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~*~ ~Overview & Objectives

s Overview

Introduction

High pressure, high temperature experimental facility

Atmospheric P/T deposition experiments

Model development, numerical validation, scaling, & parametric study

a Wb RE

Project timeline
Obijectives

- Perform experiments to obtain plate-out , lift-off and wash-off of dust facilitated fission
product transport from scaled reactor components at both scaled and representative
conditions using existing experimental facilities.

» Implement models and perform simulations using the experimental conditions and match
experimental data.

* Perform MELCOR simulations to compare with experiments and CFD.
- Derive numerical models and correlations from the generated data.
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hd  Analytical tools used to predict and determine source term o 1 i Primary He leaks
. Primary Circuit
transport currently suffer from large degrees of uncertainty for Fust Kornet  Hoavy Motal e
. Activity
specific transport modes. A
* It is known that certain FPs have a propensity to sorb onto . e
the surfaces of particulates ("dust"). [
* Recirculation, deposition, and resuspension of FP sorbed =
. . H ngress Condensation Deposition Settling Purification
dust is of concern to due its ability for release upon a LOCA. | ™ f | |
I

» Plateout considers the mechanism in which condensable FPs
deposit onto helium-wetted surfaces.

* Whether the FPs are primarily transported as an atomic

I
species mixed into the coolant, or sorbed onto dust, liftoff o ws VAN “
accounts for the all transport methods which capture the LUl 1 \‘\\_\\\fg'““ ﬂ
resuspension of FP release upon a LOCA. LLVLLEE R L
. . PLLLLL ™ PR
« Washoff concerns the entrance of water into the primary LUl /

circuit which then becomes the transport mode of FPs sorbed
to metallic surfaces or dust.
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s ~High Pressure High Temperature (HPHT) Experimental Facility

M © Dust deposition & resuspension experiments under Normal Operating Conditions
~ (NOC) and Loss of Coolant Accidents (LOCA).

'  Improve Plate-out, Lift-off, & Wash-off (PLW) predictive models
- ASME rated to 1000°F, 1000 PSI
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’ ~High Pressure High Temperature (HPHT) Experimental Facility
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STES High Pressure High Temperature (HPHT) Experimental Facility
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~ % ~High Pressure High Temperature (HPHT) Experimental Facility
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Solid Aerosol Generator Liquid Aerosol Generator
Selection Criteria

Re # 16,780
Stk # 0.02887
Myatermax  1.79 LPH

Ddrop, max 12|-1m

Wi

Pressure (Bar)

Flow

G raphlt\e Factor
Mixin
- g
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Experimental Planning

Reynolds # 5,593-16,780
Geometry Single Sphere, Over Helical Coll
Pressure Atm-1,000 psig

Test Article Heating/Cooling AT =0°C, 25°C, 50°C, 100°C
(Isothermal - Nonisothermal)  (AT= T ace~ T helium)
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~* ~Atmospheric P/T Deposition Experiments

-y ’

Purpose
* Investigate graphite deposition Re V (m/s)
patterns 4,000 0.681
- Saturation times for model ?'ggg 22?3 | Camerator e fraere
comparison, : :
10,000 1.703
* Onset and growth of 15,000 2.555
sedimentation patterns, 20,000 3.407
30,000 5 110 Test section

* PIV measurements for

e ! 60,000  10.220
deposition velocity. 83.000 15.01 :> } z
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- ~Experimental Inputs to Model

8
<A/ Experiments Model development
AV
| ] \ r
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% ~Model Development

™ A 10!
. Vo0 stream = 0-1 TS
¢ Smaller particles are harder to remove V:mm 0.5 ms
due to proportional forces Vi straam = 1 M
(hydrodynamic torque, drag force, lift 6V g siream = -5 M8
force, impact force) related to diameter. 0% — 7 Viosteom =2
* Higher free stream velocity increases E |
impact force, making adhered particles  -5° . .
easier to remove. '
. 1k
- Lower free stream velocity leads to b |
smaller impact force, requiring higher | pa 1 sy sV i) | 4
critical shear velocity for particle e
removal. _ - . _ st
6y 0 m(t) = AL = esp)ppare(1 — ¢ o)
p
dy !
Moisture
. AHdp Substrate Substrate
vDW— 2
1230 20 v
3 = — S
Substrate _ md,ppg dnryy cos? (1 1 cos 9) ,
Fgravity = 6 Fcapillary .
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different Re numbers.

~ ~Numerical Validation

..\.‘.“_fjj-:.____:"-,r"/ANSYS Fluent used to compute wall shear stresses for

* Fully developed and turbulent before and after
asymptotic deposition state.

Vintet = 0.6 —1.08m/s

« Critical shear velocity decreases with increasing free
stream velocity, making it easier to remove adhered

particles

* Proposed methodology accurately predicts the critical
shear velocity and equilibrium deposition thickness, with
a small difference compared to the results generated by

computational fluid dynamics (CFD) simulations.

Inlet velocity (m/s) de (M) wh.. (M/s) Analytical Shear stress (Pa) CFD «* (m/s) CFD Difference %
0.6 0.0214 0.07262 0.00767105 0.079133 8.23
0.7 0.0169 0.07210 0.00713851 0.076337 5.55
0.8 0.0124 0.07165 0.00679733 0.074491 3.81
0.9 0.008 0.07126 0.00649491 0.072815 2.13
1.0 0.0037 0.07091 0.00625974 0.071484 0.8
1.08 0.000217 0.07065 0.00614101 0.070803 0.22
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Air at 302K, 1 atm

Shear stress at fully-developed location
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~Nondimensionalization & Scaling Analysis
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~Parametric Study
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Inlet velocity (m/s) Saturation time (hrs) Equilibrium time (hrs)
0.6 199.05 610.50
0.7 157.22 482.19
0.8 115.85 355.31
0.9 74.88 229.67
1.0 34.28 105.13
1.08 2.02 6.20
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Conclusmns of Model Development, Numerical Validation, &

Parametric Study

- Higher non-dimensional particle relaxation time -> Longer adjustment time to fluid streamlines ->
More wall deposition likelihood -> Increased non-dimensional deposition velocity.

* Non-dimensional deposition velocity remains constant with increasing Re due to unaffected
Brownian diffusion, eddy-impaction, and gravitational sedimentation.

* Increasing particle relaxation time at constant Re -> Increased deposition velocity -> Faster
saturation and equilibrium time.

« Constant Re and particle relaxation time -> Higher fluid-to-particle mass ratio -> Decreased wall
deposition -> Longer time to reach saturation.

» Higher inlet velocity at constant particle concentration -> Decreased saturation and equilibrium time.

* Increasing inlet velocity -> Decreased asymptotic deposited mass at fixed particle concentration ->
Easier particle removal due to smaller critical shear velocity and fewer deposits.

« Journal article submitted and under review by Nuclear Engineering & Design.
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