July 27, 2023

Zachary Prince, Paolo Balestra

Idaho National Laboratory – Department of Reactor Physics Methods and Analysis

HTGR PBR Reactor Optimization Methodology

Reduced Order models, equilibrium core, DLOFC

DOE ART Gas-Cooled Reactor (GCR) Review Meeting Virtual Meeting July 25 – 27, 2023

- Purpose
- Model Description
- Sensitivity Analysis
- Reduced Order Modeling
- Conclusions

Reactor designs incur both safety and economic constraints

- Ensuring ALARA principles for certification and preventing damage
- Keeping development and operational costs low for economic viability
- Safety and economic considerations are often counteracted
 - Higher temperatures create a more efficient power cycle, but reduce margin for system failure
 - Higher burnup reduces fuel costs, but create higher likelihood of fuel failure
 - **Exotic/advanced materials** are more thermally or neutronically efficient, but cost more to integrate
- Modeling and simulation used to test and analyze different reactor configurations
- Design-basis accident simulations are common to determine safety features
- Effects of various design considerations are often difficult to determine implicitly, especially when considered together
- Large parameter space means many different configurations to consider

Proposed Methodology

- Base model is coupled neutronics, depletion, thermal-hydraulics, fuel-performance model
 - Includes equilibrium core simulation and protected DLOFC transient
 - Goal is that nominal configuration satisfies system constraints, but not optimized
- Identify appropriate design parameters and output quantities related to constraints and optimization
- Sensitivity analysis provides insight on how reactor behaves when changing parameters
- Reduced-order model provides fast-evaluating surrogate for optimization
- System constraints include safety and nonproliferation, reduces space of viable configurations
- Optimized model is a minimization problem for factors like fuel utilization/cost

DOE NEAMS MOOSE Based Applications

- NEAMS: The Nuclear Energy Advanced
- Modeling and Simulation Program
 MOOSE: Multiphysics Object Oriented Simulation Environment
- Flexible
 - 1D, 1DR, 2D, 2DRZ, 3D,
 - Huge variety of physics

 - Adaptive time stepping and sub cycling
 Multiscale through Multiapp system
 Easily Extendible to new physics and sales

Tunable fidelity

- OD scalar lumped parameters problem
- ID systems models
- Multi D Intermediate "homogenized" aeometry
- High-fidelity "explicit" Geometry

Scalable

- MOOSE supports hybrid parallelism
 Scales well on workstation and HPC
- 2D/RZ models execute in minutes
- High-fidelity 3D models execute on HPC

NEAMS Base Reactor Design

- Nominal Characteristics:
 - Power: 200 MWth
 - Core height/radius: 8.93/1.2 m
 - TRISO packing: 9.24% (18,687 per pebble)
 - Fuel kernel diameter: 0.435 mm
 - Fuel enrichment: 15.5%
 - Pebble discharge rate:
 1.5 pebbles/min
 - Burnup limit: 147.6 MW d/kg_{HM}
 - Helium flow rate: 64.3 kg/s
 - He inlet temperature: 260 °C
 - He outlet pressure: 5.8 Mpa
 - RCCS Temperature: 70 °C
- Core- Model Description: Discharge Chute- Mesh: MOOSE reactor module Upper Cavity-- Geometry: 2D RZ (axisymmetric) Reflector-- Equilibrium core: neutronics, Control Rod Channeldepletion, thermal hydraulics, fuel Inletperformance - Protected DLOFC: depletion, Riserheat conduction, fuel Conus Channelperformance Lower Plenum-- Codes: Hotleg- Griffin: neutronics and depletion Barrel-**Pronghorn**: thermal Reactor Pressure Vesselhydraulics and heat conduction **Bison**: fuel performance
 - ADVANCED REACTOR TECH

Multiphysics Coupling

ICLEAR ENERGY ADVANCED MODELING & SIMULATION PROGRAM

Equilibrium Core (steady-state)

Protected DLOFC (transient)

Neutronics Model

- 2D RZ 9-group diffusion model
- Control rod placed at critical configuration
- Simulated k-eff: 0.99961
- Excess reactivity: 806 pcm

ADVANCED REACTOR TECHNOLOGIES

Depletion Model

- Eulerian streamline depletion:
 - 295 isotopes + 20 pseudo isotopes
 - 5 streamlines (processed from DEM calculation)
 - 13 burnup groups (0-196.8 MWd/kg_{HM})
- Max pebble power: 2.67 kW
- Peaking factor: 2.01
- Average fissile Plutonium fraction: 63.2%

Thermal Hydraulics Model

• 2D RZ coupled porous flow and solid heat conduction

- 902

- 800

700

500

400

ç

Fluid Temperature

Pebble and TRISO Heat Conduction Model

- 1D R-Spherical heat conduction
- Representative pebble mode for each cell and burnup group (3,900 solves)
- Surface temperature of pebble assigned from TH
- Surface temperature of TRISO assigned from average pebble temperature
- Max fuel temperature: 1009 °C

Protected DLOFC Transient

- Initial solid temperature and isotopic composition taken from equilibrium core calculation
- Decay heat evaluated from explicit depletion solve (assumed instantaneous shutdown)
- Purely solid heat conduction (assumed no coolant)
- Pebble HC computed each timestep (no coupling)
- Initial decay heat: ~6% of full power
- Max fuel temperature: 1438 °C
- Max RPV temperature: 322 °C

Design Parameters and Quantities of Interest

	Nominal Value	Lower Bound	Upper Bound	Units	Qol	Nominal Value	Units
Parameter					k-eff	0.99961	
Kernel Radius	0.2125	0.15	0.3	mm	Max Pebble	2.67	kW
Filling Factor	9.34	5	15	%			
Enrichment	15.5	5	20	wt%	Peaking Factor	2.01	—
Feed Rate	1.5	1	3	pebbles/min	Fissile Plutonium		
Burnup Limit	147.6	131.2	164.0	MWd/kg _{HM}	Fraction	63.2	%
Total Power	200	180	220	MWth	Max Operating	1006	°C
Core Radius	1.2	1.1	1.3	m	Fuei iemp		
Core Height	8.93	8	10	m	Max DLOFC Fuel Temp	1438	٥C

Max DLOFC RPV Temp 322 °C

Sensitivity Analysis Methodology

- Goal 1: Determine the effect of each parameter on quantities of interest qualitatively
 - Sample each parameter individually
 - Useful to understand behavior if a parameter was changed one way or another
 - Puts robustness of the model's solver to the test
- Goal 2: Produce data
 - Random sampling over entire parameter space
 - Data will be used to evaluate global sensitivities and generate reduced-order models
 - Useful to see how probable edge cases are to occur
- Goal 3: Evaluate global sensitivities for each parameter-Qol pair
 - Utilize polynomial chaos meta-modeling to evaluate Sobol indices
 - Quantitively determines impact of a parameter on a Qol
 - Useful for determining important parameters

The MOOSE Stochastic Tools Module

Provide a **MOOSE interface** for performing stochastic analysis on MOOSEbased models.

- Sample parameters, run applications, and gather data that is both **efficient** (memory and runtime) and **scalable**.
- Perform UQ and sensitivity analysis with distributed data with advanced variance reduction methods
- **Parallel Scalable Inverse Bayesian UQ** for parameter and model error estimation
- Train meta-models to develop fast-evaluating surrogates of the high-fidelit multiphysics model
 - Harness advanced machine learning capabilities through the C++ front end of Pytorch
 - Use active learning models for building surrogates
- Provide a pluggable interface for these surrogates.
- Use POD (Proper Orthogonal Decomposition)-based dimensionality reduction methods to build mappings between solution variables and latent (low-dimensional) spaces

Surrogate Comparison for Reactor Optimization

POD modes of a 2D heat conduction problem

Sensitivity Analysis: Qualitative Analysis

- Each design parameter was changed individually
 - Example: enrichment was changed uniformly between 5-20 wt%, while all other parameters were held at their nominal values
 - 12 points for each parameter: 96 total samples

Sensitivity Analysis: Producing Data

Random sampling of parameter space

•

- Latin hypercube (LHS) sampling with 10,000 samples

Sensitivity Analysis: Global Sensitivity

- Total Sobol indices using polynomial chaos expansion
 - Fourth-order monomial expansion
 - Second-order indices also available indicating cross-term sensitivity

Reduced-Order Model Methodology

• Investigating three different regression techniques

Reduced-Order Model Comparison

- Split data into training and validation set (3,000 training points)
- Fourth-order monomial for polynomial regression
- Optimized Gaussian Process model
- Three-layer artificial neural network

System Constraints

- Viable configurations defined by constraints on the output of the simulation
- Includes both operational success and risk of failure
- Full Model uses 10,000 sample case and ROMs were run with 100k samples

		Fraction of Viable Configurations (%)					
Qol	Constraint	Full Model	PR	GP	ANN		
k-eff	> 0.99200	24.92	25.00	25.03	25.24		
Max Pebble Power	< 4.5 kW	95.16	95.61	95.24	95.23		
Peaking Factor	< 2.2	62.67	63.55	60.89	61.78		
Fissile Pu Fraction	< 70 %	80.30	79.18	79.45	79.21		
Max Operating Fuel Temp	< 1100 °C	67.65	68.37	68.43	68.01		
Max DLOFC Fuel Temp	< 1600 °C	97.16	97.27	97.25	97.40		
Max DLOFC RPV Temp	< 350 °C	93.03	93.14	93.11	93.13		
Total		13.62	13.91	13.35	13.37		

- Summary
 - Defined workflow for developing models for design optimization
 - Utilized MOOSE tools to build multiphysics equilibrium core and DLOFC model
 - Defined core design parameters and quantities of interest related to viability
 - Generated a large dataset of simulations
 - Performed **sensitivity analysis** to gain insight on parameter behavior
 - Built and compared various reduced order models
- Upcoming Work
 - Define core metrics to optimize
 - Utilize reduced order models for optimization
- Future Work
 - Look at optimization for approach to equilibrium core (running-in)
 - More advanced cross section generation