D_{ArN_2}	σ	0.57	1.14	0.23	0.12	0.13	0.49
	Min	9.13	3.41	3.24	2.08	0.87	0.60
	Max	11.02	6.15	4.11	2.54	1.30	2.16

Strength work

- Concern in oxidation stems from reduced graphite strength
- Two strength measures/tests will be explored:
 - 1. Split Disc
 - 2. Compressive
- Questions to be answered:
 - Is strength compromised due to the coating process?
 - Is there a shift in where the graphite is weak?

Conclusion

- Our efforts to mitigate graphite oxidation through advanced coating technologies
 - Initial research indicates promising results
 - Coating shows similar results to doped in fabrication
 - Goals:
 - Optimize these coatings by leveraging mathematical models
 - Conducting mechanical testing
 - Employing imaging techniques

ADVANCED REACTOR TECHNOLOGIES PROGRAM

Thank you

Questions?

Thanks to Contributors:

W. Windes, R. Smith, A. Matthews,T. Yoder, A. Cunningham, M. K. Ames,J. Rufner, A. Salvador

Tim Bragg timothy.bragg@inl.gov

