

7-16-2024

Thermophysical Property Characterization of Irradiated TRISO Compacts

Ethan Hisle

INL Research Staff | Materials & Fuels Complex | Characterization | Thermophysical Properties Group

DOE ART GCR Review Meeting Hybrid Meeting at INL July 16–18, 2024

Research Group & Contributors

Ethan J. Hisle¹, Tsvetoslav R. Pavlov¹, Amey Khanolkar², Zilong Hua², Narayan Poudel¹, Chuting Tsai¹, Isaac Cutler¹, Matthew Goodson¹, Scott T. Anderson³, Tanner Mauseth³, Cameron Howard³, Mario D. Matos III³, Riley S. Moeykens¹, Swapnil K. Morankar⁴, William C. Chuirazzi⁴, Subhashish Meher⁵, Lu Cai⁶, John D. Stempien⁶

¹Thermophysical Property Group – Characterization & PIE - INL

²Center for Thermal Energy Transport Under Irradiation – Condensed Matter & Materials Physics – INL

³Correlative Microscopy Group – Characterization & PIE – INL

⁴Diffraction and Imaging Group – X-Ray and Neutron Sciences - INL

⁵Energy and Environment Directorate - PNNL

⁶Fuel development, Performance & Qualification Group - INL

Special thanks to IMCL operations staff for their support

Top Left: LFA at IMCL, Top Right, STA at IMCL Bottom Left: TCM diagram, Bottom Right, TCM at IMCL

Overview

- Motivation
- Experiment Background
- TCM Experimental Method
- TCM Results
- Summary and Conclusions
- Future/Ongoing Work

Motivation

- Measurements of thermophysical properties are used in thermomechanical fuel performance code to model the performance of reactors in normal and abnormal conditions
- The temperature across the fuel specimen (governed by thermophysical properties) in a nuclear reactor will affect:
 - mechanical properties
 - Fission product/gas transport and release
 - Fuel compact pressurization (stress states of the fuel, layers, and matrix)
- This work provides first-of-a-kind PIE on mesoscale thermal transport data for TRISO particles
 - A novel thermophysical properties source for fuel performance codes
 - Will contribute to an understanding of the microstructural evolution of TRISO materials thermal transport properties from pre- to post-irradiation

AGR-2 Compacts and Characteristics

Compact	Sample ID	TAVA IrradiationTemperature (°C)	Burnup (% FIMA)	Fuel Type	Fast Fluence (10 ²⁵ n/m ² E>0.18 MeV)	Enrichment (weight % U- 235)	Mean Particle Diameter
							(um)
5-1-3	MNT-64X	1078	11.09	UCO	3.03	14	873
2-4-3	MNT-58X	1216	11.52	UCO	3.08	14	873
2-1-3	MNT-67X	1194	10.95	UCO	2.88	14	873
LEU09- OP2-z	LEU09-F52	NA	NA	UCO	0	14.3	873

• Three samples are from compacts were sourced from the AGR-2 experiment [1]

One sample consisting of 3 as-fabricated TRISO particles in a surrogate matrix as a baseline [2]

۲

Thermal Conductivity Microscope (TCM) Methods

- The TCM is a state-of-the-art instrument built by INL scientists in collaboration with NSUF to deliver a mesoscale thermal transport measurement capability [3].
- The TCM is the only instrument in the world capable of mesoscale thermal transport PIE
- It uses a hybrid thermoreflectance technique to measure thermal conductivity and thermal diffusivity on the microscale (~12 – 50 um)
 - Amplitude modulated (1-100 kHz) red heating pump laser generates thermal waves in the substrate
 - A green probe laser, spatially separated from pump laser, measures the effects of changes in optical reflectivity of substrate, mathematically related with heat transport properties of substrate [4].

TCM Particle Selection

- Intact, whole particles were chosen for SEM high resolution microscopy and TCM measurements
- Particles were selected based on evaluating effects of radial distance from the center of the compact

TCM Measurement Examples

UCO Kernel Pre- to Post-Irradiation

- Compared to as fabricated UCO kernels:
 - Average thermal diffusivity in the higher TAVA temperature compacts is decreased by ~50%
 - Average thermal diffusivity in the lower TAVA temperature compacts is decreased by ~64%
- At higher TAVA temperature UCO kernel thermal diffusivity may recover slightly
- Porosity profiles will be needed to better understand degradation of thermal diffusivity and conductivity [5]

TCM Measured fuel particle SEM images by TAVA temperature Left to Right: 1078°C, 1194°C,1216°C

Buffer Layer Pre- to Post-Irradiation

- Thermal diffusivity tends to increase post-irradiation with increases correlated with TAVA temperature
- Likely driven by:
 - Densification of the layer
 - Simultaneous point defect annealing at higher temperatures
- Significant anisotropy is difficult to detect given high deviation from particle to particle
 - Deviation from particle to particle may be due to localized annealing
 - Fabrication defects could also cause variation [6].

Pyrolytic Carbon Layers Pre- to Post-Irradiation

- Thermal diffusivity increases postirradiation
 - Potentially due to annealing of fabrication induced defects
- Higher TAVA temperature leads to a higher thermal diffusivity due to annealing of irradiation induced defects
- Difficult to detect any significant anisotropy

Silicon Carbide Layer Pre- to Post-Irradiation

- Strong degradation from pre- to post-irradiation in thermal diffusivity
 - Irradiation leads to point defects which reduce thermal diffusivity
- Higher TAVA temperatures lead to higher thermal diffusivity values due to annealing of irradiation induced defects
- Potentially other effects contributing to degradation include:
 - Nanovoids [7]
 - Lower thermal conductivity precipitates (e.g. silicides)

TCM Measurements Conclusions

- Compared to as fabricated material:
 - Fuel and Silicon Carbide thermal diffusivity degrades significantly (50 60% and 37 – 53% respectively)
 - Some recovery in thermal diffusivity likely due to annealing at higher TAVA temperatures
 - Pyrolytic Carbons increase thermal diffusivity (ranging from 46 175%)
 - Increase correlates to increasing TAVA
- No significant anisotropy found
- Measurements of matrix graphite were attempted with some success, however the surface was non-ideal for TCM measurements
- More than 800 measurements across the 3 compacts

TCM Measurement Discussion & Takeaways

- Thermal diffusivity values measured by the TCM at RT suggest that PARFUME may be underestimating layer thermal transport (PARFUME's approach is conservative)
- PARFUME values used from 600 to 1300°C [7]:
 - PyC thermal conductivity is assumed to be **invariant** at 4 W/m·K
 - TCM values at RT are between 212% and 712% higher
 - Buffer thermal conductivity is assumed to be **invariant** at 0.5 W/m·K
 - TCM values at RT are between 900% and 1900% higher
 - SiC thermal conductivity is assumed to decrease from 20 to 13 W/m·K
 - TCM values at RT are between 87% and 150% higher
- Annealing of defects in the layers with increasing TAVA temperature may contribute to a higher effective thermal conductivity than currently modeled [8][9].

Ongoing and Future work at IMCL

- Laser Flash Analysis high accuracy bulk measurements
 - Custom geometric FEA and EM for heat transfer
 - 1 material property can be extracted using TCM as source for other materials, or whole compact can be compared against TCM
- Simultaneous Thermal Analysis Differential Scanning Calorimetry
 - Bulk heat capacity
 - Annealing effects
 - Fission gas release
- X-ray Computed Tomography Search for voids in compacts, establish geometric mesh for EM/FEA modeling for LFA and STA
- Porosity profiles for each TCM measurement for correlation with thermal diffusivity
- Calculation of thermal conductivities using experimental density and heat capacity*

Research Group & Contributors

Ethan J. Hisle¹, Tsvetoslav R. Pavlov¹, Amey Khanolkar², Zilong Hua², Narayan Poudel¹, Chuting Tsai¹, Isaac Cutler¹, Matthew Goodson¹, Scott T. Anderson³, Tanner Mauseth³, Cameron Howard³, Mario D. Matos III³, Riley S. Moeykens¹, Swapnil K. Morankar⁴, William C. Chuirazzi⁴, Subhashish Meher⁵, Lu Cai⁶, John D. Stempien⁶

¹Thermophysical Property Group – Characterization & PIE - INL

²Center for Thermal Energy Transport Under Irradiation – Condensed Matter & Materials Physics – INL

³Correlative Microscopy Group – Characterization & PIE – INL

⁴Diffraction and Imaging Group – X-Ray and Neutron Sciences - INL

⁵Energy and Environment Directorate - PNNL

⁶Fuel development, Performance & Qualification Group - INL

Special thanks to IMCL operations staff for their support

Questions?

- Additional questions can be sent to:
 - Ethan.hisle@inl.gov
 - Tsvetoslav.pavlov@inl.gov
 - John.Stempien@inl.gov

References

- 1. F.J. Rice, J.D. Stempien, P.A. Demkowicz, *Ceramography of irradiated TRISO fuel from the AGR-2 experiment*, Nuclear Engineering and Design, Volume 329, 2018, Pages 73-81, ISSN 0029-5493, https://doi.org/10.1016/j.nucengdes.2017.10.010
- 2. Hunn, John D., Montgomery, Fred C., and Pappano, Peter J. Data Compilation for AGR-2 UCO Variant Compact Lot LEU09-OP2-Z. United States: N. p., 2010. Web. doi:10.2172/1630497.
- 3. Hurley, David H, Hua, Zilong, and Schley, Robert S. Closeout Phase II Qualification of the Thermal Conductivity Microscope for IMCL. United States: N. p., 2018. Web.
- 4. David H. Hurley, Robert S. Schley, Marat Khafizov, Brycen L. Wendt; Local measurement of thermal conductivity and diffusivity. *Rev. Sci. Instrum.* 1 December 2015; 86 (12): 123901. <u>https://doi.org/10.1063/1.4936213</u>
- 5. Stempien, John D., Plummer, Mitchell A., Schulthess, Jason L., and Demkowicz, Paul A. *Measurement of kernel swelling and buffer densification in irradiated UCO and UO2 TRISO fuel particles from AGR-2*. United States: N. p., 2019. Web. doi:10.2172/1599772.
- V. Barabash, I. Mazul, R. Latypov, A. Pokrovsky, C.H. Wu, The effect of low temperature neutron irradiation and annealing on the thermal conductivity of advanced carbon-based materials, Journal of Nuclear Materials, Volumes 307–311, Part 2,2002, Pages 1300-1304, ISSN 0022-3115, https://doi.org/10.1016/S0022-3115(02)00961-3.
- 7. Meher, S., van Rooyen, I.J. & Lillo, T.M. A Novel Dual-Step Nucleation Pathway in Crystalline Solids under Neutron Irradiation. Sci Rep 8, 98 (2018). https://doi.org/10.1038/s41598-017-18548-8
- 8. Skerjanc, William F, & Collin, Blaise P. Assessment of Material Properties for TRISO Fuel Particles in PARFUME. United States. <u>https://doi.org/10.2172/1874979</u>
- 9. G.E Youngblood, D.J Senor, R.H Jones, Effects of irradiation and post-irradiation annealing on the thermal conductivity/diffusivity of monolithic SiC and f-SiC/SiC composites, Journal of Nuclear Materials, Volumes 329–333, Part A, 2004, Pages 507-512, ISSN 0022-3115, https://doi.org/10.1016/j.jnucmat.2004.04.111.
- 10. Charles Folsom, Changhu Xing, Colby Jensen, Heng Ban, Douglas W. Marshall, *Experimental measurement and numerical modeling of the effective thermal conductivity of TRISO fuel compacts*, Journal of Nuclear Materials, Volume 458, 2015, Pages 198-205, ISSN 0022-3115, https://doi.org/10.1016/j.jnucmat.2014.12.042.
- 11. Stempien, John D., and Schulthess, Jason L. AGR-3/4 TRISO Fuel Compact Ceramography. United States: N. p., 2020. Web. doi:10.2172/1843925.

Supporting Slides

Thermal Conductivity Calculations

Particle Components Average Thermal Conductivity by Compact

Graphite Initial Results

Fresh		Irradiated (1216°C)		
Thermal Diffusivity (mm^2/s)	Standard Deviation (mm^2/s)	Thermal Diffusivity (mm^2/s)	Standard Deviation (mm^2/s)	
13.89	5.38	28.6	9.92	

MNT-64X Fuel Summary

MNT-67X Fuel Summary

MNT-58X Fuel Summary

Substrate surface was not always ideal

Buffer Layering By Compact

From left to right, 1216°C TAVA, 1078°C TAVA, and as fabricated fresh particles

EMT of TRISO Compacts using PARFUME by Folsome et al. [9]

Fig. 5. FEA results for the ETC of the fuel compact for multiple matrix thermal conductivities (k_m) compared to analytical ETC models as a function of particle-volume fraction. Particle thermal conductivity is taken as 4.13 W m⁻¹ K⁻¹.

Fig. 6. Measured thermal conductivity results of matrix-only and surrogate samples plotted with legacy German data. Sample information can be found in Section 3.2.

- Developed an EMT of the TRISO compacts based on values from PARFUME
- Predicted that addition of relatively insulating particles (~4 W/m·K) into the matrix would reduce the ETC of the bulk
- Experimentation proved the opposite. The addition of the particles lead to a higher thermal conductivity of the bulk compact. Possible causes:
 - The disordered matrix becomes more ordered with the addition of particles, leading to a higher thermal conductivity
 - The particle layers are treated as very insulating, and the particle thermal conductivity would need to be (~100 W/m·K) to explain experimental results
- Likely some combination of local reordering of the matrix around the particles, and higher layer thermal conductivity

Stempien et al. findings on UCO fuel

Figure 9. Cross-section of unirradiated DTF particle "1" from MNT78A (see Figure 8) in this work (left) and from work on a different, unirradiated compact in Hunn et al. 2011 Figure 1-13 (right).

- Fuel kernel forms a distinct uranium carbide phase and a uranium dioxide phase
- Edge of fuel kernel forms an oxide rich fuel region
- Layer of carbide forms between buffer and fuel kernel

