

17-July-2024

DOE ART Graphite R&D Program

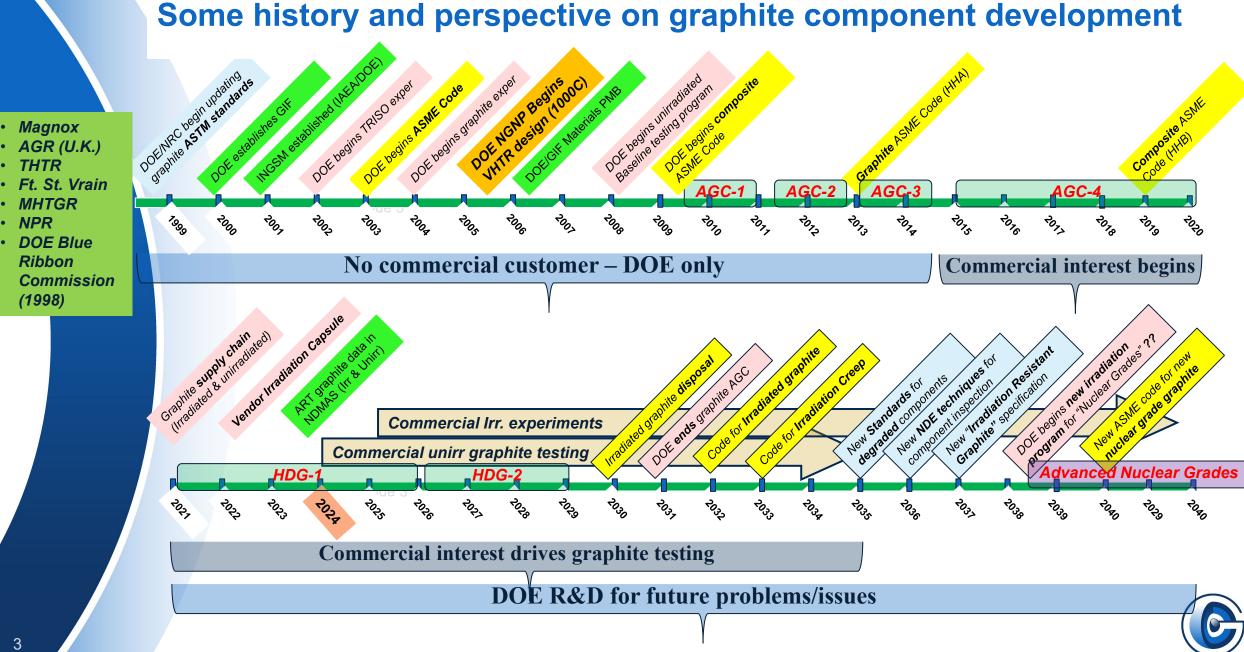
Will Windes

Graphite Technical Lead - INL

DOE ART GCR Review Meeting Hybrid Meeting at INL July 16–18, 2024

1.421 Å

(A)


6.708 Å

3.354 Å

Graphite topics this FY24

Introduction	Will Windes
Oxidation Activities	Rebecca Smith
Oxidation resistant graphite	Tim Bragg/Michael Barkdull
Model Development	Veerappan Prithivirajan
Break (25 minutes)	
ASME Component failure	(Remote) Martin Metcalfe
ASME Code Development (Design rules)	Andrea Mack
Ceramic Composites	Wilna Geringer
 Lunch (Graphite NEUP presentations) Multiscale Effects of Irradiation Damage on Nuclear Graphite Properties Quantifying the Dynamic and Static Porosity/Microstructure Characteristics of Irradiated Graphite through Multi-technique 	 Gongyuan (Patrick) Liu, Penn State University Jacob Eapen, North Carolina State University
AGC Update	Will Windes
Molten salt intrusion	Nidia Gallego
Split-disk Studies	Arvin Cunningham & Lianshan Lin
Wear testing	Tomas Grejtak
Concluding remarks	Will Windes

Five different graphite research areas

Behavior models

- Predicts irradiated material properties and potential degradation issues
- Irradiation behavior for continued safe operation

Licensig & Code

- Establishes an ASME approved code (for 1st time)
 Develops property values for
- initial components and irradiation induced changes

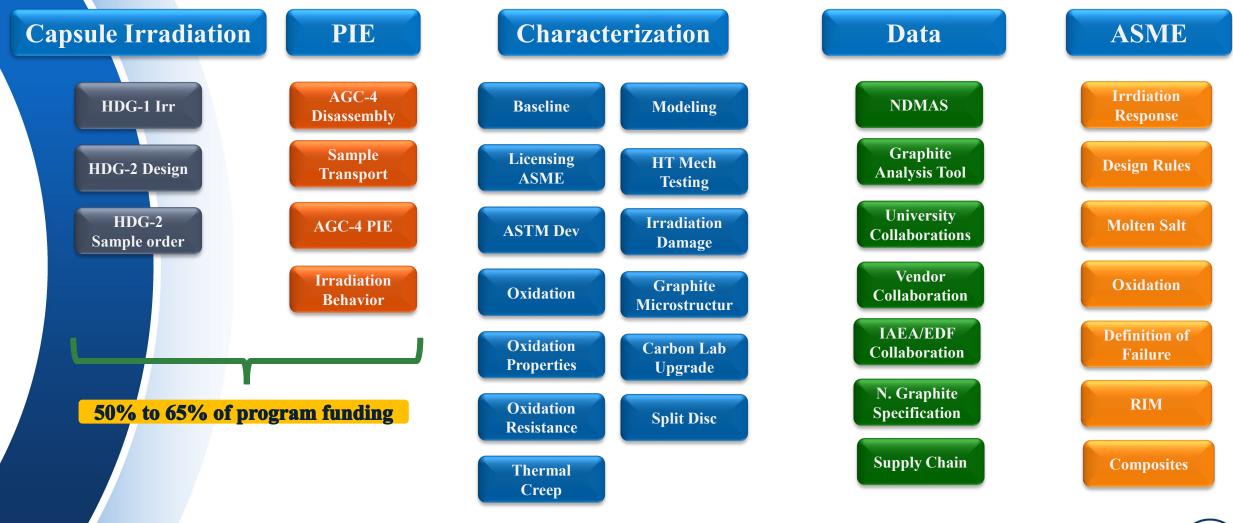
Graphite R&D Program

Defines the safe working envelope for nuclear graphite and protection of fuel

As-Fab'd Properties

- (Statistically) Establishes asreceived material properties
- Baseline data used to determine irradiation material properties

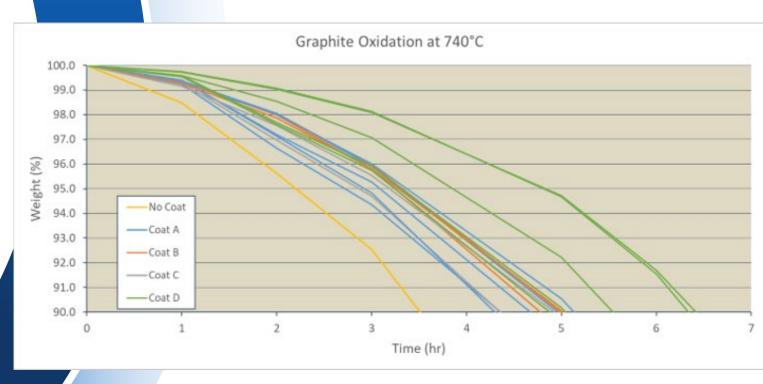
Mechanisms and Analysis

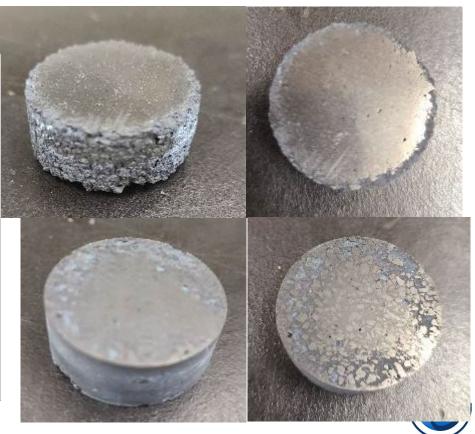

- Data analysis and interpretation
- Understanding the damage mechanisms is key to interpreting data

Irradiation

- Determines irradiation
- changes to material properties
- Irradiation behavior for
- continued safe operation

FY23 Graphite Activities

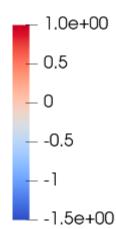




Graphite Oxidation Resistance (Bragg/Barkdull)

- Increasing the resistance of graphite to oxidation protects graphite from air-ingress accident scenario
- This is done through the introduction of Boron

Graphite Model Development (Veerappan Prithivirajan)



Extracted 2D Geometry and Mesh (QUAD9)

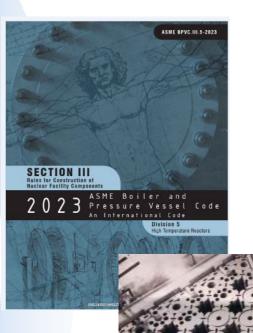
- Interactions across nearly all parts of Graphite program
 - Oxidation
 - Microstructure effects
 - Irradiation behavior
- Collaboration with NRC: Molten salt

Fluid Equations

$$\frac{\partial \mathbf{u}}{\partial t} + \rho(\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla P - \nabla \cdot \tau - \frac{\nu}{\epsilon^2}\psi\nabla\phi = 0$$

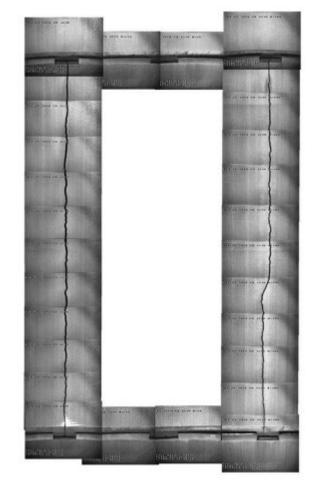
Phase Field

$$\begin{split} &\frac{\partial \phi}{\partial t} + \mathbf{u} \cdot \nabla \phi - \frac{\nu \lambda}{\epsilon^2} \nabla^2 \psi = 0 \\ &\psi + \epsilon^2 \nabla^2 \psi - \phi (\phi^2 - 1) = 0 \end{split}$$

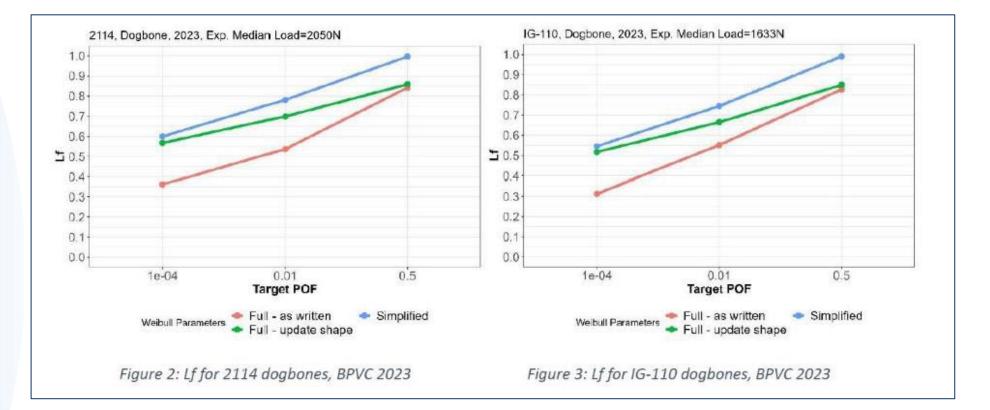

where ϕ is the order parameter and ψ is the auxiliary variable.

Boundary Conditions

$$\mathbf{u} = 0 \quad \text{on} \quad \partial \Omega$$
$$\nabla \phi \cdot \mathbf{n} = \frac{1}{\lambda} \frac{3\sigma}{4} \cos(\theta_s) (1 - \phi^2)$$



ASME – Grappling with the Concept of Component Failure (Martin Metcalfe)


• Tackling some of the most difficult and pertinent operational questions:

- What is failure in a graphite component?
- How do you detect failure in core?
- How can you predict failure?
- Dr. Metcalfe provides real operational experience

ASME Code Development (Design rules) (Andrea Mack)

- Design rules within ASME BPVC are of keen interest (obviously)
- Tremendous amount of work performed in last 2-3 years understanding, improving, and even correcting Design code rules (HHA-3000)
- We have a much better understanding of what code does (and doesn't do now).

ASME Ceramic Composites (Josina W. Geringer)

Previous Status

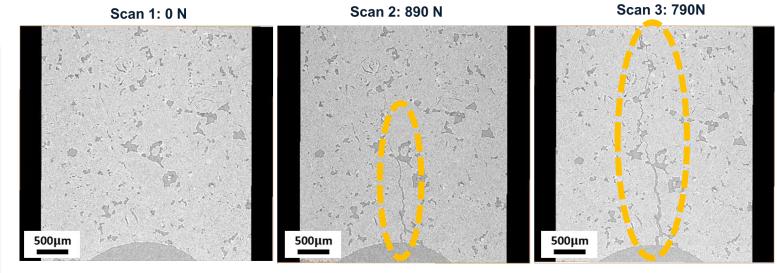
- Code rules established within the ASME design framework
- Allows the use of fiber reinforced CMCs for structural core components in HTRs.
- Provides a method to qualify new CMCs, acceptable for use of nuclear application (NQA-1)

Recent Achievements

- Completed critical analysis review
- Initiated optimization and refinement efforts (e.g. design by test, maximum failure mode, material qual.)

ORNL/TM-2024/3438

Analysis of the ASME Code Rules for Subsection III-5-HHB (Composite Materials) for Current HTR Design Requirements



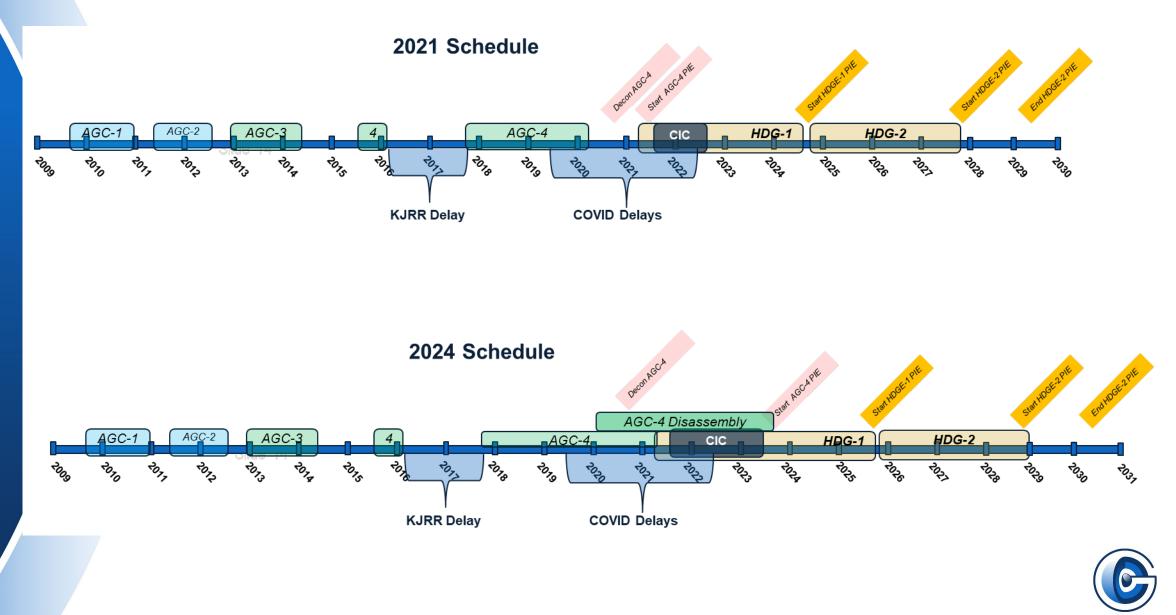
J.W. Geringer J. Podhiny S. Gonczy J.D. Arregui-Mena M. Jenkins J. Parks N.C. Gallego June 2024

NEUP: In-situ micro-CT fracture test (Gongyuan Liu and Jacob Eapen)

The NBG-17 graphite was scanned three times under different loads.

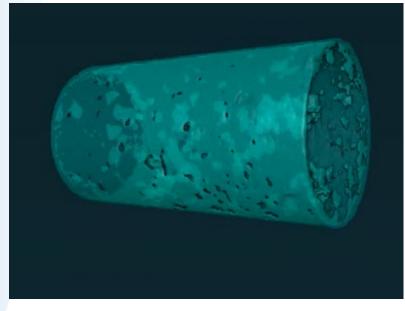
- NEUP grants to address the lack of information on mesoscale behavior
- Need to determine effect of graphite microstructure at the mesoscale level
 - We understand atomic lengthscale and are measuring macroscale response but what is going on at mesoscale?
- Will be needed in order to develop better "nuclear" graphite components

Gongyuan (Patrick) Liu


Department of Mechanical Engineering, The Pennsylvania State University

Prof. Jacob Eapen

Department of Nuclear Engineering, North Carolina State University


AGC Update (Will Windes)

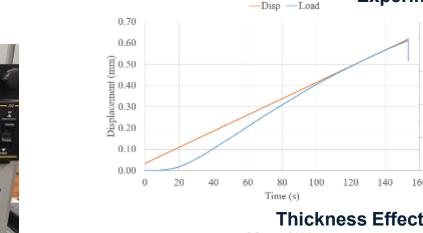
Studies of Molten Salt Intrusion and salt wettability in Graphite (Nidia C. Gallego, Jisue Braatz, et al.)

Focus on:

Understanding salt intrusion (penetration depth and salt distribution) in a wide range of graphite grades (various microstructures) as a function of temperature, pressure and time. Studying wetting behavior of salt on graphite surfaces to develop predictive models for salt intrusion

Tomography of NBG-18 sample exposed to molten FLiNaK, 3 bar, 750°C, 336 hours





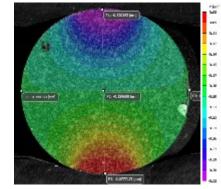
Effect of Sample Thickness on the Tensile Strength of Small Graphite Discs (Lianshan Lin, Nidia C. Gallego)

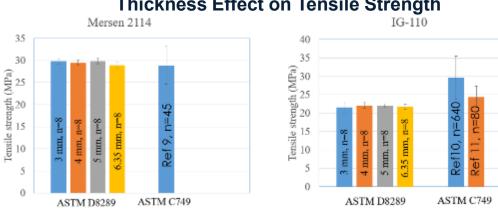
Objective: complete the Advanced Reactor Technologies (ART) Level 3 Milestone (M3TG-24OR0501054), "Continue activities related to Split Disc-DIC - complete analysis of effect of sample thickness on one fine grain graphite."

Approach: Apply the ASTM D8289 Standard test on graphite samples to investigate the effect of sample thickness on splitting tensile strength. The tests involved Ø12.7 mm samples of fine-grain graphites 2114 and IG 110 of different thicknesses (6.35, 5, 4, and 3 mm). The digital image correlation (DIC) method was applied to the samples, along with the ASTM D8289 Standard, to help interpret the measured results.

Experimental Results

4500


3500


2500 Z 2000 8

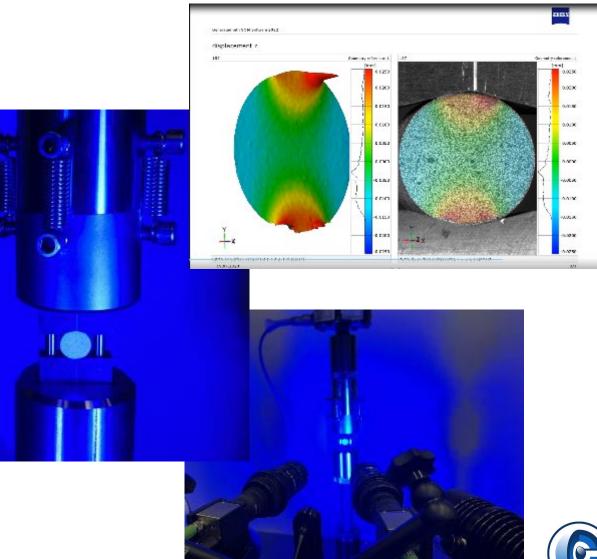
1500

1000

500

Thickness Effect on Tensile Strength

Test Facility & Experimental Setup


SC INTRON

4465

Milestone Report: Lianshan Lin, Nidia C. Gallego, Effect of Sample Thickness on the Tensile Strength of Small Graphite Discs, ORNL/TM-2024/3403, Oak Ridge National Laboratory, 2024

Split-disc studies utilizing Digital Image Correlation (DIC) (Arvin Cunningham)

- We have a problem measuring mechanical strength of irradiated graphite
 - We can't use traditional ASTM sized tensile specimen
- ASTM D8289 "Split-disc tensile strength <u>estimate</u>" allows us to use miniature sample sizes
 - But it's an estimate of tensile strength, not true measure of tensile strength
- This must be corrected
 - ASME design code will require it

16

Tribological characterization of graphite in dry argon and molten salt environments

Tomas Grejtak, James R. Keiser, Jun Qu, Nidia C. Gallego

Frictional behavior

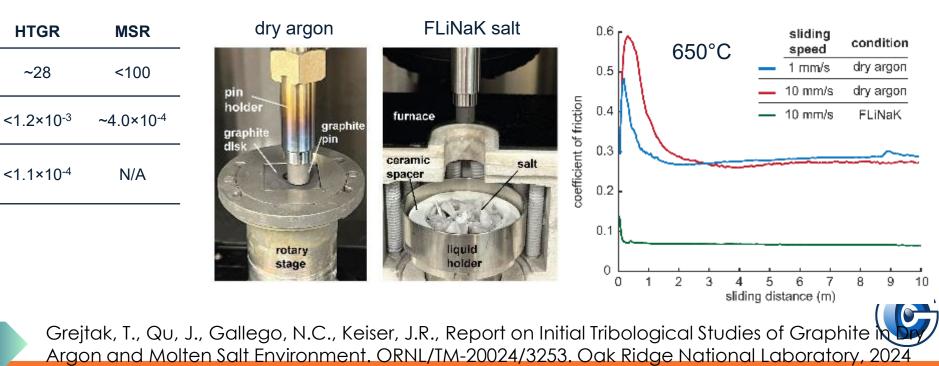
Objective: investigate the tribological (wear and friction) behavior of graphite pebbles in High Temperature Gas-cooled Reactor (HTGR) and Molten Salt-cooled Reactor (MSR) environments. Complete the (ART) Level 2 Milestone M2TG-24OR0501081: "Complete report on initial tribological studies within molten salt environment". Approach: 1) determine tribologically relevant conditions such as pebble-pebble and pebble-wall contact loads, pebble sliding and rolling speeds; 2) conduct wear and friction experiments on graphite in dry argon and molten FLiNaK salt environments.

Experimental setup

Contact load

Sliding speed

Rolling speed


(N)

(mm/s)

(mm/s)

Milestone

report

Results

AK RIDGE

Concluding remarks

Andrea Mack	andrea.mack@inl.gov
Arvin Cunningham	arvin.Cunningham@inl.gov
Gongyuan (Patrick) Liu	gongyuan.liu@inl.gov
Jacob Eapen	jacob.eapen@ncsu.edu
Lianshan Lin	linl@ornl.gov
Martin Metcalfe	martin.p.metcalfe@gmail.com
Nidia Gallego	gallegonc@ornl.gov
Rebecca Smith	rebecca.smith@inl.gov
Tim Bragg	timothy.Bragg@inl.gov
Tomas Grejtak	grejtakt@ornl.gov
Veerappan Prithivirajan	veerappan.Prithivirajan@inl.gov
Will Windes	william.windes@inl.gov
Wilna Geringer	geringerjw@ornl.gov

ADVANCED REACTOR TECHNOLOGIES PROGRAM

