July 26, 2023

Yongfeng Zhang Assistant Professor University of Wisconsin Madison

Statistical modeling of the effect of microstructural heterogeneity on the irradiation behavior of TRISO fuel buffer layer

NEUP: 20-19556

PI: Yongfeng Zhang, University of Wisconsin Madison (UW), yzhang2446@wisc.edu

Co-PIs: Ramathasan Thevamaran (UW), Karim Ahmed (TAMU), Tyler Gerczak (ORNL), Wen Jiang (INL)

Funding: \$800,000

Period: 10/1/2020 – 9/30/2023 (with NCE to 6/30/2024)

Outline

- **Background & objective**
- **Hypothesis**
- **Research design**
- **Accomplishments**
	- \triangleright How do we describe buffer? matrix microstructure + porosity
	- \triangleright How does buffer porosity affect its fracture behavior?
	- \triangleright Irradiation induced changes in porosity and matrix microstructure
	- \triangleright Super-elasticity of unirradiated buffer pyrocarbon
- **Outlook**
- **Summary**

Background & objective

• Buffer fracture is stochastic showing three different modes: Debonding (**A**), radial fracture (**B**), and partial debonding (**AB**), while mode **AB** leads to higher probability of failure.

• **Our objective is to answer:**

- Why fracture is stochastic?
- What governs the selection $_{Type B}$ of fracture mode?
- Can we control the fracture mode?

Buffer densified

radially inward

and remained

Buffer staved

intact and locally

bonded to IPyC

Kernel swelling

was constrained.

Fractures in

unbonded portion

of buffer.

Remainder bonded

to IPvC. Kernel

protruded into cavities.

Type ABi

Type ABf

7/20/23 **3** Ploger, S. A., Demkowicz, P. A., Hunn, J. D., & Kehn, J. S. (2014). Nuclear Engineering and Design, 271, 221-230

Hypothesis: The heterogeneous distribution of buffer porosity determines the initiation and propagation of buffer fracture.

Buffer porosity:

- Random distribution
- Local fluctuation
- Radially increasing
- Connectivity along tangential direction

J. D. Hales et al., J. Nucl. Mater. 443, 531–543, 2013.

pores

 $~\sim$ 40

IPyC SiC OPyC

 20 um

2023

S. Liu et al. Front. Mater., 04 January

T. Lowe et al. JNM 461, 29-352015

Research design

- What are the actual porosity in buffer and its spatial distribution?
- What's the atomic structure of buffer, which is a low density, non-textured pyrocarbon?
- How does porosity correlate with mechanical properties: moduli, toughness, etc.?
- How does porosity distribution affect the buffer fracture (tearing)?

How do we describe buffer?

• **FIB-SEM characterization of buffer porosity**

• *Griesbach et al. Microstructural heterogeneity of the buffer layer of TRISO nuclear fuel particles, JNM 574 (2022)*

1st place Winner of FY 2023 Innovations in Nuclear R&D Student Competition: Fuel Cycle Technologies

• **Atomistic simulations of pyrocarbon matrix**

• *R. David et al. Correlations between atomic structure and elastic properties in low-density non-textured pyrocarbon (in preparation)*

Buffer porosity morphology in unirradiated TRISO buffer (surrogate particles)

 $1mm$

A robust data analysis workflow is established incorporating artificial intelligence assisted pore identification and segmentation for porosity characterization of FIB-SEM image.

FIB-SEM tomography

- FEI Helios PFIB with 30 kV Xe plasma
- Scan volume: $10\times10\times10$ μ m³
- Slice thickness: 50 nm
- Voxel size: $38\times49\times50$ nm³
- Image processing and data analyses:
	- Avizo 9.5 and Dragonfly 2021.1
	- Deep learning segmentation
- 3D reconstruction

Buffer: low density pyrocarbon + randomly distributed pores

- **The Average buffer porosity is about 14% in reference to the 50% smeared theoretical density.**
- **Pores distribute randomly.**
- **Porosity increases radially.**
- **Porosity fluctuates locally.**
- Large pores ($>1 \mu m^3$) dominates the porosity albeit fewer of them.

Buffer consists of low density pyrocarbon with 58% theoretical density and randomly distributed pores that give a total porosity of 14%.

Inter-particle (and radial direction) differences

- The radial porosity distribution varies upon the radial direction and from particle to particle
- However, the average porosity, magnitude of local fluctuation and radial gradient are similar.
- The radial increase of porosity is consistent with the fabrication procedure.
- More characterizations (which are expensive) are desired.

Difference between surrogate and AGR-2 TRISO particle

- **Similar average porosity.**
- **Similar radial distribution.**
- **Larger fluctuation in the AGR-2 particle (?)**

Atomic structure of low density pyrocarbon

• Molecular dynamics simulations show that the low-density pyrocarbon is non-textured, containing randomly oriented graphite crystallites. Three parameters, **density**, and **in-plane** and **out-of-plane crystallite sizes**, are extracted from correlation analysis for describing the matrix microstructure.

A 3D cell with atoms colored by atomic orientation

A slice in the cell with graphite-like atoms (red, sp2 bonded and in 6-member rings) and defect (others)

Correlations among descriptors

C. de Tomas et al. / Carbon 109 (2016) 681-693.

N. A. Marks, PRB 65 (2000), 075411 C. de Tomas et al. / Carbon 155 (2019) 624e634 http://www.carbonpotentials.org/

Microstructure descriptors of buffer

- Porosity parameters
	- Average porosity
	- Radial gradient
	- Local fluctuation
	- Others?
- Matrix Parameters
	- **Density**
	- In-plane crystallite size L_a
	- Out-of-plane crystallite size L_c
	- Others?

How does buffer porosity affect its fracture behavior?

- **Statistical BISON simulations of buffer fracture initiation and propagation**
	- *Masri et al. The role of heterogeneous porosity distribution on buffer fracture behavior in TRISO fuel particles (in preparation)*

Representation of buffer porosity in BISON

- Buffer porosity is randomly sampled with three parameters: **average porosity (A), radial gradient (B),** and **local fluctuation (** $C\xi$ **)**, by fitting the experimental results using the below equation.
- The function is selected based on the assumption of constant mass deposition rate per unit radial length.
- Both elastic moduli and fracture stress are made dependent on porosity.

BISON simulations of buffer fraction: uniform porosity

- Fracture is caused by **tangential stress**, not radial stress
- Fracture initiates from **kernel/buffer** interface
- Fracture propagates **radially**

ADVANCED REACTOR TECHNOLOGIES

0.05

0.1 0.15 Porosity

From experiment

Uniform

0.2

0.25

BISON simulations of buffer fraction: radially increasing porosity

- Both elastic moduli and fracture stress decrease radially
- Fracture is caused by **tangential stress**, not radial stress
- Fracture initiates from **buffer/IPyC interface**
- Radial crack connects with each other along tangential direction (**tearing**), instead of propagating radially ⁰

BISON simulations of buffer fracture: fracture initiation

- The fracture initiation point increases radially with the parameter B, which describes the rate of radial porosity increasement, implying the possibility of tailoring fracture by controlling porosity distribution.
- Local fluctuation in porosity induces some fluctuation in fracture initiation point.

ADVANCED REACTOR TECHNOLOGIES

Irradiation induced changed in porosity and matrix microstructure

FIB-SEM characterization of buffer porosity

- *C. Griesbach, C. McKinney, Y. Zhang, T. Gerczak, R. Thevamaran, Irradiation-induced changes in the porous buffer microstructure of TRISO nuclear fuel particles (in preparation)*
- *C. Griesbach, J.D. Arregui Mena, E. Lopez, Y. Zhang, T. Gerczak, R. Thevamaran, Irradiation-induced nanostructural changes in porous pyrocarbon (in preparation)*

Samples and irradiation condition

- Various irradiation conditions consider in terms of temperature and neutron fluence.
- **Porosity**, **solid fission products**, **densification**, and **fracture** are characterized.

AGR-2 Irradiation Conditions

Buffer densification: Change in matrix & porosity

- Substantial densification that correlate positively with fluence and temperature has been observed and found to be dominated by change in matrix microstructure.
- Irradiation changes the average porosity, its local fluctuation and radial distribution.
- The matrix has experienced substantial graphitization as suggested by XRD and Raman analyses.

Change in matrix microstructure: formation of unique graphitic onion-like nanofeatures from TEM

• Formation of onion-like nanostructure (left) characterized by TEM. The feature is similar to that has been observed in heat-treated non-textured pyrocarbon (right).

OGIES

Super-elasticity of unirradiated buffer pyrocarbon

Nanoindentation and micro-compression

• *C. Griesbach, T. Gerczak, Y. Zhang, R. Thevamaran, Super elasticity and anisotropic mechanical response in porous pyrocarbon (in preparation)*

Super-elasticity revealed by nanoindentation and nano-pillar compression

- No failure or plasticity observed during in-situ nanoindentation.
- Brittle failure observed until 30% strain under micro-compression
- Radially compressed micro-pillar show lower yield strength than tangentially compressed.

(a) force-displacement curves from in situ SEM nanoindentation experiments with SEM images at select points during deformation in $(a-1) - (a-3)$, (b) stressstrain curves from in situ SEM microcompression experiments on the same sample compressed to \sim 10% strain without yielding (blue curve) and to \sim 30% strain exhibiting brittle failure; SEM images at select points during deformation in $(b-1) - (b-3)$.

The super-elasticity is related to the unique way of nontextured pyrocarbon for accommodating strain

- Non-textured pyrocarbon can sustain large tensile and compressive strain.
- The stress and plastic deformation (bond breaking and forming) are most accommodated by the disordered regions between 'crystallites' (graphite-like regions).
- The crystallites grows and align with each other along the loading direction, enhancing texture.

Outlook

- **Can we optimize the fracture behavior by controlling the initial buffer microstructure and porosity distribution?**
	- Ø **Anisotropic porosity distribution and mechanical properties**
	- Ø **Atomic-scale mechanisms responsible for irradiation induced change in matrix microstructure and porosity distribution, which determine the transient mechanical properties**
	- Ø **Progression of buffer fracture into SiC layer**

• **A Letter Of Intent (LOI) has been submitted for phase-II continuation.**

- Buffer consists of a low density pyrocarbon matrix $(\sim 58\%$ theoretical density) and randomly distributed pores with a total volume of about 14%. The porosity increase radially and fluctuate locally.
- The radial porosity distribution strongly affects the fracture behavior of buffer.
- Irradiation causes significant densification and changes the total porosity, the porosity distribution, and the matrix microstructure. The densification is dominated by the graphitization of the pyrocarbon matrix.
- The unirradiated buffer pyrocarbon exhibits super-elasticity under compression. The strain is accommodated by bending and reorientation of graphite crystallites.
- The findings suggest the possibility of optimizing the fracture behavior by controlling the initial buffer microstructure.

Thank you!

Project information: Statistical modeling of the effect of microstructural heterogeneity on the irradiation behavior of TRISO fuel buffer layer

- PI: Yongfeng Zhang, University of Wisconsin Madison (UW)
- Co-PIs: Ramathasan Thevamaran (UW), Karim Ahmed (TAMU), Tyler Gerczak (ORNL), Wen Jiang (INL)
- Funding: \$800,000
- Period: 10/1/2020 9/30/2023 (with NCE to 6/30/2024)
- Milestones: (Accomplished in green; M2 in bold)
	- 1. (M3) TRISO buffer pyrocarbon sample delivery and preparation memo, 9/30/2021
	- **2. (M2) Year 1 Annual Progress Report, 9/30/2021**
	- 3. (M3) Phase field modeling of pyrocarbon fracture with pores, 9/30/2022
	- 4. (M3) BISON model development for TRISO particle, 9/30/2022
	- **5. (M2) Year 2 Annual Progress Report, 9/30/2022**
	- 6. (M3) Pore structure characterization in TRISO buffer, 12/31/2022
	- 7. (M3) BISON statistical modeling of buffer tearing, 6/30/2024
	- 8. (M3) Mechanical property measurement in TRISO buffer, 6/30/2024
	- **9. (M2) Final Project Report, 9/30/2024**