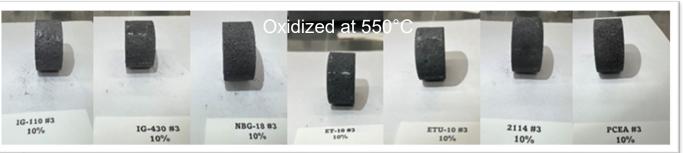
July 26, 2023

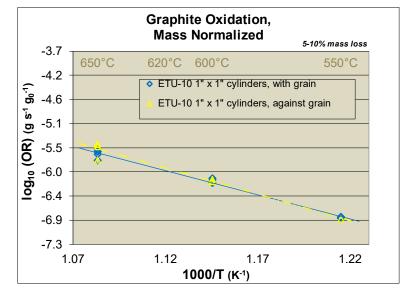
Rebecca Smith ART Graphite Researcher Idaho National Laboratory

Oxidation Activities

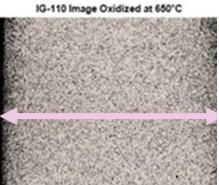
oxidation rate, penetration/lathing, and strength after oxidation work

DOE ART Gas-Cooled Reactor (GCR) Review Meeting Virtual Meeting July 25 – 27, 2023

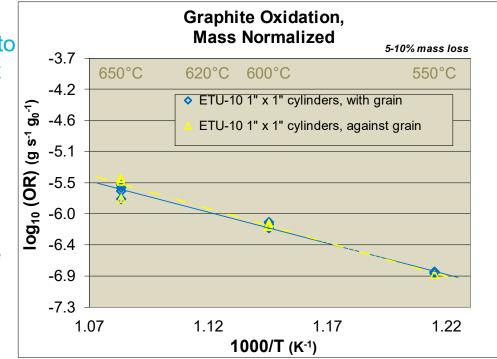



Introduction: **Recent and Current Oxidation Studies**

- Background •
- 3 Areas of Investigation
 - Arrhenius Rate Analysis
 - Strength after Oxidation
 - Penetration Depth Studies
- Conclusion



IG-110 Image Oxidized at 750°C

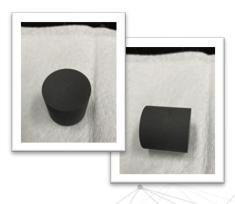


Acute and Chronic Oxidation

Background – Rate Behavior

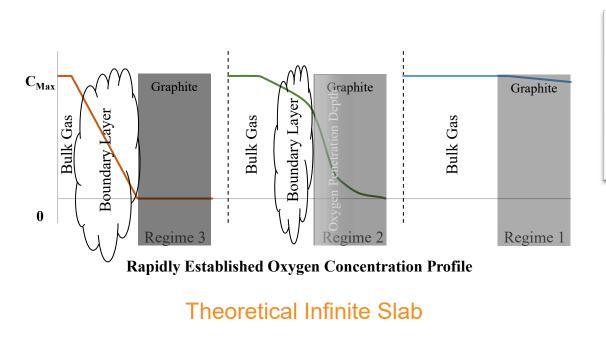
Little (if any) rate difference observed in WG v. AG data to date – *maybe* slight effect at higher T with increase in diffusion influence

- Arrhenius Rate Analysis:
 - ASTM D7542 Assumes Regime 1 up to ~750°C
 - Dependent on the graphite grade microstructure
 - Uniform oxidation presumed

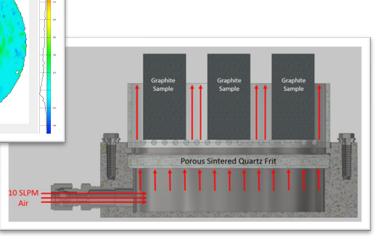


Temperature Dependence at Constant Air Flow Rate

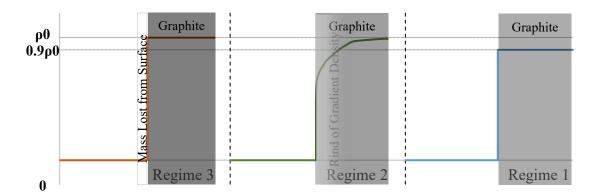
Arrhenius Relationship $k = A \cdot exp(-E_a/RT)$

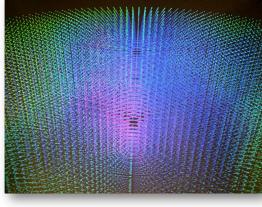

Adaptations

- to investigate effects of irradiation
- to induce oxidation resistance

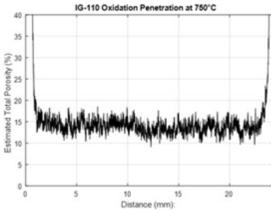

Background – Strength Behavior

- Implications for Modeling, ASME Code, Testing Standards:
 - Graphite performance changes with oxidation
 - Dependent on the graphite microstructure and gas transfer
 - Local variations in conditions \rightarrow non-uniform oxidation at all temperatures tested



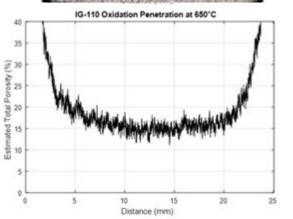

- Observed Damage from Oxidation
 - Strong temperature dependence
 - Regime 2 density gradient over all temperatures tested
 - Inconsistent post-oxidation properties at (moderate) T = 650°C

Cross-Sectional Density Profile after 10% Mass Loss


Theoretical Infinite Slab

Density Profile is essential to understanding results of post-oxidation strength tests

IG-110 Image Oxidized at 750°C



ADVANCED REACTOR TECHNOLOGIES

5

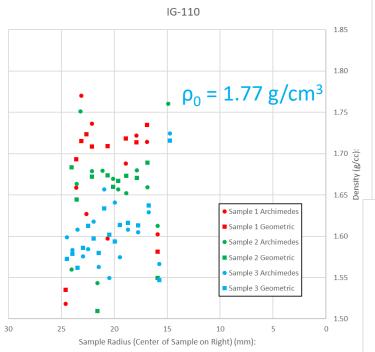
IG-110 Image Oxidized at 650°C

Penetration Measurements (aka Lathing Study)

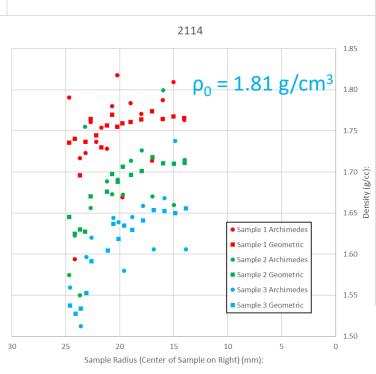
- 3 mass loss values: 2%, 6%, and 10%
- 550°C oxidation temperature
- Hole in sample center for precision machining
- 50 mm initial sample diameter

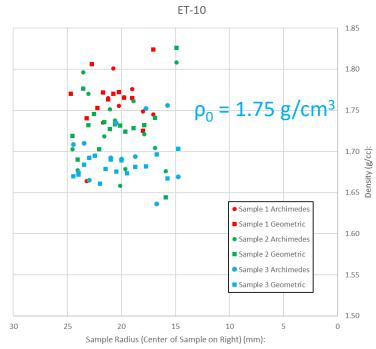
6

 Archimedes and geometric density analysis

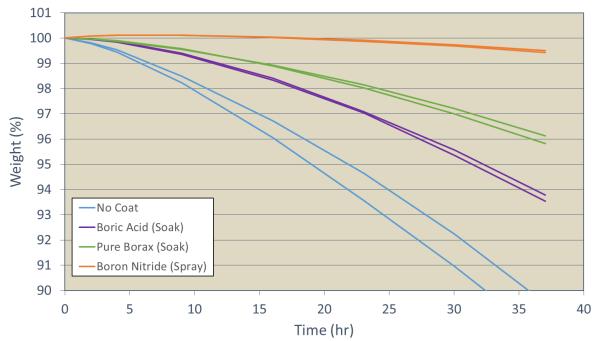


Machined in 1 mm and 2 mm steps


Archimedes measurements follow ASTM C20, "Standard Test Methods for Apparent Porosity, Water Absorption, Apparent Specific Gravity, and Bulk Density of Burned Refractory Brick and Shapes by Boiling Water."


Penetration Measurements

Mass Loss From Oxidation: Sample 1, 2% Sample 2, 6% Sample 3, 10% With 18 Machining Steps Completed



Oxidation Resistant **Graphite Coating Development**

- Why Coat:
 - Increased resistance to oxidation
 - Manufacturing limitations
 - Maintain graphite strength

Oxidation Performance of Coated NBG-18 Graphite at 600°C

Oxidation Performance of Graphite with B4C Content 10% mass loss in 10 L/min. air at 739°C 100 ······ 0% B4C 99 - · 3.62% B4C 98 - - 4.92% B4C 97 - 5.90% B4C Weight (%) 96 95 94 93 92 91 90 10 15 20 0 5 25 30 35 Time (hr) 70 Unoxidized 60 Strength, MPa 50 10% Mass Loss in Air @ 739C 40 Compressive 20 10

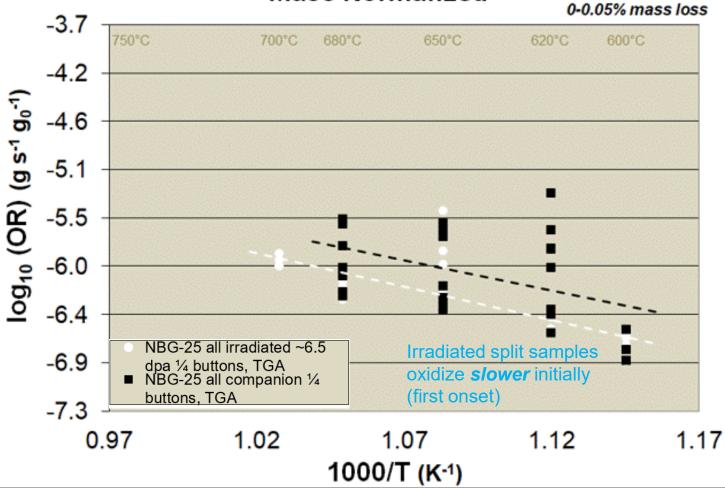
3.5%

B₄C content, %

10

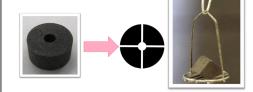
0

0%

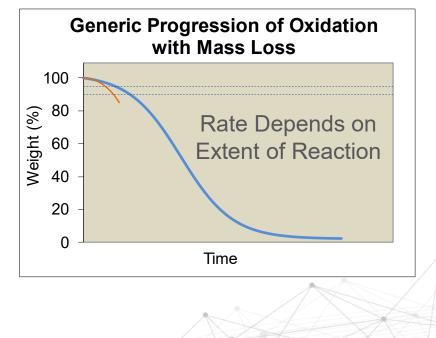

ADVANCED REACTOR TECHNOLOGIES

4.9%

5.9%

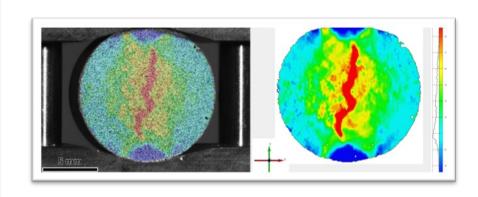

Irradiated v. Unirradiated Graphite Oxidation

Graphite Oxidation, Mass Normalized



9

Irradiated split sample oxidation **accelerates faster** with reaction progression, 2X or 3X at the 5-10% mass loss at ~6.5 dpa



Conclusion: Oxidation Studies Moving Forward

- 3 Areas of Investigation
- ASTM Standards in Development
- Documentation to support ASME Code

Recent & Pending Publications

- Smith, R., and W. Windes, "Performance of Graphite Oxidation with Environment and Specimen Geometry Variations," <u>http://doi.org/10.1520/STP163920210134</u>, ASTM International book on the Selected Technical Papers (STP 1639) *Graphite Testing for Nuclear Applications: The Validity and Extension of Test Methods for Material Exposed to Operating Reactor Environments* (ISBN:978-0-8031-7725-3) December 2022.
- Paul, R., C. Contescu, and N. Gallego, "A Microstructural Modeling-Based Approach to Graphite Oxidation Beyond ASTM D7542," <u>http://doi.org/10.1520/STP163920210080</u>, ASTM International book on the Selected Technical Papers (STP 1639) *Graphite Testing for Nuclear Applications: The Validity and Extension of Test Methods for Material Exposed to Operating Reactor Environments* (ISBN:978-0-8031-7725-3) December 2022.
- Paul, R., C. Contescu, N. Gallego, R. Smith, J. Bass, J. Kane, A. Tzelepi, and M. Metcalfe, "On the thermal oxidation of nuclear graphite relevant to high-temperature gas cooled reactors," https://doi.org/10.1016/j.jnucmat.2022.154103, 573 (2023) Journal of Nuclear Materials.
- Cai, L., R. Smith, A. Matthews, D. Cottle, W. Chuirazzi, F. Xu, B. Gross, C. Chen, R. Latta, and W. Windes, "Determining the Oxidation Behavior of Matrix Graphite," submitted in June 2023 to *Journal of Nuclear Materials* for peer review.

Rebecca Smith

Idaho National Laboratory

rebecca.smith@inl.gov

(208) 526-3874

WWW.INL.GOV