July 25, 2023

Paul Demkowicz
AGR Program Technical Director
Idaho National Laboratory

DOE AGR Program Review: Concluding Remarks

DOE ART Gas-Cooled Reactor (GCR) Review Meeting
Virtual Meeting

July 25 - 27, 2023

Major Program Activities – FY24 and Beyond

- Complete AGR-3/4 data analysis and reporting
 - Determine key takeaways in terms of fission product transport
- Continue/complete AGR-5/6/7 PIE and safety testing
 - Confirm performance of pilot-scale fuel, including performance at extreme high and low temperature regimes
- Fuel oxidation tests
 - Determine fuel and fission product behavior under oxidizing conditions
- Reporting
- Compile AGR datasets for use by reactor designers, e.g.:
 - Fission product retention characteristics of the fuel
 - Fuel failure analyses under all tested conditions
 - Oxidation behavior and impact on fission product retention
- Fuel performance and fission product transport modeling
- Support industry interaction with the regulator during licensing activities

Coated-Particle-Fueled Reactor Concepts and Fuel Designs

Developer	Description	Fuel design
X-energy	Xe-100 200 MWt PB HTGR	UCO TRISO pebbles, graphitic matrix
	Xe-Mobile 1 – 5 MWe microreactor	UCO TRISO
Kairos Power	KP-FHR 140 MWe salt-cooled SMR	UCO TRISO pebbles, graphitic matrix
	Hermes 35 MWt test reactor	UCO TRISO pebbles, graphitic matrix
BWXT	BANR 50 MWt microreactor	UN TRISO in SiC matrix
	Pele/MNPP 1 – 5 MWe transportable microreactor	UCO TRISO in graphitic matrix
Ultrasafe Nuclear	MMR 15 MWt microreactor	UCO TRISO in SiC matrix ("FCM")
Westinghouse	eVinci 7-12 MWt microreactor	UCO TRISO compacts, graphitic matrix
Radiant Nuclear	Kaleidos >1 MWe transportable microreactor	UCO TRISO compacts, graphitic matrix
Framatome	SC-HTGR 625 MWt prismatic HTGR	UCO TRISO compacts, graphitic matrix
StarCore Power	10 MWe HTGR	TRISO
HolosGen	22 MWt scalable microreactor	TRISO fuel compacts
U-Battery Consortium	U-Battery 10 MWt microreactor	UO ₂ TRISO fuel compacts
ORNL	Transformational Challenge Reactor	UN TRISO in SiC matrix
NASA	Nuclear thermal propulsion (NTP), nuclear electric propulsion (NEP)	Various

Useful references:

- Advances in Small Modular Reactor Technology Developments. A Supplement to: IAEA Advanced Reactors Information System (ARIS), 2020 Edition, IAEA (https://aris.iaea.org/Publications/SMR Book 2020.pdf)
- https://www.world-nuclear.org/information-library/nuclear-fuel-cycle/nuclear-power-reactors/small-nuclear-power-reactors.aspx (updated Jan 2023)

Continued Coated Particle Fuel Development and Qualification

- Complete AGR Program scope to qualify LEU UCO TRISO fuel
- Support for emerging needs in industry
 - Unconventional coated particle fuel designs to meet changing reactor design requirements
 - Testing to support HTR reactor fleet operations
 - Development of advanced coated particle fuels
 - Continued refinement of fuel performance models
 - Accommodate unconventional designs and operational envelopes
 - Incorporate findings from PIE to improve predictive capabilities

Acknowledgements

Major thanks to the many staff members that have contributed to the AGR Program work this year

INL Staff

Joe Palmer

Travis Mitchell Binh Pham Ryan Fronk John Stempien Adriaan Riet Kelley Verner Lu Cai John Merickel Dave Laug Courtney Otani Wen Jiang Jim Sterbentz Cad Christensen Mitch Plummer Bill Skerjanc **Grant Hawkes** Subhashish Meher Jason Schulthess

INL Facilities and Support Staff

Hot Fuels Examination Facility
Analytical Laboratory
Irradiated Materials Characterization Laboratory
North Holmes Lab
Fuel Condition Facility
IF-688 (Gamma Lab)

Ed Reber

ORNL Staff

John Hunn

Darren Skitt

Will Cureton

Fred Montgomery

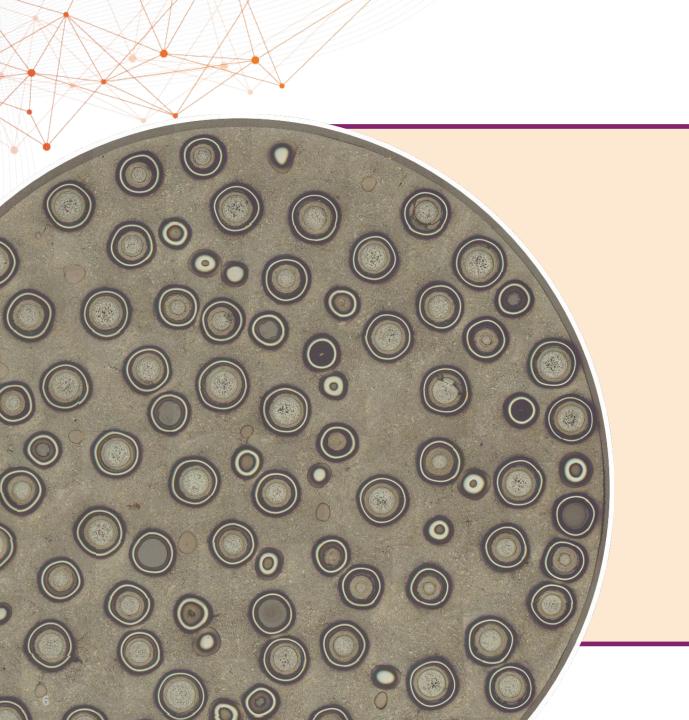
Jesse Werden

Grant Helmreich

Zach Burns

Katherine Montoya

Tyler Gerczak


Tammy Keever

Charles Baldwin

Robert Morris

ORNL Facilities and Support Staff

Irradiated Fuels Examination Facility (IFEL)
Coated Particle Fuel Development (CPFD) Laboratory
Radioactive Materials Analytical Laboratory (RMAL)
Low Activation Materials Development and Analysis
(LAMDA) Laboratory

Thank you for your attention

Paul Demkowicz paul.demkowicz@inl.gov