

July 16, 2024

AGR-5/6/7 Safety Testing and Compact Destructive Exams at ORNL

William F. Cureton, PhD

TRISO PIE Specialist- Oak Ridge National Laboratory

DOE ART GCR Review Meeting Hybrid Meeting at INL July 16–18, 2024

ORNL Coauthors and Contributors

- John Hunn ORNL Fuels Lead
- Tyler Gerczak Electron microscopy and Furnace for Irradiated TRISO Testing (FITT)
- Will Cureton Safety testing in the Core Conduction Cooldown Test Facility (CCCTF)
- Stephen Trewhitt Safety testing in the CCCTF and particle heating in FITT
- Fred Montgomery Deconsolidation Leach-Burn-Leach (DLBL) and burnup analysis
- Martino Hooghkirk Irradiated Microsphere Gamma Analyzer (IMGA) and materialography
- Grant Helmreich X-ray Computed Tomography (XCT)
- Jesse Werden Electron microscopy
- Katherine Montoya Electron microscopy, analysis of oxidation of FITT specimens
- Bob Morris (consulting) IMGA, gamma scanning, and CCCTF systems
- Chuck Baldwin (consulting) IMGA, gamma scanning, materialography, and CCCTF systems
- Irradiated Fuels Examination Laboratory (IFEL) hot cell operators
- Radioactive Materials Analytical Laboratory (RMAL) chemists and supporting staff

- Perform safety test in ORNL Core Conduction Cooldown Test Facility (CCCTF) if applicable
- Deconsolidate and leach (DL) compact

Deconsolidation Rig

Soxhlet extractor for LBL

Particles leached in Soxhlet extractor

Key Personnel: Fred Montgomery

Deconsolidation Leach-Burn-Leach and Burnup Analysis

- Perform safety test in ORNL Core Conduction Cooldown Test Facility (CCCTF) if applicable
- Deconsolidate and leach (DL) compact
- Further digest matrix in boiling acid, wash and sieve out TRISO particles, burn-leach (BL) matrix

Digestion and Matrix BL Rig

Key Personnel: Fred Montgomery Deconsolidation Leach-Burn-Leach and Burnup Analysis

- Perform safety test in ORNL Core Conduction Cooldown Test Facility (CCCTF) if applicable
- Deconsolidate and leach (DL) compact
- Further digest matrix in boiling acid, wash and sieve out TRISO particles, burn-leach (BL) matrix
- Gamma scan TRISO particles with Irradiated Microsphere Gamma Analyzer (IMGA)
 - 1–5-minute quick survey of all particles to find low-Ce and low-Cs particles
 - 4–6-hour extended scans to measure particle inventories (¹⁰⁶Ru, ^{110m}Ag, ¹²⁵Sb, ¹³⁴Cs, ¹³⁷Cs, ¹⁴⁴Ce, ¹⁵⁴Eu)

Key Personnel: Martino Hooghkirk IMGA; Particle Mounting, Cross Sectioning, and Optical Microscopy

- Perform safety test in ORNL Core Conduction Cooldown Test Facility (CCCTF) if applicable
- Deconsolidate and leach (DL) compact
- Further digest matrix in boiling acid, wash and sieve out TRISO particles, burn-leach (BL) matrix
- Gamma scan TRISO particles with Irradiated Microsphere Gamma Analyzer (IMGA)
 - 1–5-minute quick survey of all particles to find low-Ce and low-Cs particles
 - 4–6-hour extended scans to measure particle inventories (¹⁰⁶Ru, ^{110m}Ag, ¹²⁵Sb, ¹³⁴Cs, ¹³⁷Cs, ¹⁴⁴Ce, ¹⁵⁴Eu)
 - Burn-leach 90% of the particles after IMGA survey, saving 10% unburned TRISO as an archive
- Analyze select particles with nondestructive 3D x-ray computed tomography (XCT)
 - XCT of particles with low-Ce or low-Cs that may have failed TRISO or failed SiC
 - XCT of particles with varied inventories (e.g., high vs low Ag or Eu retention)

Key Personnel: Grant Helmreich—XCT

- Perform safety test in ORNL Core Conduction Cooldown Test Facility (CCCTF) if applicable
- Deconsolidate and leach (DL) compact
- Further digest matrix in boiling acid, wash and sieve out TRISO particles, burn-leach (BL) matrix
- Gamma scan TRISO particles with Irradiated Microsphere Gamma Analyzer (IMGA)
 - 1–5-minute quick survey of all particles to find low-Ce and low-Cs particles
 - 4–6-hour extended scans to measure particle inventories (¹⁰⁶Ru, ^{110m}Ag, ¹²⁵Sb, ¹³⁴Cs, ¹³⁷Cs, ¹⁴⁴Ce, ¹⁵⁴Eu)
 - Burn-leach 90% of the particles after IMGA survey, saving 10% unburned TRISO as an archive
- Analyze select particles with non-destructive 3D x-ray computed tomography (XCT)
 - XCT of particles with low-Ce or low-Cs that may have failed TRISO or failed SiC
 - XCT of particles with varied inventories (e.g., high vs low Ag or Eu retention)
- Perform materialographic examination (optical and electron microscopy of polished sections)
 - guided sectioning for targeted examination of regions of interest observed with XCT
 - random midplane cross sections of particles with varied inventories
 - scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) for microstructural and elemental information, as well as 3D SEM using focused ion beam (FIB) technology

Key Personnel: Tyler Gerczak, Jesse Werden, and Katherine Montoya SEM, EDS, and FIB-SEM

FY22Q3–FY24Q3 AGR-5/6/7 Progress at ORNL

- **12** Safety-tested compacts to date
- 7 As-received compacts deconsolidated to date

FY23/FY24 ORNL PIE related DOE Milestones

1500

Fiscal Year	DOE Level	Activity	Status
FY23	Level II	DLBL on 4 compacts	√ complete
FY23	Level II	Safety Tests on 4 compacts	√ complete
FY24	Level II	DLBL on 5 compacts	On track
FY24	Level II	Safety Tests on 4 compacts	On track
E 600			

- Fissions per initial metal atoms (FIMA) burn-up from p. 42 of Sterbentz, J.W., "JMOCUP Physics Depletion Calculations for the As-Run AGR-5/6/7 TRISO Particle Experiment in ATR Northeast Flux Trap," ECAR-5321, Rev. 0.
- Temperatures from Hawkes, G.L., "AGR-5/6/7 Daily As-Run Thermal Analyses," ECAR-5633, Rev. 0

Cumulative Safety Test Releases

Compact	^{110m} Ag	¹³⁴ Cs	¹⁵⁴ Eu	⁹⁰ Sr	¹⁰⁴ Pd	⁸⁵ Kr
AGR-5/6/7 2-2-2 @1600°C	2.6E-2	8.3E-6	6.5E-3	2.8E-3	1.8E-3	<mda< th=""></mda<>
	<mark>59</mark>	0.019	<mark>15</mark>	<mark>6.3</mark>	<mark>4.2</mark>	
AGR-5/6/7 2-2-4 @1600°C	2.1E-2	7.2E-6	6.9E-3	3.0E-3	9.4E-4	<mda< th=""></mda<>
	<mark>48</mark>	0.016	<mark>16</mark>	<mark>6.8</mark>	<mark>2.1</mark>	
AGR-5/6/7 2-3-2 @1800°C	9.9E-3	1.1E-3	1.0E-1	7.1E-2	3.1E-2	2.4E-4
	22	2.5	232	160	70	0.53
AGR-5/6/7 2-5-1 @1600°C	6.3E-2	9.3E-6	2.7E-3	1.2E-3	3.0E-4	<mda< th=""></mda<>
	137	0.02	5.9	2.6	0.66	
AGR-5/6/7 3-1-2 @1600°C	5.0E-3	4.8E-4	9.5E-3	1.3E-2	9.1E-4	3.4E-5
	11	1.1	<mark>21</mark>	<mark>30</mark>	<mark>2.1</mark>	<mark>0.076</mark>
AGR-5/6/7 4-1-2 @1600°C	2.0E-1	3.9E-5	2.0E-3	1.4E-3	4.5E-4	<mda< th=""></mda<>
	444	<mark>0.085</mark>	4.5	3.0	0.99	
AGR-5/6/7 5-2-2 @1800°C	3.3E-1	5.3E-4	4.0E-3	1.7E-3	3.0E-2	4.8E-4
	1128	1.8	<mark>13</mark>	<mark>5.8</mark>	103	1.6
AGR-5/6/7 5-5-3 @1600°C	1.8E-3	1.3E-5	6.6E-5	8.3E-6	4.8E-4	<mda< th=""></mda<>
	6.2	0.045	0.22	0.028	1.6	
AGR-5/6/7 5-6-2 @1600°C	1.7E-2	2.0E-4	1.4E-4	7.0E-5	3.2E-4	5.5E-5
	<mark>56</mark>	0.66	0.48	0.24	1.1	<mark>0.19</mark>

Values are presented as compact fraction and particle-equivalent highlighted

(relative highlight: green – lower release, red – higher release)

Estimated uncertainty in solute analysis is ±10% and less than values for ^{110m}Ag are estimated from first leach.

1600°C Safety Test of Compact 2-5-1

(14.8% FIMA, 851°C TAVA Temperature)

	^{110m} Ag	¹³⁴ Cs	¹⁵⁴ Eu	⁹⁰ Sr	¹⁰⁴ Pd	⁸⁵ Kr
Compact Fraction	6.3E-2	9.3E-6	2.7E-3	1.2E-3	3.0E-4	<mda< th=""></mda<>
Particle Equivalents	<mark>137</mark>	0.02	5.9	2.6	0.66	

- Liquid nitrogen supply issues for ⁸⁵Kr traps caused longer pause at 1250°C.
- No indication of TRISO failure ⁸⁵Kr below MDA of 5.5E-7 (<0.0013 particle equivalents).
- No indication of SiC failure ¹³⁴Cs release of <0.02 particle equivalents.
- ¹⁵⁴Eu, ⁹⁰Sr, and ¹⁰⁴Pd release similar to other Capsule 2 compacts tested at 1600°C.
- Moderate ^{110m}Ag release at the beginning of the safety test related to a high inventory outside the SiC at the end of the irradiation test.

1600°C Safety Test of Compact 4-1-2

(13.7% FIMA, 774°C TAVA Temperature)

	^{110m} Ag	¹³⁴ Cs	¹⁵⁴ Eu	⁹⁰ Sr	¹⁰⁴ Pd	⁸⁵ Kr
Compact Fraction	2.0E-1	3.9E-5	2.0E-3	1.4E-3	4.5E-4	<mda< th=""></mda<>
Particle Equivalents	444	<mark>0.085</mark>	4.5	3.0	0.99	

- No indication of TRISO failure ⁸⁵Kr below MDA of 5.5E-7 (<0.0013 particle equivalents).
- No indication of SiC failure ¹³⁴Cs release of <0.085 particle equivalents.
- ^{110m}Ag release highest observed among all AGR-5/6/7 1600°C safety-tested compacts at ORNL. Low irradiation temperature causes higher retention in the matrix post irradiation.
- ¹⁵⁴Eu, ⁹⁰Sr, and ¹⁰⁴Pd release similar to Capsule 2 compacts tested at 1600°C.

1600°C Safety Test of Compact 5-6-2

(6.8% FIMA, 634°C TAVA Temperature)

	^{110m} Ag	¹³⁴ Cs	¹⁵⁴ Eu	⁹⁰ Sr	¹⁰⁴ Pd	⁸⁵ Kr
Compact Fraction	1.7E-2	2.0E-4	1.4E-4	7.0E-5	3.2E-4	5.5E-5
Particle Equivalents	<mark>56</mark>	0.66	0.48	0.24	1.1	<mark>0.19</mark>

- Initial ¹³⁴Cs release of 2/3 particle equivalent indicates degraded or defective SiC, likely from a single particle given timedependent rate
- ⁸⁵Kr accumulation of 5.5E-5 (0.19 particle equivalents) indicative of degraded or defective TRISO.
- Early ^{110m}Ag release dominated by early release of matrix inventory. Relatively constant rate of release through the rest of the test.
- ¹⁵⁴Eu, ⁹⁰Sr, and ¹⁰⁴Pd had typical rate trends related to slow transport to cups and some diffusive release from particles.

1800°C Safety Test of Compact 5-2-2

(8.8% FIMA, 789°C TAVA Temperature)

	^{110m} Ag	¹³⁴ Cs	¹⁵⁴ Eu	⁹⁰ Sr	¹⁰⁴ Pd	⁸⁵ Kr
Compact Fraction	3.3E-1	5.3E-4	4.0E-3	1.7E-3	3.0E-2	4.8E-4
Particle Equivalents	1128	1.8	<mark>13</mark>	<mark>5.8</mark>	103	1.6

- ⁸⁵Kr accumulation of 4.8E-4 (1.6 particle equivalents) indicative of degraded or defective TRISO.
- Initial ¹³⁴Cs release of ~one particle equivalent indicates degraded or defective SiC, likely from a single particle given timedependent rate. Uptick in ¹³⁴Cs at end of test may be from a second particle and likely related to the observed ⁸⁵Kr release.
- Cumulative ^{110m}Ag release of 33% was mostly from diffusive release through SiC during the safety test and higher than observed in 1800°C test of Compact 2-3-2 because of higher fractional inventory retained in irradiated particles.
- Uptick in ¹⁰⁴Pd release at ~170 hours possibly indicating microstructural evolution at 1800°C. Further PIE necessary.

1600°C Simultaneous Safety Test of Compacts 5-2-1, 5-2-4, 5-3-2

(8.8% FIMA, 790°C TAVA Temperature) (9.0% FIMA, 801°C TAVA Temperature) (8.4% FIMA, 800°C TAVA Temperature)

	^{110m} Ag	¹³⁴ Cs	⁸⁵ Kr
Compact Fraction	1.6E-3	3.1E-4	3.1E-4
Particle Equivalents	16	3.1	3.3

- Cold finger chiller malfunction forced automatic shutdown during 1250°C hold.
- ⁸⁵Kr release observed during 1250°C hold and accumulated to 3.1E-4 (3.3 particle equivalents) indicative of multiple degraded or defective TRISO.
- ¹³⁴Cs release of 3.1E-4 (3.1 particle equivalents) indicates particles with degraded or defective SiC.
- ^{110m}Ag showed initial release from matrix plus a steady release throughout test of roughly 16 particle equivalents on par with other Capsule 5 compacts safety-tested at 1600°C.

Cumulative Safety Test Releases

Compact	^{110m} Ag	¹³⁴ Cs	¹⁵⁴ Eu	⁹⁰ Sr	¹⁰⁴ Pd	⁸⁵ Kr
AGR-5/6/7 2-2-2 @1600°C	2.6E-2					
(845°C TAVA, 14.0% FIMA)	59					
AGR-5/6/7 2-2-4 @1600°C	2.1E-2					
(856°C TAVA, 14.3% FIMA)	4.8					
AGR-5/6/7 2-3-2 @1800°C	9.9E-3					
(874°C TAVA, 14.4% FIMA)	22					
AGR-5/6/7 2-5-1 @1600°C	6.3E-2					
(851°C TAVA, 14.8% FIMA)	137					
AGR-5/6/7 3-1-2 @1600°C						
(1193°C TAVA, 13.8% FIMA)						
AGR-5/6/7 4-1-2 @1600°C						
(774°C TAVA, 13.7% FIMA)						
AGR-5/6/7 5-2-2 @1800°C	3.3E-1					
(789°C TAVA, 8.8% FIMA)	1128					
AGR-5/6/7 5-5-3 @1600°C	1.8E-3					
(773°C TAVA, 7.6% FIMA)	6.2					
AGR-5/6/7 5-6-2 @1600°C	1.7E-2					
(634°C TAVA, 6.8% FIMA)	56					

Values are presented as compact fraction and particle-equivalent highlighted (relative highlight: green – lower release, red – higher release) Estimated uncertainty in solute analysis is ±10% and less than values for ^{110m}Ag are estimated from first leach.

As-Irradiated Compact 3-6-3 Random Samples (14.8% FIMA, 1363°C TAVA Temperature)

 Buffer-IPyC connection point on opposite end of direction of migration

As-Irradiated Compact 3-6-3 RS-08

(14.8% FIMA, 1363°C TAVA Temperature)

High-Z Material

200 µm

As-Irradiated Compact 3-6-3

(14.8% FIMA, 1363°C TAVA Temperature)

- IMGA data shows acceptable fission product retention despite of kernel migration
- One low-¹³⁷Cs particle identified

Measured versus Calculated 137Cs Inventory

As-Irradiated Compact 3-6-3 Special Particle

(14.8% FIMA, 1363°C TAVA Temperature)

- Potential IPyC crack and SiC degradation
- Moro DIE poodod to invostigato

Key take aways from Compact 3-6-3

- Unclear what mechanism dominates transport of carbon (diffusion vs. CO dissociation and carbon deposition)
- Further tests could elucidate behavior (XCT, SEM, elemental analysis)
- In Compact 3-6-3, migrated kernels do not reach the IPyC, fission product retention is not impacted. Gross failure not observed

200 µm

XCT image of potential SiC degradation

Summary of ~2 Years of AGR-5/6/7 PIE at ORNL

- AGR-5/6/7 PIE at ORNL has been in progress since April 2022.
 - Seven as-irradiated compacts are in various stages of destructive PIE.
 - Twelve compacts have been safety-tested and are in various stages of post-safety test destructive PIE.
- Similarities and some differences compared with AGR-1 and AGR-2 UCO compact safety testing and PIE are noted and will be studied further.
 - We will soon have more results from the later steps in the destructive PIE to help evaluate results from safety testing and DLBL.
 - We need to build a broader database by examining more AGR-5/6/7 compacts to get sufficient statistics to verify trends in behavior before drawing any broad conclusions.

ADVANCED REACTOR TECHNOLOGIES PROGRAM

Thank you for your attention

William F. Cureton

curetonwf@ornl.gov

This work was sponsored by US Department of Energy Office of Nuclear Energy Advanced Reactors Technologies Advanced Gas Reactor Fuel Development and Qualification Program

Extra Slides

FY22Q3–FY24Q3 AGR-5/6/7 Progress at ORNL

363 DLBL Results

									1
		Total Inventory, uCi				ICP-MS Analyse	es		
		Sample OD	²³⁴ U	²³⁵ U	²³⁶ U	²³⁸ U	²³⁷ Np	²³⁹ Pu	²⁴⁰ Pu
	-	Post-burn additional matrix ash leach #2	r i i i i i i i i i i i i i i i i i i i						
0	0	Post-burn matrix leach #3							
Ма	x Total of deco	onsolidation acid and preburn leach #1 and #2	< 2.82E-01	3.05E-01	2.38E-01	2.71E-01	4.30E-01	3.92E-01	6.50E-01
Mi	in Total of deco	onsolidation acid and preburn leach #1 and #2	2.77E-01	3.05E-01	2.38E-01	2.71E-01	4.30E-01	3.92E-01	6.50E-01
		max preburn compact totals with water rinse	< 2.82E-01	3.05E-01	2.38E-01	2.71E-01	4.30E-01	3.92E-01	6.50E-01
		min preburn compact totals with water rinse	2.77E-01	3.05E-01	2.38E-01	2.71E-01	4.30E-01	3.92E-01	6.50E-01
	ma	x Post-burn Particle totals leach #1 and #2	2.75E+00	2.86E+00	2.60E+00	2.69E+00	2.74E+00	2.40E+00	3.04E+00
	mi	n Post-burn Particle totals leach #1 and #2	2.75E+00	2.86E+00	2.60E+00	2.69E+00	2.74E+00	2.40E+00	3.04E+00
	ma	ax Post-burn Matrix totals leach #1 and #2	< 9.10E-02	9.45E-02	7.93E-02	1.81E-01	2.61E-01	2.72E-01	4.70E-01
	m	in Post-burn Matrix totals leach #1 and #2	8.82E-02	9.45E-02	7.93E-02	1.81E-01	2.61E-01	2.72E-01	4.70E-01
	ma	x postburn compact totals leach #1 and #2	< 2.84E+00	2.96E+00	2.68E+00	2.87E+00	3.00E+00	2.68E+00	3.51E+00
	mi	n postburn compact totals leach #1 and #2	2.84E+00	2.96E+00	2.68E+00	2.87E+00	3.00E+00	2.68E+00	3.51E+00
		maximum grand total leach #1 and #2	< 3.12E+00	3.26E+00	2.92E+00	3.14E+00	3.43E+00	3.07E+00	4.16E+00
		minimum grand total leach #1 and #2	3.11E+00	3.26E+00	2.92E+00	3.14E+00	3.43E+00	3.07E+00	4.16E+00

Cumulative Safety Test Releases from Nine AGR-5/6/7 Compacts

Compact	⁹⁰ Sr	¹⁰⁴ Pd	^{110m} Ag	¹³⁴ Cs	¹⁵⁴ Eu	⁸⁵ Kr
AGR-5/6/7 <u>2-2-2</u> (1600°C)	2.8E-3	1.8E-3	2.6E-2	8.3E-6	6.5E-3	
(845°C TAVA, 14.0% FIMA)	(6.3)	(4.2)	(59)	(0.019)	(15)	
AGR-5/6/7 <u>2-2-4</u> (1600°C)	3.0E-3	9.4E-4	2.1E-2	7.2E-6	6.9E-3	
(856°C TAVA, 14.3% FIMA)	(6.8)	(2.1)	(48)	(0.016)	(16)	
AGR-5/6/7 <u>5-5-3</u> (1600°C)	8.3E-6	4.8E-4	1.8E-3	1.3E-5	6.6E-5	
(773°C TAVA, 7.6% FIMA)	(0.028)	(1.6)	(6.2)	(0.045)	(0.22)	
AGR-5/6/7 <u>2-3-2</u> (1800°C)	7.1E-2	3.1E-2	~9.6E-3	~1.0E-3	>8.8E-2	2.4E-4
(874°C TAVA, 14.4% FIMA)	~(160)	(70)	~(22)	~(2.3)	>(199)	(0.53)
AGR-5/6/7 <u>3-1-2</u> (1600°C)	1.3E-2	9.1E-4	~5.1E-3	~4.4E-4	9.5E-3	3.4E-5
(1193°C TAVA, 13.8% FIMA)	~(30)	(2.1)	~(12)	~(1.0)	(21)	(0.076)
AGR-5/6/7 <u>5-2-2</u> (1800°C)	1.7E-3	3.0E-2	~3.5E-1	~4.8E-4	4.0E-3	4.8E-4
(789°C TAVA, 8.8% FIMA)	(5.8)	(103)	~(1180)	~(1.6)	(13)	(1.6)
AGR-5/6/7 <u>5-6-2</u> (1600°C)	6.9E-5	3.2E-4	1.7E-2	2.0E-4	1.4E-4	5.5E-5
(634°C TAVA, 6.8% FIMA)	(0.24)	(1.1)	56.068	(0.66)	(0.48)	(0.19)
AGR-5/6/7 <u>4-1-2</u> (1600°C)	1.4E-3	4.5E-4	2.0E-1	3.9E-5	2.0E-3	
(774°C TAVA, 13.7% FIMA)	(3.0)	~(1)	(444)	(0.085)	(4.5)	
AGR-5/6/7 <u>2-5-1</u> (1600°C)	1.2E-3	3.0E-4	6.3E-2	9.3E-6	2.7E-3	
(851°C TAVA, 14.8% FIMA)	(2.6)	(0.66)	(137)	(0.02)	(5.9)	

Values are presented as compact fraction and particle-equivalent (in parentheses) Estimated uncertainty in solute analysis is ±10% and less than values for ^{110m}Ag are estimated from first leach.

