July 26, 2023

Will Windes ART Graphite Technical Lead Idaho National Laboratory

DOE ART Graphite Program

Status 2023

DOE ART Gas-Cooled Reactor (CR) Review Meeting

Virtual Meeting July 25 – 27, 2023

Graphite Program Contributors to this discussion

Researcher	Expertise	Researcher	Expertise		
Andrea L. Mack andrea.mack@inl.gov	ASME Code	Mary Kaye Aimes marykaye.ames@inl.gov	Oxidation, Material testing		
Anne Campbell campbellaa@ornl.gov	PIE, Irradiation damage, Irradiation behavior	Michael E. Davenport michael.davenport@inl.gov	Irradiation experiments		
Arvin Cunningham arvin.cunningham@inl.gov	Oxidation, Split-disk testing	Nidia C. Gallego gallegonc@ornl.gov	Molten salt technical lead, irradiation damage		
Austin C. Matthews austin.matthews@inl.gov	Material property testing, PIE, Oxidation	Philip L. Winston philip.winston@inl.gov	Irradiation experiments		
David T. Rohrbaugh david.rohrbaugh@inl.gov	Unirradiated and Irradiated material properties	Rebecca E. Smith rebecca.smith@inl.gov	Graphite oxidation (irr. and unirr)		
Jose' D. Arregui-Mena arreguimenjd@ornl.gov	Microstructure, irradiation damage	Steve Johns Steve.johns@inl .gov	Irradiation damage, Characterization, Split-disk		
Lu Cai Lu.Cai@inl.gov	Pebble Oxidation	William Windes william.windes@inl.gov	Irradiation behavior, ASME		
artin Metcalfe artin.p.metcalfe@gmail.com HTR operations, ASME, ASTM		Wilna Geringer geringerjw@ornl.gov	ASME, Composites, Graphite		

Five different research areas

Behavior models

- Predicts irradiated material properties and potential degradation issues
- Irradiation behavior for continued safe operation

Licensing & Code

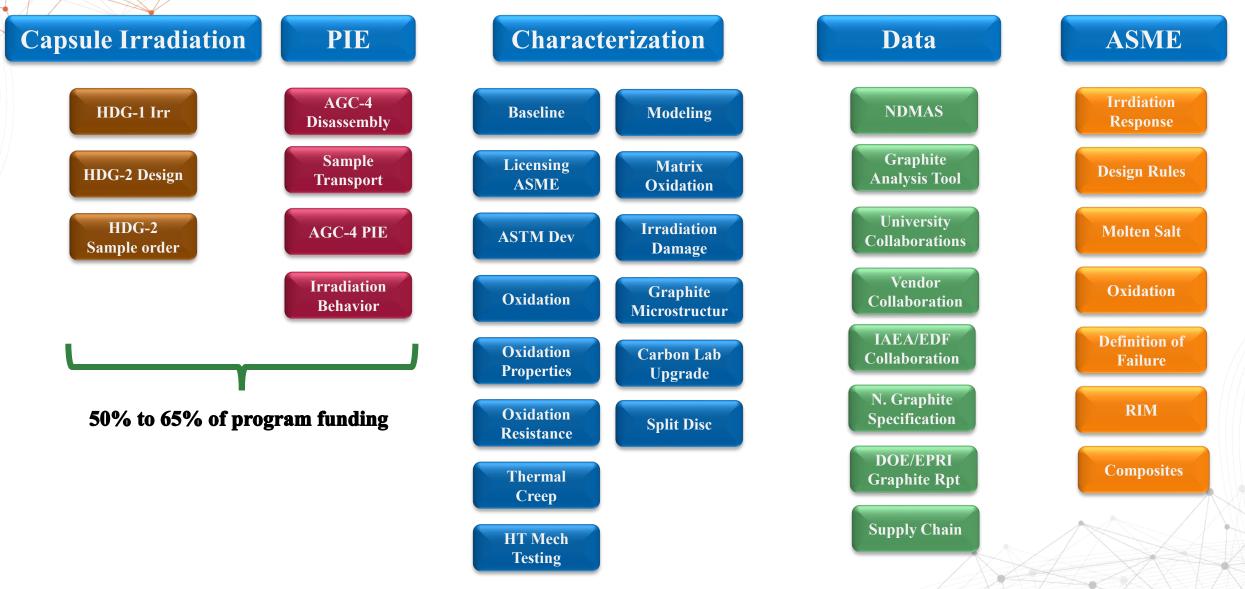
Establishes an ASME approved code (for 1st time)
Develops property values for initial components and irradiation induced changes

Graphite R&D Program

Defines the safe working envelope for nuclear graphite and protection of fuel

As-Fab'd Properties

- (Statistically) Establishes asreceived material properties
- Baseline data used to determine irradiation material properties

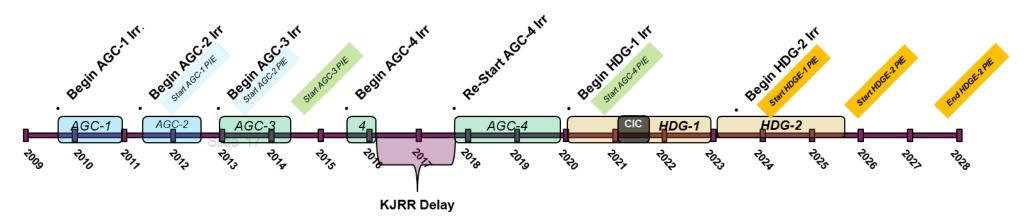

Mechanisms and Analysis

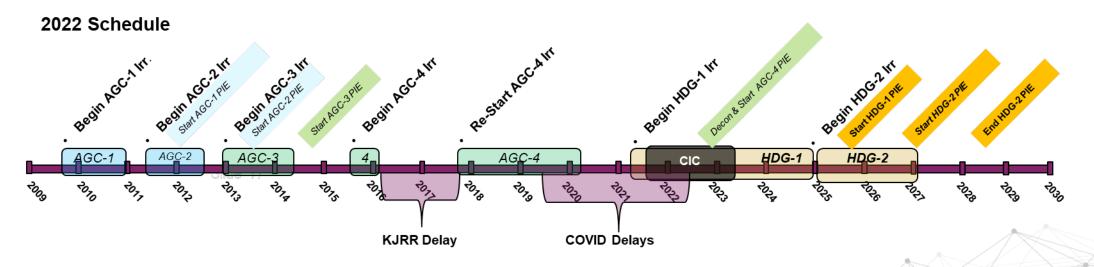
- Data analysis and interpretation
- Understanding the damage mechanisms is key to interpreting data

Irradiation

- Determines irradiation
- changes to material properties
- Irradiation behavior for
- continued safe operation

FY23 Graphite Activities

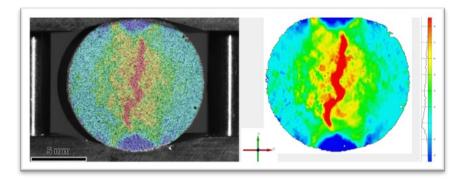

What are we discussing this year?

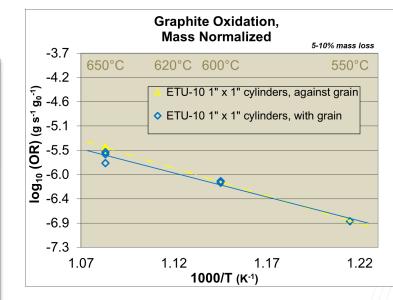

- AGC Update
- Oxidation Activities
 - Oxidation rate, penetration/lathing, strength after oxidation
- Baseline Status
 - Data use in ASME and improved split-disc studies
- ASME Code Development:
 - Irradiation model
 - Ceramic Composites
 - Design task group
 - Component failure
- VIC Project Update
- Molten salt studies
 - We are initiating material interactions now

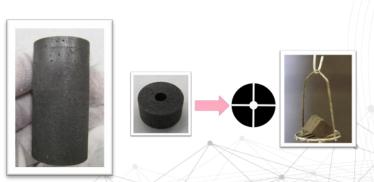
Advanced Graphite Creep (AGC) Experiment (Will Windes)

2018 Schedule

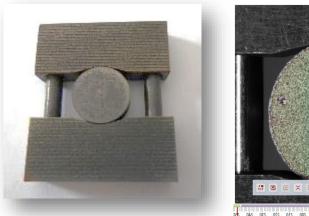
Oxidation Studies (Rebecca Smith)

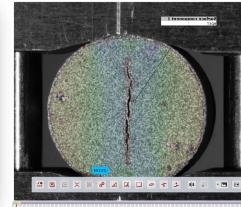

- Large amount of work being performed
 - Oxidation rate work is minimal
 - Mostly ASME and ASTM involved work
 - Strength after oxidation
 - Oxygen penetration depth
 - Oxidation of MS grades
- Oxidation of irradiated graphite




IG-110 Image Oxidized at 750°C

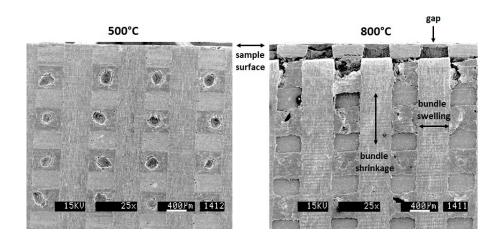
him min

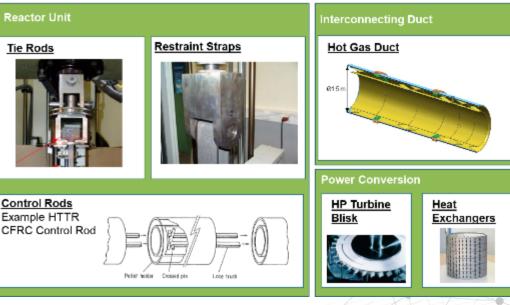


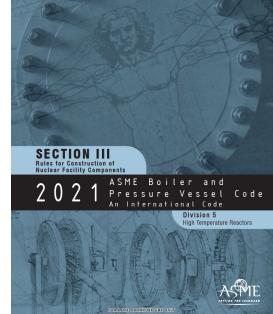


Baseline (Arvin Cunningham)

- Over 23,800 NQA-1 qualified measurements thus far
- 5 major graphite grades
- Focus is supporting other areas:
 - Irradiation: AGC
 - ASTM: Split-disc testing (D8289)
 - ASTM: High Temperature tests
 - ASME code rule development
 - Molten salt interactions




Graphite Lak		Billet #	Percent Complete					Data In		
	Laboratory		Machining	Mass and Density	Elastic Testing	Mechanical Testing	Thermal Testing	Data Report	Analysis Reports	NDMAS?
PCEA	ORNL	XPC01S8-11	100%	100%	100%	100%	100%	ORNL/TM-2015/765	ORNL/TM-2015/765	NO
PCEA	INL	XPC02S8-7	100%	100%	100%	100%	100%	ECAR-3725	INL/EXT-13-30011	YES
PCEA	INL	XPC01S8-9	100%	100%	100%	100%	100%	ECAR-6111	INL/MIS-23-70949	NO
PCEA	INL	XPC02S8-5	100%	100%	100%	100%	100%	ECAR-6110	INL/MIS-23-70951	NO
PCEA	INL	XPC01D3-35	66%							NO
PCEA	INL	XPC01D3-36	100%	100%	100%	100%	100%	ECAR-3677	INI/EXT-16-39604	YES
PCEA		Multiple Other Billets Available								
NBG-18	INL	635-4	100%	100%	100%	100%	100%	ECAR-3726	INL/EXT-14-33120, INL/EXT- 13-30011	YES
NBG-18	INL	635-14	100%	100%	100%	100%	100%	ECAR-1930	INL/EXT-10-19910, INL/EXT- 13-30011	YES
NBG-18	ORNL	635-6	100%	100%	100%	100%	100%	ORNL/TM-2010/219	ORNI/TM-2010/219	NO
NBG-18		Multiple Other Billets Available								
2114	INL	A20568	100%	100%	100%	100%	100%	ECAR-5798	INL/MI5-22-65680	NO
2114	INL	A20570	100%	100%	100%	100%	100%	ECAR-4322	INL/EXT-14-33120	YES
2114	ORNL	116310	100%	100%	100%	100%	100%	2018/1038, 2019/1256	ORNL/TM-2018/1038, ORNL/TM-2019/1255	YES*
2114		Multiple Other Billets Available								
NBG-17	INL	830-3	100%	100%	100%	100%	100%	ECAR-3727	INI/EXT-14-33120	YES
NBG-17	INL	V104	100%			33%				NO
IG-110	INL	089052-7	100%	100%	100%	100%	100%	ECAR-3521	INL/EXT-14-33120	YES
IG-110	INL	10X69	100%	100%	100%	100%	100%	ECAR-4182	ECAR-4182	NO

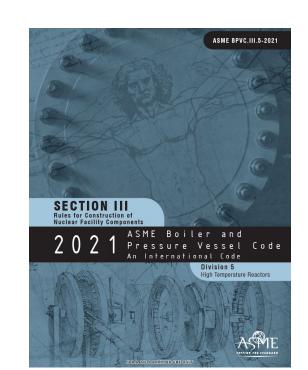

ASME: Component Failure (Martin Metcalfe)

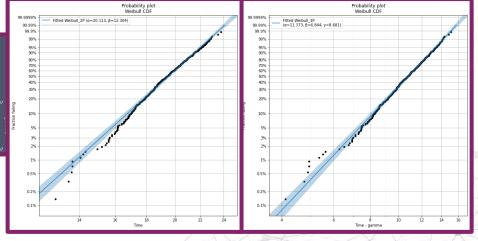
- Composite code development within ASME Section III Division 5 (HHB).
 - Approved in 2019 PBVC version
 - A nonmetallic but wholly different from graphite
 - Highly directional (fiber orientation)
 - Specifically fabricated to design
 - Different failure behavior
 - Initial rules require some modification

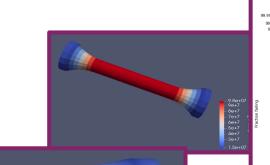
Anticipated applications for composites in HT reactor systems.

ASME BPVC.III.5-2021

ASME: Design Rules (Andrea Mack)

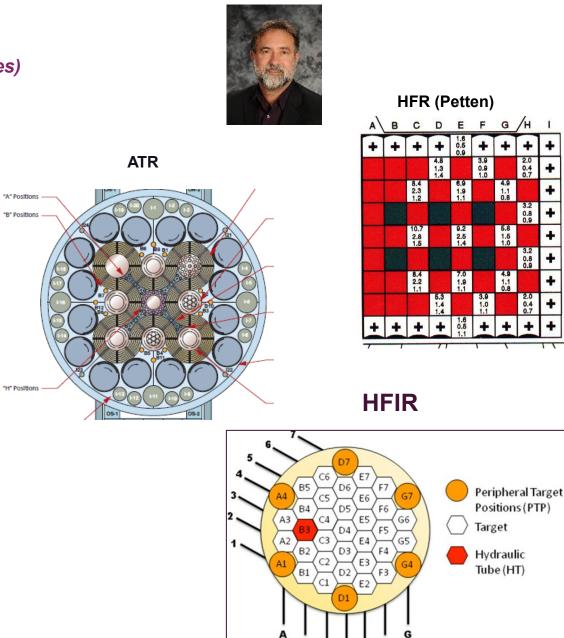

- Lead Task Group in Nonmetallics Working Group (NWG)
 - Largest commercial vendor participation
- Priority activity in ASME Section III
 - Sec III-5 has designated NWG Design rule changes as a priority activity
 - Striving to get changes into 2025 ed. BPVC
- Heavy use of Baseline data


Full Assessment

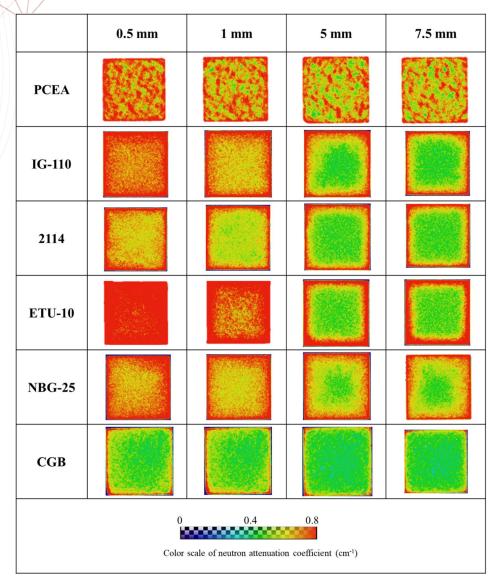

- Disparate flaw distribution
- Tuning V_m and Δ
- Mesh refinement
- Location
- Sample size requirements
- Margin

Simplified Assessment

- Stress terminology
- R_{tf}

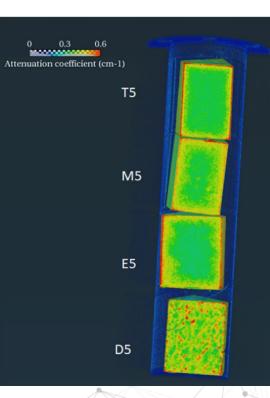

ASME: Component Failure (Martin Metcalfe)

- ASME Section III Division 5: Rules for Construction of Nuclear Facility Components (High Temperature Reactors)
 - Damage tolerance and component functionality
 - Review of damage tolerance in the graphite cores of UK power reactors
 - Clarification of terminology associated with component assessment methodologies
- ASME Section XI Division 2: Rules for Inservice Inspection of Nuclear Power Plant Components (Reliability and integrity management)
 - A new supplement covering graphite components in high temperature gas reactors



Vender Irradiation Capsule (Will Windes)

- What is the general idea
- Why is it needed?
- What are our options?
- What do the commercial vendors think?
- What is the next step



Molten Salt – Graphite Interactions (Nidia Gallego)

- Molten salt is just another degradation mechanism for nuclear graphite
 - Unirradiated and irradiated material behavior still occur
- A status on initial molten-salt interaction studies
 - MS penetration into graphite microstructure
 - Erosion/Abrasion
- New funding molten salt graphite interaction studies (no results yet)
 - Enhance and complete results from these initial studies

NEUP: New graphite research (Thursday, July 27th, 2023)

Advanced Reactor Component Materials Topics for FY21 NEUP Call

- RC X-Y. Effects of Irradiation Induced Microstructure Change in Graphite

- Multiscale Effects of Irradiation Damage on Nuclear Graphite Properties
 Aman Hague, Pennsylvania State University
- 2. Quantifying the Dynamic and Static Porosity/Microstructure Characteristics of Irradiated Graphite through Multi-technique Experiments and Mesoscale Modeling
 - Jacob Eapen, North Carolina State University