July 27, 2023

<u>Darius Lisowski</u>, Matthew Jasica, Qiuping Lv, Zhiee Ooi, Rui Hu, Mitch Farmer Argonne National Laboratory

Water-Cooled Natural Convection Shutdown Heat Removal Test Facility (NSTF) Status and Recent Data Results

DOE ART Gas-Cooled Reactor (GCR) Review Meeting

Virtual Meeting July 25 – 27, 2023

Introduction: NSTF at Argonne

Natural Convection Shutdown Heat Removal Test Facility (NSTF) was initiated in support of DOE programs: NGNP, SMR, and ART

- Air-based testing program (completed, FY13 FY16)
- Water-based testing program (on-going, FY18 to present)
- Top level objectives of NSTF program at Argonne:
 - passive safety and decay heat removal for advanced concepts
 - generate NQA-1 qualified licensing data for industry
 - provide benchmark data for code V&V
- Concurrent with a broader scope and multiple collaborators
 - Experimental facilities at scales ($\frac{1}{2}$, $\frac{1}{4}$, etc.) for both air and water
 - Complimenting CFD modeling and 1D system level analysis
 - Collaborating towards development of a central data bank

Full Scale

FY23 Work Packages & Deliverables

Work Package	Activity	Months	Funding
AT-22AN060201	Program Administration & NQA-1	12	\$100K
RD-22AN050201	Experimental Testing & Computational Analysis	12	\$880K

Funding from Gas-Cooled Reactor Campaigns in ART and ARRD

- Separate packages for program management and testing/analysis
- Reduction from previous years, currently funded at minimum level to cover staff / overhead
- Computational analysis, partially unfunded in previous years, returned to FY23
 - Limited to only RELAP5 two-phase development (no CFD)
- Completion of year-end deliverables is on schedule

Level	Work Package / Deliverable	Due Date	Status
L3	M3RD-23AN0502014 Progress report on RELAP5 modeling of NSTF two-phase	09/08/2023	On Schedule
L2	M2RD-23AN0502013 Test report detailing experimental results from FY23 parametric	09/08/2023	On Schedule

Program Quality Assurance

Regular audits, or assessments, maintain compliance to NQA-1

- Following requirements of ASME NQA-1 2008 with 2009 addendum
- Small team of dedicated individuals with strong management support
- Primary purpose is generating and packaging high-quality data

	Date		<u>Audit Type</u>	<u>e</u>	Lead Auditor
	Spring 2014, 03/18 – 20/2014		🗆 Internal	☑ External	Kirk Bailey (INL)
	Winter 2014, 02/16 – 18/2015	⊠ MA	🗆 Internal	External	Roberta Riel (ANL)
	Summer 2015, 07/20 – 23/2015	\Box MA	☑ Internal	External	Roberta Riel (ANL)
	Fall 2015, 11/3 – 5/2015		Internal	✓ External	Alan Trost (INL)
	Winter 2016, 01/21/2016	⊠ MA	🗆 Internal	External	Roberta Riel (ANL)
_	Summer 2016, 06/29 – 30/2016		☑ Internal	External	Roberta Riel (ANL)
	Fall 2016, 11/29 – 30/2016	⊠ MA	🗆 Internal	External	Roberta Riel (ANL)
	Fall 2017, 11/07 – 09/2017		☑ Internal	External	Roberta Riel (ANL)
<u> </u>	Spring 2018, 02/06 – 08/2018		Internal	✓ External	Michelle Sharp (INL)
00	Summer 2018, 05/30/2018	⊠ MA	🗆 Internal	External	Roberta Riel (ANL)
/8/	Winter 2019, 01/29 – 30/2019		☑ Internal	External	Roberta Riel (ANL)
)U(Winter 2020, 02/18 – 19/2020	⊠ MA	🗆 Internal	External	Roberta Riel (ANL)
9Qa	Spring 2020, 03/17 – 19/2020		Internal	✓ External	R. Dieter (Kairos)
CC	Fall 2020, 08/25 – 27/2020		☑ Internal	External	Roberta Riel (ANL)
Int	Summer 2021, 09/07 – 09/2021		☑ Internal	External	Roberta Riel (ANL)
sli:	Spring 2022, 04/25 – 28/2022	⊠ MA	🗆 Internal	□ External	Roberta Riel (ANL)
nt	Spring 2023, 02/21 – 23/2023		Internal	✓ External	Michelle Sharp (INL)
	Spring 2023, 05/30 – 31/2023	⊠ MA	Internal	External	Roberta Riel (ANL)

Summary of FY23 Accomplishments To-Date

- Hosted program review meeting, December 2022
 - Held every 1 2 years since 2010 with the purpose to gather feedback from external groups on progress, direction, and accomplishments of the NSTF program
 - This years meeting included participation from Federal (DOE, INL, NRC), Industry (Framatome, Kairos, X-Energy), US Univ. (TAMU, UW-Madison)
- Formal external audit for NQA-1 compliance, February 2023 (
 compliant)
- Continuation of two-phase matrix testing
 - Off-normal test conditions with expansion of blocked riser conditions; Expansion of depleted inventory condition with focus on refill methods
 - Introduced flow restriction at tank inlet for parametric loss testing
- Data packaging and exchange with active US vendors
 - Comprehensive packaging of previously collected data including both air & water cases dating to 2013
 - Exchanged with multiple US companies in recent months
- Regular use of RELAP5 for predictive capability; supporting tests

FY23 Testing Results

Blocked riser channels (#3 & 6)

• Two-phase baseline test was repeated with riser channels #3 & 6 full blocked

- Blockage was initiated ~2-hr prior to onset of boiling
- Tubes were vented to prevent pressure build-up and allow liquid boil-off
- Dry-out conditions reached 1.6-hr after starting of boiling

		<u> </u>	
	Baseline	Blocked	diff
Primary flow rate, kg/s	1.79	1.51	-15.5%
Riser flow rate, kg/s	0.227	0.258	13.4%
Heated section ΔT, °C	3.83	4.22	10.1%
Water tube, hot side °C	112.6	214.9	<i>91.0%</i>
Water tube, cold side °C	106.4	201.34	89.3%
Panel fins, hot side °C	133.5	177.1	32.6%
Panel fins, cold side °C	133.2	175.9	32.1%
Heated plate surface °C	340.16	343.69	1.0%
Side walls °C	181.7	179.1	-1.4%
Cold wall °C	105.8	108.8	2.8%

ADVANCED REACTOR TECHNOLOGIES

00:00.00

Stagnation & instability

Stagnation of loop flow \rightarrow Quiescent fluid in risers \rightarrow Geysering

Stagnation & instability

Boiling delay time for geysering

RELAP5 Modeling

Computational Modeling

"Symbiotic" relationship between experimental and computational work

- <u>Mutually beneficial</u> to both campaigns
- Good communication between both teams
- Experimental data <u>helps to benchmark computational modeling</u> approaches
 - System-level measurements (e.g. mass flow rate) beneficial for RELAP5
 - Fine-grained measurements (e.g. numerous thermocouples) beneficial for CFD
 - Provides more confidence in using analysis tools for future work
- Computational studies help elucidate some physical mechanisms
 - Also provide a "sanity check" for the experimental data

Component-level CFD analysis

- Detailed cavity air flow simulations
- Header design on flow distribution
- Mixing behavior in tank
- Porosity of insulation in heated region

Integral System RELAP5 model

- Loop benchmarking
- Full length transient scenarios
- Instability analysis
- Predictive capability for test guidance

RELAP5 - Model Development

RELAP5-3D v4.3.4

- Primary loop model:
 - Consists of pipes, branches, junction components
 - Simplified tank model
 - No secondary cooling: steam is vented to the environment

Vol. 950 - 2 depleted

25

20

Refill

- Cavity model:
 - <u>Natural convection</u> modeled by pipes and branches
 - Fluid flow in the cavity is coupled to heat structures
 - 'Enclosure' system to model thermal radiation

Test Summary & Path Forward

Completed Matrix Test Case

XX	Test Name	<u>Date</u>	Duration	<u>Purpose</u>		Classification		
	BakeOut003	06/01/2018	010h06m	Heater & insulation bake out	□ Accepted	\Box Trending \Box f	ailed	☑ n/a
EV/40	BakeOut004	06/07/2018	007h26m	Heater & insulation bake out	□ Accepted	\Box Trending \Box f	ailed	⊠ n/a
FY18	Shakedown001	07/05 - 06/2018	024h22m	Single-phase demonstration, 60% tank vol.	□ Accepted	\Box Trending \Box f	ailed	⊠ n/a
	DataQuality050	08/03/2019	008h57m	Single-phase, 1.4 MW, baseline, 80a%	□ Accepted	🗆 Trending 🛛 🗹 f	ailed	□ n/a
(DataQuality051	11/28 - 29/2018	026h53m	Single-phase, 1.4 MW, baseline, 80%, 15°∆T	Accepted	□ Trending □	failed	🗆 n/a
	DataQuality052	01/16 - 17/2019	029h4m	Single-phase, 2.1 MW, baseline, 80%	Accepted	□ Trending □	failed	□ n/a
FY19 -<	DataQuality053	03/26 - 27/2019	026h52m	Single-phase, 2.1 MW, baseline, 80%, riser throttle	□ Accepted	☑ Trending □	failed	🗆 n/a
	DataQuality054	04/25-05/01	177h37m	Transient characterization; Single-phase, 700 kW _t ,	Accepted	□ Trending □	failed	🗆 n/a
(DataQuality055	6/13 - 14/2019	026h01m	Single-phase, 2.8 MW, baseline, 80%; 42kW, addt'l	Accepted	□ Trending □	failed	🗆 n/a
	DataQuality056	10/08 - 10/2019	054h14m	Single-phase and two-phase 2.1 MW _t baseline	□ Accepted	☑ Trending □	failed	🗆 n/a
	DataQuality057	11/07 - 08/2019	020h24m	Two -phase 2.1 MW _t baseline	🗹 Accepted	□ Trending □	failed	□ n/a
FY20 ≺	DataQuality058	12/12-13/2019	021hm34	Two -phase 2.1 MW _t baseline (repeatability)	□ Accepted	🗆 Trending 🛛 🗹	ailed	□ n/a
	DataQuality059	03/04 - 04/2020	019h05m	Two -phase 2.1 MW _t baseline (repeatability)	Accepted	□ Trending □	failed	🗆 n/a
	DataQuality060	06/25 - 26/2020	019h28m	Two -phase 2.1 MW _t baseline, 70% inventory	Accepted	□ Trending □	failed	🗆 n/a
	DataQuality061	09/23 - 24/2020	016h55m	Two-phase 2.1 MW _t baseline; 60% inventory	Accepted	□ Trending □	failed	□ n/a
	DataQuality062	11/12 - 13/2020	018h58m	Two-phase 2.1 MW _t baseline; Reduced pressure	Accepted	□ Trending □	failed	□ n/a
	DataQuality063	12/10 - 11/2020	022h57m	Two-phase 2.1 MW _t baseline, Steady-state refill		☑ Trending □	failed	🗆 n/a
	DataQuality064	01/12 - 13/2021	020h34m	Two-phase 2.1 MW _t baseline; Header inlet throttle	Accepted		failed	□ n/a
	DataQuality065	02/03 - 04/2020	017h48m	Two-phase 2.8 MW _t High power		✓ Trending □	failed	□ n/a
- FY21 ≺	DataQuality066	03/10 - 11/2021	021h56m	Two-phase 2.1 MW baseline, Moderate pressure T_{t}			failed	∐ n/a
• • • • •	DataQuality067	04/07 - 08/2021	021h11m	I wo-phase 2.1 MW baseline, Moderate pressure $T_{t} = 1 + 2.1 \text{ MW}$	✓ Accepted		tailed	⊔ n/a
	DataQuality068	05/06 - 0//2021	019h12m	Two-phase 2.1 MW, baseline, High pressure				□ n/a
	DataQuality069	00/10 - 11/2021 07/07 - 08/2021	022h15m	Two phase 2.1 MW, baseline, 55% inventory	Accepted		failed	\Box n/a
	DataQuality070	07/07 = 08/2021	0231113111	Two phase 2.1 MW baseline: Header inlet throttle			failed	
	DataQuality0/1	06/11 - 12/2021 02/10 - 11/2022	0221107111 027h21m	Single where 1.4 MW here inc. 70% ADDA E fault #1.2 %2			failed	
	DataQuality0/2	02/10 - 11/2022 02/16 - 17/2022	02/1121111	Two phase 2.1 MW heading 70% toph Defili Disor throttle			failed	
	DataQuality0/3	03/10 - 17/2022	02110211	Two-phase 2.1 MW to baseline 70% tank, Keini, Kiser unfotte				
EV22	DataQuality0/4	04/18 - 21/2022	0/104300	Two phase 2.8 MW high neuron 70% tents Transient	Accepted		failed	
	DataQuality073	07/13 - 14/2022	0191104111	Two-phase 2.6 MW migh power, 70% tank, Transferit				
	DataQuality078	07/28/2022	0231147111	Static boiling, 50k we, fellil up		Trending	failed	
	DataQuality0//	00/08 00/2022	0141135111	Two phase 1.4 MW, 700/, toph Transient, Diselect #2.8-#6			failed	
,	DataQuality078	10/04 05/2022	023113811	Two-phase 1.4 MW ₁ , 70%; tank, Transferit, Blocked #3�				
	DataQuality0/9	10/04 - 05/2022	021h25m	Two-phase 1.75 MW medium power, 70%; tank, Transient			failed	$\Box n/a$
	DataQuality080	11/02 - 05/2022	0101.27	Two-phase 1.75 WW medium power, 70%, tank, Transfent				
	DataQuality081	$\frac{11/30 - 12/01/22}{01/10/2022}$	01903/m	1 wo -phase 2.1 W w ₁ , 50% invent.; Depiction; High flow refill			failed	
EV33		01/19/2025	025h52m	Static boiling, 48k we, drain down			falled	
	DataQuality083	03/06 - 09/2023 04/05 - 06/2022	0231133111	Low power throttle test			failed	
	DataQuality084	04/03 - 00/2023	010h57m	Tign power infollie test			failed	
	DataQuality085	00/27 - 28/2023	019n3/m	10% baseline repeatability; tank valve scoping trials			Talled	⊔ n/a
						ICED REACTO	3 TECI	

Activities Remaining & FY24

Continuation for remainder of FY23

- Continuation of loss coefficient / blockages for off-normal scenarios
 - Recently added throttle valve at chimney (two-phase) outlet
- Ramp-up analysis of performance and stability
 - Deep dive into two-phase phenomena and system parameters at tested conditions
 - Global identification of stable and unstable operating windows
 - Continued development of this computational modeling tools
- Data packaging and exchange with active US vendors

- Comprehensive nackaging of new and previously collected data

Create short-circuit with high vapor carry over

Current & Future Role of NSTF

Outreach Effort – Industry Needs & Future of NSTF

- Because of continued support from the DOE, the NSTF program has been able to provided relevant and timely support to US vendors for development of their passive decay heat removal systems
- There is a strong interest in maximizing the DOE investment to allow continuation of this support for the evolving landscape of current and active industry technologies
- Led by the program federal manager, and in coordination with technical leads, a white paper was released in early 2023:
 - summarizes past, ongoing, and future work
 - evaluates industry gaps and inputs, identifies risks
 - considerations, options, risks, and recommendations related to disposition of the NSTF
 - recommendations for continued future use of the facility

Outreach Effort – Industry Needs & Future of NSTF

- An outreach campaign was initiated to identify future roles, purpose, and needs of the NSTF program at Argonne
 - 19 US companies were contacted requested information on their gaps and needs for passive decay heat removal in the design and development of their advanced reactor(s)
 - We received detailed communication and/or written responses from 15 companies
 - Identified strong interest in specific technologies pertaining to RCCS and RVACS
- Based on the feedback, we identified the following:
 - All reactor vendors are including *some* form of passive decay heat removal in their designs
 - Majority utilize existing technologies in a traditional form; some have incorporated hybrid concepts
 - RVACS (traditional & hybrid)
 - RCCS (air & water)
 - DRACS
 - There was curiosity in use of heat pipes for large scale heat removal, but feasibility is yet to be determined
- At the current time, the traditional RVACS and water-cooled RCCS stand out as main contenders

ve Heat Removal System		Deference Deaster	Vondor	
Design 🖃 Working Fluid	Со	Reference Reactor		
		ARC-100	ARC Clean Technology	
		HC-HTGR	Boston Atomics	
		BANR	BWX Technologies	
		PELE	BWX Technologies	
		SC-HTGR	Framatome	
		PRISM	GE - Hitachi	
		BWRX-300	GE - Hitachi	
		FMR	General Atomics	
		EM ²	General Atomics	
redacted		SMR-160	Holtec Intl.	
		KP-FHR	Kairos Power	
		Generic	NNSA	
		Aurora	Oklo	
		MCFR	Southern Co.	
		Natrium	TerraPower	
		ISMR	Terrestrial Energy	
		MMR	Ultra Safe Nuclear	
		Generic	US NRC	
		LFR	Westinghouse	
		eVinci	Westinghouse	
		Xe-100	X-Energy	

Breadth & Impact of NSTF Program

- Facility infrastructure reflects a generic containment and reactor vessel, able to generate decay heat load representative of nearly any reactor design by US vendors (LWR, SFR, GFR, MSR, SMR, etc.)
 - 6.7 m (22 ft.) heated section
 - 23 kW/m² / 500°C peak RPV power
- Overall program has been on-going since 2013
 - Industry collaboration with Kairos, Framatome, Boston Atomics and Westinghouse
 - Provided JAEA and US vendors with validation data
- Testing matrix covers broad range of expected, designbasis accident, and off-normal scenarios

	<u>Water</u>	<u>Air</u>
Duration	61-month	33-month
Active Hours	1,288-hr	2,250-hr
Data-Quality	32	27
Accepted	26	16
Trending	8	7
Failed	3	4
Total Runs	54	40

Short circuit air by-pass scenario

Program Timeline

Checkout and Maintenance

Experimental Testing

This work was supported by the U.S. Department of Energy Office of Nuclear Energy, Office of Advanced Reactor Concepts under contract number DE-AC02-06CH11357.

Argonne Proje	ect Personnel	Program	n Sponsors	Notable Mentions, Past Involvement		
Project Manager	Mitch Farmer	Federal	Matthew Hahn		David Pointer	
Principal Investigator	Darius Lisowski		Gerhard Strydom		Elia Merzari	
Lead Experimenter Qiuping Lv		Technical	Mike Davenport	Modeling	Matt Bucknor	
Test & Instrumentation Matthew Jasica			Paolo Balestra		Constantine Tzanos	
Quality AssuranceJohn Woodford		Guidance / Consultation			Tom Wei	
Facility Designer	Designer Dennis Kilsdonk Jim Kinsey		Jim Kinsey		Craig Gerardi	
Laboratory Technical	Art Vik		Lew Lommers	Program Support	Diana Croson	
	Nathan Bremer		Sud Basu		Steve Reeves	
		Eutomal Cuidanaa	Mike Salay		Diana Li	
Argonne Analysis Support Team		External Guidance	Brian Woods		Hans Gougar	
Computer Modeling	Rui Hu		Farshid Shahrokhi	Laboratory Support	Bruce Herdt	
	Adam Kraus		Michael Corradini		Tony Tayofa	
	Zhiee Ooi		Yassin Hassan		Steve Lomperski	

THANK YOU