July 25, 2023

Austin Matthews

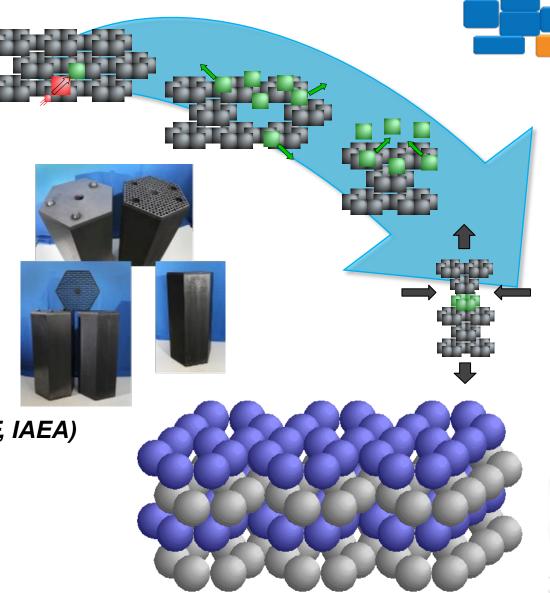
Research Engineer
Idaho National Laboratory

July 25, 2023

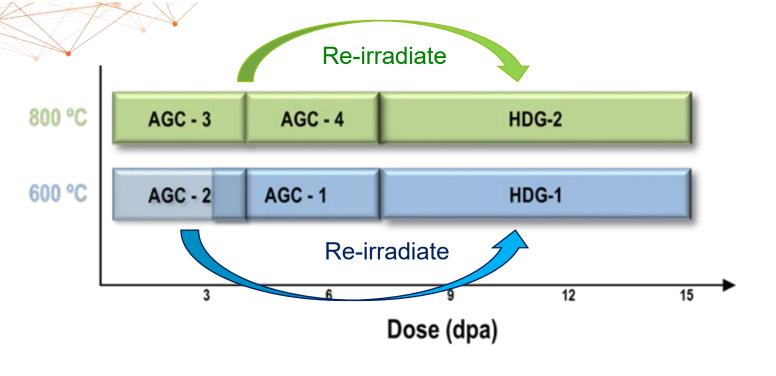
Will Windes

Directorate Fellow Idaho National Laboratory

ART Advance Graphite Creep (AGC) Irradiation Experiment


DOE ART Gas-Cooled Reactor (GCR) Review Meeting

Virtual Meeting July 25 – 27, 2023


Topics of discussion

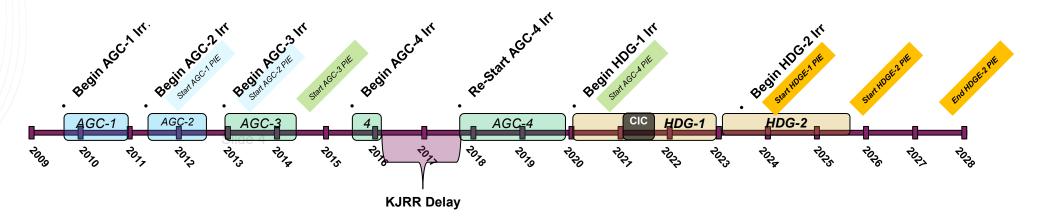
- 1. Schedule
- 2. AGC Experiment Update
- 3. AGC-4 Status
 - Disassembly and Decon
 - Initial PIE
- 4. Anticipated areas data will be used
 - ASME code rules for irradiated graphite data
 - Support of HTR designs
 - Collaborations (Commercial vendors, NRC, GIF, IAEA)
- 5. Vendor specific irradiation capsule
 - Why? Please not another AGC experiment
 - How does it fits with new ASME code rules

AGC Irradiation Experiment: A review

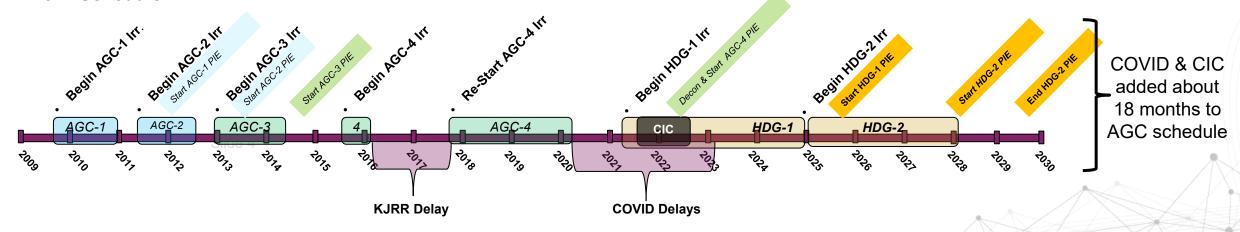
Graphite material property database

- Irradiation creep
- Thermal changes
- Mechanical changes
- Physical changes

Initial 600°C and 800°C irradiations


- AGC-1 and AGC-2 (600°C irradiation)
- AGC-3 and AGC-4 (800°C irradiation)
- Dose range ~ 1 to 8 dpa (for both temperatures)
- Creep data!

High Dose Graphite (HDG) capsules


- Re-irradiate previous AGC specimens
- Higher max dose (15 dpa)
- Same Temperatures (600 800°C)
- Higher dose creep data!

AGC Experiment Status

2018 Schedule

2022 Schedule

Irradiation material properties (AGC Experiment)

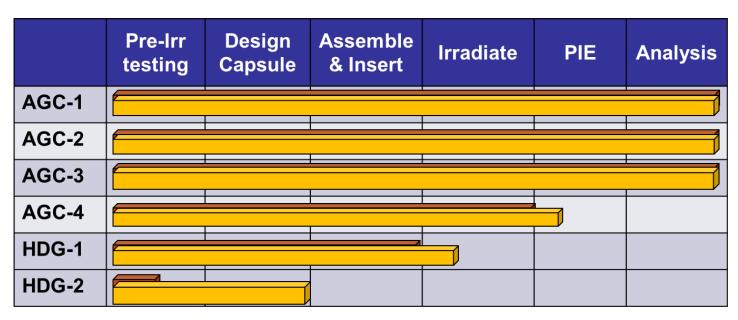
- AGC-1 & AGC-2 : 600°C (0.5 to 7 dpa)
 - Initial irradiation, PIE, and analysis is complete
- **AGC-3**: 800°C (0.5 to 3.5 dpa)
 - Initial irradiation, PIE, and analysis is complete
- AGC-4: 800°C (3 to 8.5 dpa)
 - Irradiation complete (February 2020)
 - Specimen disassembly complete
 - We have some specimens with high rad levels
 - PIE (2022 2023)

- Back in ATR ready for irr: 2 more years to max. 15 dpa
- Re-irradiation of AGC-2 specimens
 - Added super-fine grain sized grades => of interest for MSR designs
- **HDG-2**: 800°C (7 to 15 dpa)
 - Irradiation begins 2023
 - Re-irradiation of AGC-3 & -4 specimens to max. 15 dpa

	Pre-Irr testing	Design Capsule	Assemble & Insert	Irradiate	PIE	Analysis
AGC-1						
AGC-2						
AGC-3						
AGC-4						
HDG-1						
HDG-2						

Pertinent Irradiated Graphite Reports

ECAR-5345, As-Run Physics Analysis for the AGC-4 Experiment Irradiated in the ATR, January 2021


ECAR-5414, As-Run Thermal Analysis for the AGC-4 Experiment Irradiated in the ATR, April 2021

INL/EXT-21-63591, AGC-4 Disassembly Report, July 2021

AGC Experiment Status

AGC Experiment Status:

- AGC-1 & AGC-2 : 600°C (0.5 to 7 dpa)
 - Initial irradiation, PIE, and analysis is complete
- **AGC-3**: 800°C (0.5 to 3.5 dpa)
 - Initial irradiation, PIE, and analysis is complete
- **AGC-4**: 800°C (3 to 8.5 dpa)
 - Irradiation complete (February 2020)
 - Disassembled July 2021
 - *PIE has begun* (2023 2024)
 - Complete PIE and issue reports (2024)
- **HDG-1**: 600°C (7 to 15 dpa)
 - Back in reactor: Start-up has been delayed
 - Two (2) more years until 15 dpa
 - Re-irradiation of AGC-2 specimens
- **HDG-2**: 800°C (7 to 15 dpa)
 - Design of irradiation capsule initiated
 - Irradiation begins 2025
 - Re-irradiation of AGC-3 & -4 specimens to max.
 15 dpa

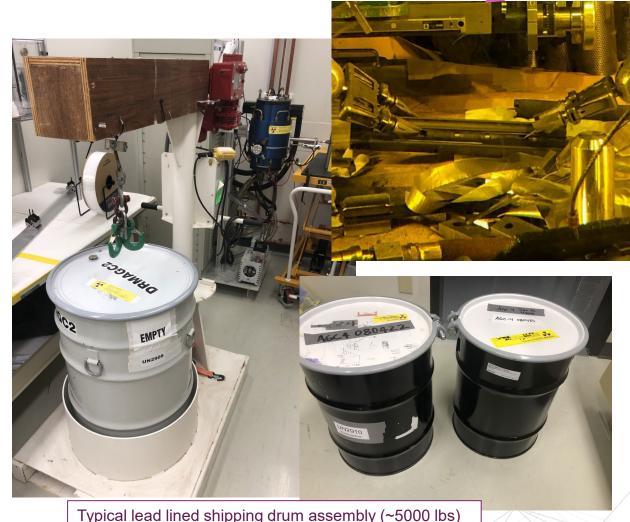
Pertinent Irradiated Graphite Reports

ECAR-5345, As-Run Physics Analysis for the AGC-4 Experiment Irradiated in the ATR, January 2021

ECAR-5414, As-Run Thermal Analysis for the AGC-4 Experiment Irradiated in the ATR, April 2021

INL/EXT-21-63591, AGC-4 Disassembly Report, July 2021

To be re-issued 2023 (Rev 1) to add the decontamination activities

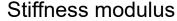

Extracting piggyback samples from machined Graphite Body

High activity levels detected

- A few specimens have high rad levels
- Special decon glovebox set-up
- Decontamination of all specimens
 - Activity levels measured for individual specimens
- Appears to be nickel contamination that cannot be wiped clean

PIE options based on activity levels

- AGC-4 PIE has begun on low rad level specimens
 - Approximately ½ of specimens have arrived at CCL
 - Remaining samples expected by end of August
- If activity levels are too high → Limited PIE on the desert
 - Mass, density, and elastic/ shear modulus measurements



and new small quantity shipping drums (~50 lbs)

AGC-4 PIE Status

CTE

Split-Disk Strength

ASTM E 228-06

ASTM C 769

ASTM D8982

Physical & Thermal Properties Testing

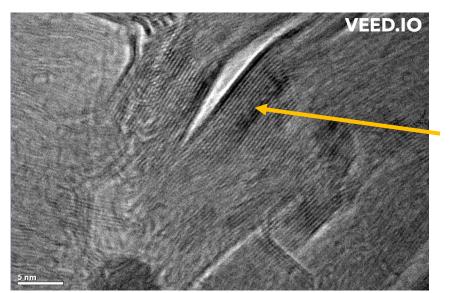
- Density
- Coefficient of Thermal Expansion
- Thermal Conductivity
- Resistivity

- Resonant Frequency (E_{DYN})
- Torsional Frequency (G_{DYN})
- Sonic Velocity
- Fracture Character*

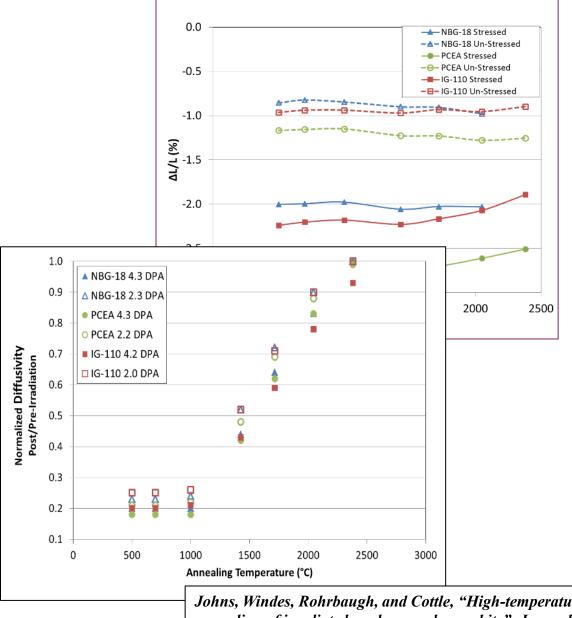
Tested ~1/4 of specimens so far ...

HEPA system maintenance delays

Due to decontamination activities specimens will be shipped in small batches


• Several small batches of specimens

- Much longer time to test
- Much easier to handle, no special equipment or training.


Irradiation data: Understanding graphite behavior

Irradiation damage mechanisms:

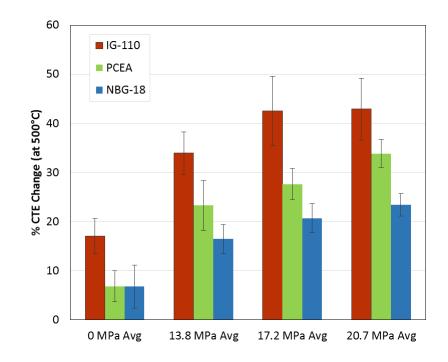
- New annealing studies
 - Changes to material properties after heat treatment
 - No dimensional change recovery until after graphitization temperatures
 - 100% recovery of thermal diffusivity > 2400C
- Underlying mechanisms to predict behavior
 - Material property changes, degradation behavior
 - Assist develop ASME rules for irradiated behavior

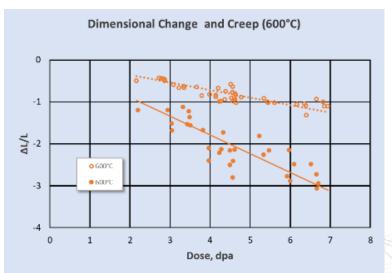
Crack closure

Johns, Windes, Rohrbaugh, and Cottle, "High-temperature annealing of irradiated nuclear grade graphite", Journal of Nuclear Materials, [154377 Vol. 779 June 2023]

Who/What will use the data?

Commercial reactor design (Direct)


- Any design using the same parameters of AGC Experiment can use all data directly
 - · Same graphite grade,
 - T_{Irr} range : 500 850C,
 - Dose range : 1 to 8 dpa (15 dpa after HDG)
- Irradiation dimensional change, creep rate, and material property changes
- Working how to provide commercial QA data from DOE QA data


Commercial reactor design (Indirect)

- Other HTR designs can indirectly use the AGC irradiation behavior and creep data
- Combined with the ASME code methodology the data can be used to demonstrate similar behavior
 - · Will need to justify how the graphite is similar

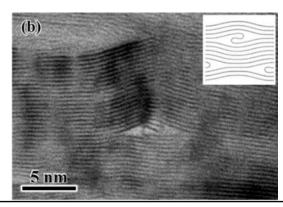
ASME code development

- Potential code cases for
- Used to justify universal graphite response up to turnaround
 - Up to turnaround: All grades behave similarly
 - Past turnaround dose: Grades are not similar
 - So long as your graphite grade is within the data "cloud"
- Similar methodology for creep response/rate

Who/What will use the data?

NRC/Licensing questions on irradiation behavior

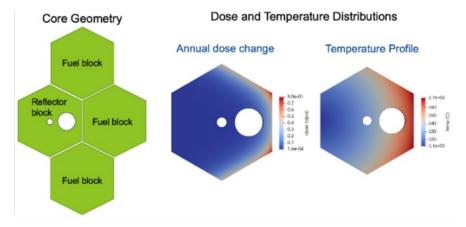
- Training, general questions, topical reports, etc.
- Assistance with acceptance of ASME code rules


Behavior model development

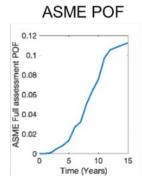
- Irradiation induced stress build-up (failure determination)
- Irradiated material property changes
- Combination of degradation (no empirical data possible)
 - Irradiation + oxidation + Molten Salt

Other Collaborations

GIF, IAEA, International and National fundamental studies


Fundamental studies are designed to explain the empirically measured results

Evidence of a "Buckle, ruck and tuck" defect proposed as possible underlying defect for irradiation creep


Setup

Results

Principal Stress

