

A709 Code Case Design Parameters

Joint ART Materials/AMMT Program Review DOE Headquarters, Germantown, MD June 5-8, 2023 Sam Sham Idaho National Laboratory

Acknowledgment

 Data from Argonne (Xuan Zhang), Idaho (Heramb Mahajan), and Oak Ridge (Yanli Wang)

RD-23IN040410, A709 Design Rules - INL

• Scope

- Initiate efforts to develop design parameters such as allowable stresses, isochronous stress-strain curves, etc., using A709 data generated from the code case testing tasks
- Support submittal of the first A709 Code Case to ASME by 2025

Structural Failure Modes for ASME Division 5 Class A Components

Class A design rules are based on design-by-analysis approach

- Sought to provide a reasonable assurance of adequate protection of structural integrity
- Based on design against structural failure modes; four design evaluation checks

Time Independent Failure Mode	Category	Design Evaluation Procedure	Time Dependent Failure Mode	Category	Design Evaluation Procedure
Ductile rupture from short- term loading	Load-controlled	Primary load check	Creep rupture from long- term loading	Load-controlled	Primary load check
Gross distortion due to incremental collapse and ratcheting (low temperatures)	Deformation- controlled	Strain limits check	Creep ratcheting due to cyclic service	Deformation- controlled	Strain limits check
Loss of function due to excessive deformation	Deformation- controlled	Strain limits check	Creep-fatigue failure due to cyclic service	Deformation- controlled	Creep-fatigue check
Buckling due to short-term loading	Deformation- controlled	Buckling Check	Creep-buckling due to long-term loading	Deformation- controlled	Buckling Check

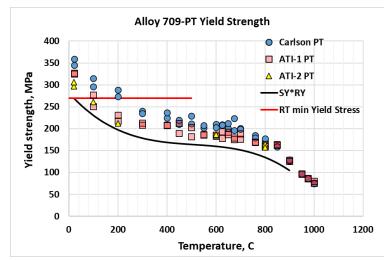
Design Parameters Required to Address Failure Modes for Class A Components

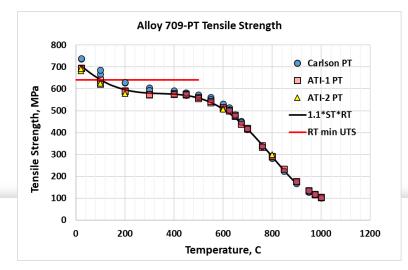
Design Parameters	Required Test Data	Design Parameters	Required Test Data
Allowable Stresses		Fatigue design curves	Strain-controlled continuous cycling tests
• S_m : based on yield and ultimate strengths at	Tensile data at temperature (time-independent)		
temperature		Creep-fatigue interaction diagram	Strain-controlled cyclic tests with hold times
• S_t : based on time to 1% total strain, time to	Creep rupture data with full		
 onset of tertiary creep, time to rupture <i>S_r</i>: based on stress to rupture 	creep curves (time- dependent)	EPP design parameters	Two-bar and SMT tests; cyclic stress- strain curves
• S_{mt} : lesser of (S_m, S_t)	Derived design parameters	Inelastic material model parameters	Test data for other design parameters; and strain rate change and thermomechanical cycling
• S_0 : lesser of (<i>S</i> , <i>S</i> _{mt} @300,000 <i>h</i>)			
• <i>R</i> : Stress rupture factor - based on rupture strengths of base metal and weldment	Stress rupture data from base metal and weldment (time dependent)	· · · · · · · · · · · · · · · · · · ·	
		Huddleston effective stress parameters	Multiaxial creep rupture data
		External pressure charts	Tensile stress-strain curves (time- independent)
Thermal aging factors on yield and ultimate	Tensile data of aged material (time-dependent)		
	Tensile stress-strain curves (time-independent), and creep strain data up to 3% (time-dependent)	Time-temperature limits for external pressure charts	Isochronous strain-strain curves
Isochronous stress-strain curves constructed based on creep tests			
		Some design parameters are some are for providing beha	
		design evaluations	

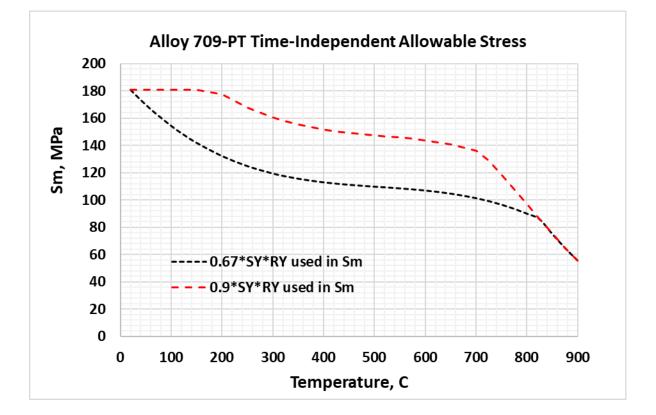
Ongoing A709 Code Case Testing

- Being performed at Argonne, Idaho and Oak Ridge
- Base metal
 - Tensile, creep, fatigue, creep-fatigue, SMT
- Weldment (matching filler metal, GTA)
 - Cross weld creep rupture
 - Tensile, fatigue and creep-fatigue (selective)

Code Yield and Tensile Strengths

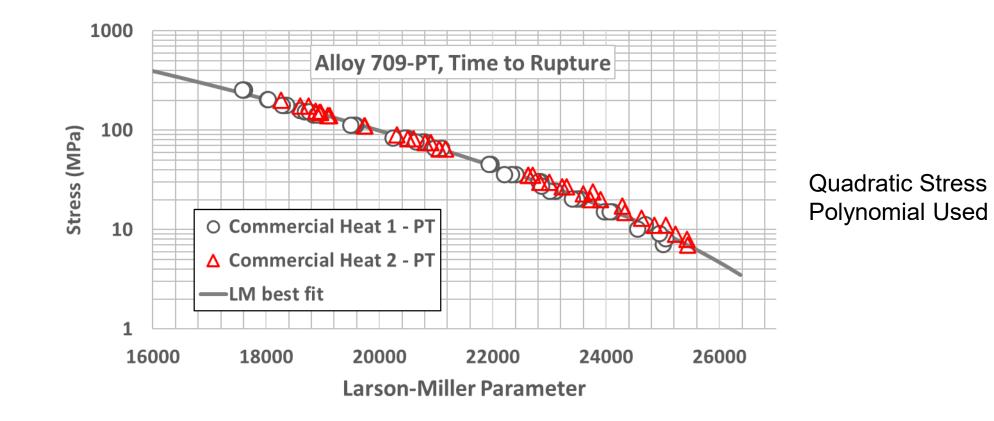

- The ASME, Section II procedure to develop the Code yield and tensile strengths at temperature is somewhat convoluted
 - Yield stresses at temperature are normalized by the room temperature value from the same heat
 - The normalized yield stress data are used to establish a "trend curve" (R_Y) using polynomial fit
 - The trend curve is then multiplied by the room temperature specification minimum yield strength (S_Y) to determine the Code yield stress at temperature, $S_Y R_Y$
 - Procedure for UTS is similar, except that an additional factor of 1.1 is used to determine the Code tensile strength at temperature, $1.1S_TR_T$




Time-Independent Allowable Stress Criteria

- Time-independent allowable stress, S_m , is determined as the lesser of
 - one-third of S_T , the room temperature specification minimum tensile strength
 - one-third of $1.1S_TR_T$, the Code tensile strength at temperature
 - two-thirds of S_Y , the room temperature specification minimum yield strength
 - two-thirds of $S_Y R_Y$, the Code yield strength at temperature
 - For austenitic stainless steels, nickel alloys, copper alloys, and cobalt alloys having an S_Y/S_T ratio less than 0.625, the two-thirds factor on the Code yield strength at temperature can be increased to 0.9, if the additional deformation does not impact the functions of the component
 - For A709, $S_Y/S_T = 0.42$

Preliminary A709 Time-Independent Allowable Stresses


Code Creep Rupture Stress

- The Larson-Miller correlation for rupture stress and time is $log_{10}t_r = \left(\frac{1}{T_a}\sum_{p=0}^n a_p(log_{10}\sigma)^p\right) - C$, with a_p and C the regression parameters
- Data variability is accounted for by the lower bound equation

$$log_{10}t_r = \left(\frac{1}{T_a}\sum_{p=0}^n a_p(log_{10}\sigma)^p\right) - C - h \times SEE, \quad h = 1.645$$

Larson-Miller Fit for A709 Creep Rupture Data To-date

Comparison of Lower Bound Rupture Stress of A709 with 316H

Tomporatura C	Ratio of lower bound rupture stress of A709 to 316H				
Temperature, C	65,000 h	100,000 h	300,000 h		
550	1.52	1.53	1.55		
600	1.61	1.61	1.64		
650	1.71	1.72	1.75		
700	1.84	1.86	1.91		
750	2.01	2.04	2.12		
800	2.26	2.31	2.44		
850	2.65	2.73	3.00		
900	3.35	3.54	4.25		

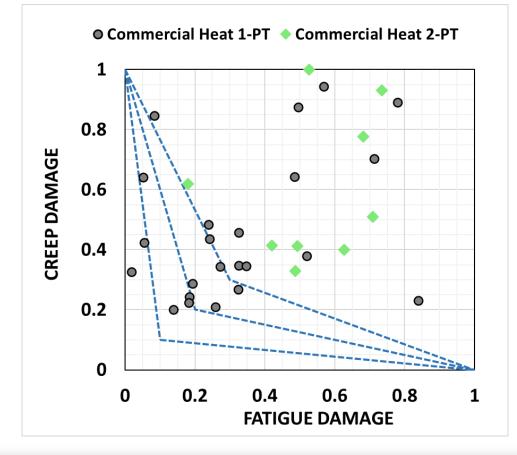
Evaluation of Constant Strain Range Creep-Fatigue Test Data

Creep Damage

 $\sum_{k=1}^{q} \left(\int_{0}^{t_{k}} \frac{dt}{T_{d}} \right), \qquad q = \# of \ CF \ cycles \ to \ failure, T_{d} = average \ rupture \ time$

 $t_k = hold time at the k^{th} cycle$

• Creep damage integral during hold time computed cycle by cycle till failure


Fatigue Damage

 $\frac{n}{N_{A}}$, n = # of cycles to failure in CF test

 N_d = average # of cycles to failure from separate fatigue tests under the same strain range and temperature as the CF test

Preliminary Creep-Fatigue Interaction Diagram

(0.1,0.1) or (0.2,0.2) are both reasonable intersection points

- Efforts have been initiated to develop design parameters from test data
- Thus far, most of the data evaluated were from the first two commercial heats
- Data from these commercial heats continue to support the creep strength advantage of A709 over 316H
- Design parameters will be refined as more data are available
- Work on the development of other design parameters will begin as data become available

Thank you

TingLeung.Sham@inl.gov

U.S. DEPARTMENT OF Office of NUCLEAR ENERGY